1
|
Hansali K, Wang P, Zhao SF, Wang P, Ma ZC, Chi Z, Chi ZM. Overexpression of the pullulan synthetase gene enhanced pullulan production and its molecular weight by a mutant of Aureobasidium melanogenum P16. Int J Biol Macromol 2024:137013. [PMID: 39486724 DOI: 10.1016/j.ijbiomac.2024.137013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/08/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
The pullulan synthetase gene (PUL1), involved in pullulan biosynthesis in Aureobasidium species, remains poorly understood. The open reading frame (ORF) of the PUL1 gene from the high pullulan-producing yeast Aureobasidium melanogenum P16 strain was cloned and characterized. The ORF of the PUL1 gene was determined to be 592 bp in length, encoding 178 amino acid residues. It was observed that an intron of 55 bp disrupted the gene. The promoter of the PUL1 gene contained a CAAT box, a TATA box, and a 5'-HGATAR-3' sequence. The deduced protein possessed a signal peptide comprising 18 amino acids and harbored five potential N-glycosylation sites. Following the disruption of the PUL1 gene in strain P16, the disruptant DP108 yielded 34.7 ± 0.3 g/L of pullulan from sucrose, significantly lower than the production by its wild-type strain P16. This discrepancy underscores the close association between the PUL1 gene and pullulan biosynthesis. The majority of the fused Gfp-Pul1 proteins were found to be localized in the cell membrane and on the surface of vacuoles within the yeast-like fungal cells, indicating that pullulan biosynthesis occurred at these subcellular sites. Following the overexpression of the PUL1 gene, strain G14 produced >72.0 g/L of pullulan from sucrose, surpassing the production of its wild-type counterpart strain P16, which yielded 65.5 g/L of pullulan under the identical conditions. This outcome demonstrated that the overexpression of the PUL1 gene significantly enhanced pullulan production. The apparent molecular mass of the purified pullulan increased to 4.4 × 105 Da. As an auxiliary protein, Pul1 was predicted to bind to AmAgs2, the key enzyme in pullulan biosynthesis, facilitating enhanced pullulan production.
Collapse
Affiliation(s)
- Khalef Hansali
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Peng Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shou-Feng Zhao
- Department of Clinical Laboratory, Qingdao Municipal Hospital, Qingdao, Shandong 266000, China
| | - Peng Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zai-Chao Ma
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| | - Zhen-Ming Chi
- College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China.
| |
Collapse
|
2
|
Li B, He J, Zuo K, Xu X, Zou X. Engineering the by-products pathway in Aureobasidium pullulans for highly purified polymalic acid fermentation with concurrent recovery of l-malic acid. BIORESOURCE TECHNOLOGY 2024; 414:131578. [PMID: 39384045 DOI: 10.1016/j.biortech.2024.131578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/05/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
The fermentation of polymalic acid (PMA) by Aureobasidium pullulans, followed by acid hydrolysis to release the monomer l-malic acid (l-MA), has emerged as a promising process for the bio-based production of l-MA. However, the presence of specific by-products significantly affects the quality of the final products. In this study, chassis strains harboring an overexpressed endogenous malate dehydrogenase gene (ApMDH2) were engineered to delete key genes involved in the pullulan, melanin, and liamocin biosynthetic pathways. Furthermore, to enhance PMA synthesis productivity and prevent intracellular NADPH accumulation, an irreversible trans-hydrogenase transformation system was designed to efficiently convert NADPH to NADH. In fed-batch fermentation, the engineered strain produced the highest PMA titer (194.3 ± 1.1 g/L) and l-MA yield (0.89 ± 0.01 g/g) with an increased productivity (1.45 ± 0.06 g/L∙h). Moreover, a total of 86.19 % l-MA, with a purity of 99.7 %, was successfully extracted from fermentation broth.
Collapse
Affiliation(s)
- Bingqin Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Jinzhao He
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Kangjia Zuo
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Xingran Xu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Xiang Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
3
|
Yang J, Sun N, Wang W, Zhang R, Sun S, Li B, Shi Y, Zeng J, Jia S. Genomic analysis and mechanisms exploration of a stress tolerance and high-yield pullulan producing strain. Front Genet 2024; 15:1469600. [PMID: 39371418 PMCID: PMC11449735 DOI: 10.3389/fgene.2024.1469600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Pullulan is a kind of natural polymer, which is widely used in medicine and food because of its solubility, plasticity, edible, non-toxicity and good biocompatibility. It is of great significance to improve the yield of pullulan by genetic modification of microorganisms. It was previously reported that Aureobasidium melanogenum TN3-1 isolated from honey-comb could produce high-yield of pullulan, but the molecular mechanisms of its production of pullulan had not been completely solved. In this study, the reported strains of Aureobasidium spp. were further compared and analyzed at genome level. It was found that genome duplication and genome genetic variations might be the crucial factors for the high yield of pullulan and stress resistance. This particular phenotype may be the result of adaptive evolution, which can adapt to its environment through genetic variation and adaptive selection. In addition, the TN3-1 strain has a large genome, and the special regulatory sequences of its specific genes and promoters may ensure a unique characteristics. This study is a supplement of the previous studies, and provides basic data for the research of microbial genome modification in food and healthcare applications.
Collapse
Affiliation(s)
- Jing Yang
- School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- First clinical medical college, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenru Wang
- School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruihua Zhang
- School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Siqi Sun
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Biqi Li
- School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yue Shi
- School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Junfeng Zeng
- School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shulei Jia
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
4
|
Bai R, Chen J, Hao Y, Dong Y, Ren K, Gao T, Zhang S, Xu F, Zhao H. ARTP mutagenesis of Aureobasidium pullulans RM1603 for high pullulan production and transcriptome analysis of mutants. Arch Microbiol 2024; 206:375. [PMID: 39141138 DOI: 10.1007/s00203-024-04094-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024]
Abstract
Pullulan is a microbial exopolysaccharide produced by Aureobasidium spp. with excellent physical and chemical properties, resulting in great application value. In this study, a novel strain RM1603 of Aureobasidium pullulans with high pullulan production of 51.0 ± 1.0 g·L- 1 isolated from rhizosphere soil was subjected to atmospheric and room temperature plasma (ARTP) mutagenesis, followed by selection of mutants to obtain pullulan high-producing strains. Finally, two mutants Mu0816 and Mu1519 were obtained, with polysaccharide productions of 58.7 ± 0.8 and 60.0 ± 0.8 g∙L- 1 after 72-h fermentation, representing 15.1 and 17.6% increases compared with the original strain, respectively. Transcriptome analysis of the two mutants and the original strain revealed that the high expression of α/β-hydrolase (ABHD), α-amylase (AMY1), and sugar porter family MFS transporters (SPF-MFS) in the mutants may be related to the synthesis and secretion of pullulan. These results demonstrated the effectiveness of ARTP mutagenesis in A. pullulans, providing a basis for the investigation of genes related to pullulan synthesis and secretion.
Collapse
Affiliation(s)
- Ruoxuan Bai
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiale Chen
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yaqiao Hao
- Anshan Health School, Anshan, 114013, China
| | - Yiheng Dong
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Keyao Ren
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ting Gao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shuting Zhang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Fangxu Xu
- Liaoning Province Key Laboratory of Cordyceps Militaris with Functional Value, Experimental Teaching Center, Shenyang Normal University, Shenyang, 110034, China
| | - Hongxin Zhao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
5
|
Xiao D, Driller M, Dielentheis‐Frenken M, Haala F, Kohl P, Stein K, Blank LM, Tiso T. Advances in Aureobasidium research: Paving the path to industrial utilization. Microb Biotechnol 2024; 17:e14535. [PMID: 39075758 PMCID: PMC11286673 DOI: 10.1111/1751-7915.14535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024] Open
Abstract
We here explore the potential of the fungal genus Aureobasidium as a prototype for a microbial chassis for industrial biotechnology in the context of a developing circular bioeconomy. The study emphasizes the physiological advantages of Aureobasidium, including its polyextremotolerance, broad substrate spectrum, and diverse product range, making it a promising candidate for cost-effective and sustainable industrial processes. In the second part, recent advances in genetic tool development, as well as approaches for up-scaled fermentation, are described. This review adds to the growing body of scientific literature on this remarkable fungus and reveals its potential for future use in the biotechnological industry.
Collapse
Affiliation(s)
- Difan Xiao
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Marielle Driller
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Marie Dielentheis‐Frenken
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Frederick Haala
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Philipp Kohl
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Karla Stein
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Lars M. Blank
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Till Tiso
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
6
|
Chi Z, Wei X, Ge N, Jiang H, Liu GL, Chi ZM. NsdD, a GATA-type transcription factor is involved in regulation and biosynthesis of macromolecules melanin, pullulan, and polymalate in Aureobasidium melanogenum. Int J Biol Macromol 2024; 268:131820. [PMID: 38670184 DOI: 10.1016/j.ijbiomac.2024.131820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/29/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024]
Abstract
In this study, an NSDD gene, which encoded a GATA-type transcription factor involved in the regulation and biosynthesis of melanin, pullulan, and polymalate (PMA) in Aureobasidium melanogenum, was characterized. After the NSDD gene was completely removed, melanin production by the Δnsd mutants was enhanced, while pullulan and polymalate production was significantly reduced. Transcription levels of the genes involved in melanin biosynthesis were up-regulated while expression levels of the genes responsible for pullulan and PMA biosynthesis were down-regulated in the Δnsdd mutants. In contrast, the complementation of the NSDD gene in the Δnsdd mutants made the overexpressing mutants restore melanin production and transcription levels of the genes responsible for melanin biosynthesis. Inversely, the complementation strains, compared to the wild type strains, showed enhanced pullulan and PMA yields. These results demonstrated that the NsdD was not only a negative regulator for melanin biosynthesis, but also a key positive regulator for pullulan and PMA biosynthesis in A. melanogenum. It was proposed how the same transcriptional factor could play a negative role in melanin biosynthesis and a positive role in pullulan and PMA biosynthesis. This study provided novel insights into the regulatory mechanisms of multiple A. melanogenum metabolites and the possibility for improving its yields of some industrial products through genetic approaches.
Collapse
Affiliation(s)
- Zhe Chi
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xin Wei
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Na Ge
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Hong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Guang-Lei Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhen-Ming Chi
- College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
7
|
Liu JJ, Hou YK, Wang X, Zhou XT, Yin JY, Nie SP. Recent advances in the biosynthesis of fungal glucan structural diversity. Carbohydr Polym 2024; 329:121782. [PMID: 38286552 DOI: 10.1016/j.carbpol.2024.121782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024]
Abstract
Glucans are the most abundant class of macromolecule polymers in fungi, which are commonly found in Ascomycota and Basidiomycota. Fungal glucans are not only essential for cell integrity and function but also crucial for the immense industrial interest in high value applications. They present a variety of structural characteristics at the nanoscale due to the high regulation of genes and the involvement of stochastic processes in synthesis. However, although recent findings have demonstrated the genes of glucans synthesis are relatively conserved across diverse fungi, the formation and organization of diverse glucan structures is still unclear in fungi. Here, we summarize the structural features of fungal glucans and the recent developments in the mechanisms of glucans biosynthesis. Furthermore, we propose the engineering strategies of targeted glucan synthesis and point out the remaining challenges in the synthetic process. Understanding the synthesis process of diverse glucans is necessary for tailoring high value glucan towards specific applications. This engineering strategy contributes to enable the sustainable and efficient production of glucan diversity.
Collapse
Affiliation(s)
- Jin-Jin Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Yu-Ke Hou
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Xin Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Xing-Tao Zhou
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China.
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China; Food Laboratory of Zhongyuan, Luo he 462300, Henan, China.
| |
Collapse
|
8
|
Paul S, Parvez SS, Goswami A, Banik A. Exopolysaccharides from agriculturally important microorganisms: Conferring soil nutrient status and plant health. Int J Biol Macromol 2024; 262:129954. [PMID: 38336329 DOI: 10.1016/j.ijbiomac.2024.129954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/10/2023] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
A wide variety of microorganisms secretes extracellular polymeric substances or commonly known as exopolysaccharides (EPS), which have been studied to influence plant growth via various mechanisms. EPS-producing microorganisms have been found to have positive effects on plant health such as by facilitating nutrient entrapment in the soil, or by improving soil quality, especially by helping in mitigating various abiotic stress conditions. The various types of microbial polysaccharides allow for the compartmentalization of the microbial community enabling them to endure undressing stress conditions. With the growing population, there is a constant need for developing sustainable agriculture where we could use various PGPR to help the plant cope with various stress conditions and simultaneously enhance the crop yield. These polysaccharides have also found application in various sectors, especially in the biomedical fields, manifesting their potential to act as antitumor drugs, play a significant role in immune evasion, and reveal various therapeutic potentials. These constitute high levels of bioactive polysaccharides which possess a wide range of implementation starting from industrial applications to novel food applications. In this current review, we aim at presenting a comprehensive study of how these microbial extracellular polymeric substances influence agricultural productivity along with their other commercial applications.
Collapse
Affiliation(s)
- Sushreeta Paul
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Sk Soyal Parvez
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Anusree Goswami
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Avishek Banik
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India.
| |
Collapse
|
9
|
Rashid A, Qayum A, Liang Q, Kang L, Ekumah JN, Han X, Ren X, Ma H. Exploring the potential of pullulan-based films and coatings for effective food preservation: A comprehensive analysis of properties, activation strategies and applications. Int J Biol Macromol 2024; 260:129479. [PMID: 38237831 DOI: 10.1016/j.ijbiomac.2024.129479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/09/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
Pullulan is naturally occurring polysaccharide exhibited potential applications for food preservation has gained increasing attention over the last half-century. Recent studies focused on efficient preservation and targeted inhibition using active composite ingredients and advanced technologies. This has led to the emergence of pullulan-based biofilm preservation. This review extensively studied the characteristics of pullulan-based films and coatings, including their mechanical strength, water vapor permeability, thermal stability, and potential as a microbial agent. Furthermore, the distinct characteristics of pullulan, production methods, and activation strategies, such as pullulan derivatization, various compounded ingredients (plant extracts, microorganisms, and animal additives), and other technologies (e.g., ultrasound), are thoroughly studied for the functional property enhancement of pullulan-based films and coatings, ensuring optimal preservation conditions for diverse food products. Additionally, we explore hypotheses that further illuminate pullulan's potential as an eco-friendly bioactive material for food packaging applications. In addition, this review evaluates various methods to improve the efficiency of the film-forming mechanism, such as improving the direct coating process, bioactive packaging films, and implementing layer-by-layer coatings. Finally, current analyses put forward suggestions for future advancement in pullulan-based bioactive films, with the aim of expanding their range of potential applications.
Collapse
Affiliation(s)
- Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Lixin Kang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - John-Nelson Ekumah
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Xu Han
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| |
Collapse
|
10
|
Wang QQ, Lin J, Zhou QZ, Peng J, Zhang Q, Wang JH. Hyper-Production of Pullulan by a Novel Fungus of Aureobasidium melanogenum ZH27 through Batch Fermentation. Int J Mol Sci 2023; 25:319. [PMID: 38203490 PMCID: PMC10779298 DOI: 10.3390/ijms25010319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/09/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Pullulan, which is a microbial exopolysaccharide, has found widespread applications in foods, biomedicines, and cosmetics. Despite its versatility, most wild-type strains tend to yield low levels of pullulan production, and their mutants present genetic instability, achieving a limited increase in pullulan production. Therefore, mining new wild strains with robust pullulan-producing abilities remains an urgent concern. In this study, we found a novel strain, namely, Aureobasidium melanogenum ZH27, that had a remarkable pullulan-producing capacity and optimized its cultivation conditions using the one-factor-at-a-time method. To elucidate the reasons that drove the hyper-production of pullulan, we scrutinized changes in cell morphology and gene expressions. The results reveal that strain ZH27 achieved 115.4 ± 1.82 g/L pullulan with a productivity of 0.87 g/L/h during batch fermentation within 132 h under the optimized condition (OC). This pullulan titer increased by 105% compared with the initial condition (IC). Intriguingly, under the OC, swollen cells featuring 1-2 large vacuoles predominated during a rapid pullulan accumulation, while these swollen cells with one large vacuole and several smaller ones were prevalent under the IC. Moreover, the expressions of genes associated with pullulan accumulation and by-product synthesis were almost all upregulated. These findings suggest that swollen cells and large vacuoles may play pivotal roles in the high level of pullulan production, and the accumulation of by-products also potentially contributes to pullulan synthesis. This study provides a novel and promising candidate for industrial pullulan production.
Collapse
Affiliation(s)
- Qin-Qing Wang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; (J.L.); (Q.-Z.Z.); (J.P.); (Q.Z.)
- Guangdong Engineering Laboratory of Biomass High-Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Jia Lin
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; (J.L.); (Q.-Z.Z.); (J.P.); (Q.Z.)
| | - Qian-Zhi Zhou
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; (J.L.); (Q.-Z.Z.); (J.P.); (Q.Z.)
| | - Juan Peng
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; (J.L.); (Q.-Z.Z.); (J.P.); (Q.Z.)
| | - Qi Zhang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; (J.L.); (Q.-Z.Z.); (J.P.); (Q.Z.)
| | - Jiang-Hai Wang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; (J.L.); (Q.-Z.Z.); (J.P.); (Q.Z.)
| |
Collapse
|
11
|
Jia SL, Zhang M, Liu GL, Chi ZM, Chi Z. Novel chromosomes and genomes provide new insights into evolution and adaptation of the whole genome duplicated yeast-like fungus TN3-1 isolated from natural honey. Funct Integr Genomics 2023; 23:206. [PMID: 37335429 DOI: 10.1007/s10142-023-01127-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Aureobasidium melanogenum TN3-1 strain and A. melanogenum P16 strain were isolated from the natural honey and the mangrove ecosystem, respectively. The former can produce much higher pullulan from high concentration of glucose than the latter. In order to know what happened to their genomes, the PacBio sequencing and Hi-C technologies were used to create the first high-quality chromosome-level reference genome assembly of A. melanogenum TN3-1 (51.61 Mb) and A. melanogenum P16 (25.82 Mb) with the contig N50 of 2.19 Mb and 2.26 Mb, respectively. Based on the Hi-C results, a total of 93.33% contigs in the TN3-1 strain and 92.31% contigs in the P16 strain were anchored onto 24 and 12 haploid chromosomes, respectively. The genomes of the TN3-1 strain had two subgenomes A and B. Synteny analysis showed that the genomic contents of the two subgenomes were asymmetric with many structural variations. Intriguingly, the TN3-1 strain was revealed as a recent hybrid/fusion between the ancestor of A. melanogenum CBS105.22/CBS110374 and the ancestor of another unidentified strain of A. melanogenum similar to P16 strain. We estimated that the two ancient progenitors diverged around 18.38 Mya and merged around 10.66-9.98 Mya. It was found that in the TN3-1 strain, telomeres of each chromosome contained high level of long interspersed nuclear elements (LINEs), but had low level of the telomerase encoding gene. Meanwhile, there were high level of transposable elements (TEs) inserted in the chromosomes of the TN3-1 strain. In addition, the positively selected genes of the TN3-1 strain were mainly enriched in the metabolic processes related to harsh environmental adaptability. Most of the stress-related genes were found to be related to the adjacent LTRs, and the glucose derepression was caused by the mutation of the Glc7-2 in the Snf-Mig1 system. All of these could contribute to its genetic instability, genome evolution, high stress resistance, and high pullulan production from glucose.
Collapse
Affiliation(s)
- Shu-Lei Jia
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | - Mei Zhang
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | - Guang-Lei Liu
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Zhen-Ming Chi
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| |
Collapse
|
12
|
Parra M, Libkind D, Hittinger CT, Álvarez L, Bellora N. Assembly and comparative genome analysis of a Patagonian Aureobasidium pullulans isolate reveals unexpected intraspecific variation. Yeast 2023. [PMID: 37114349 DOI: 10.1002/yea.3853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Aureobasidium pullulans is a yeast-like fungus with remarkable phenotypic plasticity widely studied for its importance for the pharmaceutical and food industries. So far, genomic studies with strains from all over the world suggest they constitute a genetically unstructured population, with no association by habitat. However, the mechanisms by which this genome supports so many phenotypic permutations are still poorly understood. Recent works have shown the importance of sequencing yeast genomes from extreme environments to increase the repertoire of phenotypic diversity of unconventional yeasts. In this study, we present the genomic draft of A. pullulans strain from a Patagonian yeast diversity hotspot, re-evaluate its taxonomic classification based on taxogenomic approaches, and annotate its genome with high-depth transcriptomic data. Our analysis suggests this isolate could be considered a novel variant at an early stage of the speciation process. The discovery of divergent strains in a genomically homogeneous group, such as A. pullulans, can be valuable in understanding the evolution of the species. The identification and characterization of new variants will not only allow finding unique traits of biotechnological importance, but also optimize the choice of strains whose phenotypes will be characterized, providing new elements to explore questions about plasticity and adaptation.
Collapse
Affiliation(s)
- Micaela Parra
- Laboratorio de Genómica Computacional, Instituto de Tecnologías Nucleares para la Salud (INTECNUS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
| | - Diego Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Comahue, San Carlos de Bariloche, Argentina
| | - Chris Todd Hittinger
- Laboratory of Genetics, Center for Genomic Science Innovation, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lucía Álvarez
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Comahue, San Carlos de Bariloche, Argentina
| | - Nicolás Bellora
- Laboratorio de Genómica Computacional, Instituto de Tecnologías Nucleares para la Salud (INTECNUS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
| |
Collapse
|
13
|
|
14
|
Singh RS, Kaur N, Singh D, Bajaj BK, Kennedy JF. Downstream processing and structural confirmation of pullulan - A comprehensive review. Int J Biol Macromol 2022; 208:553-564. [PMID: 35354070 DOI: 10.1016/j.ijbiomac.2022.03.163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022]
Abstract
Pullulan is a microbial polymer, commercially produced from Aureobasidium pullulans. Downstream processing of pullulan involves a multi-stage process which should be efficient, safe and reproducible. In liquid-liquid separations, firstly cell free extract is separated. Cell biomass can be separated after fermentation either by centrifugation or filtration. Due to practically insolubility of pullulan in organic solvents, ethanol and isopropanol are the most commonly used organic solvents for its recovery. Pullulan can also be purified by chromatographic techniques, but these are not cost effective for the purification of pullulan. Efficient aqueous two-phase system can be used for the purification of pullulan. The current review describes the methods and perspectives used for solid-liquid separation, liquid-liquid separations and finishing steps for the recovery of pullulan. Techniques used to determine the structural attributes of pullulan have also been highlighted.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrates and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India.
| | - Navpreet Kaur
- Carbohydrates and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences, Punjabi University, Patiala 147 002, Punjab, India
| | - Bijender K Bajaj
- School of Biotechnology, University of Jammu, Jammu 180 006, India
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8SG Tenbury Wells, United Kingdom
| |
Collapse
|
15
|
The signaling pathways involved in metabolic regulation and stress responses of the yeast-like fungi Aureobasidium spp. Biotechnol Adv 2021; 55:107898. [PMID: 34974157 DOI: 10.1016/j.biotechadv.2021.107898] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/22/2022]
Abstract
Aureobasidium spp. can use a wide range of substrates and are widely distributed in different environments, suggesting that they can sense and response to various extracellular signals and be adapted to different environments. It is true that their pullulan, lipid and liamocin biosynthesis and cell growth are regulated by the cAMP-PKA signaling pathway; Polymalate (PMA) and pullulan biosynthesis is controlled by the Ca2+ and TORC1 signaling pathways; the HOG1 signaling pathway determines high osmotic tolerance and high pullulan and liamocin biosynthesis; the Snf1/Mig1 pathway controls glucose repression on pullulan and liamocin biosynthesis; DHN-melanin biosynthesis and stress resistance are regulated by the CWI signaling pathway and TORC1 signaling pathway. In addition, the HSF1 pathway may control cell growth of some novel strains of A. melanogenum at 37 °C. However, the detailed molecular mechanisms of high temperature growth and thermotolerance of some novel strains of A. melanogenum and glucose derepression in A. melanogenum TN3-1 are still unclear.
Collapse
|
16
|
Rai M, Wypij M, Ingle AP, Trzcińska-Wencel J, Golińska P. Emerging Trends in Pullulan-Based Antimicrobial Systems for Various Applications. Int J Mol Sci 2021; 22:13596. [PMID: 34948392 PMCID: PMC8704206 DOI: 10.3390/ijms222413596] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 01/21/2023] Open
Abstract
Global reports on multidrug resistance (MDR) and life-threatening pathogens such as SARS-CoV-2 and Candida cruris have stimulated researchers to explore new antimicrobials that are eco-friendly and economically viable. In this context, biodegradable polymers such as nisin, chitin, and pullulan play an important role in solving the problem. Pullulan is an important edible, biocompatible, water-soluble polymer secreted by Aureobasidium pullulans that occurs ubiquitously. It consists of maltotriose units linked with α-1,6 glycosidic bonds and is classed as Generally Regarded as Safe (GRAS) by the Food and Drug Administration (FDA) in the USA. Pullulan is known for its antibacterial, antifungal, antiviral, and antitumor activities when incorporated with other additives such as antibiotics, drugs, nanoparticles, and so on. Considering the importance of its antimicrobial activities, this polymer can be used as a potential antimicrobial agent against various pathogenic microorganisms including the multidrug-resistant (MDR) pathogens. Moreover, pullulan has ability to synthesize biogenic silver nanoparticles (AgNPs), which are remarkably efficacious against pathogenic microbes. The pullulan-based nanocomposites can be applied for wound healing, food packaging, and also enhancing the shelf-life of fruits and vegetables. In this review, we have discussed biosynthesis of pullulan and its role as antibacterial, antiviral, and antifungal agent. Pullulan-based films impregnated with different antimicrobials such as AgNPs, chitosan, essential oils, and so on, forming nanocomposites have also been discussed as natural alternatives to combat the problems posed by pathogens.
Collapse
Affiliation(s)
- Mahendra Rai
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444602, Maharashtra, India
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (M.W.); (J.T.-W.)
| | - Magdalena Wypij
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (M.W.); (J.T.-W.)
| | - Avinash P. Ingle
- Biotechnology Centre, Department of Agricultural Botany, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola 444104, Maharashtra, India;
| | - Joanna Trzcińska-Wencel
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (M.W.); (J.T.-W.)
| | - Patrycja Golińska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (M.W.); (J.T.-W.)
| |
Collapse
|
17
|
Kang XX, Wang QQ, Chi Z, Liu GL, Hu Z, Chi ZM. The GATA type transcriptional factors regulate pullulan biosynthesis in Aureobasidium melanogenum P16. Int J Biol Macromol 2021; 192:161-168. [PMID: 34597699 DOI: 10.1016/j.ijbiomac.2021.09.149] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/19/2022]
Abstract
Aureobasidium melanogenum P16, the high pullulan producer, had only one GATA type transcriptional activator AreA and one GATA type transcriptional repressor AreB. It was found that 2.4 g/L of (NH4)2SO4 had obvious nitrogen repression on pullulan biosynthesis by A. melanogenum P16. Removal of the AreB gene could make the disruptant DA6 produce 34.8 g/L pullulan while the P16 strain only produced 28.8 g/L pullulan at the efficient nitrogen condition. Further both removal of the native AreA gene and overexpression of the mutated AreAS628-S678 gene with non-phosphorylatable residues could render the transformant DEA12 to produce 39.8 g/L pullulan. The transcriptional levels of most of the genes related to pullulan biosynthesis in the transformant DEA12 were greatly enhanced. The mutated AreAS628-S678 was localized in the nuclei of the transformant DEA12 while the native AreA was distributed in the cytoplasm in A. melanogenum P16. This meant that nitrogen repression on pullulan biosynthesis in the transformant DEA12 was indeed significantly relieved. This was the first time to report that the GATA type transcriptional factors of nitrogen catabolite repression system could regulate pullulan biosynthesis in Aureobasidium spp.
Collapse
Affiliation(s)
- Xin-Xin Kang
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | - Qin-Qing Wang
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China
| | - Guang-Lei Liu
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou 515063, China
| | - Zhen-Ming Chi
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China.
| |
Collapse
|
18
|
Advances in pullulan production from agro-based wastes by Aureobasidium pullulans and its applications. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Chen X, Wang Y, He CY, Wang GL, Zhang GC, Wang CL, Wang DH, Zou X, Wei GY. Improved production of β-glucan by a T-DNA-based mutant of Aureobasidium pullulans. Appl Microbiol Biotechnol 2021; 105:6887-6898. [PMID: 34448899 DOI: 10.1007/s00253-021-11538-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 11/26/2022]
Abstract
To improve β-1,3-1,6-D-glucan (β-glucan) production by Aureobasidium pullulans, an Agrobacterium tumefaciens-mediated transformation method was developed to screen a mutant A. pullulans CGMCC 19650. Based on thermal asymmetric-interlaced PCR detection, DNA sequencing, BLAST analysis, and quantitative real-time PCR assay, the T-DNA was identified to be inserted in the coding region of mal31 gene, which encodes a sugar transporter involved in pullulan biosynthesis in the mutant. The maximal biomass and β-glucan production under batch fermentation were significantly increased by 47.6% and 78.6%, respectively, while pullulan production was decreased by 41.7% in the mutant, as compared to the parental strain A. pullulans CCTCC M 2012259. Analysis of the physiological mechanism of these changes revealed that mal31 gene disruption increased the transcriptional levels of pgm2, ugp, fks1, and kre6 genes; increased the amounts of key enzymes associated with UDPG and β-glucan biosynthesis; and improved intracellular UDPG contents and energy supply, all of which favored β-glucan production. However, the T-DNA insertion decreased the transcriptional levels of ags2 genes, and reduced the biosynthetic capability to form pullulan, resulting in the decrease in pullulan production. This study not only provides an effective approach for improved β-glucan production by A. pullulans, but also presents an accurate and useful gene for metabolic engineering of the producer for efficient polysaccharide production. KEY POINTS: • A mutant A. pullulans CGMCC 19650 was screened by using the ATMT method. • The mal31 gene encoding a sugar transporter was disrupted in the mutant. • β-Glucan produced by the mutant was significantly improved.
Collapse
Affiliation(s)
- Xing Chen
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Ying Wang
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Chao-Yong He
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Guo-Liang Wang
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Gao-Chuan Zhang
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Chong-Long Wang
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Da-Hui Wang
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Xiang Zou
- College of Pharmaceutical Sciences, Southwest University, 2# TianSheng Road, Beibei, Chongqing, 400715, People's Republic of China.
| | - Gong-Yuan Wei
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
20
|
Pullulan biosynthesis and its regulation in Aureobasidium spp. Carbohydr Polym 2021; 251:117076. [DOI: 10.1016/j.carbpol.2020.117076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
|
21
|
Microbial production of value-added bioproducts and enzymes from molasses, a by-product of sugar industry. Food Chem 2020; 346:128860. [PMID: 33385915 DOI: 10.1016/j.foodchem.2020.128860] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
Molasses is a major by-product of sugar industry and contains 40-60% (w/w) of sugars. The world's annual yield of molasses reaches 55 million tons. Traditionally, molasses is simply discharged or applied to feed production. Additionally, some low-cost and environmentally friendly bioprocesses have been established for microbial production of value-added bioproducts from molasses. Over the last decade and more, increasing numbers of biofuels, polysaccharides, oligosaccharides, organic acids, and enzymes have been produced from the molasses through microbial conversion that possess an array of important applications in the industries of food, energy, and pharmaceutical. For better application, it is necessary to comprehensively understand the research status of bioconversion of molasses that has not been elaborated in detail so far. In this review, these value-added bioproducts and enzymes obtained through bioconversion of molasses, their potential applications in food and other industries, as well as the future research focus were generalized and discussed.
Collapse
|
22
|
Chen TJ, Liu GL, Chen L, Yang G, Hu Z, Chi ZM, Chi Z. Alternative primers are required for pullulan biosynthesis in Aureobasidium melanogenum P16. Int J Biol Macromol 2020; 147:10-17. [DOI: 10.1016/j.ijbiomac.2020.01.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/28/2019] [Accepted: 01/06/2020] [Indexed: 01/22/2023]
|