1
|
Liu S, Chao H, He D, Wang Y, Yang Y. Biomimetic co-immobilization of β-glucosidase, glucose oxidase, and horseradish peroxidase to construct a multi-enzyme biosensor for determination of amygdalin. Int J Biol Macromol 2025; 297:139868. [PMID: 39814275 DOI: 10.1016/j.ijbiomac.2025.139868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/03/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Accurate, specific, and cost-effective detection of toxic cyanogenic glycosides is crucial for ensuring biological health and food safety. In this study, a novel biosensor based on co-immobilized multi-enzyme system was constructed by artificial antibody-antigen-directed immobilization for the colorimetric detection of amygdalin through a cascade reaction catalyzed by β-glucosidase, glucose oxidase, and horseradish peroxidase. Artificial antibodies and antigens were prepared using catechol and 3,4-dihydroxybenzaldehyde, respectively, to generate mutual affinity recognition ability for enzyme immobilization. On this basis, the biosensing system showed a complete response to amygdalin within 4 min, with a linear range from 2 to 10 μM, a detection limit of 0.18 μM, and a quantification limit of 0.6 μM. In addition, this sensor had good precision, reproducibility, stability, and reusability. This study proposed a method for detecting cyanogenic glycosides, providing a successful case for the application of cascade biosensors in food safety detection.
Collapse
Affiliation(s)
- Shuo Liu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Hongli Chao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Dajun He
- Analysis and Testing Centre, Shihezi University, Shihezi 832003, China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
2
|
Li N, Li Q, Ge F, Cui X. Immobilization of β-glucosidase and β-xylosidase on inorganic nanoparticles for glycosylated substances conversion. Int J Biol Macromol 2024; 292:139173. [PMID: 39732227 DOI: 10.1016/j.ijbiomac.2024.139173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
There are abundant glycosylated substances such as cellulose, hemicellulose, and phytochemical glycosides in plants, which could be converted into functional chemicals such as monosaccharides, oligosaccharides, and bioactive aglycones by cleavage of glycosidic bonds using glycoside hydrolases (GHs). Among those GHs, β-glucosidase and β-xylosidase are the rate-limiting enzymes for degrading cellulose and hemicellulose, respectively, and can convert a variety of glycosylated substances. These two enzymes play important roles in the high value use of plant resources and have great potential applications. However, the fragility of enzymes suggests there is an urgent need to improve the activity, stability and reusability of GHs under industrial conditions. Enzyme immobilization is an efficient approach to meet the need. Inorganic materials are preferred carriers for enzyme immobilization, since they possess high surface area, pore size, stability and long service life. Recently, many reports have showed that GHs immobilized on inorganic materials exhibit potential applications on industry and will benefit the process economy. The present review provides an overview of these reports from the perspectives of materials, strategies, activities, stability and reusability, as well as an insight into the related mechanisms, with a view to providing a reference for the GHs immobilization and their applications.
Collapse
Affiliation(s)
- Na Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Qiwen Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Feng Ge
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China.
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China.
| |
Collapse
|
3
|
Cao C, Li Z, Huang X, Wang J, Li R, Wu Z. Immobilization of snailase on glutamate modified MIL-88B(Fe) to efficiently convert the rare ginsenoside CK with high enzyme recyclability and stability. Int J Biol Macromol 2024:138146. [PMID: 39613081 DOI: 10.1016/j.ijbiomac.2024.138146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
The carboxyl groups on MIL-88B(Fe) are crucial for the covalent immobilization of snailase, and the enzyme can convert common ginsenoside Rb1 into the rare ginsenoside compound K (CK) with higher bioavailability. The present study proposed glutamate-modified MIL-88B(Fe) for the immobilization of snailase to improve enzymatic activity and loading capacity. The surface topography characterized by SEM and CLSM indicated snailase was successfully encapsulated and uniformly distributed in the Sna@MIL-88B(Fe). The maximum immobilized capacities of snailase by MIL-88B(Fe)-Glu and MIL-88B(Fe) were 185 mg/g and 140 mg/g, respectively. Moreover, covalently immobilized snailase on MIL-88B(Fe)-Glu showed better pH, thermal, solvent, and storage stabilities than those immobilized on MIL-88B(Fe) and resolvase. Meanwhile, the reaction kinetics exhibited that the Km value of Sna@MIL-88B(Fe)-Glu (1.6 mM) was significantly lower than that of free snailase (2.1 mM), indicating a higher substrate affinity. Besides, more ginsenoside CK with higher conversion (60.71 %) was generated by Sna@MIL-88B(Fe)-Glu, even after five cycles. The glutamate modified covalent grafting method provides a highly efficient strategy for biocatalysis and a reference for the immobilized snailase-catalyzed transformation of rare ginsenosides CK.
Collapse
Affiliation(s)
- Cui Cao
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Zuopeng Li
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Xinjian Huang
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Jianwen Wang
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Runze Li
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Zhansheng Wu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China.
| |
Collapse
|
4
|
Fu L, Li Y, Zhang X, Cui J, Zhao X, Wang J, Zhou Q, Wang L, Fu Y. Targeted recognition and enhanced biotransformation of phytochemicals by a dual-functional cellulose-based hydrogel bioreactor. Int J Biol Macromol 2024; 281:136271. [PMID: 39366624 DOI: 10.1016/j.ijbiomac.2024.136271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
The combined technology of molecular imprinting and immobilization is a promising strategy for improving biocatalytic performance. In this work, a dual-functional cellulose-based hydrogel bioreactor with targeted recognition and transformation functions was innovatively designed by cellulose-based molecularly imprinted polymers (CM-MIPs) hydrogel coupled with layered double hydroxide immobilized enzyme (LDH-E). Firstly, CM-MIPs hydrogel was prepared by using phlorizin, 4-pinylpyridine, and cellulose microspheres as template molecule, functional monomer, and support material, respectively. Meanwhile, layered double hydroxide (LDH) taken as a carrier to immobilize β-glucosidase. The prepared LDH was layered sheet-like structure with ultra-thin thickness of approximately only 1.5 nm, and β-glucosidase was immobilized on both sides of the LDH. Further, the dual-functional bioreactor was constructed by the anion exchange, which possessed maximum targeted adsorption capacity to phlorizin of 15.25 mg/g, exhibited 1.2 folds higher transformation efficiency than LDH-E, and the phloretin content increased 26 folds to that in Lithocarpus litseifolius (Hance) Chu leaves extracts. Moreover, the transformation efficiency remained above 70 % even after five consecutive transformations. Overall, the dual-functional bioreactor has broad prospects for the application in targeted recognition and transformation of phytochemicals, and provides a new insight on multifunctional bio-based reactors in natural production field.
Collapse
Affiliation(s)
- Lina Fu
- The College of Forestry, Beijing Forestry University, 100083 Beijing, PR China
| | - Ye Li
- The College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, PR China
| | - Xinlin Zhang
- The College of Forestry, Beijing Forestry University, 100083 Beijing, PR China
| | - Jihong Cui
- The College of Forestry, Beijing Forestry University, 100083 Beijing, PR China
| | - Xuanting Zhao
- The College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, PR China
| | - Jiandong Wang
- The College of Forestry, Beijing Forestry University, 100083 Beijing, PR China
| | - Quan Zhou
- The College of Forestry, Beijing Forestry University, 100083 Beijing, PR China
| | - Litao Wang
- The College of Forestry, Beijing Forestry University, 100083 Beijing, PR China
| | - Yujie Fu
- The College of Forestry, Beijing Forestry University, 100083 Beijing, PR China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, 100083 Beijing, PR China; Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, 155100 Shuangyashan, PR China; The College of Biological Sciences and Technology, Beijing Forestry University, 100083 Beijing, PR China.
| |
Collapse
|
5
|
Cai L, Cheng Y, Pan Y, Wang L, Zhao X, Gao W, Huang P, Cui C. Enzymatic synthesis and sensory evaluation of the novel kokumi compound N-butyryl phenylalanine. Food Chem 2024; 455:139910. [PMID: 38833857 DOI: 10.1016/j.foodchem.2024.139910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
In this study, food-grade glutamine transaminase (TGase) was utilized for the green-catalyzed preparation of N-butyryl amino acids. For improving the reusability of the enzyme preparation, immobilized TG enzyme (94.23% immobilization rate) was prepared. Furthermore, the yield of N-butyryl phenylalanine (BP) synthesized by TGase was obtained as 20.73% by one-factor experiment. The BP synthesis yield of immobilized TGase was 95.03% of that of TGase and remained above 60% of the initial enzyme activity after five runs. The sensory evaluation and E-tongue results showed that the addition of BP significantly increased the umami, saltiness, and richness intensities of the samples, and decreased the intensities of sourness, bitterness, and aftertaste-B. The molecular docking results indicated that hydrogen bonding dominated the binding of BP to taste receptors in the taste presentation mechanism of BP. These results confirmed the potential of BP as a flavor enhancer with promising applications in the food industry.
Collapse
Affiliation(s)
- Lei Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Yuqin Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Yuqing Pan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Lu Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Xu Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Wenxiang Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Pimiao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China.
| |
Collapse
|
6
|
Mishra S, Ghosh A, Hansda B, Mondal TK, Biswas T, Das B, Roy D, Kumari P, Mondal S, Mandal B. Activation of Inert Supports for Enzyme(s) Immobilization Harnessing Biocatalytic Sustainability for Perennial Utilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18377-18406. [PMID: 39171729 DOI: 10.1021/acs.langmuir.4c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Although Nature's evolution and intelligence have gifted humankind with noteworthy enzyme candidates to simplify complex reactions with ultrafast, overselective, effortless, mild biological reactions for millions of years, their availability at minute-scale, short-range time-temperature stability, and purification costs hardly justify recycling/or reuse. Covalent immobilization, particularly via multipoint bonds, prevents denaturing, maintains activities for long-range time, pH, and temperature, and makes catalysts available for repetitive usages; which attracts researchers and industries to bring more immobilized enzyme contenders in science and commercial progressions. Inert-support activation, the most crucial step, needs appropriate activators; under mild conditions, the activator's functional group(s) still present on the activated support rapidly couples the enzyme, preventing unfolding and keeping the active site alive. This review summarizes exciting experimental advances, from the 1950s until today, in the activation strategies of various inert supports with five different surface activators, the cyanogen bromide, the isocyanate/isothiocyanate, the glutaraldehyde, the carbodiimide (with or without N-hydroxysuccinimide (NHS)), and the diazo group, for the immobilization of diverse enzymes for broader applications. These activators under mild pH (7.5 ± 0.5) and temperature (27 ± 3 °C) and ordinary stirring witnessed support activation and enzyme coupling and put off unfolding, harnessing addressable activities (CNBr: 40 ± 10%; -N═C═O/-N═C═S: 32 ± 7%; GA: 70 ± 15%; CDI: 60 ± 10%; -N+≡N: 80 ± 15%), while underprivileged stability, longevity, and reusabilities keep future investigations alive.
Collapse
Affiliation(s)
- Shailja Mishra
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Ankit Ghosh
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Biswajit Hansda
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Tanay K Mondal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Tirtha Biswas
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Basudev Das
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Dipika Roy
- Department of Chemistry, Jadavpur University, Main Campus 188, Raja S.C. Mallick Rd, Kolkata, West Bengal, India 700032
| | - Pallavi Kumari
- University Department of Chemistry, T.M.B.U., Bhagalpur, Bihar-812007, India
| | - Sneha Mondal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Bhabatosh Mandal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| |
Collapse
|
7
|
Nour SA, Foda DS, Elsehemy IA, Hassan ME. Co-administration of xylo-oligosaccharides produced by immobilized Aspergillus terreus xylanase with carbimazole to mitigate its adverse effects on the adrenal gland. Sci Rep 2024; 14:17481. [PMID: 39080323 PMCID: PMC11289116 DOI: 10.1038/s41598-024-67310-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Carbimazole has disadvantages on different body organs, especially the thyroid gland and, rarely, the adrenal glands. Most studies have not suggested any solution or medication for ameliorating the noxious effects of drugs on the glands. Our study focused on the production of xylooligosaccharide (XOS), which, when coadministered with carbimazole, relieves the toxic effects of the drug on the adrenal glands. In addition to accelerating the regeneration of adrenal gland cells, XOS significantly decreases the oxidative stress caused by obesity. This XOS produced by Aspergillus terreus xylanase was covalently immobilized using microbial Scleroglucan gel beads, which improved the immobilization yield, efficiency, and operational stability. Over a wide pH range (6-7.5), the covalent immobilization of xylanase on scleroglucan increased xylanase activity compared to that of its free form. Additionally, the reaction temperature was increased to 65 °C. However, the immobilized enzyme demonstrated superior thermal stability, sustaining 80.22% of its original activity at 60 °C for 120 min. Additionally, the full activity of the immobilized enzyme was sustained after 12 consecutive cycles, and the activity reached 78.33% after 18 cycles. After 41 days of storage at 4 °C, the immobilized enzyme was still active at approximately 98%. The immobilized enzyme has the capability to produce xylo-oligosaccharides (XOSs). Subsequently, these XOSs can be coadministered alongside carbimazole to mitigate the adverse effects of the drug on the adrenal glands. In addition to accelerating the regeneration of adrenal gland cells, XOS significantly decreases the oxidative stress caused by obesity.
Collapse
Affiliation(s)
- Shaimaa A Nour
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Behouth Street, Cairo, 12622, Egypt
| | - Doaa S Foda
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Behouth Street, Cairo, 12622, Egypt
| | - Islam A Elsehemy
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Behouth Street, Cairo, 12622, Egypt
| | - Mohamed E Hassan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Behouth Street, Cairo, 12622, Egypt.
- Centre of Excellence, Encapsulation and Nano Biotechnology Group, Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Behouth Street, Cairo, 12622, Egypt.
| |
Collapse
|
8
|
Lu H, Ni SQ. Review on sterilization techniques, and the application potential of phage lyase and lyase immobilization in fighting drug-resistant bacteria. J Mater Chem B 2024; 12:3317-3335. [PMID: 38380677 DOI: 10.1039/d3tb02366d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Many human health problems and property losses caused by pathogenic contamination cannot be underestimated. Bactericidal techniques have been extensively studied to address this issue of public health and economy. Bacterial resistance develops as a result of the extensive use of single or multiple but persistent usage of sterilizing drugs, and the emergence of super-resistant bacteria brings new challenges. Therefore, it is crucial to control pathogen contamination by applying innovative and effective sterilization techniques. As organisms that exist in nature and can specifically kill bacteria, phages have become the focus as an alternative to antibacterial agents. Furthermore, phage-encoded lyases are proteins that play important roles in phage sterilization. The in vitro sterilization of phage lyase has been developed as a novel biosterilization technique to reduce bacterial resistance and is more environmentally friendly than conventional sterilization treatments. For the shortcomings of enzyme applications, this review discusses the enzyme immobilization methods and the application potential of immobilized lyases for sterilization. Although some techniques provide effective solutions, immobilized lyase sterilization technology has been proven to be a more effective innovation for efficient pathogen killing and reducing bacterial resistance. We hope that this review can provide new insights for the development of sterilization techniques.
Collapse
Affiliation(s)
- Han Lu
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
9
|
Zeyadi M, Almulaiky YQ. Chitosan-Based metal-organic framework for Stabilization of β-glucosidase: Reusability and storage stability. Heliyon 2023; 9:e21169. [PMID: 37920506 PMCID: PMC10618774 DOI: 10.1016/j.heliyon.2023.e21169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023] Open
Abstract
Enzyme immobilization is a powerful tool for protecting enzymes from harsh reaction conditions and improving enzyme activity, stability, and reusability. In this study, metal organic frameworks (MIL-Fe composites) were synthesized via solvothermal reactions and then modified with chitosan (CS). β-Glucosidase was immobilized on the chitosan-metal organic framework (CS-MIL-Fe), and the resulting composites were characterized with various analytical techniques. The β-glucosidase immobilized on a CS-MIL-Fe composite had an immobilization yield of 85 % and a recovered activity of 74 %. The immobilized enzyme retained 81 % of its initial activity after ten successive cycles and preserved 69 % of its original activity after 30 days of storage at 4 °C. In contrast, the free enzyme had only preserved 32 % of its original activity after 30 days. Under various temperature and pH conditions, the immobilized enzyme showed greater stability than the free enzyme, and the optimal temperature and pH were 60 °C and 6.0 for the immobilized enzyme and 50 °C and 5.0 for the free enzyme. The kinetic parameters were also determined, with the Km values of 13.4 and 6.98 mM for the immobilized and free β-glucosidase, respectively, and Vmax values of 3.96 and 1.72 U/mL, respectively. Overall, these results demonstrate that the CS-MIL-Fe@β-glucosidase is a promising matrix showing high catalytic efficiency and enhanced stability.
Collapse
Affiliation(s)
- Mustafa Zeyadi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, P. O. Box 80200, Jeddah, 21589, Saudi Arabia
| | - Yaaser Q. Almulaiky
- Department of Chemistry, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21921, Saudi Arabia
- Chemistry Department, Faculty of Applied Science, Taiz University, Taiz, Yemen
| |
Collapse
|
10
|
Tan Z, Cheng H, Chen G, Ju F, Fernández-Lucas J, Zdarta J, Jesionowski T, Bilal M. Designing multifunctional biocatalytic cascade system by multi-enzyme co-immobilization on biopolymers and nanostructured materials. Int J Biol Macromol 2023; 227:535-550. [PMID: 36516934 DOI: 10.1016/j.ijbiomac.2022.12.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/01/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
In recent decades, enzyme-based biocatalytic systems have garnered increasing interest in industrial and applied research for catalysis and organic chemistry. Many enzymatic reactions have been applied to sustainable and environmentally friendly production processes, particularly in the pharmaceutical, fine chemicals, and flavor/fragrance industries. However, only a fraction of the enzymes available has been stepped up towards industrial-scale manufacturing due to low enzyme stability and challenging separation, recovery, and reusability. In this context, immobilization and co-immobilization in robust support materials have emerged as valuable strategies to overcome these inadequacies by facilitating repeated or continuous batch operations and downstream processes. To further reduce separations, it can be advantageous to use multiple enzymes at once in one pot. Enzyme co-immobilization enables biocatalytic synergism and reusability, boosting process efficiency and cost-effectiveness. Several studies on multi-enzyme immobilization and co-localization propose kinetic advantages of the enhanced turnover number for multiple enzymes. This review spotlights recent progress in developing versatile biocatalytic cascade systems by multi-enzyme co-immobilization on environmentally friendly biopolymers and nanostructured materials and their application scope in the chemical and biotechnological industries. After a succinct overview of carrier-based and carrier-free immobilization/co-immobilizations, co-immobilization of enzymes on a range of biopolymer and nanomaterials-based supports is thoroughly compiled with contemporary and state-of-the-art examples. This study provides a new horizon in developing effective and innovative multi-enzymatic systems with new possibilities to fully harness the adventure of biocatalytic systems.
Collapse
Affiliation(s)
- Zhongbiao Tan
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, PR China.
| | - Hairong Cheng
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Gang Chen
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, PR China
| | - Fang Ju
- Sateri (Jiangsu) Fiber Co. Ltd., Suqian 221428, PR China
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670 Villaviciosa de Odón, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695 Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695 Poznan, Poland.
| | - Muhammad Bilal
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, PR China
| |
Collapse
|
11
|
Li R, Liu X, Li X, Tian D, Fan D, Ma X, Wu Z. Co-immobilized β-glucosidase and snailase in green synthesized Zn-BTC for ginsenoside CK biocatalysis. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
12
|
Polyester fabric modification by chemical treatment to enhancing the β-glucosidase immobilization. Heliyon 2022; 8:e11660. [DOI: 10.1016/j.heliyon.2022.e11660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/20/2022] [Accepted: 11/11/2022] [Indexed: 11/21/2022] Open
|
13
|
Du Y, Zhang X, Liu P, Yu DG, Ge R. Electrospun nanofiber-based glucose sensors for glucose detection. Front Chem 2022; 10:944428. [PMID: 36034672 PMCID: PMC9403008 DOI: 10.3389/fchem.2022.944428] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes is a chronic, systemic metabolic disease that leads to multiple complications, even death. Meanwhile, the number of people with diabetes worldwide is increasing year by year. Sensors play an important role in the development of biomedical devices. The development of efficient, stable, and inexpensive glucose sensors for the continuous monitoring of blood glucose levels has received widespread attention because they can provide reliable data for diabetes prevention and diagnosis. Electrospun nanofibers are new kinds of functional nanocomposites that show incredible capabilities for high-level biosensing. This article reviews glucose sensors based on electrospun nanofibers. The principles of the glucose sensor, the types of glucose measurement, and the glucose detection methods are briefly discussed. The principle of electrospinning and its applications and advantages in glucose sensors are then introduced. This article provides a comprehensive summary of the applications and advantages of polymers and nanomaterials in electrospun nanofiber-based glucose sensors. The relevant applications and comparisons of enzymatic and non-enzymatic nanofiber-based glucose sensors are discussed in detail. The main advantages and disadvantages of glucose sensors based on electrospun nanofibers are evaluated, and some solutions are proposed. Finally, potential commercial development and improved methods for glucose sensors based on electrospinning nanofibers are discussed.
Collapse
Affiliation(s)
- Yutong Du
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Xinyi Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Ping Liu
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
- Institute of Orthopaedic Basic and Clinical Transformation, University of Shanghai for Science and Technology, Shanghai, China
- Shidong Hospital, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Ruiliang Ge
- Department of Outpatient, the Third Afiliated Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
14
|
Jia M, Luo Z, Chen H, Ma B, Qiao L, Xiao Q, Zhang P, Wang A. Programmable Polyproteams of Tyrosine Ammonia Lyases as Cross-Linked Enzymes for Synthesizing p-Coumaric Acid. Biomolecules 2022; 12:biom12070997. [PMID: 35883553 PMCID: PMC9313006 DOI: 10.3390/biom12070997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/20/2022] Open
Abstract
Ideal immobilization with enhanced biocatalyst activity and thermostability enables natural enzymes to serve as a powerful tool to yield synthetically useful chemicals in industry. Such an enzymatic method strategy becomes easier and more convenient with the use of genetic and protein engineering. Here, we developed a covalent programmable polyproteam of tyrosine ammonia lyases (TAL-CLEs) by fusing SpyTag and SpyCatcher peptides into the N-terminal and C-terminal of the TAL, respectively. The resulting circular enzymes were clear after the spontaneous isopeptide bonds formed between the SpyTag and SpyCatcher. Furthermore, the catalytic performance of the TAL-CLEs was measured via a synthesis sample of p-Coumaric acid. Our TAL-CLEs showed excellent catalytic efficiency, with 98.31 ± 1.14% yield of the target product—which is 4.15 ± 0.08 times higher than that of traditional glutaraldehyde-mediated enzyme aggregates. They also showed over four times as much enzyme-activity as wild-type TAL does and demonstrated good reusability, and so may become a good candidate for industrial enzymes.
Collapse
Affiliation(s)
| | | | | | | | - Li Qiao
- Correspondence: (L.Q.); (A.W.)
| | | | | | | |
Collapse
|
15
|
Lacunary silicotungstic heteropoly salts as high-performance catalysts in oxidation of cyclopentene. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Ramírez-Ramírez LG, Zazueta-Álvarez DE, Fileto-Pérez HA, Reyes-Jáquez D, Núñez-Núñez CM, Galindo-De la Rosa JDD, López-Miranda J, Vázquez-Ortega PG. Improvement in the Thermostability of a Recombinant β-Glucosidase Immobilized in Zeolite under Different Conditions. Molecules 2022; 27:4105. [PMID: 35807351 PMCID: PMC9268045 DOI: 10.3390/molecules27134105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
β-Glucosidase is part of the cellulases and is responsible for degrading cellobiose into glucose, a compound that can be used to produce biofuels. However, the use of the free enzyme makes the process more expensive. Enzyme immobilization improves catalytic characteristics and supports, such as zeolites, which have physical-chemical characteristics and ion exchange capacity that have a promising application in the biotechnological industry. This research aimed to immobilize by adsorption a recombinant β-glucosidase from Trichoderma reesei, obtained in Escherichia coli BL21 (DE3), in a commercial zeolite. A Box Behnken statistical design was applied to find the optimal immobilization parameters, the stability against pH and temperature was determined, and the immobilized enzyme was characterized by SEM. The highest enzymatic activity was determined with 100 mg of zeolite at 35 °C and 175 min. Compared to the free enzyme, the immobilized recombinant β-glucosidase presented greater activity from pH 2 to 4 and greater thermostability. The kinetic parameters were calculated, and a lower KM value was obtained for the immobilized enzyme compared to the free enzyme. The obtained immobilization parameters by a simple adsorption method and the significant operational stability indicate promising applications in different fields.
Collapse
Affiliation(s)
- Luis Gerardo Ramírez-Ramírez
- Departamento de Ingenierías Química y Bioquímica, Tecnológico Nacional de México (TecNM)—Instituto Tecnológico de Durango (ITD), Durango 34080, Mexico; (L.G.R.-R.); (H.A.F.-P.); (D.R.-J.); (J.L.-M.)
| | - David Enrique Zazueta-Álvarez
- Departamento de Ingeniería en Tecnología Ambiental, Universidad Politécnica de Durango, Durango 34300, Mexico; (D.E.Z.-Á.); (C.M.N.-N.)
| | - Héctor Alonso Fileto-Pérez
- Departamento de Ingenierías Química y Bioquímica, Tecnológico Nacional de México (TecNM)—Instituto Tecnológico de Durango (ITD), Durango 34080, Mexico; (L.G.R.-R.); (H.A.F.-P.); (D.R.-J.); (J.L.-M.)
| | - Damián Reyes-Jáquez
- Departamento de Ingenierías Química y Bioquímica, Tecnológico Nacional de México (TecNM)—Instituto Tecnológico de Durango (ITD), Durango 34080, Mexico; (L.G.R.-R.); (H.A.F.-P.); (D.R.-J.); (J.L.-M.)
| | - Cynthia Manuela Núñez-Núñez
- Departamento de Ingeniería en Tecnología Ambiental, Universidad Politécnica de Durango, Durango 34300, Mexico; (D.E.Z.-Á.); (C.M.N.-N.)
| | - Juan de Dios Galindo-De la Rosa
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico;
| | - Javier López-Miranda
- Departamento de Ingenierías Química y Bioquímica, Tecnológico Nacional de México (TecNM)—Instituto Tecnológico de Durango (ITD), Durango 34080, Mexico; (L.G.R.-R.); (H.A.F.-P.); (D.R.-J.); (J.L.-M.)
| | - Perla Guadalupe Vázquez-Ortega
- Departamento de Ingenierías Química y Bioquímica, Tecnológico Nacional de México (TecNM)—Instituto Tecnológico de Durango (ITD), Durango 34080, Mexico; (L.G.R.-R.); (H.A.F.-P.); (D.R.-J.); (J.L.-M.)
| |
Collapse
|
17
|
Wang R, Zhang J, Luo Z, Xie T, Xiao Q, Pei X, Wang A. Controllably crosslinked dual enzymes enabled by genetic-encoded non-standard amino acid for efficiently enantioselective hydrogenation. Int J Biol Macromol 2022; 205:682-691. [PMID: 35247424 DOI: 10.1016/j.ijbiomac.2022.02.171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/30/2022] [Accepted: 02/26/2022] [Indexed: 12/17/2022]
Abstract
In traditional method for preparing crosslinked enzymes aggregates using glutaraldehyde, random linkage is inevitable, which often destroys the enzyme active sites and severely decreases the activity. To address this issue, using genetic encode expanding, nonstandard amino acids (NSAAs) were inserted into enzyme proteins at the preselected sites for crosslinking. When aldehyde ketone reductase (AKR), alcohol dehydrogenase (ADH) and glucose dehydrogenase (GDH) were utilized as model enzymes, their mutants containing p-azido-L-phenylalanine were bio-orthogonally crosslinked with diyne to form crosslinked dual enzymes (CLDEs) acting as a cascade biological oxidation and reduction system. Then, the resultant self-purified CLDEs were characterized using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM), etc. In the asymmetric synthesis of (S)-1-(2,6-dichloro-3-fluorophenyl) ethanol using CLDEs, high product yield (76.08%), ee value (99.99%) and reuse stability were achieved. The yield and ee value were 12.05 times and 1.39 times higher than those using traditional crosslinked enzyme aggregates, respectively. Thus, controllable insertion NSAAs in number and location can engender reasonable linkage and metal-free self-purification for target enzyme proteins. This facile and sustainable method could be further expanded to other dual and multienzyme systems for cascade biocatalysis.
Collapse
Affiliation(s)
- Ru Wang
- College of Medicine, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Jing Zhang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Zhiyuan Luo
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Tian Xie
- College of Medicine, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Qinjie Xiao
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xiaolin Pei
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Anming Wang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
18
|
The effect of Nano-calcium carbonate on β-glucosidase immobilized by alginate and chitosan. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
19
|
Nagy F, Sánta-Bell E, Jipa M, Hornyánszky G, Szilágyi A, László K, Katona G, Paizs C, Poppe L, Balogh-Weiser D. Cross-Linked Enzyme-Adhered Nanoparticles (CLEANs) for Continuous-Flow Bioproduction. CHEMSUSCHEM 2022; 15:e202102284. [PMID: 34913608 DOI: 10.1002/cssc.202102284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Nanostructured but micro-sized biocatalysts were created by bottom-up technology using multi-functionalized silica nanoparticles (NPs) as nano-sized building blocks to form cross-linked enzyme-adhered nanoparticles (CLEANs) as robust micro-sized particles with beneficial internal structure and good mechanical properties. Systematic surface modification of NPs with a grafting mixture consisting of organosilanes with reactive (aminopropyl) and inert (e. g., vinyl, propyl, phenyl, or octyl) functions resulted in functional NPs enabling cross-linking agents, such as glutardialdehyde or bisepoxides (glycerol diglycidyl ether, neopentylglycol diglycidyl ether, and poly(propylene glycol) diglycidyl ether), to bind and cross-link enzymes covalently and to form macroporous microparticles. These CLEANs were able to diminish several weaknesses of traditional cross-linked enzyme aggregates as biocatalysts, such as poor mechanical resistance, difficult recovery, and storage, strengthening their use for packed-bed enzyme reactors. Lipase B from Candida antarctica (CaLB) was selected as model enzyme for development of robust CLEANs, which were successfully tested for various industrially relevant applications including a kinetic resolution of a racemic alcohol and the production of various natural fragrance compounds under continuous-flow conditions.
Collapse
Affiliation(s)
- Flóra Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Evelin Sánta-Bell
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Monica Jipa
- Biocatalysis and Biotransformation Research Center, Babeş-Bolyai University of Cluj-Napoca, Arany János str. 11, 400028, Cluj-Napoca, Romania
| | - Gábor Hornyánszky
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - András Szilágyi
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Krisztina László
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Gabriel Katona
- Biocatalysis and Biotransformation Research Center, Babeş-Bolyai University of Cluj-Napoca, Arany János str. 11, 400028, Cluj-Napoca, Romania
| | - Csaba Paizs
- Biocatalysis and Biotransformation Research Center, Babeş-Bolyai University of Cluj-Napoca, Arany János str. 11, 400028, Cluj-Napoca, Romania
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
- Biocatalysis and Biotransformation Research Center, Babeş-Bolyai University of Cluj-Napoca, Arany János str. 11, 400028, Cluj-Napoca, Romania
- SynBiocat LLC, Szilasliget u 3, 1072, Budapest, Hungary
| | - Diána Balogh-Weiser
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
- SynBiocat LLC, Szilasliget u 3, 1072, Budapest, Hungary
| |
Collapse
|
20
|
Deng Y, Ouyang J, Liu H, Wang J, Zhu Y, Chen Z, Yang C, Li D, Ma K. An effective immobilization of β-glucosidases by partly cross-linking enzyme aggregates. Prep Biochem Biotechnol 2022; 52:1035-1043. [PMID: 35015605 DOI: 10.1080/10826068.2021.2024848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Enzyme immobilization provides ideal operating conditions for enzymes stabilization and sustainable recycling. In this work, as a kind of clay material, montmorillonite (MTL) was chosen for immobilizing the β-glucosidase extracted from Agrocybe aegirit. The immobilized β-glucosidase via partly cross-linking enzyme aggregates (pCLEAs) formed by self-catalysis provided biocatalysts with satisfactory thermal and pH stability. Compared to the glutaraldehyde cross-linked, the immobilized β-glucosidase (β-G-pCLEAs@MTL) exhibited significantly higher immobilization efficiency (IE) and immobilization yield (IY), which were 80.6% and 76.9%, respectively. The β-G-pCLEAs@MTL also showed better stability and preferable reusability. And the activity of the β-G-pCLEAs@MTL remained 85.0% after 5 cycles and 74.7% after 10 cycles. Therefore, the method based on the pre- crosslinking to form pCLEAs and after-immobilization can effectively improve IY and IE. In addition, MTL seems to be a good alternative carrier to immobilize other enzymes for industrial application.
Collapse
Affiliation(s)
- Yuefeng Deng
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Jie Ouyang
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Hu Liu
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Jianjun Wang
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Yihui Zhu
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Ziqian Chen
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Chengli Yang
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Dali Li
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Kefeng Ma
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
21
|
Han Y, Du J, Song Z. Effects of the yeast endogenous β-glucosidase on hawthorn (Crataegus pinnatifida Bunge) wine ethyl carbamate and volatile compounds. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
22
|
Yu Y, Xu S, Li S, Pan H. Genipin-cross-linked hydrogels based on biomaterials for drug delivery: a review. Biomater Sci 2021; 9:1583-1597. [PMID: 33443245 DOI: 10.1039/d0bm01403f] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Genipin is a naturally occurring nontoxic cross-linker, which has been widely used for drug delivery due to its excellent biocompatibility, admirable biodegradability and stable cross-linked attributes. These advantages led to its extensive application in the fabrication of hydrogels for drug delivery. This review describes the physicochemical characteristics and pharmacological activities of genipin and attempts to elucidate the detailed mechanisms of the cross-linking reaction between genipin and biomaterials. The current article entails a general review of the different biomaterials cross-linked by genipin: chitosan and its derivatives, collagen, gelatin, etc. The genipin-cross-linked hydrogels for various pharmaceutical applications, including ocular drug delivery, buccal drug delivery, oral drug delivery, anti-inflammatory drug delivery, and antibiotic and antifungal drug delivery, are reported. Finally, the future research directions and challenges of genipin-cross-linked hydrogels for pharmaceutical applications are also discussed in this review.
Collapse
Affiliation(s)
- Yibin Yu
- School of Pharmacy, Liaoning University, Shenyang 110036, China. and Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Shuo Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Sanming Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hao Pan
- School of Pharmacy, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
23
|
Qi Y, Han Q, Wu L, Li J. Selective oxidation of cyclopentene to glutaraldehyde by H 2O 2 over Nb-SBA-15. NEW J CHEM 2021. [DOI: 10.1039/d1nj02427b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cyclopentene was oxidized to glutaraldehyde over catalyst Nb2O5-SBA-15. The reaction was monitored with in situ ATR-FTIR.
Collapse
Affiliation(s)
- Yingmeng Qi
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Qi Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Li Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jun Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| |
Collapse
|
24
|
Frota EG, Sartor KB, Biduski B, Margarites ACF, Colla LM, Piccin JS. Co-immobilization of amylases in porous crosslinked gelatin matrices by different reticulations approaches. Int J Biol Macromol 2020; 165:1002-1009. [DOI: 10.1016/j.ijbiomac.2020.09.220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/16/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022]
|
25
|
Chamoli S, Yadav E, Hemansi, Saini JK, Verma AK, Navani NK, Kumar P. Magnetically recyclable catalytic nanoparticles grafted with Bacillus subtilis β-glucosidase for efficient cellobiose hydrolysis. Int J Biol Macromol 2020; 164:S0141-8130(20)34190-8. [PMID: 32800958 DOI: 10.1016/j.ijbiomac.2020.08.102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/02/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022]
Abstract
This study reports covalent immobilization of β-glucosidase (BGL) from Bacillus subtilis PS on magnetically recyclable iron nanoparticles for enhancing robustness, facile recovery and reuse of enzyme. Immobilized BGL iron nanoparticles (BGL-INPs) were characterized by various biophysical techniques viz. TEM, DLS, FTIR and CD spectroscopy. The efficiency and yield of immobilization were 89.78 and 84.80%, respectively. After immobilization, optimum pH remained 6.0 whereas optimum temperature upraised to 70 °C whereas apparent Km and Vmax shifted from 0.819 mM to 0.941 mM and 54.46 to 57.67 μmole/min/mg, respectively. Immobilization conferred lower activation energy and improved pH and thermal stabilities. The BGL-INPs retained 85% activity up to 10th cycle of reuse and hydrolyzed more than 90% of cellobiose to glucose within 30 min. Conclusively, improved pH, thermal stability and excellent reusability over free enzyme make BGL-INPs a promising candidate for sustainable bioethanol production and other industrial applications.
Collapse
Affiliation(s)
- Shivangi Chamoli
- Department of Biochemistry, C.B.S.H., Govind Ballabh Pant University of Agriculture and Technology Pantnagar, Uttarakhand, 263145, India; Deen Dayal Upadhyay Kaushal Kendra, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Ekta Yadav
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Hemansi
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Jitendera Kumar Saini
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Ashok Kumar Verma
- Department of Biochemistry, C.B.S.H., Govind Ballabh Pant University of Agriculture and Technology Pantnagar, Uttarakhand, 263145, India
| | - Naveen Kumar Navani
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Piyush Kumar
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana 123031, India; Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|