1
|
Tiwari S, Kumar R, Devi S, Sharma P, Chaudhary NR, Negi S, Tandel N, Marepally S, Pied S, Tyagi RK. Biogenically synthesized green silver nanoparticles exhibit antimalarial activity. DISCOVER NANO 2024; 19:136. [PMID: 39217276 PMCID: PMC11365884 DOI: 10.1186/s11671-024-04098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The suboptimal efficacies of existing anti-malarial drugs attributed to the emergence of drug resistance dampen the clinical outcomes. Hence, there is a need for developing novel drug and drug targets. Recently silver nanoparticles (AgNPs) constructed with the leaf extracts of Euphorbia cotinifolia were shown to possess antimalarial activity. Therefore, the synthesized AgNPs from Euphorbia cotinifolia (EcAgNPs) were tested for their parasite clearance activity. We determined the antimalarial activity in the asexual blood stage infection of 3D7 (laboratory strain) P. falciparum. EcAgNPs demonstrated the significant inhibition of parasite growth (EC50 of 0.75 µg/ml) in the routine in vitro culture of P. falciparum. The synthesized silver nanoparticles were seen to induce apoptosis in P. falciparum through increased reactive oxygen species (ROS) ROS production and activated programmed cell death pathways characterized by the caspase-3 and calpain activity. Also, altered transcriptional regulation of Bax/Bcl-2 ratio indicated the enhanced apoptosis. Moreover, inhibited expression of PfLPL-1 by EcAgNPs is suggestive of the dysregulated host fatty acid flux via parasite lipid storage. Overall, our findings suggest that EcAgNPs are a non-toxic and targeted antimalarial treatment, and could be a promising therapeutic approach for clearing malaria infection.
Collapse
Affiliation(s)
- Savitri Tiwari
- School of Biological and Life Sciences, Galgotias University, Gautam Buddha Nagar, Greater Noida, 201310, India
| | - Reetesh Kumar
- Faculty of Agricultural Sciences, Institute of Applied Sciences and Humanities, GLA University, Mathura, 281406, India
| | - Sonia Devi
- Biomedical Parasitology and Translational-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh, 160036, India
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Prakriti Sharma
- Biomedical Parasitology and Translational-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh, 160036, India
| | - Neil Roy Chaudhary
- Biomedical Parasitology and Translational-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh, 160036, India
| | - Sushmita Negi
- Biomedical Parasitology and Translational-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh, 160036, India
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Nikunj Tandel
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
- Malaria Research Lab, CSIR-Centre for Cellular and Molecular Biology (CCMB), Habsiguda, Hyderabad, Telangana, 500007, India
| | - Srujan Marepally
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu, 632002, India
| | - Sylviane Pied
- CNRS UMR 9017-INSERM U1019, Center for Infection and Immunity of Lille-9 CIIL, Institut Pasteur de Lille, University of Lille, 59019, Lille, France
| | - Rajeev K Tyagi
- Biomedical Parasitology and Translational-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh, 160036, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Chhajer R, Bhattacharyya A, Ali N. Cell Death in Leishmania donovani promastigotes in response to Mammalian Aurora Kinase B Inhibitor- Hesperadin. Biomed Pharmacother 2024; 177:116960. [PMID: 38936193 DOI: 10.1016/j.biopha.2024.116960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/29/2024] Open
Abstract
Deciphering how hesperadin, a repurposed mammalian aurora kinase B inhibitor, affects the cellular pathways in Leishmania donovani might be beneficial. This investigation sought to assess the physiological effects of hesperadin on promastigotes of L. donovani, by altering the duration of treatment following exposure to hesperadin. Groups pre-treated with inhibitors such as EGTA, NAC, and z-VAD-fmk before hesperadin exposure were also included. Morphological changes by microscopy, ATP and ROS changes by luminometry; DNA degradation using agarose gel electrophoresis and metacaspase levels through RT-PCR were assessed. Flow cytometry was used to study mitochondrial depolarization using JC-1 and MitoTracker Red; mitochondrial-superoxide accumulation using MitoSOX; plasma membrane modifications using Annexin-V and propidium iodide, and lastly, caspase activation using ApoStat. Significant alterations in promastigote morphology were noted. Caspase activity and mitochondrial-superoxide rose early after exposure whereas mitochondrial membrane potential demonstrated uncharacteristic variations, with significant functional disturbances such as leakage of superoxide radicals after prolonged treatments. ATP depletion and ROS accumulation demonstrated inverse patterns, genomic DNA showed fragmentation and plasma membrane showed Annexin-V binding, soon followed by propidium iodide uptake. Multilobed macronuclei and micronuclei accumulated in hesperadin exposed cells before they disintegrated into necrotic debris. The pathologic alterations were unlike the intrinsic or extrinsic pathways of classical apoptosis and suggest a caspase-mediated cell death most akin to mitotic-catastrophe. Most likely, a G2/M transition block caused accumulation of death signals, disorganized spindles and mechanical stresses, causing changes in morphology, organellar functions and ultimately promastigote death. Thus, death was a consequence of mitotic-arrest followed by ablation of kinetoplast functions, often implicated in L. donovani killing.
Collapse
Affiliation(s)
- Rudra Chhajer
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Anirban Bhattacharyya
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India.
| |
Collapse
|
3
|
Unal S, Kina UY, Kamil M, Aly ASI, Palabiyik B. Drug-induced ER stress leads to induction of programmed cell death pathways of the malaria parasite. Parasitol Res 2024; 123:263. [PMID: 38976068 PMCID: PMC11230985 DOI: 10.1007/s00436-024-08281-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
The rapid emergence of drug resistance against the mainstream antimalarial drugs has increased the need for development of novel drugs. Recent approaches have embarked on the repurposing of existing drugs to induce cell death via programmed cell death pathways. However, little is known about the ER stress response and programmed cell death pathways of the malaria parasite. In this study, we treated ex vivo Plasmodium berghei cultures with tunicamycin, 5-fluorouracil, and chloroquine as known stress inducer drugs to probe the transcriptional changes of autophagy and apoptosis-related genes (PbATG5, PbATG8, PbATG12, and PbMCA2). Treatments with 5-fluorouracil and chloroquine resulted in the upregulation of all analyzed markers, yet the levels of PbATG5 and PbATG12 were dramatically higher in chloroquine-treated ex vivo cultures. In contrast, tunicamycin treatment resulted in the downregulation of both PbATG8 and PbATG12, and upregulation of PbMCA2. Our results indicate that the malaria parasite responds to various ER stressors by inducing autophagy- and/or apoptosis-like pathways.
Collapse
Affiliation(s)
- Sinem Unal
- Aly Lab, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, 34820, Turkey
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul, University, 34134, Istanbul, Turkey
| | - Umit Y Kina
- Aly Lab, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, 34820, Turkey
| | - Mohd Kamil
- Aly Lab, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, 34820, Turkey
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307, Westlake Ave N, Seattle, WA, USA
| | - Ahmed S I Aly
- Aly Lab, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, 34820, Turkey.
- School of Science and Engineering, Al Akhawayn University, 53000, Ifrane, Morocco.
| | - Bedia Palabiyik
- Faculty of Science, Department of Molecular Biology and Genetics, Istanbul University, 34134, Istanbul, Turkey.
| |
Collapse
|
4
|
Ubaid S, Kashif M, Laiq Y, Nayak AK, Kumar V, Singh V. Targeting HIF-1α in sickle cell disease and cancer: unraveling therapeutic opportunities and risks. Expert Opin Ther Targets 2024; 28:357-373. [PMID: 38861226 DOI: 10.1080/14728222.2024.2367640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION HIF-1α, a key player in medical science, holds immense significance in therapeutic approaches. This review delves into its complex dynamics, emphasizing the delicate balance required for its modulation. HIF-1α stands as a cornerstone in medical research, its role extending to therapeutic strategies. This review explores the intricate interplay surrounding HIF-1α, highlighting its critical involvement and the necessity for cautious modulation. AREAS COVERED In sickle cell disease (SCD), HIF-1α's potential to augment fetal hemoglobin (HbF) production and mitigate symptoms is underscored. Furthermore, its role in cancer is examined, particularly its influence on survival in hypoxic tumor microenvironments, angiogenesis, and metastasis. The discussion extends to the intricate relationship between HIF-1α modulation and cancer risks in SCD patients, emphasizing the importance of balancing therapeutic benefits and potential hazards. EXPERT OPINION Managing HIF-1α modulation in SCD patients requires a nuanced approach, considering therapeutic potential alongside associated risks, especially in exacerbating cancer risks. An evolutionary perspective adds depth, highlighting adaptations in populations adapted to low-oxygen environments and aligning cancer cell metabolism with primitive cells. The role of HIF-1α as a therapeutic target is discussed within the context of complex cancer biology and metabolism, acknowledging varied responses across diverse cancers influenced by intricate evolutionary adaptations.
Collapse
Affiliation(s)
- Saba Ubaid
- Department of Biochemistry, King George's Medical University, Lucknow, India
| | - Mohammad Kashif
- Infectious Diseases Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Yusra Laiq
- Department of Biotechnology, Era University, Lucknow, India
| | | | - Vipin Kumar
- Infectious Diseases Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Vivek Singh
- Department of Biochemistry, King George's Medical University, Lucknow, India
| |
Collapse
|
5
|
Blanco CM, de Souza HADS, Martins PDC, Fabbri C, Souza FSD, Lima-Junior JDC, Lopes SCP, Pratt-Riccio LR, Daniel-Ribeiro CT, Totino PRR. Profile of metacaspase gene expression in Plasmodium vivax field isolates from the Brazilian Amazon. Mol Biol Rep 2024; 51:594. [PMID: 38683374 PMCID: PMC11058907 DOI: 10.1007/s11033-024-09538-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Metacaspases comprise a family of cysteine proteases implicated in both cell death and cell differentiation of protists that has been considered a potential drug target for protozoan parasites. However, the biology of metacaspases in Plasmodium vivax - the second most prevalent and most widespread human malaria parasite worldwide, whose occurrence of chemoresistance has been reported in many endemic countries, remains largely unexplored. Therefore, the present study aimed to address, for the first time, the expression pattern of metacaspases in P. vivax parasites. METHODS AND RESULTS P. vivax blood-stage parasites were obtained from malaria patients in the Brazilian Amazon and the expression of the three putative P. vivax metacaspases (PvMCA1-3) was detected in all isolates by quantitative PCR assay. Of note, the expression levels of each PvMCA varied noticeably across isolates, which presented different frequencies of parasite forms, supporting that PvMCAs may be expressed in a stage-specific manner as previously shown in P. falciparum. CONCLUSION The detection of metacaspases in P. vivax blood-stage parasites reported herein, allows the inclusion of these proteases as a potential candidate drug target for vivax malaria, while further investigations are still required to evaluate the activity, role and essentiality of metacaspases in P. vivax biology.
Collapse
Affiliation(s)
- Carolina Moreira Blanco
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz and Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro, Brasil
| | - Hugo Amorim Dos Santos de Souza
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz and Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro, Brasil
| | - Priscilla da Costa Martins
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz and Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro, Brasil
| | - Camila Fabbri
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brasil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brasil
| | | | | | - Stefanie Costa Pinto Lopes
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brasil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brasil
| | - Lilian Rose Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz and Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro, Brasil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz and Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro, Brasil
| | - Paulo Renato Rivas Totino
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz and Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro, Brasil.
| |
Collapse
|
6
|
Kumari V, Prasad KM, Kalia I, Sindhu G, Dixit R, Rawat DS, Singh OP, Singh AP, Pandey KC. Dissecting The role of Plasmodium metacaspase-2 in malaria gametogenesis and sporogony. Emerg Microbes Infect 2022; 11:938-955. [PMID: 35264080 PMCID: PMC8973346 DOI: 10.1080/22221751.2022.2052357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The family of apicomplexan specific proteins contains caspases–like proteins called “metacaspases”. These enzymes are present in the malaria parasite but absent in human; therefore, these can be explored as potential drug targets. We deleted the MCA-2 gene from Plasmodium berghei genome using a gene knockout strategy to decipher its precise function. This study has identified that MCA-2 plays an important role in parasite transmission since it is critical for the formation of gametocytes and for maintaining an appropriate number of infectious sporozoites required for sporogony. It is noticeable that a significant reduction in gametocyte, oocysts, ookinete and sporozoites load along with a delay in hepatocytes invasion were observed in the MCA-2 knockout parasite. Furthermore, a study found the two MCA-2 inhibitory molecules known as C-532 and C-533, which remarkably inhibited the MCA-2 activity, abolished the in vitro parasite growth, and also impaired the transmission cycle of P. falciparum and P. berghei in An. stephensi. Our findings indicate that the deletion of MCA-2 hampers the Plasmodium development during erythrocytic and exo-erythrocytic stages, and its inhibition by C-532 and C-533 critically affects the malaria transmission biology.
Collapse
Affiliation(s)
- Vandana Kumari
- ICMR-National Institute of Malaria Research, New Delhi, India
| | | | | | | | - Rajnikant Dixit
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Diwan S Rawat
- Depatment of Chemistry, University of Delhi, New Delhi, India
| | - O P Singh
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Agam P Singh
- National Institute of Immunology, New Delhi, India
| | - Kailash C Pandey
- ICMR-National Institute of Malaria Research, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad Uttar Pradesh, UP, India
| |
Collapse
|
7
|
Vandana , Pandey R, Srinivasan E, Kalia I, Singh AP, Saxena A, Rajaekaran R, Gupta D, Pandey KC. Plasmodium falciparum metacaspase-2 capture its natural substrate in a non-canonical way. J Biochem 2021; 170:639-653. [DOI: 10.1093/jb/mvab086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Programmed cell death (PCD) is a multi-step process initiated by a set of proteases, which interacts and cleaves diverse proteins, thus modulating their biochemical and cellular functions. In metazoans, PCD is mediated by proteolytic enzymes called caspases, which triggered cell death by proteolysis of human Tudor staphylococcus nuclease (TSN). Non-metazoans lack a close homologue of caspases but possess an ancestral family of cysteine proteases termed ‘metacaspases’. Studies supported that metacaspases are involved in PCD, but their natural substrates remain unknown. In this study, we performed the Plasmodium falciparum TSN (PfTSN) cleavage assay using wild and selected mutants of P. falciparum metacaspases-2 (PfMCA-2) in vitro and in vivo. Interestingly, PfMCA-2, cleaved a phylogenetically conserved protein, PfTSN at multiple sites. Deletion or substitution mutation in key interacting residues at the active site, Cys157 and His205 of PfMCA-2, impaired its enzymatic activity with the artificial substrate, z-GRR-AMC. However, the mutant Tyr224A did not affect the activity with z-GRR-AMC but abolished the cleavage of PfTSN. These results indicated that the catalytic dyad, Cys157 and His205 of PfMCA-2 was essential for its enzymatic activity with an artificial substrate, whereas Tyr224 and Cys157 residues were responsible for its interaction with the natural substrate and subsequent degradation of PfTSN. Our results suggested that MCA-2 interacts with TSN substrate in a non-canonical way using non-conserved or conformationally available residues for its binding and cleavage. In future, it would be interesting to explore how this interaction leads to the execution of PCD in the Plasmodium.
Collapse
Affiliation(s)
- Vandana
- ICMR-National Institute of Malaria Research (Indian Council of Medical Research), Department of Health Research, Ministry of Health & FW, Govt. of India Sector-8, Dwarka, New Delhi-110077, India
| | - Rajan Pandey
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - E Srinivasan
- Department of Biotechnology, SBST, Vellore Institute of Technology, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu-632014, India
| | - Inderjeet Kalia
- Infectious Diseases Laboratory, National Institute of Immunology, New Delhi-110067, India
| | - Agam P Singh
- Infectious Diseases Laboratory, National Institute of Immunology, New Delhi-110067, India
| | - Ajay Saxena
- School of Life Science (SLS), Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - R Rajaekaran
- Department of Biotechnology, SBST, Vellore Institute of Technology, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu-632014, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Kailash C Pandey
- ICMR-National Institute of Malaria Research (Indian Council of Medical Research), Department of Health Research, Ministry of Health & FW, Govt. of India Sector-8, Dwarka, New Delhi-110077, India
| |
Collapse
|
8
|
de Souza HADS, Escafa VF, Blanco CM, Baptista BDO, de Barros JP, Riccio EKP, Rodrigues ABM, Melo GCD, Lacerda MVGD, de Souza RM, Lima-Junior JDC, Guimarães ACR, da Mota FF, da Silva JHM, Daniel-Ribeiro CT, Pratt-Riccio LR, Totino PRR. Plasmodium vivax metacaspase 1 (PvMCA1) catalytic domain is conserved in field isolates from Brazilian Amazon. Mem Inst Oswaldo Cruz 2021; 116:e200584. [PMID: 34076074 PMCID: PMC8186469 DOI: 10.1590/0074-02760200584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/04/2021] [Indexed: 11/22/2022] Open
Abstract
In the present study, we investigated the genetic diversity of Plasmodium vivax metacaspase 1 (PvMCA1) catalytic domain in two municipalities of the main malaria hotspot in Brazil, i.e., the Juruá Valley, and observed complete sequence identity among all P. vivax field isolates and the Sal-1 reference strain. Analysis of PvMCA1 catalytic domain in different P. vivax genomic sequences publicly available also revealed a high degree of conservation worldwide, with very few amino acid substitutions that were not related to putative histidine and cysteine catalytic residues, whose involvement with the active site of protease was herein predicted by molecular modeling. The genetic conservation presented by PvMCA1 may contribute to its eligibility as a druggable target candidate in vivax malaria.
Collapse
Affiliation(s)
| | - Victor Fernandes Escafa
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil
| | - Carolina Moreira Blanco
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil
| | - Bárbara de Oliveira Baptista
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil
| | - Jenifer Peixoto de Barros
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil
| | - Evelyn Ketty Pratt Riccio
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil
| | - Aline Beatriz Mello Rodrigues
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil
| | - Gisely Cardoso de Melo
- Universidade do Estado do Amazonas, Manaus, AM, Brasil.,Fundação de Medicina Tropical Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus, AM, Brasil
| | - Marcus Vinícius Guimarães de Lacerda
- Fundação de Medicina Tropical Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus, AM, Brasil.,Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas and Maria Deane, Manaus, AM, Brasil
| | - Rodrigo Medeiros de Souza
- Universidade Federal do Acre, Centro de Pesquisa em Doenças Infecciosas, Centro Multidisciplinar, Rio Branco, AC, Brasil
| | - Josué da Costa Lima-Junior
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunoparasitologia, Rio de Janeiro, RJ, Brasil
| | - Ana Carolina Ramos Guimarães
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil
| | - Fabio Faria da Mota
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Computacional e Sistemas, Rio de Janeiro, RJ, Brasil
| | | | - Cláudio Tadeu Daniel-Ribeiro
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil
| | - Lilian Rose Pratt-Riccio
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil
| | - Paulo Renato Rivas Totino
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
9
|
Kumar B, Mohammad T, Amaduddin, Hussain A, Islam A, Ahmad F, Alajmi MF, Singh S, Pandey KC, Hassan MI, Abid M. Targeting metacaspase-3 from Plasmodium falciparum towards antimalarial therapy: A combined approach of in-silico and in-vitro investigation. J Biomol Struct Dyn 2020; 39:421-430. [PMID: 31900062 DOI: 10.1080/07391102.2019.1711194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Malaria is a global challenge, and its infection is propagated through Plasmodium falciparum, an obligate human parasite. The genome of P. falciparum encodes many proteases that play significant roles in their survival and pathogenesis thus being considered as attractive drug targets. P. falciparum metacaspase-3 (PfMCA3) is one such protease and a validated drug target to control malarial infection. First, we modeled the three-dimensional structure of PfMCA3 and predicted its ligand-binding pocket. The structural features of PfMCA3 were used for virtual screening followed by docking and molecular dynamics (MD) simulation studies to identify potent inhibitors. We used an in-house library of 513 compounds for screening to identify lead molecule fits well in the active site pocket of PfMCA3. The binding affinity and mechanism were investigated by combined docking and MD simulation studies. Docking studies reveal that the selected compounds are forming enough number of non-covalent interactions to the PfMCA3. In the enzyme inhibition assay, one of the selected compounds, H6 was found with appreciable inhibitory potential. MD simulation studies further support the binding of compound H6 with PfMCA3 and formation of a stable complex throughout the simulation trajectory. Taken together, we proposed that compound H6 is a promising lead scaffold that can be further exploited as a potential inhibitor of PfMCA3 for therapeutic management of malarial infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bhumika Kumar
- Department of Bioscience, Jamia Millia Islamia, New Delhi, India.,Protein Biochemistry and Engineering Lab, ICMR-National Institute of Malaria Research, Indian Council of Medical Research, Dwarka, New Delhi, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Amaduddin
- Department of Bioscience, Jamia Millia Islamia, New Delhi, India.,Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Kailash C Pandey
- Protein Biochemistry and Engineering Lab, ICMR-National Institute of Malaria Research, Indian Council of Medical Research, Dwarka, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Abid
- Department of Bioscience, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|