1
|
Chen KL, Xie DD, Luo MP, Liu B, Li Y, Zhao YJ, Zhao XX, Pei JM, Ding YG, Feng ZP, Wang B, Zhang XG. Functional Food Potential of Chrysanthemum morifolium, Perilla frutescens, and Sophora japonica in Managing Hyperuricemia through Dual Enzyme Inhibition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25879-25894. [PMID: 39526475 DOI: 10.1021/acs.jafc.4c05845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Amid growing concerns regarding gout and hyperuricemia associated with high-protein and purine-rich diets, the need for effective prevention and management strategies with minimal side effects has become increasingly critical. This study evaluates the potential of three commonly consumed plant-based functional foods, Chrysanthemum morifolium, Perilla frutescens, and Sophora japonica, inhibiting xanthine oxidase (XO) and adenosine deaminase (ADA), key enzymes in uric acid metabolism. Results from hyperuricemia model mice indicate that this blend significantly reduces serum uric acid levels, mirroring the efficacy of conventional prevention and management strategies such as allopurinol but with fewer adverse effects. Liquid chromatography-mass spectrometry (LC-MS) analysis confirms that flavonoids are the primary bioactive agents, exhibiting a strong affinity for XO. These findings highlight the viability of integrating plant-based functional foods into comprehensive gout management strategies, underscoring their role in enhancing patient health through dietary innovation.
Collapse
Affiliation(s)
- Kai-Lin Chen
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Dong-Dong Xie
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Man-Ping Luo
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Bing Liu
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yang Li
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yu-Jie Zhao
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xiao-Xiao Zhao
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Jia-Mei Pei
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yong-Gang Ding
- Outpatient Department of the second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Zai-Ping Feng
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Bei Wang
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xin-Guo Zhang
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| |
Collapse
|
2
|
Zeng X, Tong X, Chen J, Chen Q, Lai R, Xu Q, Wang D, Zhou X, Shao Y. Fluorogenic target competitors for developing label-free and sensitive folding-unswitching aptamer sensors. Anal Chim Acta 2024; 1329:343237. [PMID: 39396299 DOI: 10.1016/j.aca.2024.343237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Aptamers have aroused tremendous applications in sensors, drug deliveries, diagnosis, and therapies. In particular, target-induced global structure switching of aptamers has been widely used to develop selective sensors. However, fluorophore and/or quencher modification, sequence elongation, and nano-interface adsorption are required to design such global structure-switching aptamer sensors (SSAS) in order to signal target binding events. Accordingly, these requirements make SSAS at a high cost and expense of sensors' sensitivity. In this aspect, efforts should be made to overcome these drawbacks of SSAS. RESULTS Herein, we tried to develop label-free folding-unswitching aptamer sensors (FUAS) by searching fluorogenic target competitors. Using adenine nucleoside/nucleotide as the proof-of-concept model targets, we screened out berberine (BER) from natural isoquinoline alkaloids (having rings comparable to targets) as the best fluorogenic target competitor. Binding of BER at the conserved nucleotides of intact aptamer foldings turned on this fluorogenic target competitor' fluorescence. Targets then competed with this fluorogenic target competitor over the same conserved nucleotides to cause its release in favor of a resultant fluorescence change. We found that the developed FUAS are much more sensitive than the previously reported SSAS. The FUAS were successfully applied to assays of ATP and adenosine deaminase in serums, and to screening of the adenosine deaminase's inhibitor, verifying the reliability and applicability of this FUAS platform in variant fields. SIGNIFICANCE We demonstrate that by designing fluorogenic target competitors, FUAS can be alternatively developed in a label-free manner and with a higher sensitivity than the previously developed SSAS. This work opens a new way to develop high-performance aptamer-based sensors. Furthermore, our developed FUAS should inspire more interest for wide applications incluidng target-triggered drug deliveries when therapeutic fluorogenic target competitors are used.
Collapse
Affiliation(s)
- Xingli Zeng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Xiufang Tong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Jiahui Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Qiyao Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Rong Lai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Qiuda Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Dandan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Xiaoshun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China.
| |
Collapse
|
3
|
Del Arco J, Acosta J, Fernández-Lucas J. Biotechnological applications of purine and pyrimidine deaminases. Biotechnol Adv 2024; 77:108473. [PMID: 39505057 DOI: 10.1016/j.biotechadv.2024.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/21/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
Deaminases, ubiquitous enzymes found in all living organisms from bacteria to humans, serve diverse and crucial functions. Notably, purine and pyrimidine deaminases, while biologically essential for regulating nucleotide pools, exhibit exceptional versatility in biotechnology. This review systematically consolidates current knowledge on deaminases, showcasing their potential uses and relevance in the field of biotechnology. Thus, their transformative impact on pharmaceutical manufacturing is highlighted as catalysts for the synthesis of nucleic acid derivatives. Additionally, the role of deaminases in food bioprocessing and production is also explored, particularly in purine content reduction and caffeine production, showcasing their versatility in this field. The review also delves into most promising biomedical applications including deaminase-based GDEPT and genome and transcriptome editing by deaminase-based systems. All in all, illustrated with practical examples, we underscore the role of purine and pyrimidine deaminases in advancing sustainable and efficient biotechnological practices. Finally, the review highlights future challenges and prospects in deaminase-based biotechnological processes, encompassing both industrial and medical perspectives.
Collapse
Affiliation(s)
- Jon Del Arco
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Javier Acosta
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia; Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
4
|
Zhu X, Chen Y, Cai Y, Hu J. Adenosine deaminase is a risk factor for mortality after discharge in patients with acute myocardial infarction: Long-term clinical follow-up. Heliyon 2024; 10:e38401. [PMID: 39416837 PMCID: PMC11481646 DOI: 10.1016/j.heliyon.2024.e38401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Background Variations in adenosine deaminase (ADA) activity have been detected in numerous cardiovascular diseases (CVDs), but there is limited research on its role in the prognosis of CVDs. In this study, we explored the role of ADA in the prognosis of patients with acute myocardial infarction (AMI). Method In this study, a total of 1,574 patients with a first diagnosis of acute myocardial infarction (AMI) were followed up for a median (interquartile range [IQR]) of 77.0 (50.0, 95.0) months after discharge. Cox proportional hazards regression models were used to identify factors that are substantially valuable for patient prognosis. Results During the follow-up period, the mortality rate of AMI was 12.5 %. The 3-year and 5-year overall survival (OS) rates of AMI patients were 93.8 % and 91.0 %, respectively. Multivariate Cox regression analysis revealed that serum ADA (hazard ratio [HR] = 1.166, 95 % confidence interval [CI]: 1.006-1.352) was an independent risk factor for 5-year OS after discharge in AMI patients. When serum ADA was assessed in quartiles, compared with the reference group (Quartile 1), the adjusted HR for death was 2.498 (95 % CI: 1.344-4.642) in Quartile 4 for 5-year OS and 2.508 (95 % CI: 1.145-5.496) in Quartile 4 for 3-year OS. Conclusions Serum ADA levels at admission are a risk factor that affects the long-term prognosis of AMI patients after hospital discharge.
Collapse
Affiliation(s)
- Xiaoli Zhu
- Department of Laboratory Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, PR China
| | - Yijun Chen
- Department of Laboratory Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, PR China
| | - Yangjun Cai
- Department of Oncological Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, PR China
| | - Jinxi Hu
- Department of Oncological Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, PR China
| |
Collapse
|
5
|
Wang T, Tan HS, Wang AJ, Li SS, Feng JJ. Fluorescent metal nanoclusters: From luminescence mechanism to applications in enzyme activity assays. Biosens Bioelectron 2024; 257:116323. [PMID: 38669842 DOI: 10.1016/j.bios.2024.116323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Metal nanoclusters (MNCs) have outstanding fluorescence property and biocompatibility, which show widespread applications in biological analysis. Particularly, evaluation of enzyme activity with the fluorescent MNCs has been developed rapidly within the past several years. In this review, we first introduced the fluorescent mechanism of mono- and bi-metallic nanoclusters, respectively, whose interesting luminescence properties are mainly resulted from electron transfer between the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels. Meanwhile, the charge migration within the structure occurs through ligand-metal charge transfer (LMCT) or ligand-metal-metal charge transfer (LMMCT). On such foundation, diverse enzyme activities were rigorously evaluated, including three transferases and nine hydrolases, in turn harvesting rapid research progresses within past 5 years. Finally, we summarized the design strategies for evaluating enzyme activity with the MNCs, presented the major issues and challenges remained in the relevant research, coupled by showing some improvement measures. This review will attract researchers dedicated to the studies of the MNCs and provide some constructive insights for their further applications in enzyme analysis.
Collapse
Affiliation(s)
- Tong Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Hong-Sheng Tan
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Shan-Shan Li
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
6
|
Hacioglu C, Kar F, Sahin MC. Neurochemical Research of LOXBlock-1 and ZnSO 4 against Neurodegenerative Damage Induced by Amyloid Beta(1-42). Biol Trace Elem Res 2024; 202:3204-3214. [PMID: 37872362 DOI: 10.1007/s12011-023-03908-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023]
Abstract
Synaptosomes offer an intriguing ex vivo model system for investigating the molecular mechanisms of neurodegenerative processes. Lipoxygenases significantly affect the course of neurodegenerative diseases. Homeostasis of trace elements such as zinc is necessary for the continuity of brain functions. In this study, we purpose to determine whether LOXBlock-1, a 12/15 lipoxygenase inhibitor, and zinc sulfate (ZnSO4) provide any biochemical protection during neurodegenerative damage in synaptosomes induced by amyloid beta 1-42 (Aβ1-42). In this study, animals (30 Wistar Albino male rats 30) were divided into 5 groups (6 animals in each group): Control, 10µM Aβ1-42, 10µM Aβ1-42+25mM LOXBlock-1, 10µM Aβ1-42+10µM ZnSO4, and 10µM Aβ1-42+25mM LOXBlock-1+10µM ZnSO4. Synaptosomes were isolated from the rat cerebral cortex. Following, 8-hydroxy-2-deoxyguanosine (8-OHdG) levels, malondialdehyde (MDA) levels, adenosine deaminase (ADA) levels, reduced-glutathione (GSH) levels, neuronal nitric oxide synthase (nNOS) levels, acetylcholinesterase (AChE) activity, catalase (CAT) activity, and 8-OHdG levels in synaptosomes were detected according to the ELISA method. ADA and AChE expression and protein levels were analyzed. MDA, nNOS, AChE, and 8-OHdG levels in synaptosomes treated with Aβ1-42 resulted in an increase, while there was a decrease in ADA, GSH, and CAT levels (p<0.001 vs. control). Conversely, LOXBlock-1 and ZnSO4 treatments in synaptosomes treated with Aβ1-42 decreased MDA, nNOS, AChE, and 8-OHdG levels, while ADA, GSH, and CAT levels increased. Moreover, the most effective improvement was seen in the co-treatment group of LOXBlock-1 and ZnSO4. Our data showed that LOXBlock-1 and ZnSO4 co-treatment may protect against Aβ1-42 exposure in rat brain synaptosomes.
Collapse
Affiliation(s)
- Ceyhan Hacioglu
- Department of Biochemistry, Faculty of Pharmacy, Duzce University, Duzce, Turkey.
- Department of Medical Biochemistry, Faculty of Medicine, Duzce University, Duzce, Turkey.
| | - Fatih Kar
- Department of Medical Biochemistry, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Turkey
| | - Meryem Cansu Sahin
- Department of Medical Services and Techniques, Medical Imaging Techniques Program, Uşak University, Uşak, Turkey
| |
Collapse
|
7
|
Alfaqih MA, Ababneh E, Mhedat K, Allouh MZ. Vitamin D Reduces the Activity of Adenosine Deaminase and Oxidative Stress in Patients with Type Two Diabetes Mellitus. Mol Nutr Food Res 2024; 68:e2300870. [PMID: 38816753 DOI: 10.1002/mnfr.202300870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/29/2024] [Indexed: 06/01/2024]
Abstract
SCOPE Patients with Type 2 diabetes mellitus (T2DM) have lower levels of vitamin D. An elevation in uric acid (UA) contributes to T2DM via an increase in oxidative stress. Adenosine deaminase (ADA) is an enzyme of the purine degradation pathway. It is hypothesized that a reduction of ADA activity via vitamin D supplementation reduces UA and oxidative stress. METHODS AND RESULTS A total of 162 participants (81 with T2DM and 81 controls) are enrolled in a case-control study. A follow-up interventional study is performed on 30 patients with vitamin D deficiency. These patients receive 50 000 IU (international units) of vitamin D3 on a weekly basis for 12 weeks. This intervention is followed by the measurement of several markers. T2DM patients has higher ADA activity, UA, and lipid peroxidation but lower 25-hydroxy-vitamin D (25 (OH) vitamin D) and GSH/GSSG ratio (p < 0.05). Vitamin D supplementation results in a reduction of ADA activity and UA levels (p < 0.05) along with an increase in GSH/GSSG ratio (p < 0.05). CONCLUSION The results highlight the presence of an axis in T2DM patients between ADA, UA, and oxidative stress. Modulation of this axis can be achieved by clinically approved vitamin D supplementation protocols.
Collapse
Affiliation(s)
- Mahmoud A Alfaqih
- Department of Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, 15503, Bahrain
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ebaa Ababneh
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Khawla Mhedat
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mohammed Z Allouh
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| |
Collapse
|
8
|
Hazrati A, Malekpour K, Khorramdelazad H, Rajaei S, Hashemi SM. Therapeutic and immunomodulatory potentials of mesenchymal stromal/stem cells and immune checkpoints related molecules. Biomark Res 2024; 12:35. [PMID: 38515166 PMCID: PMC10958918 DOI: 10.1186/s40364-024-00580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are used in many studies due to their therapeutic potential, including their differentiative ability and immunomodulatory properties. These cells perform their therapeutic functions by using various mechanisms, such as the production of anti-inflammatory cytokines, growth factors, direct cell-to-cell contact, extracellular vesicles (EVs) production, and mitochondrial transfer. However, mechanisms related to immune checkpoints (ICPs) and their effect on the immunomodulatory ability of MSCs are less discussed. The main function of ICPs is to prevent the initiation of unwanted responses and to regulate the immune system responses to maintain the homeostasis of these responses. ICPs are produced by various types of immune system regulatory cells, and defects in their expression and function may be associated with excessive responses that can ultimately lead to autoimmunity. Also, by expressing different types of ICPs and their ligands (ICPLs), tumor cells prevent the formation and durability of immune responses, which leads to tumors' immune escape. ICPs and ICPLs can be produced by MSCs and affect immune cell responses both through their secretion into the microenvironment or direct cell-to-cell interaction. Pre-treatment of MSCs in inflammatory conditions leads to an increase in their therapeutic potential. In addition to the effect that inflammatory environments have on the production of anti-inflammatory cytokines by MSCs, they can increase the expression of various types of ICPLs. In this review, we discuss different types of ICPLs and ICPs expressed by MSCs and their effect on their immunomodulatory and therapeutic potential.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Samira Rajaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Ye H, Lin X, Zhang Z, Xu Z, Huang T, Cai S, Fan Y, Wang S. Adenosine Deaminase as a Potential Diagnostic and Prognostic Biomarker for Severe Fever with Thrombocytopenia Syndrome. ACS OMEGA 2024; 9:11005-11011. [PMID: 38463302 PMCID: PMC10918779 DOI: 10.1021/acsomega.4c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome (SFTS) is a serious infectious disease caused by the Dabie bandavirus, with a high mortality rate. Currently, there are no effective vaccines or specific treatments for SFTS. Early diagnosis and accurate severity assessment are crucial. METHODS This study included 171 cases of SFTS, COVID-19, and hepatitis B virus (HBV) patients and healthy controls. We compared the serum adenosine deaminase (ADA) activity across these groups. The diagnostic and prognostic efficiency of serum ADA for SFTS was evaluated by using receiver operating characteristic (ROC) curve analysis. We also examined the correlation between serum ADA in SFTS patients and clinical lab parameters as well as serum cytokines. RESULTS SFTS patients had significantly higher serum ADA activity than those of COVID-19, HBV patients, and healthy controls. Nonsurvivor SFTS patients had notably higher ADA than survivors. ROC analysis indicated ADA as an effective SFTS diagnostic and prognostic biomarker. ADA correlated with prognosis, viral load, APTT, PT, AST, ferritin, negatively with HDL-c and LDL-c, and positively with cytokines like IL-6, TNF-α, and IL-1β. Multiorgan failure patients showed significant ADA increase. CONCLUSION Elevated serum ADA activity in SFTS patients is linked with disease severity and prognosis, showing potential as a diagnostic and prognostic biomarker for SFTS.
Collapse
Affiliation(s)
- Hongling Ye
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Xiawen Lin
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zheng Zhang
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zhiye Xu
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Taihong Huang
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Shijie Cai
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yinyin Fan
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Sen Wang
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| |
Collapse
|
10
|
Chen Y, Yang J, Rao Q, Wang C, Chen X, Zhang Y, Suo H, Song J. Understanding Hyperuricemia: Pathogenesis, Potential Therapeutic Role of Bioactive Peptides, and Assessing Bioactive Peptide Advantages and Challenges. Foods 2023; 12:4465. [PMID: 38137270 PMCID: PMC10742721 DOI: 10.3390/foods12244465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Hyperuricemia is a medical condition characterized by an elevated level of serum uric acid, closely associated with other metabolic disorders, and its global incidence rate is increasing. Increased synthesis or decreased excretion of uric acid can lead to hyperuricemia. Protein peptides from various food sources have demonstrated potential in treating hyperuricemia, including marine organisms, ovalbumin, milk, nuts, rice, legumes, mushrooms, and protein-rich processing by-products. Through in vitro experiments and the establishment of cell or animal models, it has been proven that these peptides exhibit anti-hyperuricemia biological activities by inhibiting xanthine oxidase activity, downregulating key enzymes in purine metabolism, regulating the expression level of uric acid transporters, and restoring the composition of the intestinal flora. Protein peptides derived from food offer advantages such as a wide range of sources, significant therapeutic benefits, and minimal adverse effects. However, they also face challenges in terms of commercialization. The findings of this review contribute to a better understanding of hyperuricemia and peptides with hyperuricemia-alleviating activity. Furthermore, they provide a theoretical reference for developing new functional foods suitable for individuals with hyperuricemia.
Collapse
Affiliation(s)
- Yanchao Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jing Yang
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing 400067, China
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Qinchun Rao
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
11
|
Meffre P, Benfodda Z, Albrecht S. Enzyme inhibitors for drug discovery. Amino Acids 2023; 55:1707-1708. [PMID: 38017350 DOI: 10.1007/s00726-023-03357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
|
12
|
Mu X, Lin Z, Sun Y, Chen L, Lv Q, Ji C, Kuang X, Li W, Shang Z, Cheng J, Nie Y, Li Z, Wu J. Aedes albopictus salivary adenosine deaminase is an immunomodulatory factor facilitating dengue virus replication. Sci Rep 2023; 13:16660. [PMID: 37794048 PMCID: PMC10551004 DOI: 10.1038/s41598-023-43751-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
The Asian tiger mosquito, Aedes albopictus, is an important vector for the transmission of arboviruses such as dengue virus (DENV). Adenosine deaminase (ADA) is a well-characterized metabolic enzyme involved in facilitating blood feeding and (or) arbovirus transmission in some hematophagous insect species. We previously reported the immunologic function of ADA by investigating its effect on mast cell activation and the interaction with mast cell tryptase and chymase. The 2-D gel electrophoresis and mass spectrometry analysis in the current study revealed that ADA is present and upregulated following mosquito blood feeding, as confirmed by qRT-PCR and western blot. In addition, the recombinant ADA efficiently converted adenosine to inosine. Challenging the Raw264.7 and THP-1 cells with recombinant ADA resulted in the upregulation of IL-1β, IL-6, TNF-α, CCL2, IFN-β, and ISG15. The current study further identified recombinant ADA as a positive regulator in NF-κB signaling targeting TAK1. It was also found that recombinant Ae. albopictus ADA facilitates the replication of DENV-2. Compared with cells infected by DENV-2 alone, the co-incubation of recombinant ADA with DENV-2 substantially increased IL-1β, IL-6, TNF-α, and CCL2 gene transcripts in Raw264.7 and THP-1 cells. However, the expression of IFN-β and ISG15 were markedly downregulated in Raw264.7 cells but upregulated in THP-1 cells. These findings suggest that the immunomodulatory protein, Ae. albopictus ADA is involved in mosquito blood feeding and may modulate DENV transmission via macrophage or monocyte-driven immune response.
Collapse
Affiliation(s)
- Xiaohui Mu
- Department of Parasitology, Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou, China
- Department of Reproductive Medicine, People's Hospital of Anshun City Guizhou Province, Anshun, 561000, Guizhou, China
| | - Zimin Lin
- Department of Parasitology, Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Yu Sun
- The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Lu Chen
- The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Qingqiao Lv
- Xi'an Peihua University, Xi'an, 710065, Shaanxi, China
| | - Cejuan Ji
- Department of Medical Technology, Guiyang Healthcare Vocational University, Guiyang, Guizhou, China
| | - Xiaoyuan Kuang
- Department of Parasitology, Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Weiyi Li
- Department of Parasitology, Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Zhengling Shang
- Department of Immunology, College of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China
| | - Jinzhi Cheng
- Department of Parasitology, Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Ying Nie
- Department of Parasitology, Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Zhiqiang Li
- Department of Immunology, College of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China.
| | - Jiahong Wu
- Department of Parasitology, Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
13
|
Castillo C, Hernandez J, Sotillo J, Muiño R, Benedito JL, Montes A, Arana R, Matas-Quintanilla M, Panizo CG, Montes AMG. Is adenosine deaminase (ADA) activity in saliva and serum a more accurate disease detection tool than traditional redox balance parameters in early-lactating dairy cows? Vet Res Commun 2023; 47:1255-1262. [PMID: 36607499 PMCID: PMC10485081 DOI: 10.1007/s11259-023-10069-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
Enzyme adenosine deaminase (ADA) is a marker of inflammation in domestic animals, but it is unclear whether it is a reliable marker of oxidative stress, especially in the transition period in dairy cows. This study aims to assess if ADA and redox status measurements in saliva provide the same utility to detect disease condition as that obtained from serum. Sixty-eight multiparous Holstein cows, between 2 and 3 weeks postpartum were selected. Five study groups were established: control (healthy), and cows with ketosis, mastitis, laminitis, and metritis. The parameters measured were ADA activity, total oxidants (TOS), antioxidants (TAC), and OSi ratio.Regarding redox status, no significant differences arise in both saliva and serum being the correlations negative and not significant. In saliva, ADA activity in healthy cows differs from those with pathological processes, having the lowest activities. In serum, ADA activity is similar in the healthy and ketosis cows, showing the lowest activities meanwhile animals with mastitis, laminitis, or metritis have significantly higher activities. In conclusion, the measurement of ADA activities and redox status in saliva does not give consistent results, being preferable to measure them in serum during the transition period.
Collapse
Affiliation(s)
- Cristina Castillo
- Department of Animal Pathology, Veterinary School, University of Santiago de Compostela, 27002, Lugo, Galicia, Spain
| | - Joaquín Hernandez
- Department of Animal Pathology, Veterinary School, University of Santiago de Compostela, 27002, Lugo, Galicia, Spain.
| | - Juan Sotillo
- BioVetMed Research Group, Department of Animal Medicine and Surgery, Veterinary School, CEIR Campus Mare Nostrum (CMN), University of Murcia, 30100, Espinardo, Murcia, Spain
| | - Rodrigo Muiño
- Department of Animal Pathology, Veterinary School, University of Santiago de Compostela, 27002, Lugo, Galicia, Spain
| | - Jose L Benedito
- Department of Animal Pathology, Veterinary School, University of Santiago de Compostela, 27002, Lugo, Galicia, Spain
| | - Ana Montes
- BioVetMed Research Group, Department of Animal Medicine and Surgery, Veterinary School, CEIR Campus Mare Nostrum (CMN), University of Murcia, 30100, Espinardo, Murcia, Spain
| | - Rafael Arana
- BioVetMed Research Group, Department of Animal Medicine and Surgery, Veterinary School, CEIR Campus Mare Nostrum (CMN), University of Murcia, 30100, Espinardo, Murcia, Spain
| | - Marta Matas-Quintanilla
- BioVetMed Research Group, Department of Animal Medicine and Surgery, Veterinary School, CEIR Campus Mare Nostrum (CMN), University of Murcia, 30100, Espinardo, Murcia, Spain
| | - Cándido G Panizo
- Animal Pathology Research Group Department of Animal Medicine and Surgery, Veterinary School, CEIR Campus Mare Nostrum (CMN), University of Murcia, 30100, Espinardo, Murcia, Spain
| | - Ana María Gutiérrez Montes
- BioVetMed Research Group, Department of Animal Medicine and Surgery, Veterinary School, CEIR Campus Mare Nostrum (CMN), University of Murcia, 30100, Espinardo, Murcia, Spain
| |
Collapse
|
14
|
Chen M, Luo J, Jiang W, Chen L, Miao L, Han C. Cordycepin: A review of strategies to improve the bioavailability and efficacy. Phytother Res 2023; 37:3839-3858. [PMID: 37329165 DOI: 10.1002/ptr.7921] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/18/2023]
Abstract
Cordycepin is a bioactive compound extracted from Cordyceps militaris. As a natural antibiotic, cordycepin has a wide variety of pharmacological effects. Unfortunately, this highly effective natural antibiotic is proved to undergo rapid deamination by adenosine deaminase (ADA) in vivo and, as a consequence, its half-life is shortened and bioavailability is decreased. Therefore, it is of critical importance to work out ways to slow down the deamination so as to increase its bioavailability and efficacy. This study reviews recent researches on a series of aspects of cordycepin such as the bioactive molecule's pharmacological action, metabolism and transformation as well as the underlying mechanism, pharmacokinetics and, particularly, the methods for reducing the degradation to improve the bioavailability and efficacy. It is drawn that there are three methods that can be applied to improve the bioavailability and efficacy: to co-administrate an ADA inhibitor and cordycepin, to develop more effective derivatives via structural modification, and to apply new drug delivery systems. The new knowledge can help optimize the application of the highly potent natural antibiotic-cordycepin and develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Min Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- School of Medicine, Linyi University, Linyi, China
| | - Jiahao Luo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenming Jiang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lijing Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Longxing Miao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
15
|
Turk A, Lee S, Yeon SW, Ryu SH, Han YK, Kim YJ, Ko SM, Kim BS, Hwang BY, Lee KY, Lee MK. Adenosine Deaminase Inhibitory Activity of Medicinal Plants: Boost the Production of Cordycepin in Cordyceps militaris. Antioxidants (Basel) 2023; 12:1260. [PMID: 37371990 DOI: 10.3390/antiox12061260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Cordycepin, also known as 3'-deoxyadenosine, is a major active ingredient of Cordyceps militaris with diverse pharmacological effects. Due to its limited supply, many attempts have been conducted to enhance the cordycepin content. As part of this study, eight medicinal plants were supplemented with cultivation substrates of Cordyceps to increase the cordycepin content. Cordyceps cultivated on brown rice supplemented with Mori Folium, Curcumae Rhizoma, Saururi Herba, and Angelicae Gigantis Radix exhibited increased cordycepin content compared to a brown rice control. Among them, the addition of 25% Mori Folium increased the cordycepin content up to 4 times. Adenosine deaminase (ADA) modulates the deamination of adenosine and deoxyadenosine, and the inhibitors have therapeutic potential with anti-proliferative and anti-inflammatory properties. As ADA is also known to be involved in converting cordycepin to 3'-deoxyinosine, the inhibitory activity of medicinal plants on ADA was measured by spectrophotometric analysis using cordycepin as a substrate. As expected, Mori Folium, Curcumae Rhizoma, Saururi Herba, and Angelicae Gigas Radix strongly inhibited ADA activity. Molecular docking analysis also showed the correlation between ADA and the major components of these medicinal plants. Conclusively, our research suggests a new strategy of using medicinal plants to enhance cordycepin production in C. militaris.
Collapse
Affiliation(s)
- Ayman Turk
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Solip Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Sang Won Yeon
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Se Hwan Ryu
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Yoo Kyong Han
- College of Pharmacy, Korea University, Sejong 47236, Republic of Korea
| | - Young Jun Kim
- College of Pharmacy, Korea University, Sejong 47236, Republic of Korea
| | - Sung Min Ko
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
- C&G Agricultural Association, Sejong 30067, Republic of Korea
| | - Beom Seok Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
- C&G Agricultural Association, Sejong 30067, Republic of Korea
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Ki Yong Lee
- College of Pharmacy, Korea University, Sejong 47236, Republic of Korea
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| |
Collapse
|
16
|
Chang W, Li H, Cheng Y, He H, Ou W, Wang SY. Construction and validation of a T cell proliferation regulator-related signature for predicting prognosis and immunotherapy response in lung adenocarcinoma. Front Immunol 2023; 14:1171145. [PMID: 37081889 PMCID: PMC10110836 DOI: 10.3389/fimmu.2023.1171145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
BackgroundAs the main executor of immunotherapy, T cells significantly affect the efficacy of immunotherapy. However, the contribution of the T cell proliferation regulator to the prognosis of lung adenocarcinoma (LUAD) and immunotherapy is still unclear.MethodsBased on T cell proliferation regulators, LUAD samples from The Cancer Genome Atlas (TCGA) were divided into two different clusters by consensus clustering. Subsequently, the T cell proliferation regulator (TPR) signature was constructed according to the prognostic T cell proliferation regulators. Combined with clinical information, a nomogram for clinical practice was constructed. The predictive ability of the signature was verified by the additional Gene Expression Omnibus (GEO) dataset. We also analyzed the differences of tumor microenvironment (TME) in different subgroups and predicted the response to immunotherapy according to the TIDE algorithm. Finally, we further explored the role of ADA (Adenosine deaminase) in the lung adenocarcinoma cell lines through the knockdown of ADA. ResultsAccording to the consensus clustering, there were differences in survival and tumor microenvironment between two different molecular subtypes. T cell proliferation regulator-related signature could accurately predict the prognosis of LUAD. The low-risk group had a higher level of immune infiltration and more abundant immune-related pathways, and its response to immunotherapy was significantly better than the high-risk group (Chi-square test, p<0.0001). The knockdown of ADA inhibited proliferation, migration, and invasion in lung adenocarcinoma cell lines.ConclusionT cell proliferation regulators were closely related to the prognosis and tumor microenvironment of LUAD patients. And the signature could well predict the prognosis of LUAD patients and their response to immunotherapy. ADA may become a new target for the treatment of LUAD.
Collapse
Affiliation(s)
- Wuguang Chang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hongmu Li
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yixin Cheng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Huanhuan He
- Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wei Ou
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- *Correspondence: Si-Yu Wang, ; Wei Ou,
| | - Si-Yu Wang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- *Correspondence: Si-Yu Wang, ; Wei Ou,
| |
Collapse
|
17
|
Zhulai GA, Shibaev MI. Relationship between the Gene Expression of Adenosine Kinase Isoforms and the Expression of CD39 and CD73 Ectonucleotidases in Colorectal Cancer. Acta Naturae 2023; 15:42-49. [PMID: 37538807 PMCID: PMC10395772 DOI: 10.32607/actanaturae.11871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/03/2023] [Indexed: 08/05/2023] Open
Abstract
Tumor cells have the capacity to create an adenosine-rich immunosuppressive environment, which can interfere with antitumor immunotherapy. Approaches are currently being developed with a view to suppressing the production of adenosine or its signals. Such approaches include the use of antibodies to inhibit CD39, CD73, and adenosine-receptor antagonists. However, the abundance of enzymatic pathways that control the ATP-adenosine balance, as well as the still poorly understood intracellular adenosine regulation, makes the hoped-for success unlikely. In the present study, the enzyme adenosine kinase (ADK) needed to convert adenosine to adenosine monophosphate, thereby regulating its levels, was investigated. To do so, peripheral blood samples from patients with colorectal cancer (CRC) (n = 31) were collected with blood samples from healthy donors (n = 17) used as controls. ADK gene expression levels and those of its long (ADK-L) and short (ADK-S) isoforms were measured. The relationship between the levels of ADK gene expression and that of CD39, CD73, and A2aR genes was analyzed. It turned out that in the group of CRC patients (stages III-IV), the level of ADK-L mRNA was lower (p < 0.0011) when compared to that of the control. For the first time, an average correlation was found between the level of expression of CD39 and ADK-S (r = -0.468 at p = 0.043) and between CD73 and ADK-L (r = 0.518 at p = 0.0232) in CRC patients. Flow cytometry was used to assess the content of CD39/CD73-expressing CD8+, CD4+ and Treg lymphocytes, as well as their relationship with the level of ADK gene expression in CRC patients. But no significant correlations were found.
Collapse
Affiliation(s)
- G A Zhulai
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, 185910 Russian Federation
| | - M I Shibaev
- Endoscopic Department, Baranov Republican Hospital, Petrozavodsk, 185910 Russian Federation
| |
Collapse
|
18
|
Atakisi O, Dalginli KY, Gulmez C, Kalacay D, Atakisi E, Zhumabaeva TT, Aşkar TK, Demirdogen RE. The Role of Reduced Glutathione on the Activity of Adenosine Deaminase, Antioxidative System, and Aluminum and Zinc Levels in Experimental Aluminum Toxicity. Biol Trace Elem Res 2022:10.1007/s12011-022-03503-0. [PMID: 36456741 DOI: 10.1007/s12011-022-03503-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Aluminum (Al) is one of the most abundant element in the world. But aluminum exposure and accumulation causes serious diseases, related with free radicals. Reduced glutathione (GSH) is a tripeptide with intracellular antioxidant effects. This study aimed to investigate the role of GSH on adenosine deaminase (ADA), antioxidant system, and aluminum and zinc (Zn) levels in acute aluminum toxicity. In this study, Sprague-Dawley rats (n = 32) were used. The rats were divided into four equal groups (n = 8). Group I received 0.5 mL intraperitoneal injection of 0.9% saline solution (NaCI), Group II received single-dose AlCI3, Group III was given GSH for seven days, and Group IV was given AlCI3 single dose, and at the same time, 100 mg/kg GSH was given for seven days. At the end of the trial, blood samples were collected by cardiac puncture. Serum total antioxidant status (TAS) and Zn levels were lower in the aluminum-administered group than the control group. In contrast, plasma total oxidant status (TOS) and aluminum concentrations and ADA activity were found higher in the aluminum-administered group than in the control group. Unlike the other groups, group GSH administrated with aluminum was similar to the control group. As a result, GSH administration has a regulatory effect on ADA activity, antioxidant system, and Zn levels in experimental aluminum toxicity. In addition, GSH may reduce the oxidant capacity increased by Al administration and may have a tolerant role on the accumulated serum Al levels. But long-term experimental Al toxicity studies are needed to reach a firm conclusion.
Collapse
Affiliation(s)
- Onur Atakisi
- Department of Chemistry, Faculty of Science and Letter, Kafkas University, Kars, Turkey.
| | - Kezban Yildiz Dalginli
- Department of Chemistry and Chemical Processing Technologies Kars Vocational School, Kafkas University, Kars, Turkey
| | - Canan Gulmez
- Department of Pharmacy Services, Tuzluca Vocational School, Igdir University, Igdir, Turkey
| | - Destan Kalacay
- Department of Chemistry and Chemical Processing Technologies Kars Vocational School, Kafkas University, Kars, Turkey
| | - Emine Atakisi
- Faculty of Veterinary Medicine Department of Biochemistry, Kafkas University, Kars, Turkey
| | | | - Tunay Kontaş Aşkar
- Department of Dietetics and Nutrition, Faculty of Health Sciences, Çankırı Karatekin University, Çankırı, Turkey
| | - Ruken Esra Demirdogen
- Deptartments of Chemistry Faculty of Science, Çankırı Karatekin University, Çankırı, Turkey
| |
Collapse
|
19
|
Lu W, Yin C, Zhang T, Wu Y, Huang S. An oxidative stress-related prognostic signature for indicating the immune status of oral squamous cell carcinoma and guiding clinical treatment. Front Genet 2022; 13:977902. [PMID: 36212161 PMCID: PMC9538189 DOI: 10.3389/fgene.2022.977902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/02/2022] [Indexed: 01/18/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the eighth most common cancer worldwide and presents high mortality. Oxidative stress, caused by reactive oxygen species accumulation, plays a crucial role in tumorigenesis, cancer progression, and drug resistance. Nevertheless, the specific prognostic and clinical values of oxidative stress-related genes (OSGs) in OSCC remain unclear. Here, we developed an oxidative stress-related prognostic signature according to mRNA expression data from The Cancer Genome Atlas (TCGA) database and evaluated its connections with the prognosis, clinical features, immune status, immunotherapy, and drug sensitivity of OSCC through a series of bioinformatics analyses. Finally, we filtered out six prognostic OSGs to construct a prognostic signature. On the basis of both TCGA-OSCC and GSE41613 cohorts, the signature was proven to be an independent prognostic factor with high accuracy and was confirmed to be an impactful indicator for predicting the prognosis and immune status of patients with OSCC. Additionally, we found that patients with high-risk scores may obtain greater benefit from immune checkpoint therapy compared to those with low-risk scores, and the risk score presented a close interaction with the tumor microenvironment and chemotherapy sensitivity. The prognostic signature may provide a valid and robust predictive tool that could predict the prognosis and immune status and guide clinicians to develop personalized therapeutic strategies for patients with OSCC.
Collapse
Affiliation(s)
- Wei Lu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Changwei Yin
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Tianqi Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yihua Wu
- Department of Oral Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- *Correspondence: Shengyun Huang,
| |
Collapse
|
20
|
Monroy-Mora A, de Lourdes Mora-García M, Alheli Monroy Mora K, Hernández-Montes J, García-Rocha R, Don-López CA, Weiss-Steider B, Montesinos-Montesinos JJ, Monroy-García A. Inhibition of adenosine deaminase activity reverses resistance to the cytotoxic effect of high adenosine levels in cervical cancer cells. Cytokine 2022; 158:155977. [PMID: 35933851 DOI: 10.1016/j.cyto.2022.155977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 06/05/2022] [Accepted: 07/22/2022] [Indexed: 12/24/2022]
Abstract
Adenosine (ADO) generation in the tumor microenvironment (TME) plays important roles in the promotion of tumor growth, invasion, and metastasis and in suppression of the antitumor immune response. Recently, adenosine deaminase (ADA) activity in the TME has been proposed to be a compensatory mechanism against toxic accumulation of ADO in cancerous tissues. In the present study, the expression and functional activity of ADA in cervical cancer (CeCa) tumor cells were analyzed: C33A (HPV-), CaSki (HPV + ), and HeLa (HPV + ) cells. CeCa tumor cells, as well as activated T lymphocytes (ATLs), which were used as a positive control, showed different ADA contents in the membrane and intracellularly and a strong ability to convert ADO into inosine (INO). Treatment of tumor cells with EHNA, a specific ADA inhibitor, decreased the viability of CeCa tumor cells in a dose-dependent manner. In C33A (EHNA half maximal inhibitory concentration (IC50) = 374 μM), CaSki (EHNA IC50 = 273.6 μM), and HeLa (EHNA IC50 = 252.2 μM) cells, EHNA strongly reversed the resistance of tumor cells to the cytotoxic effect of high concentrations of ADO; 38.82 ± 3.1%, 47.18 ± 4.7%, and 71.63 ± 6.9% of the cells were apoptotic, and 40 ± 4.8%, 52 ± 5.3% and 70 ± 6.8% of the cells had mitochondrial membrane damage, respectively. In ATLs (EHNA IC50 = 391.8 μM) treated with EHNA, 32.4 ± 4.4% were apoptotic, and 32 ± 4.3% had mitochondrial membrane damage. These results suggest that the presence and activity of ADA in CeCa tumor cells can provide protection against the cytotoxic effect of high ADO contents in the TME. Therefore, the inhibition of ADA could be a strategy for the treatment of CeCa.
Collapse
Affiliation(s)
- Alberto Monroy-Mora
- Laboratorio de Inmunobiología, UIDCC-UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, Mexico; Programa de Posgrado en Ciencias Bioquímicas, UNAM, Ciudad de México, Mexico
| | | | - Katia Alheli Monroy Mora
- Laboratorio de Inmunobiología, UIDCC-UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, Mexico; Programa de Posgrado en Ciencias Bioquímicas, UNAM, Ciudad de México, Mexico
| | - Jorge Hernández-Montes
- Laboratorio de Inmunobiología, UIDCC-UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, Mexico
| | - Rosario García-Rocha
- Laboratorio de Inmunobiología, UIDCC-UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, Mexico
| | | | - Benny Weiss-Steider
- Laboratorio de Inmunobiología, UIDCC-UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, Mexico
| | - Juan José Montesinos-Montesinos
- Laboratorio de Células Troncales Mesenquimales, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Alberto Monroy-García
- Laboratorio de Inmunobiología, UIDCC-UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, Mexico; Laboratorio de Inmunología y Cáncer, UIMEO, H Oncología, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico.
| |
Collapse
|
21
|
Du K, Zou J, Wang B, Liu C, Khan M, Xie T, Huang X, Shen P, Tian Y, Yuan Y. A Metabolism-Related Gene Prognostic Index Bridging Metabolic Signatures and Antitumor Immune Cycling in Head and Neck Squamous Cell Carcinoma. Front Immunol 2022; 13:857934. [PMID: 35844514 PMCID: PMC9282908 DOI: 10.3389/fimmu.2022.857934] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/18/2022] [Indexed: 12/26/2022] Open
Abstract
Background In the era of immunotherapy, predictive or prognostic biomarkers for head and neck squamous cell carcinoma (HNSCC) are urgently needed. Metabolic reprogramming in the tumor microenvironment (TME) is a non-negligible reason for the low therapeutic response to immune checkpoint inhibitor (ICI) therapy. We aimed to construct a metabolism-related gene prognostic index (MRGPI) for HNSCC bridging metabolic characteristics and antitumor immune cycling and identified the immunophenotype, genetic alternations, potential targeted inhibitors, and the benefit of immunotherapy in MRGPI-defined subgroups of HNSCC. Methods Based on The Cancer Genome Atlas (TCGA) HNSCC dataset (n = 502), metabolism-related hub genes were identified by the weighted gene co-expression network analysis (WGCNA). Seven genes were identified to construct the MRGPI by using the Cox regression method and validated with an HNSCC dataset (n = 270) from the Gene Expression Omnibus (GEO) database. Afterward, the prognostic value, metabolic activities, genetic alternations, gene set enrichment analysis (GSEA), immunophenotype, Connectivity map (cMAP), and benefit of immunotherapy in MRGPI-defined subgroups were analyzed. Results The MRGPI was constructed based on HPRT1, AGPAT4, AMY2B, ACADL, CKM, PLA2G2D, and ADA. Patients in the low-MRGPI group had better overall survival than those in the high-MRGPI group, consistent with the results in the GEO cohort (cutoff value = 1.01). Patients with a low MRGPI score display lower metabolic activities and an active antitumor immunity status and more benefit from immunotherapy. In contrast, a higher MRGPI score was correlated with higher metabolic activities, more TP53 mutation rate, lower antitumor immunity ability, an immunosuppressive TME, and less benefit from immunotherapy. Conclusion The MRGPI is a promising indicator to distinguish the prognosis, the metabolic, molecular, and immune phenotype, and the benefit from immunotherapy in HNSCC.
Collapse
Affiliation(s)
- Kunpeng Du
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jingwen Zou
- Department of Liver Surgery of the Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Baiyao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Chunshan Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Muhammad Khan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Tao Xie
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiaoting Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Piao Shen
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Yunhong Tian
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Yunhong Tian, ; Yawei Yuan,
| | - Yawei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Yunhong Tian, ; Yawei Yuan,
| |
Collapse
|
22
|
Hussain F, Rahman FI, Saha P, Mikami A, Osawa T, Obika S, Rahman SMA. Synthesis of Sugar and Nucleoside Analogs and Evaluation of Their Anticancer and Analgesic Potentials. Molecules 2022; 27:molecules27113499. [PMID: 35684435 PMCID: PMC9182362 DOI: 10.3390/molecules27113499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 02/04/2023] Open
Abstract
Chemical modification of sugars and nucleosides has a long history of producing compounds with improved selectivity and efficacy. In this study, several modified sugars (2–3) and ribonucleoside analogs (4–8) have been synthesized from α-d-glucose in a total of 21 steps. The compounds were tested for peripheral anti-nociceptive characteristics in the acetic acid-induced writhing assay in mice, where compounds 2, 7, and 8 showed a significant reduction in the number of writhes by 56%, 62%, and 63%, respectively. The compounds were also tested for their cytotoxic potential against human HeLa cell line via trypan blue dye exclusion test followed by cell counting kit-8 (CCK-8) assay. Compound 6 demonstrated significant cytotoxic activity with an IC50 value of 54 µg/mL. Molecular docking simulations revealed that compounds 2, 7, and 8 had a comparable binding affinity to cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) enzymes. Additionally, the bridged nucleoside analogs 7 and 8 potently inhibited adenosine kinase enzyme as well, which indicates an alternate mechanistic pathway behind their anti-nociceptive action. Cytotoxic compound 6 demonstrated strong docking with cancer drug targets human cytidine deaminase, proto-oncogene tyrosine-protein kinase Src, human thymidine kinase 1, human thymidylate synthase, and human adenosine deaminase 2. This is the first ever reporting of the synthesis and analgesic property of compound 8 and the cytotoxic potential of compound 6.
Collapse
Affiliation(s)
- Fahad Hussain
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (F.H.); (F.I.R.); (P.S.)
| | - Fahad Imtiaz Rahman
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (F.H.); (F.I.R.); (P.S.)
| | - Poushali Saha
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (F.H.); (F.I.R.); (P.S.)
| | - Atsushi Mikami
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Osaka 565-0871, Japan; (A.M.); (T.O.); (S.O.)
| | - Takashi Osawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Osaka 565-0871, Japan; (A.M.); (T.O.); (S.O.)
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Osaka 565-0871, Japan; (A.M.); (T.O.); (S.O.)
| | - S. M. Abdur Rahman
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (F.H.); (F.I.R.); (P.S.)
- Correspondence: ; Tel.: +880-1732477343
| |
Collapse
|
23
|
Adenosine-Metabolizing Enzymes, Adenosine Kinase and Adenosine Deaminase, in Cancer. Biomolecules 2022; 12:biom12030418. [PMID: 35327609 PMCID: PMC8946555 DOI: 10.3390/biom12030418] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 12/17/2022] Open
Abstract
The immunosuppressive effect of adenosine in the microenvironment of a tumor is well established. Presently, researchers are developing approaches in immune therapy that target inhibition of adenosine or its signaling such as CD39 or CD73 inhibiting antibodies or adenosine A2A receptor antagonists. However, numerous enzymatic pathways that control ATP-adenosine balance, as well as understudied intracellular adenosine regulation, can prevent successful immunotherapy. This review contains the latest data on two adenosine-lowering enzymes: adenosine kinase (ADK) and adenosine deaminase (ADA). ADK deletes adenosine by its phosphorylation into 5′-adenosine monophosphate. Recent studies have revealed an association between a long nuclear ADK isoform and an increase in global DNA methylation, which explains epigenetic receptor-independent role of adenosine. ADA regulates the level of adenosine by converting it to inosine. The changes in the activity of ADA are detected in patients with various cancer types. The article focuses on the biological significance of these enzymes and their roles in the development of cancer. Perspectives of future studies on these enzymes in therapy for cancer are discussed.
Collapse
|
24
|
Calderon-Castro A, Enciso L, Tejada-Cabrera R. Primary Leptomeningeal B-cell Lymphoma in an Immunocompetent Adult: Case Report. Cureus 2021; 13:e19619. [PMID: 34956753 PMCID: PMC8674856 DOI: 10.7759/cureus.19619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 11/05/2022] Open
Abstract
Primary leptomeningeal lymphoma (PLML) is a rare disease, comprising less than 1% of all lymphomas. Clinical manifestations include headache, encephalopathy, ataxia, cranial nerve palsy, and myelitis. Diagnosis requires a combination of magnetic resonance images (MRI), cytology, flow cytometry of cerebrospinal fluid (CSF), and an extensive workup to rule out systemic lymphoma. We describe the case of a 49-year-old man who developed subacute onset headache, encephalopathy, and blindness. Whole-body examinations, including a bone marrow trephine biopsy, excluded systemic lymphoma. Brain MRI showed leptomeningeal enhancement. Cytology and flow cytometry of CSF found a clonal B-cell population making a diagnosis of PLML. He began treatment with rituximab and high-dose methotrexate (HD-MTX), with progressive clinical improvement. CSF analysis after two cycles and one intrathecal methotrexate dose was normal. Brain and spinal MRI images plus CSF analysis, along with an extensive workup to exclude systemic lymphoma, are necessary to diagnose PLM. Early treatment with HD-MTX alone or in combination with rituximab improves clinical outcomes.
Collapse
Affiliation(s)
| | - Leonardo Enciso
- Hematology, Hospital Universitario Clínica San Rafael, Bogotá, COL.,Hematology, Hospital Universitario de La Samaritana, Bogotá, COL
| | | |
Collapse
|
25
|
Jacobson KA, Salmaso V, Suresh RR, Tosh DK. Expanding the repertoire of methanocarba nucleosides from purinergic signaling to diverse targets. RSC Med Chem 2021; 12:1808-1825. [PMID: 34825182 PMCID: PMC8597424 DOI: 10.1039/d1md00167a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Nucleoside derivatives are well represented as pharmaceuticals due to their druglike physicochemical properties, and some nucleoside drugs are designed to act on receptors. The purinergic signaling pathways for extracellular nucleosides and nucleotides, consisting of adenosine receptors, P2Y/P2X receptors for nucleotides, and enzymes such as adenosine (ribo)kinase, have been extensively studied. A general modification, i.e. a constrained, bicyclic ring system (bicyclo[3.1.0]hexane, also called methanocarba) substituted in place of a furanose ring, can increase nucleoside/nucleotide potency and/or selectivity at purinergic and antiviral targets and in interactions at diverse and unconventional targets. Compared to other common drug discovery scaffolds containing planar rings, methanocarba nucleosides display greater sp3 character (i.e. more favorable as drug-like molecules) and can manifest as sterically-constrained North (N) or South (S) conformations. Initially weak, off-target interactions of (N)-methanocarba adenosine derivatives were detected as leads that were structurally optimized to enhance activity and selectivity toward target proteins that normally do not recognize nucleosides. By this approach, novel modulators for 5HT2 serotonin and κ-opioid receptors, dopamine (DAT) and ATP-binding cassette (ABC) transporters were found, and previously undetected antiviral activities were revealed. Thus, through methanocarba nucleoside synthesis, structure-activity relationships, and multi-target pharmacology, a robust purinergic receptor scaffold has been repurposed to satisfy the pharmacophoric requirements of various GPCRs, enzymes and transporters.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health Bethesda MD 20892-0810 USA +301 480 8422 +301 496 9024
| | - Veronica Salmaso
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health Bethesda MD 20892-0810 USA +301 480 8422 +301 496 9024
| | - R Rama Suresh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health Bethesda MD 20892-0810 USA +301 480 8422 +301 496 9024
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health Bethesda MD 20892-0810 USA +301 480 8422 +301 496 9024
| |
Collapse
|
26
|
Bakaryan A, Karapetyan L, Hakobyan N, Camaioni E, Mardanyan S, Antonyan A. Adenosine deaminase - A target for new piperazine derivatives. Biophys Chem 2021; 277:106658. [PMID: 34333397 DOI: 10.1016/j.bpc.2021.106658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/22/2021] [Accepted: 07/19/2021] [Indexed: 11/21/2022]
Abstract
The level of adenosine deaminase (ADA) activity increases in pathological effusions. Therefore, the concentration of its substrate, anti-inflammatory adenosine, decreases, thereby aggravating inflammation. Hence, the quest for ADA inhibiting compounds is an actual problem in medicine and pharmacology. This work describes the inhibition of bovine ADA by new synthesized piperazine compounds. 15 compounds were screened; IC50 values for 5 more potent ones of them were between 3.4 and 98.6 μg/ml. The inhibition of activity of intracellular and ecto- forms of ADA by the most effective "compound 1" was of competitive nature. For these two forms of enzyme, the inhibition constants, Ki (1.5 and 115 μM) and IC50 values (6.5 and 480 μM), respectively, differed by nearly two orders. The constant of bimolecular interaction KSV between "compound 1" and the tryptophan residues in ADA was estimated in fluorescence quenching study as of 0.145 ± 0.027 μM. Finally, the molecular interactions between "compound 1" and the bovine enzyme ADA were highlighted through molecular docking studies.
Collapse
Affiliation(s)
- Anahit Bakaryan
- H. Buniatian Institute of Biochemistry of Armenian NAS, 5/1, P. Sevak Str., Yerevan 0014, Armenia
| | - Luiza Karapetyan
- H. Buniatian Institute of Biochemistry of Armenian NAS, 5/1, P. Sevak Str., Yerevan 0014, Armenia
| | - Naira Hakobyan
- A.L. Mnjoyan Institute of Fine Organic Chemistry of Armenian NAS, 26 Azatutyan Ave., Yerevan 0014, Armenia
| | - Emidio Camaioni
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo, 1-06123 Perugia, Italy.
| | - Sona Mardanyan
- H. Buniatian Institute of Biochemistry of Armenian NAS, 5/1, P. Sevak Str., Yerevan 0014, Armenia
| | - Alvard Antonyan
- H. Buniatian Institute of Biochemistry of Armenian NAS, 5/1, P. Sevak Str., Yerevan 0014, Armenia.
| |
Collapse
|
27
|
Lu CF, Liu WS, Ge XQ, Xu F, Su JB, Wang XQ, Wang Y. The association between serum adenosine deaminase levels and Graves' disease. Endocr Connect 2021; 10:1227-1233. [PMID: 34473081 PMCID: PMC8494409 DOI: 10.1530/ec-21-0344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/02/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Adenosine deaminase (ADA) is essential for the differentiation and maturation of lymphocytes, while lymphocytes infiltration in thyroid tissue is a vital pathological feature of Graves' disease (GD). The aim of the present study was to compare the concentration of ADA between healthy controls (HC) and patients with GD, and evaluate the association between ADA and GD. METHODS A total of 112 GD patients and 77 matched HC were enrolled in this study. Each participant was examined for thyroid hormones and autoantibodies, ADA concentration, and thyroid ultrasonography. RESULTS Serum ADA levels in GD patients were significantly higher than that in HC subgroup (P < 0.001). In GD patients, serum ADA levels were positively associated with serum-free triiodothyronine (FT3), free thyroxine (FT4), thyroid peroxidase antibody (TPOAb), thyroid-stimulating hormone receptor antibody (TRAb) levels, and total thyroid gland volume (thyroid VolT) and negatively associated with serum thyroid-stimulating hormone receptor (TSH) levels (all P < 0.05). There were no similar correlations in the HC subgroup. Multiple linear regression analysis suggested that serum TSH, FT3, and ADA levels played an important role in serum TRAb levels. CONCLUSIONS Our results demonstrated that serum ADA levels were closely associated with GD.
Collapse
Affiliation(s)
- Chun-feng Lu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| | - Wang-shu Liu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| | - Xiao-qin Ge
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
- Correspondence should be addressed to F Xu or J Su or X Wang: or or
| | - Jian-bin Su
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
- Correspondence should be addressed to F Xu or J Su or X Wang: or or
| | - Xue-qin Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
- Correspondence should be addressed to F Xu or J Su or X Wang: or or
| | - Yan Wang
- Department of Geriatrics, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| |
Collapse
|
28
|
Cao J, Wang H, Su JB, Wang XQ, Zhang DM, Wang XH, Liu WS, Ge XQ. Inverse relationship between serum adenosine deaminase levels and islet beta cell function in patients with type 2 diabetes. Diabetol Metab Syndr 2021; 13:54. [PMID: 34001220 PMCID: PMC8127294 DOI: 10.1186/s13098-021-00671-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Type 2 diabetes (T2D) is a chronic low-grade inflammatory disease, which characterized by islet beta cell dysfunction. Serum adenosine deaminase (ADA) is an important enzyme that regulates the biological activity of insulin, and its levels are greatly increased in inflammatory diseases with insulin resistance. The present study was designed to explore the relationship between serum ADA levels and islet beta cell function in patients with T2D. METHODS This cross-sectional study recruited 1573 patients with T2D from the Endocrinology Department of the Affiliated Hospital 2 of Nantong University between 2015 and 2018. All participants were received serum ADA test and oral glucose tolerance test (OGTT). Insulin sensitivity index (assessed by Matsuda index using C-peptide, ISIM-cp), insulin secretion index (assessed by ratio of area under the C-peptide curve to glucose curve, AUCcp/glu) and islet beta cell function (assessed by insulin secretion-sensitivity index 2 using C-peptide, ISSI2cp) were derived from OGTT. And other clinical parameters, such as HbA1c, were also collected. RESULTS It was showed that HbA1c was significantly increased, while ISIM-cp, AUCcp/glu and ISSI2cp significantly decreased, across ascending quartiles of serum ADA levels. Moreover, serum ADA levels were negatively correlated with ISSI2cp (r = - 0.267, p < 0.001). Furthermore, after adjusting for other clinical parameters by multiple linear regression analysis, serum ADA levels were still independently associated with ISSI2cp (β = - 0.125, t = - 5.397, p < 0.001, adjusted R2 = 0.459). CONCLUSIONS Serum ADA levels are independently associated with islet beta cell function in patients with T2D.
Collapse
Affiliation(s)
- Jie Cao
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001 China
| | - Hong Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001 China
| | - Jian-bin Su
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001 China
| | - Xue-qin Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001 China
| | - Dong-mei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001 China
| | - Xiao-hua Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001 China
| | - Wang-shu Liu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001 China
| | - Xiao-qin Ge
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001 China
| |
Collapse
|
29
|
Malki Y, Martinez J, Masurier N. 1,3-Diazepine: A privileged scaffold in medicinal chemistry. Med Res Rev 2021; 41:2247-2315. [PMID: 33645848 DOI: 10.1002/med.21795] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/20/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022]
Abstract
Privileged structures have been widely used as effective templates for drug discovery. While benzo-1,4-diazepine constitutes the first historical example of such a structure, the 1,3 analogue is just as rich in terms of applications in medicinal chemistry. The 1,3-diazepine moiety is present in numerous biological active compounds including natural products, and is used to design compounds displaying a large range of biological activities. It is present in the clinically used anticancer compound pentostatin, in several recent FDA approved β-lactamase inhibitors (e.g., avibactam) and also in coformycin, a natural product known as a ring-expanded purine analogue displaying antiviral and anticancer activities. Several other 1,3-diazepine containing compounds have entered into clinical trials. This heterocyclic structure has been and is still widely used in medicinal chemistry to design enzyme inhibitors, GPCR ligands, and so forth. This review endeavours to highlight the main use of the 1,3-diazepine scaffold and its derivatives, and their applications in medicinal chemistry, drug design, and therapy. We will focus more particularly on the development of enzyme inhibitors incorporating this scaffold, with a strong emphasis on the molecular interactions involved in the inhibition mechanism.
Collapse
Affiliation(s)
- Yohan Malki
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean Martinez
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Nicolas Masurier
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
30
|
Lai TH, Schröder S, Toussaint M, Dukić-Stefanović S, Kranz M, Ludwig FA, Fischer S, Steinbach J, Deuther-Conrad W, Brust P, Moldovan RP. Development of 18F-Labeled Radiotracers for PET Imaging of the Adenosine A 2A Receptor: Synthesis, Radiolabeling and Preliminary Biological Evaluation. Int J Mol Sci 2021; 22:ijms22052285. [PMID: 33669003 PMCID: PMC7956753 DOI: 10.3390/ijms22052285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
The adenosine A2A receptor (A2AR) represents a potential therapeutic target for neurodegenerative diseases. Aiming at the development of a positron emission tomography (PET) radiotracer to monitor changes of receptor density and/or occupancy during the A2AR-tailored therapy, we designed a library of fluorinated analogs based on a recently published lead compound (PPY). Among those, the highly affine 4-fluorobenzyl derivate (PPY1; Ki(hA2AR) = 5.3 nM) and the 2-fluorobenzyl derivate (PPY2; Ki(hA2AR) = 2.1 nM) were chosen for 18F-labeling via an alcohol-enhanced copper-mediated procedure starting from the corresponding boronic acid pinacol ester precursors. Investigations of the metabolic stability of [18F]PPY1 and [18F]PPY2 in CD-1 mice by radio-HPLC analysis revealed parent fractions of more than 76% of total activity in the brain. Specific binding of [18F]PPY2 on mice brain slices was demonstrated by in vitro autoradiography. In vivo PET/magnetic resonance imaging (MRI) studies in CD-1 mice revealed a reasonable high initial brain uptake for both radiotracers, followed by a fast clearance.
Collapse
Affiliation(s)
- Thu Hang Lai
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, 04318 Leipzig, Germany; (M.T.); (S.D.-S.); (M.K.); (F.-A.L.); (S.F.); (J.S.); (W.D.-C.); (P.B.)
- Department of Research and Development, ROTOP Pharmaka Ltd., Dresden 01328, Germany;
- Correspondence: (T.H.L.); (R.-P.M.); Tel.: +49-341-234-179-4635 (T.H.L.); +49-341-234-179-4634 (R.-P.M.)
| | - Susann Schröder
- Department of Research and Development, ROTOP Pharmaka Ltd., Dresden 01328, Germany;
| | - Magali Toussaint
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, 04318 Leipzig, Germany; (M.T.); (S.D.-S.); (M.K.); (F.-A.L.); (S.F.); (J.S.); (W.D.-C.); (P.B.)
| | - Sladjana Dukić-Stefanović
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, 04318 Leipzig, Germany; (M.T.); (S.D.-S.); (M.K.); (F.-A.L.); (S.F.); (J.S.); (W.D.-C.); (P.B.)
| | - Mathias Kranz
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, 04318 Leipzig, Germany; (M.T.); (S.D.-S.); (M.K.); (F.-A.L.); (S.F.); (J.S.); (W.D.-C.); (P.B.)
- PET Imaging Center, University Hospital of North Norway (UNN), 9009 Tromsø, Norway
- Nuclear Medicine and Radiation Biology Research Group, The Arctic University of Norway, 9009 Tromsø, Norway
| | - Friedrich-Alexander Ludwig
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, 04318 Leipzig, Germany; (M.T.); (S.D.-S.); (M.K.); (F.-A.L.); (S.F.); (J.S.); (W.D.-C.); (P.B.)
| | - Steffen Fischer
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, 04318 Leipzig, Germany; (M.T.); (S.D.-S.); (M.K.); (F.-A.L.); (S.F.); (J.S.); (W.D.-C.); (P.B.)
| | - Jörg Steinbach
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, 04318 Leipzig, Germany; (M.T.); (S.D.-S.); (M.K.); (F.-A.L.); (S.F.); (J.S.); (W.D.-C.); (P.B.)
- Department of Research and Development, ROTOP Pharmaka Ltd., Dresden 01328, Germany;
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, 04318 Leipzig, Germany; (M.T.); (S.D.-S.); (M.K.); (F.-A.L.); (S.F.); (J.S.); (W.D.-C.); (P.B.)
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, 04318 Leipzig, Germany; (M.T.); (S.D.-S.); (M.K.); (F.-A.L.); (S.F.); (J.S.); (W.D.-C.); (P.B.)
| | - Rareş-Petru Moldovan
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, 04318 Leipzig, Germany; (M.T.); (S.D.-S.); (M.K.); (F.-A.L.); (S.F.); (J.S.); (W.D.-C.); (P.B.)
- Correspondence: (T.H.L.); (R.-P.M.); Tel.: +49-341-234-179-4635 (T.H.L.); +49-341-234-179-4634 (R.-P.M.)
| |
Collapse
|
31
|
Bagheri S, Saboury AA. What role do metals play in Alzheimer's disease? JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02181-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
ELTD1 as a biomarker for multiple sclerosis: Pre-clinical molecular-targeted studies in a mouse experimental autoimmune encephalomyelitis model. Mult Scler Relat Disord 2021; 49:102786. [PMID: 33517175 DOI: 10.1016/j.msard.2021.102786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/05/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis (MS) and glioblastoma (GBM) are two distinct diseases that affect the central nervous system (CNS). However, perturbation in CNS vasculature are hallmarks of both diseases. ELTD1 (epidermal growth factor, latrophilin, and 7 transmembrane domain containing protein 1 on chromosome 1) is associated with vascular development, and has been linked with tumor angiogenesis. In glioblastomas, we detected over-expression of ELTD1, and found that an antibody targeting ELTD1 could increase animal survival and decrease tumor volumes in a xenograft GBM model. RNA-seq analysis of the preclinical data in the model for GBM identified that some of the molecular pathways affected by the anti-ELTD1 antibody therapy are also found to be associated with MS. In this study, we used molecular-targeted (mt) MR imaging and immunohistochemistry to assess ELTD1 levels in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Specifically, we found that ELTD1 is readily detected in the brains of mice with EAE and is predominantly found in the corpus callosum. In addition, we found that the blood-brain barrier (BBB) was compromised in the brains of EAE mice using contrast-enhanced MRI (CE-MRI), as well as altered relative cerebral blood flow (rCBF) in the brains and cervical spinal cords of these mice using perfusion imaging, compared to controls. These findings indicate that ELTD1 may be a promising biomarker for CNS-inflammation in MS.
Collapse
|
33
|
Krackeler ML, Broome C, Lai C. Complete remission of aggressive T-cell LGL leukemia with pentostatin therapy: first case report. Stem Cell Investig 2021; 7:24. [PMID: 33437844 DOI: 10.21037/sci-2020-035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/10/2020] [Indexed: 11/06/2022]
Abstract
This is the first report of a complete remission in aggressive T-cell large granular lymphocytic (T-LGL) leukemia after treatment with pentostatin. The aggressive variant of the disease is rare, and traditional therapies include immunosuppressive agents, however, there is no standard consensus for treatment. Cytotoxic chemotherapy has led to remission in a few reported cases. We present this unique case as an alternative treatment for individuals refractory to chemotherapy. A 55-year-old African American male with hypertension, type II diabetes mellitus, hyperlipidemia, and gout presented with symptoms of multiple ecchymosis, fatigue, and weight loss. He was found to have splenomegaly (SM) and significant leukocytosis to 101 k/µL with 30% blasts on peripheral smear. Following bone marrow aspiration and biopsy with flow cytometry, he was diagnosed with aggressive T-LGL leukemia. The chemotherapy regimen hyper-CVAD (cyclophosphamide, vincristine, doxorubicin, and dexamethasone) was initially chosen based on his clinical presentation but was refractory to treatment. His therapy was changed to alemtuzumab; however, patient tolerated poorly and did not respond. Pentostatin was added to alemtuzumab with improvement in clinical symptoms and laboratory parameters. The patient was transitioned to pentostatin monotherapy and achieved complete remission after 1 month. This report provides support for pentostatin as an effective treatment for patients with aggressive T-cell malignancies refractory to cytotoxic chemotherapy. Pentostatin has previously been studied to treat T-cell prolymphocytic leukemia (T-PLL), hairy cell leukemia, and marginal zone lymphoma. This case suggests an alternative, well-tolerated option that could be considered for initial therapy of aggressive T-LGL leukemia.
Collapse
Affiliation(s)
| | - Catherine Broome
- Medstar Georgetown University Hospital, Lombardi Cancer Center, Washington, DC, USA
| | - Catherine Lai
- Medstar Georgetown University Hospital, Lombardi Cancer Center, Washington, DC, USA
| |
Collapse
|
34
|
Kutryb-Zajac B, Mierzejewska P, Slominska EM, Smolenski RT. Therapeutic Perspectives of Adenosine Deaminase Inhibition in Cardiovascular Diseases. Molecules 2020; 25:molecules25204652. [PMID: 33053898 PMCID: PMC7587364 DOI: 10.3390/molecules25204652] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Adenosine deaminase (ADA) is an enzyme of purine metabolism that irreversibly converts adenosine to inosine or 2'deoxyadenosine to 2'deoxyinosine. ADA is active both inside the cell and on the cell surface where it was found to interact with membrane proteins, such as CD26 and adenosine receptors, forming ecto-ADA (eADA). In addition to adenosine uptake, the activity of eADA is an essential mechanism that terminates adenosine signaling. This is particularly important in cardiovascular system, where adenosine protects against endothelial dysfunction, vascular inflammation, or thrombosis. Besides enzymatic function, ADA protein mediates cell-to-cell interactions involved in lymphocyte co-stimulation or endothelial activation. Furthermore, alteration in ADA activity was demonstrated in many cardiovascular pathologies such as atherosclerosis, myocardial ischemia-reperfusion injury, hypertension, thrombosis, or diabetes. Modulation of ADA activity could be an important therapeutic target. This work provides a systematic review of ADA activity and anchoring inhibitors as well as summarizes the perspectives of their therapeutic use in cardiovascular pathologies associated with increased activity of ADA.
Collapse
Affiliation(s)
- Barbara Kutryb-Zajac
- Correspondence: (B.K.-Z); (R.T.S.); Tel.: +48-58-349-14-64 (B.K.-Z.); +48-58-349-14-60 (R.T.S.)
| | | | | | - Ryszard T. Smolenski
- Correspondence: (B.K.-Z); (R.T.S.); Tel.: +48-58-349-14-64 (B.K.-Z.); +48-58-349-14-60 (R.T.S.)
| |
Collapse
|