1
|
Jiang S, Xie H, Zuo Y, Sun J, Wu D, Shu X. Structural and functional properties of polysaccharides extracted from three Dioscorea species. Int J Biol Macromol 2024; 281:136469. [PMID: 39396596 DOI: 10.1016/j.ijbiomac.2024.136469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/09/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Dioscorea has a history spanning over 2000 years for both medicinal and edible purposes in China. It contains rich polysaccharides, which are frequently utilized as thickening and stabilizing agents in the food industry. However, there has been relatively little focus on polysaccharides from common Dioscorea species besides D. opposita, such as D. alata and D. esculenta. In this study, non-starch crude polysaccharides were isolated from D. opposita (BD), D. alata (WC), and D. esculenta (GZ). Their structures, physicochemical compositions, and functional properties were characterized and compared. The results indicated three polysaccharides all exhibited characteristic peaks of polysaccharides and possessed triple-helix structures. The Glc (36.78-83.90 %), Man (6.71-26.68 %), and GalA (8.54-10.22 %) were identified as the primary monosaccharide components. In terms of functionality, three polysaccharide solutions demonstrated non-Newtonian flow characteristics and displayed commendable thermal stability. It is worth noting that the antioxidant and emulsifying properties of polysaccharides isolated from D. opposita (BD) and D. alata (WC) were superior to those of D. esculenta (GZ), making them more suitable for use as antioxidants and stabilizers. By comparing polysaccharides derived from different Dioscorea species, this study provides valuable insights into the food, cosmetic, and pharmaceutical industries based on the unique properties of these different polysaccharides.
Collapse
Affiliation(s)
- Shuo Jiang
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, China; State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Huifang Xie
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, China; State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Youming Zuo
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Jian Sun
- Zhejiang Research Institute of Traditional Chinese Medicine Co., Ltd., Hangzhou 310023, China
| | - Dianxing Wu
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, China; State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Xiaoli Shu
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, China; State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China.
| |
Collapse
|
2
|
Zhang C, Ding J, Bian Z, Liu X, Wang D, Cao G, Zhu L, Zhang J, Liu Q, Liu Y. Multi-level fingerprinting and immune activity evaluation for polysaccharides from Dioscorea opposita Thunb. Int J Biol Macromol 2024; 280:135767. [PMID: 39299425 DOI: 10.1016/j.ijbiomac.2024.135767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
To establish the quality control method of Dioscorea opposita Thunb., the multi-level fingerprinting of polysaccharides was established and the relationship between fingerprint and immune activity was analyzed. The two molecular weight segments Mw1 (1.38 × 105-1.63 × 106 Da) and Mw2 (3.27 × 103-4.37 × 103 Da), thirteen infrared absorption peaks (3399.26 cm-1, 2929.32 cm-1, 1631.78 cm-1, 1400.39 cm-1, 1351.80 cm-1, 1123.58 cm-1, 1024.76 cm-1, 931.53 cm-1, 854.76 cm-1, 760.43 cm-1, 708.14 cm-1, 616.47 cm-1, and 526.78 cm-1), and four monosaccharides (Man, Rha, GalA, and Glc) were used to evaluate the quality of Dioscorea opposita Thunb. The molecular weight fragments of Mw1, FT-IR absorption peaks of 1631.78 cm-1, and two monosaccharides (Man and Glc) would be used to identify Dioscorea opposita Thunb. polysaccharide (DOP) from different origins. The relationship of spectrum-effect showed that polysaccharides with features such as higher Mw1, a lower peak height of 1631.78 cm-1, higher content of Man, and lower content of Glc exerted stronger immune activity. In conclusion, this study established a polysaccharide-based quality evaluation method for Dioscorea opposita Thunb. and explored the relationship between polysaccharide fingerprints and in vitro immune activity, which provided a basis for further research on Dioscorea opposita Thunb.
Collapse
Affiliation(s)
- Chuanxiang Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Jie Ding
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Zhiying Bian
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Xin Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Di Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Guiyun Cao
- Shandong Hongjitang Pharmaceutical Group Company, Ltd, Jinan 250109, China
| | - Lihao Zhu
- Sishui Siheyuan Culture and Tourism Development Company, Ltd, Sishui 273200, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250000, China.
| | - Qian Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250000, China.
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250000, China.
| |
Collapse
|
3
|
Sun Y, Zhang Y, Sun M, Gao W, He Y, Wang Y, Yang B, Kuang H. Advances in Eucommia ulmoides polysaccharides: extraction, purification, structure, bioactivities and applications. Front Pharmacol 2024; 15:1421662. [PMID: 39221141 PMCID: PMC11361956 DOI: 10.3389/fphar.2024.1421662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Eucommia ulmoides (EU) is a precious tree species native to China originating during the ice age. This species has important economic value and comprehensive development potential, particularly in medicinal applications. The medicinal parts of EU are its bark (Eucommiae cortex) and leaves (Eucommiae folium) which have been successively used as a traditional Chinese medicine to treat diseases since the first century BC. During the last 2 decades, as natural polysaccharides have become of increasing interest in pharmacology, biomedicine, cosmetic and food applications, more and more scholars have begun to study polysaccharides derived from EU as well. EU polysaccharides have been found to have a variety of biological functions both in vivo and in vitro, including immunomodulatory, antioxidant, anti-inflammatory, anticomplementary, antifatigue, and hepatoprotective activities. This review aims to summarize these recent advances in extraction, purification, structural characteristics, pharmacological activities and applications in different fields of EU bark and leaf polysaccharides. It was found that both Eucommiae folium polysaccharides and Eucommiae cortex polysaccharides were suitable for medicinal use. Eucommiae folium may potentially be used to substitute for Eucommiae cortex in terms of immunomodulation and antioxidant activities. This study serves as a valuable reference for improving the comprehensive utilization of EU polysaccharides and further promoting the application of EU polysaccharides.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| |
Collapse
|
4
|
Li P, Jing Y, Qiu X, Xiao H, Zheng Y, Wu L. Structural characterization and immunomodulatory activity of a polysaccharide from Dioscotea opposita. Int J Biol Macromol 2024; 265:130734. [PMID: 38462105 DOI: 10.1016/j.ijbiomac.2024.130734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/29/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
The purified polysaccharides fraction, DOP-2, was prepared from Dioscorea opposita Thunb (D. opposita). This study combined in vitro and in vivo experiments to comprehensively investigate the index changes in RAW264.7 cells and immunocompromised mice under DOP-2 intervention, aiming to elucidate the potential mechanisms of immunomodulatory effects of DOP-2. DOP-2 (10 ∼ 500 μg/mL) significantly elevated the levels of NO, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) factors secreted by RAW264.7 cells, and restored the body weight of immunosuppressed mice and improve the degree of injury to the immune organ index, resulting in significant immunomodulatory effects. Notably, DOP-2 promoted the production of short-chain fatty acids (SCFAs) in immunosuppressed mice and modulated the composition of their gut microflora. These findings highlight the potential benefits of DOP-2 therapy in improving immune function and gut health, and will provide a theoretical basis for the application of D. opposita polysaccharides as an immunomodulatory adjuvant.
Collapse
Affiliation(s)
- Pengyue Li
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China; Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, 3 Xingyuan Road, Shijiazhuang 050200, China
| | - Yongshuai Jing
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Xiaoyue Qiu
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China
| | - Huina Xiao
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China
| | - Yuguang Zheng
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China; Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, 3 Xingyuan Road, Shijiazhuang 050200, China.
| | - Lanfang Wu
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China; Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, 3 Xingyuan Road, Shijiazhuang 050200, China.
| |
Collapse
|
5
|
Feng X, Guo M, Li J, Shen Z, Mo F, Tian Y, Wang B, Wang C. The structural characterization of a novel Chinese yam polysaccharide and its hypolipidemic activity in HFD-induced obese C57BL/6J mice. Int J Biol Macromol 2024; 265:130521. [PMID: 38553396 DOI: 10.1016/j.ijbiomac.2024.130521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 04/18/2024]
Abstract
Obesity was considered as a rapidly growing chronic disease that influences human health worldwide. In this study, we investigated the primary structure characteristics of Chinese yam polysaccharide (CYP) and its role in regulating lipid metabolism in a high-fat diet (HFD)-fed obese mice. The molecular weight of CYP was determined to be 3.16 × 103 kDa. Periodic acid oxidation & smith degradation and nuclear magnetic resonance results suggested that CYP consists of 1 → 2, 1 → 2, 6, 1 → 4, 1 → 4, 6, 1→, or 1 → 6 glycoside bonds. The in vivo experiment results suggested that the biochemical indices, tissue sections, and protein regulation associated with lipid metabolism were changed after administering CYP in obese mice. In addition, the abundances of short-chain fatty acid (SCFA)-producing bacteria Lachnospiraceae, Lachnospiraceae_NK4A136_group, and Ruminococcaceae_UCG-014 were increased, and the abundances of bacteria Desulfovibrionaceae and Ruminococcus and metabolites of arginine, propionylcarnitine, and alloisoleucine were decreased after CYP intervention in obese mice. Spearman's correlation analysis of intestinal flora, metabolites, and lipid metabolism parameters showed that CYP may affect lipid metabolism in obese mice by regulating the intestinal environment. Therefore, CYP may be used as a promising nutritional intervention agent for lipid metabolism.
Collapse
Affiliation(s)
- Xiaojuan Feng
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Mingzhu Guo
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Jingyao Li
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Zhanyu Shen
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Fanghua Mo
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Yutong Tian
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Binghui Wang
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Chunling Wang
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China.
| |
Collapse
|
6
|
Guo Y, Liu F, Zhang J, Chen J, Chen W, Hong Y, Hu J, Liu Q. Research progress on the structure, derivatives, pharmacological activity, and drug carrier capacity of Chinese yam polysaccharides: A review. Int J Biol Macromol 2024; 261:129853. [PMID: 38311141 DOI: 10.1016/j.ijbiomac.2024.129853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/09/2024] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Chinese yam is a traditional Chinese medicine that has a long history of medicinal and edible usage in China and is widely utilised in food, medicine, animal husbandry, and other industries. Chinese yam polysaccharides (CYPs) are among the main active components of Chinese yam. In recent decades, CYPs have received considerable attention because of their remarkable biological activities, such as immunomodulatory, antitumour, hypoglycaemic, hypolipidaemic, antioxidative, anti-inflammatory, and bacteriostatic effects. The structure and chemical alterations of polysaccharides are the main factors affecting their biological activities. CYPs are potential drug carriers owing to their excellent biodegradability and biocompatibility. There is a considerable amount of research on CYPs; however, a systematic summary is lacking. This review summarises the structural characteristics, derivative synthesis, biological activities, and their usage as drug carriers, providing a basis for future research, development, and application of CYPs.
Collapse
Affiliation(s)
- Yuanyuan Guo
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Fangrui Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jin Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jing Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wenxiao Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yongjian Hong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jinghong Hu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
7
|
Li L, Xie J, Zhang Z, Xia B, Li Y, Lin Y, Li M, Wu P, Lin L. Recent advances in medicinal and edible homologous plant polysaccharides: Preparation, structure and prevention and treatment of diabetes. Int J Biol Macromol 2024; 258:128873. [PMID: 38141704 DOI: 10.1016/j.ijbiomac.2023.128873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/27/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Medicinal and edible homologs (MEHs) can be used in medicine and food. The National Health Commission announced that a total of 103 kinds of medicinal and edible homologous plants (MEHPs) would be available by were available in 2023. Diabetes mellitus (DM) has become the third most common chronic metabolic disease that seriously threatens human health worldwide. Polysaccharides, the main component isolated from MEHPs, have significant antidiabetic effects with few side effects. Based on a literature search, this paper summarizes the preparation methods, structural characterization, and antidiabetic functions and mechanisms of MEHPs polysaccharides (MEHPPs). Specifically, MEHPPs mainly regulate PI3K/Akt, AMPK, cAMP/PKA, Nrf2/Keap1, NF-κB, MAPK and other signaling pathways to promote insulin secretion and release, improve glycolipid metabolism, inhibit the inflammatory response, decrease oxidative stress and regulate intestinal flora. Among them, 16 kinds of MEHPPs were found to have obvious anti-diabetic effects. This article reviews the prevention and treatment of diabetes and its complications by MEHPPs and provides a basis for the development of safe and effective MEHPP-derived health products and new drugs to prevent and treat diabetes.
Collapse
Affiliation(s)
- Lan Li
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Jingchen Xie
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Zhimin Zhang
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Bohou Xia
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Yamei Li
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Yan Lin
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Minjie Li
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Ping Wu
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China.
| | - Limei Lin
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China.
| |
Collapse
|
8
|
Hao M, Zhu X, Ji X, Shi M, Yan Y. Effect of Konjac Glucomannan on Structure, Physicochemical Properties, and In Vitro Digestibility of Yam Starch during Extrusion. Foods 2024; 13:463. [PMID: 38338597 PMCID: PMC10855837 DOI: 10.3390/foods13030463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
In this study, the effect of konjac glucomannan (KGM, 0-5%) on the structure, physicochemical properties, and in vitro digestibility of extruded yam starch (EYS) was investigated. The EYS became rougher on the surface and the particle size increased as observed using scanning electron microscopy and particle size analysis. X-ray diffraction and Raman results revealed that the relative crystallinity (18.30% to 22.30%) of EYS increased, and the full width at half maxima at 480 cm-1 decreased with increasing KGM content, indicating the increment of long-range and short-range ordered structure. Differential scanning calorimetry and rheological results demonstrated that KGM enhanced thermal stability and the gel strength of EYS due to enhanced interaction between KGM and YS molecules. Additionally, a decrease in the swelling power and viscosity of EYS was observed with increased KGM content. The inclusion of KGM in the EYS increased the resistant starch content from 11.89% to 43.51%. This study provides a dual-modified method using extrusion and KGM for modified YS with high thermal stability, gel strength, and resistance to digestion.
Collapse
Affiliation(s)
- Mengshuang Hao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.H.); (X.Z.); (M.S.)
| | - Xiaopei Zhu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.H.); (X.Z.); (M.S.)
| | - Xiaolong Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.H.); (X.Z.); (M.S.)
| | - Miaomiao Shi
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.H.); (X.Z.); (M.S.)
| | - Yizhe Yan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.H.); (X.Z.); (M.S.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
9
|
Dai Y, Qiu C, Zhang D, Li M, Liu W. Yam Gruel alone and in combination with metformin regulates hepatic lipid metabolism disorders in a diabetic rat model by activating the AMPK/ACC/CPT-1 pathway. Lipids Health Dis 2024; 23:28. [PMID: 38273354 PMCID: PMC10809441 DOI: 10.1186/s12944-024-02014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND As independent and correctable risk factors, disturbances in lipid metabolism are significantly associated with type 2 diabetes mellitus (T2DM). This research investigated the mechanism underlying the lipid-regulating effects of Yam Gruel in diabetic rats. METHODS First, rats in the control group were given a normal diet, and a diabetic rat model was established via the consumption of a diet that was rich in both fat and sugar for six weeks followed by the intraperitoneal injection of streptozotocin (STZ). After the model was established, the rats were divided into five distinct groups: the control group, model group, Yam Gruel (SYZ) group, metformin (MET) group, and combined group; each treatment was administered for six weeks. The fasting blood glucose (FBG), body and liver weights as well as liver index of the rats were determined. Total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), aspartic acid transaminase (AST), alanine aminotransferase (ALT), and nonesterified fatty acid (NEFA) levels were measured. Oil Red O staining was used to assess hepatic steatosis. In addition, the levels of Phospho-acetyl-CoA carboxylase (p-ACC), acetyl coenzyme A carboxylase (ACC), AMP-activated protein kinase (AMPK), Phospho-AMPK (p-AMPK), carnitine palmitoyl transferase I (CPT-1), and Malonyl-CoA decarboxylase (MLYCD) in liver tissues were measured by real-time PCR (q-PCR) and western blotting. RESULTS After 6 weeks of treatment, Yam Gruel alone or in combination with metformin significantly reduced FBG level, liver weight and index. The concentrations of lipid indices (TG, TC, NEFA, and LDL-C), the levels of liver function indices (ALT and AST) and the degree of hepatic steatosis was improved in diabetic rats that were treated with Yam Gruel with or without metformin. Furthermore, Yam Gruel increased the protein levels of p-ACC/ACC, p-AMPK/AMPK, MLYCD, and CPT-1, which was consistent with the observed changes in gene expression. Additionally, the combination of these two agents was significantly more effective in upregulating the expression of AMPK pathway-related genes and proteins. CONCLUSIONS These results demonstrated that Yam Gruel may be a potential diet therapy for improving lipid metabolism in T2DM patients and that it may exert its effects via AMPK/ACC/CPT-1 pathway activation. In some respects, the combination of Yam Gruel and metformin exerted more benefits effects than Yam Gruel alone.
Collapse
Affiliation(s)
- Yanling Dai
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Chen Qiu
- Department of Endocrine, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, 350004, China
| | - Diandian Zhang
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Mianli Li
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Weinan Liu
- Department of Orthopedics, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, 350004, China.
| |
Collapse
|
10
|
Ouyang J, Fan K, Li Q, Wang F, Li W, Su X. Mechanism of feed moisture levels in extrusion treatment to improve the instant properties of Chinese yam (Dioscorea opposita Thunb.) flour. Food Chem 2024; 431:137056. [PMID: 37573749 DOI: 10.1016/j.foodchem.2023.137056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/12/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023]
Abstract
Extruded yam flour was prepared at different feed moisture to improve its instant properties. The water solubility index (WSI) and water absorption index (WAI) were used to compare the instant properties of yam flour. Their chemical compositions, particle size distribution, crystalline structure, and microscopic forms were also analyzed to assess the effects of feed moisture on the instant properties of yam flour. We found that extrusion significantly improved the instant properties of yam flour, while the WSI value increased from 29.50% to 71.86% and the WAI value decreased from 387.88% to 228.06% with decreased feed moisture. Extrusion led to the degradation of total starch and amylopectin, and the contents of soluble substances increased markedly. Extrusion destroyed the granular and crystalline structures, which were reconstituted as amylose-lipid complexes with a significant decrease in relative crystallinity. Increasing the feed moisture was beneficial to the flow and color retention, while lower feed moisture was more favorable to enhance the instant properties.
Collapse
Affiliation(s)
- Jia Ouyang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Kuanxiu Fan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Qingming Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China; Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, Hunan, China
| | - Feng Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China; Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, Hunan, China
| | - Wenjia Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China; Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, Hunan, China
| | - Xiaojun Su
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China; Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, Hunan, China.
| |
Collapse
|
11
|
Fan J, Zhu J, Zhu H, Zhang Y, Xu H. Potential therapeutic target for polysaccharide inhibition of colon cancer progression. Front Med (Lausanne) 2024; 10:1325491. [PMID: 38264044 PMCID: PMC10804854 DOI: 10.3389/fmed.2023.1325491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
In recent years, colon cancer has become one of the most common malignant tumors worldwide, posing a great threat to human health. Studies have shown that natural polysaccharides have rich biological activities and medicinal value, such as anti-inflammatory, anti-cancer, anti-oxidation, and immune-enhancing effects, especially with potential anti-colon cancer mechanisms. Natural polysaccharides can not only protect and enhance the homeostasis of the intestinal environment but also exert a direct inhibition effect on cancer cells, making it a promising strategy for treating colon cancer. Preliminary clinical experiments have demonstrated that oral administration of low and high doses of citrus pectin polysaccharides can reduce tumor volume in mice by 38% (p < 0.02) and 70% (p < 0.001), respectively. These results are encouraging. However, there are relatively few clinical studies on the effectiveness of polysaccharide therapy for colon cancer, and ensuring the effective bioavailability of polysaccharides in the body remains a challenge. In this article, we elucidate the impact of the physicochemical factors of polysaccharides on their anticancer effects and then reveal the anti-tumor effects and mechanisms of natural polysaccharides on colon cancer. Finally, we emphasize the challenges of using polysaccharides in the treatment of colon cancer and discuss future applications.
Collapse
Affiliation(s)
- Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - He Zhu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yinmeng Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Yang H, Peng Z, Xie L, Xie J, Huang Z. Adding genistein or luteolin decreased the yield of citrinin and without reducing pigments in yam solid-fermentation by Monascus. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6440-6451. [PMID: 37209398 DOI: 10.1002/jsfa.12719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Chinese yam fermented by Monascus, namely red mold dioscorea (RMD), has the potential of treating diseases. However, the production of citrinin limits the application of RMD. In the present study, the fermentation process of Monascus was optimized by adding genistein or luteolin to reduce citrinin yield. RESULTS The results showed that citrinin in 25 g of Huai Shan yam was reduced by 48% and 72% without affecting the pigment yield by adding 0.2 g of luteolin or genistein, respectively, to a 250-mL conical flask after fermentation for 18 days at 28 °C, whereas the addition of luteolin increased the content of yellow pigment by 1.3-fold. Under optimal conditions, citrinin in 20 g of iron bar yam decreased by 55% and 74% after adding 0.2 g of luteolin or genistein. Luteolin also increased yellow pigment content by 1.2-fold. Ultra HPLC coupled to quadrupole time-of-flight mass spectrometry was used for the preliminary analysis of Monascus fermentation products. It was found that the amino acid types in RMD are similar to those in yams, but there are fewer polysaccharides and fatty acids. CONCLUSION The results obtained in the present study showed that the addition of genistein or luteolin could reduce citrinin on the premise of increasing pigment yield, which laid a foundation for the better use of yams in Monascus fermentation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haiyun Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Zhiqing Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Liuming Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Wang R, Liu W, Liu L, Ma F, Li Q, Zhao P, Ma W, Cen J, Liu X. Characterization, in vitro digestibility, antioxidant activity and intestinal peristalsis in zebrafish of Dioscorea opposita polysaccharides. Int J Biol Macromol 2023; 250:126155. [PMID: 37549765 DOI: 10.1016/j.ijbiomac.2023.126155] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
The soluble crude polysaccharides from Dioscorea opposita (DOP1 and DOP2) were prepared and characterized. DOP1 and DOP2 obtained carbohydrate (65.71% and 70.18%, respectively), uronic acid (63.71% and 24.84%, respectively) and protein (8.09% and 9.51%, respectively) with molecular weight of 49.24 kDa and 21.62 kDa, respectively. DOP samples were mainly composed of mannose, glucose, galacturonic acid, galactose, and glucuronic acid. The digestibility in vitro, antioxidant activity and intestinal peristalsis effect were then investigated. DOP1 and DOP2 were degraded with decreased molecular weights (39.58 kDa and 18.56 kDa respectively), increased reducing sugar contents (from 16.95% to 19.27%; 12.45% to 15.50% respectively) and free monosaccharides (from 0.89% to 1.42%; 0.90% to 1.14% respectively) after gastric digestion. Both DOP1 and DOP2 were resistant to intestinal digestion, suggesting that DOP samples can be considered as a dietary fiber. Additionally, DOP1 and DOP2 exhibited antioxidant activities positively correlated with the concentration and remained the activities after gastrointestinal digestion in vitro. Furthermore, DOP reduced the fluorescence intensity significantly, indicating DOP can promote the intestinal peristalsis of zebrafish larvae (5 pdf) at 500 μg/mL. Therefore, DOP1 and DOP2 have a better functionality as dietary fibers, including antioxidant activity and intestinal peristalsis promotion, which can be developed as functional foods.
Collapse
Affiliation(s)
- Ruijiao Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
| | - Wei Liu
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
| | - Lu Liu
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
| | - Fanyi Ma
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China.
| | - Qian Li
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
| | - Peng Zhao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Wenjing Ma
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
| | - Juan Cen
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China.
| | - Xiuhua Liu
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan International Joint Laboratory of Medicinal Plants Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou 450046, China
| |
Collapse
|
14
|
Zhang Q, Zhang X, Wang Q, Chen S. Dioscoreae Rhizoma starch improves chronic diarrhea by regulating the gut microbiotas and fecal metabolome in rats. Food Sci Nutr 2023; 11:6271-6287. [PMID: 37823173 PMCID: PMC10563677 DOI: 10.1002/fsn3.3567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/11/2023] [Accepted: 07/05/2023] [Indexed: 10/13/2023] Open
Abstract
Chinese yam (Dioscorea opposite Thunb.) has been used as food and medicine to treat diarrhea for thousands of years. This article aimed to elucidate the potential mechanism of Dioscoreae Rhizoma starch in alleviating chronic diarrhea induced by rhubarb based on gut microbiotas and fecal metabolome. The administration of the Dioscoreae Rhizoma aqueous extracts, crude polysaccharides, and starch could improve diarrhea and alleviate intestinal injury in chronic diarrhea rats. The Dioscoreae Rhizoma starch displayed the most apparent effect on regulating intestinal microbiotas by increasing the abundance and diversity of microbiotas. At the genus level, there were 17 changed intestinal microbiotas in model rats, and the treatment with Dioscoreae Rhizoma starch regulated 11 microbiotas. Metabolomics analysis revealed that Dioscoreae Rhizoma starch could regulate abnormal fecal metabolites to alleviate diarrhea, and these metabolites are involved in phenylalanine, tyrosine, and tryptophan biosynthesis; tyrosine metabolism; vitamin B6 metabolism; and purine metabolism. This study will contribute to the further research and development of Dioscoreae Rhizoma starch.
Collapse
Affiliation(s)
- Qing Zhang
- School of PharmacyHenan University of Chinese MedicineZhengzhouChina
| | - Xu Zhang
- School of PharmacyHenan University of Chinese MedicineZhengzhouChina
| | - Qing Wang
- School of PharmacyHenan University of Chinese MedicineZhengzhouChina
| | - Suiqing Chen
- School of PharmacyHenan University of Chinese MedicineZhengzhouChina
| |
Collapse
|
15
|
Wang A, Liu Y, Zeng S, Liu Y, Li W, Wu D, Wu X, Zou L, Chen H. Dietary Plant Polysaccharides for Cancer Prevention: Role of Immune Cells and Gut Microbiota, Challenges and Perspectives. Nutrients 2023; 15:3019. [PMID: 37447345 DOI: 10.3390/nu15133019] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Dietary plant polysaccharides, one of the main sources of natural polysaccharides, possess significant cancer prevention activity and potential development value in the food and medicine fields. The anti-tumor mechanisms of plant polysaccharides are mainly elaborated from three perspectives: enhancing immunoregulation, inhibiting tumor cell growth and inhibiting tumor cell invasion and metastasis. The immune system plays a key role in cancer progression, and immunomodulation is considered a significant pathway for cancer prevention or treatment. Although much progress has been made in revealing the relationship between the cancer prevention activity of polysaccharides and immunoregulation, huge challenges are still met in the research and development of polysaccharides. Results suggest that certain polysaccharide types and glycosidic linkage forms significantly affect the biological activity of polysaccharides in immunoregulation. At present, the in vitro anti-tumor effects and immunoregulation of dietary polysaccharides are widely reported in articles; however, the anti-tumor effects and in vivo immunoregulation of dietary polysaccharides are still deserving of further investigation. In this paper, aspects of the mechanisms behind dietary polysaccharides' cancer prevention activity achieved through immunoregulation, the role of immune cells in cancer progression, the role of the mediatory relationship between the gut microbiota and dietary polysaccharides in immunoregulation and cancer prevention are systematically summarized, with the aim of encouraging future research on the use of dietary polysaccharides for cancer prevention.
Collapse
Affiliation(s)
- Anqi Wang
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Ying Liu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Shan Zeng
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Yuanyuan Liu
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Wei Li
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Dingtao Wu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Huijuan Chen
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610031, China
| |
Collapse
|
16
|
Wu G, Li L, Wu Z. A meta-analysis of randomized controlled trials of tonifying kidney and strengthen bone therapy on nondialysis patients with chronic kidney disease-mineral and bone disorder. Medicine (Baltimore) 2023; 102:e34044. [PMID: 37352066 PMCID: PMC10289535 DOI: 10.1097/md.0000000000034044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Correction of calcium, phosphorus, and parathyroid hormone disorders is the standard of treatment in nondialysis patients with chronic kidney disease-mineral and bone disorder (CKD-MBD). However, the side effects and adverse reactions are still the main problems. Moreover, the lack of protection of kidney function in the treatment dramatically affects patients' health. Although Traditional Chinese Medicine, specifically tonifying kidney and strengthen bone (TKSB) therapy, is wildly applied to patients with CKD-MBD in China, the evidence of TKSB therapy in the treatment of CKD-MBD is limited. Thus, we conducted this meta-analysis to evaluate the efficacy and safety of TKSB therapy combined with Western medicine (WM) for nondialysis patients with CKD-MBD. METHODS Two investigators conducted systematic research of randomized controlled trials of TKSB therapy for CKD-MBD from 7 electronic databases. Methodological quality evaluations were performed using the Cochrane collaboration tool, and data analysis was conducted by RevMan v5.3 software and STATA v15.0. RESULTS In total, 8 randomized controlled trials involving 310 patients met the criteria of meta-analysis. The complete results showed that compared with WM alone, TKSB treatment could improve the clinical efficacy rate (risk ratio = 4.49, 95% confidence interval [CI]: [2.64, 7.61], P .00001), calcium (weighted mean difference [WMD] = 0.11, 95% CI: [0.08, 0.14], P < .00001), serum creatinine (WMD = 45.58, 95% CI: [32.35, 58.8], P < .00001) phosphorus (WMD = 0.11, 95% CI: [0.08, 0.13], P < .00001), parathyroid hormone (WMD = 16.72, 95% CI: [12.89, 20.55], P < .00001), blood urea nitrogen levels (WMD = 0.95, 95% CI: [0.26, 1.64], P = .007) on nondialysis patients with CKD-MBD, which was beneficial to improve the patients' bone metabolic state and renal function. In addition, evidence shows that, compared with WM alone, TKSB treatment is safe and does not increase side effects. CONCLUSION The systematic review found that TKSB therapy combined with WM has a positive effect on improving renal function and correcting bone metabolism disorder in nondialysis patients with CKD-MBD, which shows that Traditional Chinese Medicine is effective and safe in treating CKD-MBD. However, more high-quality, large-sample, multicenter clinical trials should be conducted to assess the safety and efficacy of TKSB therapy in treating nondialysis patients with CKD-MBD.Systematic review registration: INPLASY2020120086.
Collapse
Affiliation(s)
- Guiling Wu
- Wuhan Hospital Of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Liang Li
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Afiliated Hospital ofHubei University of Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Zijian Wu
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Afiliated Hospital ofHubei University of Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
17
|
Yang Y, Gupta VK, Du Y, Aghbashlo M, Show PL, Pan J, Tabatabaei M, Rajaei A. Potential application of polysaccharide mucilages as a substitute for emulsifiers: A review. Int J Biol Macromol 2023; 242:124800. [PMID: 37178880 DOI: 10.1016/j.ijbiomac.2023.124800] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/08/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
Mucilages are natural compounds consisting mainly of polysaccharides with complex chemical structures. Mucilages also contain uronic acids, proteins, lipids, and bioactive compounds. Because of their unique properties, mucilages are used in various industries, including food, cosmetics, and pharmaceuticals. Typically, commercial gums are composed only of polysaccharides, which increase their hydrophilicity and surface tension, reducing their emulsifying ability. As a result of the presence of proteins in combination with polysaccharides, mucilages possess unique emulsifying properties due to their ability to reduce surface tension. In recent years, various studies have been conducted on using mucilages as emulsifiers in classical and Pickering emulsions because of their unique emulsifying feature. Studies have shown that some mucilages, such as yellow mustard, mutamba, and flaxseed mucilages, have a higher emulsifying capacity than commercial gums. A synergistic effect has also been shown in some mucilages, such as Dioscorea opposita mucilage when combined with commercial gums. This review article investigates whether mucilages can be used as emulsifiers and what factors affect their emulsifying properties. A discussion of the challenges and prospects of using mucilages as emulsifiers is also presented in this review.
Collapse
Affiliation(s)
- Yadong Yang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Vijai Kumar Gupta
- Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Yating Du
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, University of Nottingham, Malaysia, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Junting Pan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India.
| | - Ahmad Rajaei
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran.
| |
Collapse
|
18
|
Wu S, Chen X, Cai R, Chen X, Zhang J, Xie J, Shen M. Sulfated Chinese Yam Polysaccharides Alleviate LPS-Induced Acute Inflammation in Mice through Modulating Intestinal Microbiota. Foods 2023; 12:foods12091772. [PMID: 37174310 PMCID: PMC10178587 DOI: 10.3390/foods12091772] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
This study aimed to test the preventive anti-inflammatory properties of Chinese yam polysaccharides (CYP) and sulfated Chinese yam polysaccharides (SCYP) on LPS-induced systemic acute inflammation in mice and investigate their mechanisms of action. The results showed that SCYP can efficiently reduce plasma TNF-α and IL-6 levels, exhibiting an obvious anti-inflammation ability. Moreover, SCYP reduced hepatic TNF-α, IL-6, and IL-1β secretion more effectively than CYP, and significantly altered intestinal oxidative stress levels. In addition, a 16S rRNA gene sequencing analysis showed that CYP regulated the gut microbiota by decreasing Desulfovibrio and Sutterella and increasing Prevotella. SCYP changed the gut microbiota by decreasing Desulfovibrio and increasing Coprococcus, which reversed the microbiota dysbiosis caused by LPS. Linear discriminant analysis (LDA) effect size (LEfSe) revealed that treatment with CYP and SCYP can produce more biomarkers of the gut microbiome that can promote the proliferation of polysaccharide-degrading bacteria and facilitate the intestinal de-utilization of polysaccharides. These results suggest that SCYP can differentially regulate intestinal flora, and that they exhibit anti-inflammatory effects, thus providing a new reference to rationalize the exploitation of sulfated yam polysaccharides.
Collapse
Affiliation(s)
- Shihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ruixin Cai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaodie Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jian Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
19
|
Wang Z, Zhao S, Tao S, Hou G, Zhao F, Tan S, Meng Q. Dioscorea spp.: Bioactive Compounds and Potential for the Treatment of Inflammatory and Metabolic Diseases. Molecules 2023; 28:molecules28062878. [PMID: 36985850 PMCID: PMC10051580 DOI: 10.3390/molecules28062878] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Dioscorea spp. belongs to the Dioscoreaceae family, known as "yams", and contains approximately 600 species with a wide distribution. It is a major food source for millions of people in tropical and subtropical regions. Dioscorea has great medicinal and therapeutic capabilities and is a potential source of bioactive substances for the prevention and treatment of many diseases. In recent years, increasing attention has been paid to the phytochemicals of Dioscorea, such as steroidal saponins, polyphenols, allantoin, and, in particular, polysaccharides and diosgenin. These bioactive compounds possess anti-inflammatory activity and are protective against a variety of inflammatory diseases, such as enteritis, arthritis, dermatitis, acute pancreatitis, and neuroinflammation. In addition, they play an important role in the prevention and treatment of metabolic diseases, including obesity, dyslipidemia, diabetes, and non-alcoholic fatty liver disease. Their mechanisms of action are related to the modulation of a number of key signaling pathways and molecular targets. This review mainly summarizes recent studies on the bioactive compounds of Dioscorea and its treatment of inflammatory and metabolic diseases, and highlights the underlying molecular mechanisms. In conclusion, Dioscorea is a promising source of bioactive components and has the potential to develop novel natural bioactive compounds for the prevention and treatment of inflammatory and metabolic diseases.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Shengnan Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Siyu Tao
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Guige Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Fenglan Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Shenpeng Tan
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Qingguo Meng
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China
| |
Collapse
|
20
|
Hui H, Jin H, Yang X, Gao W, Qin B. The structure and antioxidant activities of three high molecular weight polysaccharides purified from the bulbs of Lanzhou lily. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-022-01654-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
21
|
Effects of Chinese yam Polysaccharides on the Muscle Tissues Development-Related Genes Expression in Breast and Thigh Muscle of Broilers. Genes (Basel) 2022; 14:genes14010006. [PMID: 36672746 PMCID: PMC9858316 DOI: 10.3390/genes14010006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
This experiment was conducted to evaluate the effects of dietary Chinese yam polysaccharides (CYP) on myogenic differentiation 1 (MYOD1), myogenin (MYOG), and myostatin (MSTN) mRNA expression of breast and thigh muscle tissues in broilers. A total of 360 (1-day-old, gender-balanced) crossbred broilers chicks with similar body weight (BW) were randomly distributed into four groups, with three replicates in each group and each replicate included 30 broilers. The feeding trial lasted for 48 days. Experimental broilers were fed 0.00 mg/kg basal diet (control group), 250 mg/kg, 500 mg/kg, and 1000 mg/kg CYP, respectively. The results showed that CYP250 and CYP500 groups had higher thigh muscle percentage (TMP) compared to the control group (p < 0.05). Meanwhile, the expression of MYOD1, MYOG mRNA in breast muscle tissues of CYP500 and CYP1000 groups was higher (p < 0.05), and the expression of MSTN mRNA in thigh muscle of CYP250, CYP500, and CYP1000 groups was lower than that of the control group (p < 0.05). In addition, there was no significant difference in the expression of MYOD1 mRNA in the thigh muscle tissue of each group (p > 0.05). Bivariate correlation analysis showed that the expression levels of MYOD1, MYOG, and MSTN mRNA in the thigh muscle tissue of broiler chickens in the CYP500 group were positively correlated with TMP. However, the expression of MYOG mRNA in thigh muscle tissue of the CYP1000 group was negatively correlated with TMP. In general, this study indicated that appropriate dietary CYP supplementation influenced the growth and development of thigh muscle tissue in broilers by altering TMP and muscle tissue development-related genes expression. Therefore, CYP could be used as a potential feed additive to promote the development of muscle tissues in broilers.
Collapse
|
22
|
Su J, Zhang B, Fu X, Huang Q, Li C, Liu G, Hai Liu R. Recent advances in polysaccharides from Rose roxburghii Tratt fruits: isolation, structural characterization, and bioactivities. Food Funct 2022; 13:12561-12571. [PMID: 36453451 DOI: 10.1039/d2fo02192g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rosa roxburghii Tratt fruit (RRF), known commonly as Cili in China, is a highly valued fruit that contains abundant functional and nutritional constituents with a variety of health-promoting benefits. Polysaccharides (RRFPs) are regarded as one of the crucial biological compounds in RRF. Existing literature has shown that RRFPs possess various remarkable biological activities, such as antioxidant, hypoglycemic, antitumor, anti-inflammatory, and gut microbiota modulation capabilities. In recent years, isolation and purification methods, structural characteristics, and biological activities of RRFPs have been drawing increasing attention. However, there is no up-to-date review of research progress on this front. In this review, recent advances in RRFPs, including their isolation, purification, structural characterization, biological activity, and the structure-activity relationship are summarized and discussed. In addition, this review highlights the challenges and prospects of RRFPs. Overall, this review provides useful research underpinnings and updated information for the further development and utilization of RRFPs in the fields of health, food, and medicine.
Collapse
Affiliation(s)
- Juan Su
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| | - Chao Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China. .,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Guang Liu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Guangzhou, 510610, China
| | - Rui Hai Liu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China. .,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.,Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
23
|
Domestic Cooking Affects the Prebiotic Performances of Chinese Yam. Foods 2022; 11:foods11233794. [PMID: 36496601 PMCID: PMC9739818 DOI: 10.3390/foods11233794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
The appropriate domestic cooking methods can retain and protect the biological properties of foods well. Thus, the objective of this study was to unravel the effect of different cooking methods on the microbiota modulatory properties of yam and their non-starch polysaccharides by an in vitro simulated digestion and fermentation model. The results showed that different cooking processes led to different changes in polysaccharide content. The polysaccharide content of yam increased by 21.3~108.2% or decreased by 12.0% compared with that of raw yam. Additionally, the soluble polysaccharides contents in all cooked yam samples significantly increased by 16.85~119.97% after in vitro digestion. The regulation of whole-yam digesta on gut microbiota was partly related with yam polysaccharides. Both yam and yam polysaccharide fermentation appeared to promote beneficial bacteria, such as Bifidobacteria, Bacteroides spp. and Megasphaera and suppressed bacterial pathogens such as Ruminococcusforques and Escherichia-Shigella. Household cooking significantly influenced the prebiotic performances of yam and yam polysaccharides by changing the heat-sensitive microbial substrates and their physiology properties. According to our results, normal-pressure steaming and normal-pressure boiling processes can retain the microbiota modulatory effects of Chinese yam.
Collapse
|
24
|
Wang XF, Chen X, Tang Y, Wu JM, Qin DL, Yu L, Yu CL, Zhou XG, Wu AG. The Therapeutic Potential of Plant Polysaccharides in Metabolic Diseases. Pharmaceuticals (Basel) 2022; 15:1329. [PMID: 36355500 PMCID: PMC9695998 DOI: 10.3390/ph15111329] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/15/2022] [Accepted: 10/25/2022] [Indexed: 07/29/2023] Open
Abstract
Plant polysaccharides (PPS) composed of more than 10 monosaccharides show high safety and various pharmacological activities, including immunoregulatory, antitumor, antioxidative, antiaging, and other effects. In recent years, emerging evidence has indicated that many PPS are beneficial for metabolic diseases, such as cardiovascular disease (CVD), diabetes, obesity, and neurological diseases, which are usually caused by the metabolic disorder of fat, sugar, and protein. In this review, we introduce the common characteristics and functional activity of many representative PPS, emphasize the common risks and molecular mechanism of metabolic diseases, and discuss the pharmacological activity and mechanism of action of representative PPS obtained from plants including Aloe vera, Angelica sinensis, pumpkin, Lycium barbarum, Ginseng, Schisandra chinensis, Dioscorea pposite, Poria cocos, and tea in metabolic diseases. Finally, this review will provide directions and a reference for future research and for the development of PPS into potential drugs for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Xiao-Fang Wang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| | - Xue Chen
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| | - Yong Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| | - Chong-Lin Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, College of Pharmacy, Changsha Medical University, Changsha 410219, China
| |
Collapse
|
25
|
Deng J, Zhang J, Chang Y, Wang S, Shi M, Miao Z. Effects of Chinese yam polysaccharides on the immune function and serum biochemical indexes of broilers. Front Vet Sci 2022; 9:1013888. [PMID: 36148469 PMCID: PMC9485930 DOI: 10.3389/fvets.2022.1013888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this experiment was to investigate the effects of Chinese yam polysaccharides (CYP) in diets on the immune function of broilers. A total of 360 (1-day-old, sex balance) healthy growing broilers with similar body weight (39.54 ± 0.51 g) were randomly divided into control (0.00 g/kg), CYP I (0.25 g/kg), CYP II (0.50 g/kg), and CYP III (1.00 g/kg) groups. Each group contains 3 replicates with 30 broilers in each replicate, and the feeding trial lasted 48 d. The results showed that compared with the control group, the CYP II group had higher thymus index, serum IgA, complement C3, C4, IGF-I, T3, T4, INS, GH, IL-2, IL-4, IL-6, and TNF-α levels (P < 0.05) at 28, 48 d, respectively. In addition, the spleen index, serum IgM and IgG concentrations in CYP II group were higher than those in the control group at 28 d (P < 0.05). Results indicated that 0.50 g/kg CYP supplementation improved the immune function of broilers, and the CYP has a potential biological function as a green additive in broilers.
Collapse
Affiliation(s)
- Jiahua Deng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jinzhou Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yadi Chang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Suli Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Mingyan Shi
- Life Science College, Luoyang Normal University, Luoyang, China
| | - Zhiguo Miao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- *Correspondence: Zhiguo Miao
| |
Collapse
|
26
|
Shi M, Chang Y, Cao M, Zhang J, Zhang L, Xie H, Miao Z. Effects of dietary yam polysaccharide on growth performance and
intestinal microflora in growing Huoyan geese. JOURNAL OF ANIMAL AND FEED SCIENCES 2022. [DOI: 10.22358/jafs/151561/2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Polysaccharides from Rhizoma Atractylodis Macrocephalae: A Review on Their Extraction, Purification, Structure, and Bioactivities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2338533. [PMID: 36034948 PMCID: PMC9402290 DOI: 10.1155/2022/2338533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 02/07/2023]
Abstract
Rhizoma Atractylodes macrocephala polysaccharide (RAMP), the main bioactive compound extracted from Rhizoma Atractylodes macrocephala (RAM), exhibits various biological activities in in vivo and in vitro methods, such as anti-inflammatory, antioxidant, antitumor, immunomodulatory, hepatoprotective effects, and other functions. This review systematically summarizes the recent research progress on the extraction, purification, structural characteristics, and biological activities of RAMP. We hope to provide a theoretical basis for further research on the application of RAMP in the fields of biomedicine and food.
Collapse
|
28
|
Effects of Yam (Dioscorea rotundata) Mucilage on the Physical, Rheological and Stability Characteristics of Ice Cream. Polymers (Basel) 2022; 14:polym14153142. [PMID: 35956657 PMCID: PMC9371168 DOI: 10.3390/polym14153142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 01/25/2023] Open
Abstract
In the present investigation, yam mucilage was evaluated as a stabilizer and emulsifier in the formulation of vanilla flavored ice cream; physicochemical, rheological, and stability characteristics were determined. A completely randomized bifactorial design was used (yam mucilage: Carboxymethylcellulose ratio with the following levels: 100:0, 80:20, 50:50, and 20:80, and stabilizers concentration with levels of 0.4 and 0.8%). Results showed an increase in the protein content present in ice cream mixture as the amount of mucilage increases. Rheologically, it was found that ice cream has the characteristic behavior of a pseudoplastic fluid, presenting a viscoelastic structure where elastic behavior predominates. In addition, ratios with a higher content of mucilage incorporated a greater volume of air and presented the longest melting times, delaying drops falling time; in the same way mucilage gives ice cream a freezing temperature between −6.1 to −2.8 °C, indicating that the application of mucilage in food industry is possible due to its nutritional value, and it gives ice cream stability properties.
Collapse
|
29
|
Guan QY, Zhao XH. Monosaccharide composition and in vivo immuno-stimulatory potential of soluble yam (Dioscorea opposita Thunb.) polysaccharides in response to a covalent Se incorporation. Food Chem 2022; 396:133741. [PMID: 35878444 DOI: 10.1016/j.foodchem.2022.133741] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/09/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022]
Abstract
The present study aimed to investigate whether selenylation modification could affect compositional features and in vivo immuno-stimulatory potential of yam polysaccharides. In this study, the soluble yam mucilage polysaccharides (YPS) were prepared and selenylated in the HNO3-Na2SeO3 system, and two selenylated polysaccharide products, namely SeYPS-1 and SeYPS-2 with respective Se contents of 719 and 1585 mg/kg, were thus obtained. GC-MS analysis demonstrated that the compositional features of SeYPS-1 and SeYPS-2 were similar to those of YPS. Meanwhile, the immuno-stimulatory potential of the selenylated products, especially SeYPS-2, in the BALB/c mice model was higher than that of YPS, reflected by the elevated contents of serum immunoglobins and increased percentage of CD4+ splenic lymphocytes. It was thus confirmed that the selenylation did not change the composition of monosaccharides but endowed YPS with greater immuno-stimulation in the mice, while the higher extent of selenylation also caused a much enhanced immuno-stimulatory potential of SeYPS-2.
Collapse
Affiliation(s)
- Qing-Yun Guan
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, 525000 Maoming, PR China; Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical Technology, 525000 Maoming, PR China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, 150030 Harbin, PR China
| | - Xin-Huai Zhao
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, 525000 Maoming, PR China; Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical Technology, 525000 Maoming, PR China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, 150030 Harbin, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong University of Petrochemical Technology, 525000 Maoming, PR China.
| |
Collapse
|
30
|
Hui H, Gao W. Physicochemical features and antioxidant activity of polysaccharides from Herba Patriniae by gradient ethanol precipitation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
31
|
Adomėnienė A, Venskutonis PR. Dioscorea spp.: Comprehensive Review of Antioxidant Properties and Their Relation to Phytochemicals and Health Benefits. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082530. [PMID: 35458730 PMCID: PMC9026138 DOI: 10.3390/molecules27082530] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/25/2022] [Accepted: 04/08/2022] [Indexed: 12/23/2022]
Abstract
Dioscorea, consisting of over 600 species, is the most important genus in the Dioscoreaceae family; however, the practically used plants, which are commonly called yam, are restricted to a remarkably smaller number of species. Numerous studies have reported the high nutritional value of yam, particularly as an alternative source of starch and some important micronutrients. Several Dioscorea species are widely used for various medicinal purposes as well. In many studies, the bioactivities and health benefits of Dioscorea extracts and other preparations have been related to the presence of phytochemicals, which possess antioxidant properties; they are related mainly to radical-scavenging capacity in chemical assays and positive effects on the endogenous antioxidant system in cell-based and in vivo assays. Considering the increasing number of publications on this topic and the absence of comprehensive and focused review papers on antioxidant potential, this article summarizes the results of studies on the antioxidant properties of Dioscorea spp. and their relation to phytochemicals and health benefits. A comprehensive survey of the published articles has revealed that the majority of studies have been performed with plant tubers (rhizomes, roots), while reports on leaves are rather scarce. In general, leaf extracts demonstrated stronger antioxidant potential than tuber preparations. This may be related to the differences in phytochemical composition: saponins, phenanthrenes and, for some pigment-rich species (purple yams), anthocyanins are important constituents in tubers, while phenolic acids and flavonoids are characteristic phytochemicals in the leaves. The review may assist in explaining ethnopharmacological knowledge on the health benefits of Dioscorea plants and their preparations; moreover, it may foster further studies of poorly investigated species, as well as their wider application in developing new functional foods and nutraceuticals.
Collapse
|
32
|
Effect of in vitro simulated gastrointestinal digestion on the antioxidant activity, molecular weight, and microstructure of polysaccharides from Chinese yam. Int J Biol Macromol 2022; 207:873-882. [PMID: 35358578 DOI: 10.1016/j.ijbiomac.2022.03.154] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022]
Abstract
In this study, we investigated the antioxidant properties and the changes of molecular weight (Mw), antioxidant activity, and microstructure of Chinese yam polysaccharides (CYP-A) during in vitro digestion. Results showed that the scavenging rate of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical of CYP-A was approximately 79% at the concentration of 6 mg/mL. Furthermore, the antioxidant ability positively correlated with the concentration of CYP-A. In addition, the Mw of CYP-A decreased (p < 0.05) after intestinal digestion. Fourier transform infrared showed that the degrees of esterification of CYP-A increased to 39.04% after 6 h of gastric digestion. Moreover, the structure of CYP-A changed after in vitro gastric digestion. The scanning electron microscope (SEM) images indicated that the surface morphology of CYP-A turned from smooth and irregular to a layered honeycomb after gastrointestinal digestion in vitro. Surprisingly, the activity of DPPH radical scavenging significantly increased (p < 0.05) in the intestinal digested samples of CYP-A, which showed a positive correlation with the concentration of CYP-A. However, the reducing power significantly decreased (p < 0.05) after in vitro intestinal digestion.
Collapse
|
33
|
Pan HY, Zhang CQ, Zhang XQ, Zeng H, Dong CH, Chen X, Ding K. A galacturonan from Dioscorea opposita Thunb. regulates fecal and impairs IL-1 and IL-6 expression in diarrhea mice. Glycoconj J 2022; 39:131-141. [DOI: 10.1007/s10719-022-10053-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 02/02/2022] [Accepted: 02/24/2022] [Indexed: 01/25/2023]
|
34
|
Li Z, Xiao W, Xie J, Chen Y, Yu Q, Zhang W, Shen M. Isolation, Characterization and Antioxidant Activity of Yam Polysaccharides. Foods 2022; 11:foods11060800. [PMID: 35327223 PMCID: PMC8954450 DOI: 10.3390/foods11060800] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/29/2022] Open
Abstract
This study aimed to characterize the structure of Chinese yam (Dioscoreae Rhizoma) polysaccharide (CYP) and to investigate its protective effect against H2O2-induced oxidative damage in IEC-6 cells. The chemical composition and structural characteristics of the samples were analyzed by chemical and instrumental methods, including high-performance gel permeation chromatography, high-performance anion-exchange chromatography (HPAEC), Fourier transformed infrared (FT-IR), ultraviolet (UV), and scanning electron microscopy (SEM). Antioxidant activity was evaluated by establishing a cellular model of oxidative damage. The molecular weight of CYP was 20.89 kDa. Analysis of the monosaccharide composition revealed that CYP was primarily comprised of galactose (Gal), glucose (Glu), and galacturonic acid (GalA), and the ratio between them was 28.57:11.28:37.59. Pretreatment with CYP was able to improve cell viability, superoxide dismutase (SOD) activity, and reduce intracellular reactive oxygen species (ROS) production and malondialdehyde (MDA) content after H2O2 injury. CYP also attenuated oxidative damage in cells through the mitogen-activated protein kinase (MAPK) signaling pathway. This study showed that CYP was an acidic heteropolysaccharide with a good protective effect against oxidative damage, and it thus has good prospects in food and biopharmaceutical industries.
Collapse
|
35
|
ESTIASIH T, KULIAHSARI DE, MARTATI E, AHMADI K. Cyanogenic compounds removal and characteristics of non- and pregelatinized traditional detoxified wild yam (Dioscorea hispida) tuber flour. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.119121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | - Kgs AHMADI
- Tribhuwana Tunggadewi University, Indonesia
| |
Collapse
|
36
|
Mohanta B, Sen DJ, Mahanti B, Nayak AK. Antioxidant potential of herbal polysaccharides: An overview on recent researches. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
37
|
Liang Q, Bai Z, Xie T, Lu H, Xiang L, Ma K, Liu T, Guo T, Chen L, Zhao X, Xiao Y. Deciphering the Pharmacological Mechanisms of Qidan Dihuang Decoction in Ameliorating Renal Fibrosis in Diabetic Nephropathy through Experimental Validation In Vitro and In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4137578. [PMID: 36091599 PMCID: PMC9463013 DOI: 10.1155/2022/4137578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/13/2022] [Accepted: 07/16/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE QiDan DiHuang decoction (QDD) has been proven to have good efficacy in decreasing albuminuria levels, improving renal function, and inhibiting renal fibrosis in diabetic nephropathy (DN). However, the potential mechanism remains unclear. The purpose of this study was to explore the underlying mechanism of QDD for treating DN in vitro and in vivo. METHODS Db/db mice were treated with QDD or saline intragastrically for 12 weeks. Non-diabetic db/m mice were used as controls. Rat renal tubular epithelial cells (NRK-52E) were cultured in high glucose conditions. ATF4 siRNA was transfected into NRK-52E cells. Different indicators were detected via UPLC, RT-PCR, western blotting, cell viability assays and apoptosis, transmission electron microscopy, histology, and immunofluorescence staining. RESULTS Db/db mice experienced severe kidney damage and fibrosis, increased levels of PERK, eIF2α, and ATF4, and suppression of renal autophagy compared with db/m mice. The results showed a significant improvement in glucose intolerance, blood urea nitrogen, urine albumin, serum creatinine, and renal fibrosis in db/db mice with QDD treatment. Meanwhile, the application of QDD resulted in the downregulation of PERK, eIF2α, and ATF4 and the upregulation of autophagy in diabetic kidneys. In vitro, the exposure of NRK-52E cells to high glucose resulted in downregulation of the ratio of LC3-II/LC3-I and upregulation of P62, a reduction in the number of autophagosomes and upregulation of fibronectin (FN), collagen IV and TGF-β1 protein, which was reversed by QDD treatment through inhibiting ATF4 expression. CONCLUSIONS Taken together, our results suggest that QDD effectively alleviates diabetic renal injuries and fibrosis by inhibiting the PERK-eIF2α-ATF4 pathway and promoting autophagy in diabetic nephropathy.
Collapse
Affiliation(s)
- Qiuer Liang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- Affiliated Dongguan People's Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Zhenyu Bai
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Ting Xie
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Hanqi Lu
- Department of Nephrology, Dongguan Traditional Chinese Medicine Hospital, Dongguan, China
| | - Lei Xiang
- Department of Integrative Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Ke Ma
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Tianhao Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Tingting Guo
- Department of Nephrology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Liguo Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ya Xiao
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
38
|
Jia X, Wang X, Liu Y, Sun Y, Ma B, Li Z, Xu C. Structural characterization of an alkali-extracted polysaccharide from Dioscorea opposita Thunb. with initial studies on its anti-inflammatory activity. J Carbohydr Chem 2021. [DOI: 10.1080/07328303.2021.2009503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xuewei Jia
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Collaborative Innovation Center of Food Production and Safety, Zhengzhou, China
| | - Xuanjing Wang
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yuanshang Liu
- Technical Center of Hebei China Tobacco Industry Co, Ltd, Shijiazhuang, China
| | - Yiyan Sun
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Bingjie Ma
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Zhenjie Li
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Chunping Xu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Collaborative Innovation Center of Food Production and Safety, Zhengzhou, China
| |
Collapse
|
39
|
Lin YR, Guan QY, Li LY, Tang ZM, Zhang Q, Zhao XH. In Vitro Immuno-Modulatory Potentials of Purslane ( Portulaca oleracea L.) Polysaccharides with a Chemical Selenylation. Foods 2021; 11:foods11010014. [PMID: 35010140 PMCID: PMC8750528 DOI: 10.3390/foods11010014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 02/06/2023] Open
Abstract
The soluble polysaccharides from a non-conventional and edible plant purslane (Portulaca oleracea L.), namely PSPO, were prepared by the water extraction and ethanol precipitation methods in this study. The obtained PSPO were selenylated using the Na2SeO3-HNO3 method to successfully prepare two selenylated products, namely SePSPO-1 and SePSPO-2, with different selenylation extents. The assay results confirmed that SePSPO-1 and SePSPO-2 had respective Se contents of 753.8 and 1325.1 mg/kg, while PSPO only contained Se element about 80.6 mg/kg. The results demonstrated that SePSPO-1 and SePSPO-2 had higher immune modulation than PSPO (p < 0.05), when using the two immune cells (murine splenocytes and RAW 264.7 macrophages) as two cell models. Specifically, SePSPO-1 and SePSPO-2 were more active than PSPO in the macrophages, resulting in higher cell proliferation, greater macrophage phagocytosis, and higher secretion of the immune-related three cytokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β. Meanwhile, SePSPO-1 and SePSPO-2 were more potent than PSPO in the concanavalin A- or lipopolysaccharide-stimulated splenocytes in cell proliferation, or more able than PSPO in the splenocytes to promote interferon-γ secretion but suppress IL-4 secretion, or more capable of enhancing the ratio of T-helper (CD4+) cells to T-cytotoxic (CD8+) cells for the T lymphocytes than PSPO. Overall, the higher selenylation extent of the selenylated PSPO mostly caused higher immune modulation in the model cells, while a higher polysaccharide dose consistently led to the greater regulation effect. Thus, it is concluded that the employed chemical selenylation could be used in the chemical modification of purslane or other plant polysaccharides, when aiming to endow the polysaccharides with higher immuno-modulatory effect on the two immune cells.
Collapse
Affiliation(s)
- Ya-Ru Lin
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (Y.-R.L.); (Q.-Y.G.); (L.-Y.L.); (Z.-M.T.); (Q.Z.)
| | - Qing-Yun Guan
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (Y.-R.L.); (Q.-Y.G.); (L.-Y.L.); (Z.-M.T.); (Q.Z.)
| | - Ling-Yu Li
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (Y.-R.L.); (Q.-Y.G.); (L.-Y.L.); (Z.-M.T.); (Q.Z.)
| | - Zhi-Mei Tang
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (Y.-R.L.); (Q.-Y.G.); (L.-Y.L.); (Z.-M.T.); (Q.Z.)
- Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Qiang Zhang
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (Y.-R.L.); (Q.-Y.G.); (L.-Y.L.); (Z.-M.T.); (Q.Z.)
- Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xin-Huai Zhao
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (Y.-R.L.); (Q.-Y.G.); (L.-Y.L.); (Z.-M.T.); (Q.Z.)
- Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Correspondence:
| |
Collapse
|
40
|
Dong XD, Liu YN, Zhao Y, Liu AJ, Ji HY, Yu J. Structural characterization of a water-soluble polysaccharide from Angelica dahurica and its antitumor activity in H22 tumor-bearing mice. Int J Biol Macromol 2021; 193:219-227. [PMID: 34688677 DOI: 10.1016/j.ijbiomac.2021.10.110] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/20/2021] [Accepted: 10/16/2021] [Indexed: 01/16/2023]
Abstract
A novel Angelica dahurica polysaccharide (ADP) with Mw of 6.09 × 103 Da was isolated. The contents of total sugar and uronic acid in ADP were 91.04% and 12.69%. The structure characteristics indicated that ADP was an acidic polysaccharide consisting of rhamnose, arabinose, galactose, glucose, mannose, glucuronic acid and galacturonic acid (0.09: 0.61: 1.88: 1: 0.14: 0.63: 0.03). Moreover, there were →3)-Manp-(1→, →4, 6)-Galp-(1→, →4)-Galp-(1→, →3)-Glcp-(1→, →5)-Araf-(1→, →2)-Galp-(1→ in ADP with relative molar ratios of 0.32:0.57:0.29:0.95:0.71:0.26. In vivo experiments suggested that ADP significantly inhibited the tumor growth of mice, increased the activities of spleen lymphocytes and natural killer (NK) cells, improved the cytokine level (IL-2 and TNF-α) and the proportions of lymphocyte subsets in the peripheral blood. The tumor cell progression was arrested in the G1 phase, and the apoptosis rate of tumor cells were 7.54% and 19.32% at the dose of 100 and 200 mg/kg, which was consistent with the results of pathological observation. In summary, the study might provide a theoretical basis for the application on functional foods containing Angelica dahurica polysaccharides.
Collapse
Affiliation(s)
- Xiao-Dan Dong
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; QingYunTang Biotech (Beijing) Co., Ltd., No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Yi-Ning Liu
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; QingYunTang Biotech (Beijing) Co., Ltd., No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Yan Zhao
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; QingYunTang Biotech (Beijing) Co., Ltd., No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - An-Jun Liu
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Hai-Yu Ji
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Juan Yu
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
41
|
Structural properties and antioxidant activity of polysaccharides extracted from Laminaria japonica using various methods. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
42
|
Guan QY, Lin YR, Li LY, Tang ZM, Zhao XH, Shi J. In Vitro Immunomodulation of the Polysaccharides from Yam ( Dioscorea opposita Thunb.) in Response to a Selenylation of Lower Extent. Foods 2021; 10:foods10112788. [PMID: 34829068 PMCID: PMC8624157 DOI: 10.3390/foods10112788] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/28/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023] Open
Abstract
The immunomodulation of chemically selenylated polysaccharides has been attracting more attention recently, but the corresponding performance of the yam polysaccharides (YPS) with lower selenylation extent remains, thus far, unsolved. In this study, the YPS was selenylated with Na2SeO3 under acidic conditions generated by HNO3 to reach two lower selenylation extents, yielding two selenylated YPSs, namely SeYPS-1 and SeYPS-2 with selenium contents of 715 and 1545 mg/kg, respectively. The results indicated that YPS, SeYPS-1, and SeYPS-2 all had in vitro immuno-modulation when using RAW 264.7 macrophages and murine splenocytes as cell models. In detail, the three polysaccharide samples at dose levels of 5–160 μg/mL showed insignificant cytotoxicity to the macrophages and splenocytes with cell exposure times of 12–24 h, because of the measured values of cell viability larger than 100%. However, Na2SeO3 at dose levels of 1.3–3.25 μg/mL mostly caused obvious cytotoxic effects on the cells, resulting in reduced cell viability values or cell death, efficiently. The results demonstrated that, compared with YPS, both SeYPS-1 and SeYPS-2 at a lower dose level (5 μg/mL) were more active at promoting phagocytosis activity, increasing the CD4+/CD8+ ratio of the T-lymphocyte sub-population in the murine splenocyte, improving cytokine secretion, including interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α in the macrophages, or increasing interferon-γ secretion, but suppressing IL-4 production in the splenocytes. Consistently, SeYPS-2 has more potential than SeYPS-1 at exerting these assessed bioactivities in the cells. Thus, we conclude that a chemical modification of YPS using trace element Se at a lower selenylation extent could bring about higher immunomodulatory activity towards macrophages and splenocytes, while selenylation extent of YPS is a critical factor used to govern the assessed activity changes of YPS.
Collapse
Affiliation(s)
- Qing-Yun Guan
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.-Y.G.); (Y.-R.L.); (L.-Y.L.)
| | - Ya-Ru Lin
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.-Y.G.); (Y.-R.L.); (L.-Y.L.)
| | - Ling-Yu Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.-Y.G.); (Y.-R.L.); (L.-Y.L.)
| | - Zhi-Mei Tang
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China;
- Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xin-Huai Zhao
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China;
- Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Correspondence: (X.-H.Z.); (J.S.)
| | - Jia Shi
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.-Y.G.); (Y.-R.L.); (L.-Y.L.)
- Correspondence: (X.-H.Z.); (J.S.)
| |
Collapse
|
43
|
Wu X, Cai X, Ai J, Zhang C, Liu N, Gao W. Extraction, Structures, Bioactivities and Structure-Function Analysis of the Polysaccharides From Safflower ( Carthamus tinctorius L.). Front Pharmacol 2021; 12:767947. [PMID: 34744747 PMCID: PMC8563581 DOI: 10.3389/fphar.2021.767947] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/28/2021] [Indexed: 01/03/2023] Open
Abstract
Safflower (Carthamus tinctorius L.) is a herbal plant with a long history of clinical application worldwide, such as coronary heart disease, hypertension, dysmenorrhea and amenorrhea. It is also extensively used as an important oilseed plant for hundreds of years in some countries, like China, India, Mexico and the United States. Therefore, safflower is believed as a crop with dual values of medicine and economy as well. Safflower polysaccharides (SPS), from the plant, are believed as one of the most important biologically active components with multiple pharmacological properties, including anti-tumor, immune regulation, anti-oxidation, and anti-cerebral ischemia reperfusion injury effects. The polysaccharides, from bee pollen of safflower, named PBPC, also attract the attention of researchers because of their particular origin and bioactivities. Although the extraction, purification, structure and biological activities of SPS and PBPC have been studied for decades, there is not any available review both concerning SPS and PBPC. In this condition, this paper aims to systematically review the research progress in extraction, purification, structural characteristics, and bioactivities of SPS and PBPC, and provide basis for the in-depth study about their structure-bioactivity relationship. It will serve as a methodological outline for further research in fields of new drug discovery and clinical application of SPS or PBPC, and simultaneously remind us of unresolved problems noted in the polysaccharide research.
Collapse
Affiliation(s)
- Xiaoyi Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xinbo Cai
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jiaxuan Ai
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Chi Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Nan Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
44
|
Structure Characterization of Polysaccharide from Chinese Yam ( Dioscorea opposite Thunb.) and Its Growth-Promoting Effects on Streptococcus thermophilus. Foods 2021; 10:foods10112698. [PMID: 34828979 PMCID: PMC8624800 DOI: 10.3390/foods10112698] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
To clarify the mechanisms underlying the growth-promoting effects of yam polysaccharide on Streptococcus thermophilus (S. thermophilus), the yam polysaccharide was extracted using a deep eutectic solvents (DESs) method and separated into four fractions by DEAE-cellulose 52. These fractions were used as the alternative carbon source to substitute lactose to compare their growth-promoting effects on S. thermophilus. Furthermore, their molecular weight, monosaccharide and functional groups' composition, microscopic forms and other basic structure characterizations were analyzed. The results showed that all the fractions could significantly promote S. thermophilus growth, and fractions exhibited significantly different growth-promoting effects, whose viable count increased by 6.14, 6.03, 11.48 and 11.29%, respectively, relative to those in the M17 broth medium. Structure-activity relationship analysis revealed that the high growth-promoting activity of yam polysaccharide might be more dependent on the higher molecular weight, the higher galacturonic acid content and its complex spatial configuration, and the existence of β-glycosides would make the yam polysaccharide have a better growth-promoting effect on S. thermophilus.
Collapse
|
45
|
Wang Y, Liu Y, Zhang Y, Huo Z, Wang G, He Y, Man S, Gao W. Effects of the polysaccharides extracted from Chinese yam ( Dioscorea opposita Thunb.) on cancer-related fatigue in mice. Food Funct 2021; 12:10602-10614. [PMID: 34585194 DOI: 10.1039/d1fo00375e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this study was to investigate the anti-fatigue activity of Chinese Yam polysaccharides (CYPs). The structural characterization of CYPs was conducted using Fourier transform-infrared spectroscopy, nuclear magnetic resonance spectroscopy, gel permeation chromatography-light scattering-refractive index, and ion chromatography. The weight-loaded swimming capability, behavior performance, tumor growth, content of adenosine triphosphate (ATP), and biochemical markers of CYP in a cancer-related fatigue mouse model were tested. The results showed that CYP is a mixture with an average Mw of 75.57 kDa and is mainly composed of rhamnose, glucuronic acid, glucose, galactose, and arabinose with a molar ratio of 0.01 : 0.06 : 1.00 : 0.17 : 0.01. CYP increased the exhausting swimming time, which was decreased in the cisplatin (DDP) control group and the model group. CYP also increased the content of ATP in musculus gastrocnemius, which was down-regulated by DDP; the DDP had significantly enhanced the contents of interleukin-1β (IL-lβ), malondialdehyde (MDA), blood urea nitrogen (BUN) and lactic dehydrogenase (LDH) and inhibited the activity of superoxide dismutase (SOD) in the muscle. Administration of CYP decreased the levels of IL-lβ, MDA, BUN and LDH, and up-regulated the SOD activity. The DDP + CYP group presented a decreased tumor volume and a lower tumor weight as compared with the model group. Moreover, the mice in the CYP or DDP + CYP groups had heavier body weights than the mice in the model group and DDP group. These results suggest that CYP should improve cancer-related fatigue via the regulation of inflammatory responses, oxidative stress and increase in energy supplementation.
Collapse
Affiliation(s)
- Yu Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China. .,Tasly Academy, Tasly Holding Group Co., Ltd., No. 2 Pujihe East Road, Tasly TCM Garden, Beichen District, Tianjin 300410, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Holding Group Co., Ltd., No. 2 Pujihe East Road, Tasly TCM Garden, Beichen District, Tianjin 300410, China
| | - Yuanxue Liu
- Tasly Academy, Tasly Holding Group Co., Ltd., No. 2 Pujihe East Road, Tasly TCM Garden, Beichen District, Tianjin 300410, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Holding Group Co., Ltd., No. 2 Pujihe East Road, Tasly TCM Garden, Beichen District, Tianjin 300410, China
| | - Yiqian Zhang
- Tasly Academy, Tasly Holding Group Co., Ltd., No. 2 Pujihe East Road, Tasly TCM Garden, Beichen District, Tianjin 300410, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Holding Group Co., Ltd., No. 2 Pujihe East Road, Tasly TCM Garden, Beichen District, Tianjin 300410, China
| | - Zhipeng Huo
- Tasly Academy, Tasly Holding Group Co., Ltd., No. 2 Pujihe East Road, Tasly TCM Garden, Beichen District, Tianjin 300410, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Holding Group Co., Ltd., No. 2 Pujihe East Road, Tasly TCM Garden, Beichen District, Tianjin 300410, China
| | - Genbei Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China. .,Tasly Academy, Tasly Holding Group Co., Ltd., No. 2 Pujihe East Road, Tasly TCM Garden, Beichen District, Tianjin 300410, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Holding Group Co., Ltd., No. 2 Pujihe East Road, Tasly TCM Garden, Beichen District, Tianjin 300410, China
| | - Yi He
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China. .,Tasly Academy, Tasly Holding Group Co., Ltd., No. 2 Pujihe East Road, Tasly TCM Garden, Beichen District, Tianjin 300410, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Holding Group Co., Ltd., No. 2 Pujihe East Road, Tasly TCM Garden, Beichen District, Tianjin 300410, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
46
|
Li X, Zhang ZH, Qi X, Li L, Zhu J, Brennan CS, Yan JK. Application of nonthermal processing technologies in extracting and modifying polysaccharides: A critical review. Compr Rev Food Sci Food Saf 2021; 20:4367-4389. [PMID: 34397139 DOI: 10.1111/1541-4337.12820] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 06/17/2021] [Accepted: 07/11/2021] [Indexed: 12/17/2022]
Abstract
Polysaccharides are natural polymer compounds widely distributed in plants, animals, and microorganisms, most of which have a broad spectrum of biological activities to promote human health. They could also be used as texture modifiers in food industry due to their excellent rheological and mechanical properties. Many researchers have shown that nonthermal processing technologies have numerous advantages, such as high extraction efficiency, short extraction time, and environmental friendliness, in the extraction of polysaccharides compared with the traditional extraction methods. Moreover, nonthermal technologies could effectively change the physicochemical properties and structural characteristics of polysaccharides to improve their biological activities or processing properties. Therefore, a comprehensive summary about the extraction and modification of polysaccharides by nonthermal technologies, including ultrasound, high hydrostatic pressure, pulsed electric fields, and cold plasma, was provided in this review. In particular, the underlying mechanisms, processing operations, and current application status of these technologies were discussed. In addition, the applications of combining nonthermal techniques with other technological methods in polysaccharide extraction and modification were briefly introduced.
Collapse
Affiliation(s)
- Xiaolan Li
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhi-Hong Zhang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xianghui Qi
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Lin Li
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, 523808, China
| | - Jie Zhu
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, 523808, China
| | - Charles S Brennan
- School of Science, RMIT University, Victoria Road, Melbourne, VIC, 3500, Australia
| | - Jing-Kun Yan
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.,Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, 523808, China
| |
Collapse
|
47
|
Zeng X, Liu D, Huang L. Metabolome Profiling of Eight Chinese Yam ( Dioscorea polystachya Turcz.) Varieties Reveals Metabolite Diversity and Variety Specific Uses. Life (Basel) 2021; 11:687. [PMID: 34357058 PMCID: PMC8308037 DOI: 10.3390/life11070687] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 07/06/2021] [Indexed: 01/04/2023] Open
Abstract
The Chinese yam (Dioscorea polystachya Turcz.) is an underutilized orphan tuber crop. However, in China it has been used in traditional medicine and food for centuries due to the presence of high starch, protein, fiber, and biologically active compounds. Knowledge on the metabolomic profiles of Chinese yam varieties is needed to explore the underutilized metabolites and variety specific uses. Here, the metabolome of eight Chinese yam varieties that are cultivated in different Chinese regions was profiled. A total of 431 metabolites belonging to different biochemical classes was detected. The majority of detected metabolites were classified as amino acids and derivatives. The different yam varieties offer unique uses; e.g., Hebei Ma Yam, Henan Huai Yam, and Henan Wild Yam were the most metabolically enriched and suitable as food and medicine. Yams from Hubei region had comparable nutritional profiles, which is most probably due to their geographical origin. Specifically, Henan Wild Yam had the highest concentrations of diosgenin, vitamins, and polysaccharides. Overall, this study presents a metabolome reference for D. polystachya varieties.
Collapse
Affiliation(s)
- Xiaoxuan Zeng
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (X.Z.); (D.L.)
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dahui Liu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (X.Z.); (D.L.)
| | - Luqi Huang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (X.Z.); (D.L.)
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
48
|
Zhao H, Zhao L, Wu F, Shen L. Clinical research on traditional Chinese medicine treatment for bacterial vaginosis. Phytother Res 2021; 35:4943-4956. [PMID: 33860974 DOI: 10.1002/ptr.7123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/01/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
Bacterial vaginosis (BV) is a common disease among women of reproductive age, with a serious impact on their daily life and health. At present, the most common treatment for BV is to take antibiotics, which results in good short-term treatment effects, but poor long-term effects. Traditional Chinese medicine (TCM) has been used to treat BV for over a millennium, with little risk of triggering drug resistance and adverse effects. Based on syndrome differentiation, there are three oral TCM treatment strategies for BV, including invigorating spleen, clearing dampness and heat, and nourishing kidney. The oral TCM prescriptions, such as Yi Huang decoction, Longdan Xiegan decoction, Zhibai Dihaung decoction, and so on are commonly used. Topical TCM treatment is also popular in China. According to the research results of pharmacological effects of active TCM ingredients, the most potential mechanisms of TCM for BV treatment are immune-enhancement effects, antibacterial activity, and estrogen-liked effects. Nonetheless, the multi-constituent of herbs may result in possible disadvantages to BV treatment, and the pharmacological mechanisms of TCM need further study. Here, we provide an overview of TCM compounds and their preparations used for BV, based on the pathogenesis and the potential therapeutic mechanisms, therefore providing a reference for further studies.
Collapse
Affiliation(s)
- Haiyue Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijie Zhao
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Wu
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
49
|
Effects of yam (Dioscorea opposita Thunb.) juice on fermentation and textural attributes of set-style skimmed yoghurt. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00830-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
50
|
Mechanism of Chinese yam for the treatment of aging-related diseases based on network pharmacology. Eur J Integr Med 2021. [DOI: 10.1016/j.eujim.2020.101254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|