1
|
Chen H, Huang S, Yao S, Wang J, Huang J, Yu Z. Multi-omics analyses of Bacillus amyloliquefaciens treated mice infected with Schistosoma japonicum reveal dynamics change of intestinal microbiome and its associations with host metabolism. PLoS Negl Trop Dis 2024; 18:e0012583. [PMID: 39466852 PMCID: PMC11515987 DOI: 10.1371/journal.pntd.0012583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Schistosomiasis japonica is a serious threat to human health. It causes damage to the intestine and liver. Probiotic therapy has been shown to be effective in alleviating intestinal diseases and improving host health. Previous studies have found that Bacillus amyloliquefaciens could alleviate the pathological symptoms of schistosomiasis japonica, but the regulatory mechanism of alleviating schistosomiasis japonica is still unknown. PRINCIPAL FINDINGS This study analyzed the dynamic changes of intestinal microbiome in mice infected with Schistosoma japonicum after the intervention of B. amyloliquefaciens and its connection to host metabolism by multi-omics sequencing technology. B. amyloliquefaciens was found to significantly regulate the homeostasis of intestinal microbiota by promoting the growth of beneficial bacteria and inhibiting potential pathogenic bacteria and protect the number of core microbes. Meanwhile, the genes related to the metabolism of glycerophospholipids and amino acid from intestinal microbiome changed significantly, and were shown to be significantly positively correlated with the associated metabolites of microbial origin. Moreover, host metabolism (lipid metabolism and steroid hormone biosynthesis) was also found to be significantly regulated. CONCLUSIONS The recovery of intestinal microbial homeostasis and the regulation of host metabolism revealed the potential probiotic properties of B. amyloliquefaciens, which also provided new ideas for the prevention and adjuvant treatment of schistosomiasis japonica.
Collapse
Affiliation(s)
- Hao Chen
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Shuaiqin Huang
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Siqi Yao
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jingyan Wang
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jing Huang
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zheng Yu
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Shang ZZ, Ye HY, Gao X, Wang HY, Li QM, Hu JM, Zhang FY, Luo JP. An acidic polysaccharide promoting GLP-1 secretion from Dendrobium huoshanense protocorm-like bodies: Structure validation and activity exploration. Int J Biol Macromol 2024; 278:134783. [PMID: 39153673 DOI: 10.1016/j.ijbiomac.2024.134783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/20/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) as a multifunctional hormone is secreted mainly from enteroendocrine L-cells, and enhancing its endogenous secretion has potential benefits of regulating glucose homeostasis and controlling body weight gain. In the present study, a novel polysaccharide (h-DHP) with high ability to enhance plasma GLP-1 level in mice was isolated from Dendrobium huoshanense protocorm-like bodies under the guidance of activity evaluation. Structural identification showed that h-DHP was an acidic polysaccharide with the molecular weight of 1.38 × 105 Da, and was composed of galactose, glucose, arabinose and glucuronic acid at a molar ratio of 15.7: 11.2: 4.5: 1.0 with a backbone consisting of →5)-α-L-Araf-(1→, →3)-α-D-Galp-(1→, →6)-α-D-Galp-(1→, →3,6)-α-D-Galp-(1→, →6)-β-D-Glcp-(1→ and →4,6)-β-D-Glcp-(1→ along with branches consisting of α-L-Araf-(1→, α-D-Galp-(1→, α-D-GlcAp-(1→, β-D-Glcp-(1→ and →4)-β-D-Glcp-(1→. Animal experiments with different administration routes demonstrated that h-DHP-enhanced plasma GLP-1 level was attributed to h-DHP-promoted GLP-1 secretion in the enteroendocrine L-cells, which was supported by h-DHP-enhanced extracellular GLP-1 level in STC-1 cells. Inhibition of adenylate cyclase and phospholipase C indicated that cAMP and cAMP-triggered intracellular Ca2+ increase participated in h-DHP-promoted GLP-1 secretion. These results suggested that h-DHP has the potential of enhancing endogenous GLP-1 level through h-DHP-promoted and cAMP-mediated GLP-1 secretion from enteroendocrine cells.
Collapse
Affiliation(s)
- Zhen-Zi Shang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China
| | - Hui-Yu Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China
| | - Xin Gao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China
| | - Hong-Yan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Qiang-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China.
| | - Jiang-Miao Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
| | - Feng-Yun Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, People's Republic of China
| | - Jian-Ping Luo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China.
| |
Collapse
|
3
|
Cuervo L, McAlpine PL, Olano C, Fernández J, Lombó F. Low-Molecular-Weight Compounds Produced by the Intestinal Microbiota and Cardiovascular Disease. Int J Mol Sci 2024; 25:10397. [PMID: 39408727 PMCID: PMC11477366 DOI: 10.3390/ijms251910397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease is the main cause of mortality in industrialized countries, with over 500 million people affected worldwide. In this work, the roles of low-molecular-weight metabolites originating from the gut microbiome, such as short-chain fatty acids, hydrogen sulfide, trimethylamine, phenylacetic acid, secondary bile acids, indoles, different gases, neurotransmitters, vitamins, and complex lipids, are discussed in relation to their CVD-promoting or preventing activities. Molecules of mixed microbial and human hepatic origin, such as trimethylamine N-oxide and phenylacetylglutamine, are also presented. Finally, dietary agents with cardioprotective effects, such as probiotics, prebiotics, mono- and poly-unsaturated fatty acids, carotenoids, and polyphenols, are also discussed. A special emphasis is given to their gut microbiota-modulating properties.
Collapse
Affiliation(s)
- Lorena Cuervo
- Research Group BIOMIC (Biosynthesis of Antitumor Molecules), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (L.C.); (C.O.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Patrick L. McAlpine
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carlos Olano
- Research Group BIOMIC (Biosynthesis of Antitumor Molecules), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (L.C.); (C.O.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Javier Fernández
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Felipe Lombó
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
4
|
Xue Q, Ma Y, Shao H. Bacillus amyloliquefaciens Protect Against Atherosclerosis Through Alleviating Foam Cell Formation and Macrophage Polarization. Curr Microbiol 2024; 81:263. [PMID: 38997545 DOI: 10.1007/s00284-024-03775-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/01/2023] [Indexed: 07/14/2024]
Abstract
This study was to investigate the therapeutic effect of Bacillus amyloliquefaciens (Ba) on atherosclerosis (AS). THP-1 monocyte was differentiated to THP-1 macrophage (THP-M) through phorbol 12-myristate 13-acetate. After pre-treatment by 108 cfu/ml Ba lasting 6 h, THP-M was induced with 100 mg/l ox-LDL lasting 48 h to form macrophage foam cell (THP-F). RT-qPCR and flow cytometry were employed to determine the polarization of THP-M and THP-F. ApoE-/- mice with high-fat and high-cholesterol diet were used for constructing an AS model to evaluate the effect of Ba on AS. Our in vitro results showed that Ba vegetative cells pre-treatment distinctly inhibited the levels of iNOS and CD16/CD32 (M1 macrophage markers), and increased the levels of FIZZ1, Ym1, Arg1, CD163, and CD206 (M2 macrophage markers), indicating that Ba pre-treatment promoted anti-inflammatory M2-like polarization both in THP-M and THP-F. Meanwhile, it also suppressed cholesterol uptake, esterification, and hydrolysis, and efflux by THP-M and THP-F. Additionally, our animal experiments demonstrated that Ba vegetative cells treatment suppressed high cholesterol, hyperglycemia, hyperlipidemia, and the release of inflammatory factors (TNF-α, IL-6 and IL-1β) in ApoE-/- AS mice. In a word, our results indicated that Ba may protect against AS through alleviating foam cell formation and macrophage polarization through targeting certain stages of AS.
Collapse
Affiliation(s)
- Qi Xue
- Department of Cardiology, Zhejiang Provincial People's Hospital, No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Yuan Ma
- Department of Cardiology, Zhejiang Provincial People's Hospital, No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Hong Shao
- Department of Cardiology, Zhejiang Provincial People's Hospital, No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
5
|
Akhtar N, Wani AK, Sharma NR, Sanami S, Kaleem S, Machfud M, Purbiati T, Sugiono S, Djumali D, Retnaning Prahardini PE, Purwati RD, Supriadi K, Rahayu F. Microbial exopolysaccharides: Unveiling the pharmacological aspects for therapeutic advancements. Carbohydr Res 2024; 539:109118. [PMID: 38643705 DOI: 10.1016/j.carres.2024.109118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Microbial exopolysaccharides (EPSs) have emerged as a fascinating area of research in the field of pharmacology due to their diverse and potent biological activities. This review paper aims to provide a comprehensive overview of the pharmacological properties exhibited by EPSs, shedding light on their potential applications in various therapeutic areas. The review begins by introducing EPSs, exploring their various sources, significance in microbial growth and survival, and their applications across different industries. Subsequently, a thorough examination of the pharmaceutical properties of microbial EPSs unveils their antioxidant, immunomodulatory, antimicrobial, antidepressant, antidiabetic, antiviral, antihyperlipidemic, hepatoprotective, anti-inflammatory, and anticancer activities. Mechanistic insights into how different EPSs exert these therapeutic effects have also been discussed in this review. The review also provides comprehensive information about the monosaccharide composition, backbone, branches, glycosidic bonds, and molecular weight of pharmacologically active EPSs from various microbial sources. Furthermore, the factors that can affect the pharmacological activities of EPSs and approaches to improve the EPSs' pharmacological activity have also been discussed. In conclusion, this review illuminates the immense pharmaceutical promise of microbial EPS as versatile bioactive compounds with wide-ranging therapeutic applications. By elucidating their structural features, biological activities, and potential applications, this review aims to catalyze further research and development efforts in leveraging the pharmaceutical potential of microbial EPS for the advancement of human health and well-being, while also contributing to sustainable and environmentally friendly practices in the pharmaceutical industry.
Collapse
Affiliation(s)
- Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India.
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India
| | - Samira Sanami
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shaikh Kaleem
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India
| | - Moch Machfud
- Research Center for Estate Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Titiek Purbiati
- Research Center for Horticulture, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Sugiono Sugiono
- Research Center for Horticulture, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Djumali Djumali
- Research Center for Estate Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | | | - Rully Dyah Purwati
- Research Center for Estate Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Khojin Supriadi
- Research Center for Food Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Farida Rahayu
- Research Center for Genetic Engineering, National Research and Innovation Agency, Bogor, (16911), Indonesia
| |
Collapse
|
6
|
Chen H, Huang S, Zhao Y, Sun R, Wang J, Yao S, Huang J, Yu Z. Metagenomic analysis of the intestinal microbiome reveals the potential mechanism involved in Bacillus amyloliquefaciens in treating schistosomiasis japonica in mice. Microbiol Spectr 2024; 12:e0373523. [PMID: 38441977 PMCID: PMC10986500 DOI: 10.1128/spectrum.03735-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/11/2024] [Indexed: 03/07/2024] Open
Abstract
Schistosomiasis japonica is one of the neglected tropical diseases characterized by chronic hepatic, intestinal granulomatous inflammation and fibrosis, as well as dysbiosis of intestinal microbiome. Previously, the probiotic Bacillus amyloliquefaciens has been shown to alleviate the pathological injuries in mice infected with Schistosoma japonicum by improving the disturbance of the intestinal microbiota. However, the underlying mechanisms involved in this process remain unclear. In this study, metagenomics sequencing and functional analysis were employed to investigate the differential changes in taxonomic composition and functional genes of the intestinal microbiome in S. japonicum-infected mice treated with B. amyloliquefaciens. The results revealed that intervention with B. amyloliquefaciens altered the taxonomic composition of the intestinal microbiota at the species level in infected mice and significantly increased the abundance of beneficial bacteria. Moreover, the abundance of predicted genes in the intestinal microbiome was also significantly changed, and the abundance of xfp/xpk and genes translated to urease was significantly restored. Further analysis showed that Limosilactobacillus reuteri was positively correlated with several KEGG Orthology (KO) genes and metabolic reactions, which might play important roles in alleviating the pathological symptoms caused by S. japonicum infection, indicating that it has the potential to function as another effective therapeutic agent for schistosomiasis. These data suggested that treatment of murine schistosomiasis japonica by B. amyloliquefaciens might be induced by alterations in the taxonomic composition and functional gene of the intestinal microbiome in mice. We hope this study will provide adjuvant strategies and methods for the early prevention and treatment of schistosomiasis japonica. IMPORTANCE Targeted interventions of probiotics on gut microbiome were used to explore the mechanism of alleviating schistosomiasis japonica. Through metagenomic analysis, there were significant changes in the composition of gut microbiota in mice infected with Schistosoma japonicum and significant increase in the abundance of beneficial bacteria after the intervention of Bacillus amyloliquefaciens. At the same time, the abundance of functional genes was found to change significantly. The abundance of genes related to urease metabolism and xfp/xpk related to D-erythrose 4-phosphate production was significantly restored, highlighting the importance of Limosilactobacillus reuteri in the recovery and abundance of predicted genes of the gut microbiome. These results indicated potential regulatory mechanism between the gene function of gut microbiome and host immune response. Our research lays the foundation for elucidating the regulatory mechanism of probiotic intervention in alleviating schistosomiasis japonica, and provides potential adjuvant treatment strategies for early prevention and treatment of schistosomiasis japonica.
Collapse
Affiliation(s)
- Hao Chen
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Shuaiqin Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yiming Zhao
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ruizheng Sun
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingyan Wang
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Siqi Yao
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zheng Yu
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Huang XY, Ye XP, Hu YY, Tang ZX, Zhang T, Zhou H, Zhou T, Bai XL, Pi EX, Xie BH, Shi LE. Exopolysaccharides of Paenibacillus polymyxa: A review. Int J Biol Macromol 2024; 261:129663. [PMID: 38278396 DOI: 10.1016/j.ijbiomac.2024.129663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/30/2023] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
Paenibacillus polymyxa (P. polymyxa) is a member of the genus Paenibacillus, which is a rod-shaped, spore-forming gram-positive bacterium. P. polymyxa is a source of many metabolically active substances, including polypeptides, volatile organic compounds, phytohormone, hydrolytic enzymes, exopolysaccharide (EPS), etc. Due to the wide range of compounds that it produces, P. polymyxa has been extensively studied as a plant growth promoting bacterium which provides a direct benefit to plants through the improvement of N fixation from the atmosphere and enhancement of the solubilization of phosphorus and the uptake of iron in the soil, and phytohormones production. Among the metabolites from P. polymyxa, EPS exhibits many activities, for example, antioxidant, immunomodulating, anti-tumor and many others. EPS has various applications in food, agriculture, environmental protection. Particularly, in the field of sustainable agriculture, P. polymyxa EPS can be served as a biofilm to colonize microbes, and also can act as a nutrient sink on the roots of plants in the rhizosphere. Therefore, this paper would provide a comprehensive review of the advancements of diverse aspects of EPS from P. polymyxa, including the production, extraction, structure, biosynthesis, bioactivity and applications, etc. It would provide a direction for future research on P. polymyxa EPS.
Collapse
Affiliation(s)
- Xuan-Ya Huang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xin-Pei Ye
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yan-Yu Hu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhen-Xing Tang
- School of Culinary Art, Tourism College of Zhejiang, Hangzhou, Zhejiang 311231, China
| | - Tian Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hai Zhou
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ting Zhou
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xue-Lian Bai
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Er-Xu Pi
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Bing-Hua Xie
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Lu-E Shi
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
8
|
Zeng Y, Wu Y, Zhang Q, Xiao X. Crosstalk between glucagon-like peptide 1 and gut microbiota in metabolic diseases. mBio 2024; 15:e0203223. [PMID: 38055342 PMCID: PMC10790698 DOI: 10.1128/mbio.02032-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Gut microbiota exert influence on gastrointestinal mucosal permeability, bile acid metabolism, short-chain fatty acid synthesis, dietary fiber fermentation, and farnesoid X receptor/Takeda G protein-coupled receptor 5 (TGR5) signal transduction. The incretin glucagon-like peptide 1 (GLP-1) is mainly produced by L cells in the gut and regulates postprandial blood glucose. Changes in gut microbiota composition and function have been observed in obesity and type 2 diabetes (T2D). Meanwhile, the function and rhythm of GLP-1 have also been affected in subjects with obesity or T2D. Therefore, it is necessary to discuss the link between the gut microbiome and GLP-1. In this review, we describe the interaction between GLP-1 and the gut microbiota in metabolic diseases. On the one hand, gut microbiota metabolites stimulate GLP-1 secretion, and gut microbiota affect GLP-1 function and rhythm. On the other hand, the mechanism of action of GLP-1 on gut microbiota involves the inflammatory response. Additionally, we discuss the effects and mechanism of various interventions, such as prebiotics, probiotics, antidiabetic drugs, and bariatric surgery, on the crosstalk between gut microbiota and GLP-1. Finally, we stress that gut microbiota can be used as a target for metabolic diseases, and the clinical application of GLP-1 receptor agonists should be individualized.
Collapse
Grants
- 81870545, 81870579, 82170854, 81570715, 81170736 MOST | National Natural Science Foundation of China (NSFC)
- 7202163 Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)
- Z201100005520011 Beijing Municipal Science and Technology Commission, Adminitrative Commission of Zhongguancun Science Park
- 2017YFC1309603, 2021YFC2501700, 2016YFA0101002, 2018YFC2001100 MOST | National Key Research and Development Program of China (NKPs)
- 2019DCT-M-05 Beijing Municipal Human Resources and Social Security Bureau (BMHRSSB)
- 2017PT31036, 2018PT31021 Chinese Academy of Medical Sciences (CAMS)
- 2017PT32020, 2018PT32001 Chinese Academy of Medical Sciences (CAMS)
- CIFMS2017-I2M-1-008, CIFMS2021-I2M-1-002 Chinese Academy of Medical Sciences (CAMS)
- 2022-PUMCH- C-019, 2022-PUMCH-B-121 National High Level Hospital Clinical Research Funding
Collapse
Affiliation(s)
- Yuan Zeng
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yifan Wu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Xiao H, Qin Z, Xu B, Long M, Wu Q, Guo X, Zhang H, Li Z, Wu W. Bacillus amyloliquefaciens B10 Alleviates the Immunosuppressive Effects of Deoxynivalenol and Porcine Circovirus Type 2 Infection. Toxins (Basel) 2023; 16:14. [PMID: 38251231 PMCID: PMC10819842 DOI: 10.3390/toxins16010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024] Open
Abstract
As one of the most common mycotoxins, deoxynivalenol (DON) can contaminate a wide range of crops and foods. Porcine circovirus 2 (PCV2) is a kind of immunosuppressive virus, which can cause porcine circovirus associated disease (PCVD) in pig farms infected with PCV2. Pigs are extremely sensitive to DON, and PCV2-infected pig farms are often contaminated with DON. Our previous studies indicated that Bacillus amyloliquefaciens B10 (B10) has the potential to alleviate the toxicity of mycotoxins. The research was aimed at investigating the effects of Bacillus amyloliquefaciens B10 on the immunosuppressive effects caused by both DON and PCV2 infection. The results indicated that the expression of the PCV2 capsid protein CAP was significantly decreased after pretreatment with Bacillus amyloliquefaciens B10. Then, the effects of the Bacillus amyloliquefaciens B10 pretreatment on the type I interferon, antiviral protein and the antiviral signal pathway cGAS-STING was further investigated. The findings displayed that the expression of the type I interferon and antiviral protein were increased, while the IL-10 were decreased after pretreatment with Bacillus amyloliquefaciens B10. The inhibition of DON on the cGAS-STING signal pathway was relieved. Furthermore, it was found that this intervention effect was produced by inhibiting autophagy. In summary, Bacillus amyloliquefaciens B10 can mitigate the immunosuppressive effects of PCV2 and DON by inhibiting the production of autophagy.
Collapse
Affiliation(s)
- Huiping Xiao
- Joint Research Center for Foodborne Functional Factors and Green Preparation, School of Food and Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China; (H.X.); (Z.Q.); (B.X.); (X.G.); (H.Z.); (Z.L.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Zihui Qin
- Joint Research Center for Foodborne Functional Factors and Green Preparation, School of Food and Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China; (H.X.); (Z.Q.); (B.X.); (X.G.); (H.Z.); (Z.L.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Baocai Xu
- Joint Research Center for Foodborne Functional Factors and Green Preparation, School of Food and Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China; (H.X.); (Z.Q.); (B.X.); (X.G.); (H.Z.); (Z.L.)
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China;
| | - Qinghua Wu
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Xinyi Guo
- Joint Research Center for Foodborne Functional Factors and Green Preparation, School of Food and Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China; (H.X.); (Z.Q.); (B.X.); (X.G.); (H.Z.); (Z.L.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Huayue Zhang
- Joint Research Center for Foodborne Functional Factors and Green Preparation, School of Food and Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China; (H.X.); (Z.Q.); (B.X.); (X.G.); (H.Z.); (Z.L.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Zelin Li
- Joint Research Center for Foodborne Functional Factors and Green Preparation, School of Food and Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China; (H.X.); (Z.Q.); (B.X.); (X.G.); (H.Z.); (Z.L.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Wenda Wu
- Joint Research Center for Foodborne Functional Factors and Green Preparation, School of Food and Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China; (H.X.); (Z.Q.); (B.X.); (X.G.); (H.Z.); (Z.L.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| |
Collapse
|
10
|
Xie Y, Pei F, Liu Y, Liu Z, Chen X, Xue D. Fecal fermentation and high-fat diet-induced obesity mouse model confirmed exopolysaccharide from Weissella cibaria PFY06 can ameliorate obesity by regulating the gut microbiota. Carbohydr Polym 2023; 318:121122. [PMID: 37479437 DOI: 10.1016/j.carbpol.2023.121122] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/23/2023] [Accepted: 06/11/2023] [Indexed: 07/23/2023]
Abstract
Obesity associated with diet and intestinal dysbiosis is a worldwide public health crisis, and exopolysaccharides (EPS) produced by lactic acid bacteria (LAB) have prebiotic potential to ameliorate obesity. Therefore, the present study obtained LAB with the ability to produce high EPS, examined the structure of EPS, and explained its mechanism of alleviating obesity by in vivo and in vitro models. The results showed that Weissella cibaria PFY06 with a high EPS yield was isolated from strawberry juice, and pure polysaccharide (PFY06-EPS) was purified by Sephadex G-100. The structural characteristics of PFY06-EPS showed that the molecular weight was 8.08 × 106 Da and composed of α-(1,6)-D glucosyl residues. An in vitro simulated human colon fermentation test demonstrated that PFY06-EPS increased the abundance of Prevotella and Bacteroides. Cell tests confirmed that PFY06-EPS after fecal fermentation inhibited fat accumulation by promoting the secretion of endogenous gastrointestinal hormones and insulin and inhibiting the secretion of inflammatory factors. Notably, PFY06-EPS reduced weight gain, fat accumulation, inflammatory reactions and insulin resistance in a high-fat diet-induced obesity mouse model and improved glucolipid metabolism. PFY06-EPS intervention reversed obesity-induced microflora disorders, such as reducing the Firmicutes/Bacteroides ratio and increasing butyrate-producing bacteria (Roseburia and Oscillibacter), and reduced endotoxemia to maintain intestinal barrier integrity. Therefore, in vivo and in vitro models showed that PFY06-EPS had potential as a prebiotic that may play an anti-obesity role by improving the function of the gut microbiota.
Collapse
Affiliation(s)
- Yinzhuo Xie
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China
| | - Fangyi Pei
- Office of Academic Research, Qiqihar Medical University, Qiqihar 161006, China.
| | - Yuchao Liu
- Office of Academic Research, Qiqihar Medical University, Qiqihar 161006, China
| | - Zhenyan Liu
- Office of Academic Research, Qiqihar Medical University, Qiqihar 161006, China
| | - Xiaoting Chen
- Office of Academic Research, Qiqihar Medical University, Qiqihar 161006, China
| | - Di Xue
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China
| |
Collapse
|
11
|
Kouakou YI, Lee RJ. Interkingdom Detection of Bacterial Quorum-Sensing Molecules by Mammalian Taste Receptors. Microorganisms 2023; 11:1295. [PMID: 37317269 PMCID: PMC10221136 DOI: 10.3390/microorganisms11051295] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023] Open
Abstract
Bitter and sweet taste G protein-coupled receptors (known as T2Rs and T1Rs, respectively) were originally identified in type II taste cells on the tongue, where they signal perception of bitter and sweet tastes, respectively. Over the past ~15 years, taste receptors have been identified in cells all over the body, demonstrating a more general chemosensory role beyond taste. Bitter and sweet taste receptors regulate gut epithelial function, pancreatic β cell secretion, thyroid hormone secretion, adipocyte function, and many other processes. Emerging data from a variety of tissues suggest that taste receptors are also used by mammalian cells to "eavesdrop" on bacterial communications. These receptors are activated by several quorum-sensing molecules, including acyl-homoserine lactones and quinolones from Gram-negative bacteria such as Pseudomonas aeruginosa, competence stimulating peptides from Streptococcus mutans, and D-amino acids from Staphylococcus aureus. Taste receptors are an arm of immune surveillance similar to Toll-like receptors and other pattern recognition receptors. Because they are activated by quorum-sensing molecules, taste receptors report information about microbial population density based on the chemical composition of the extracellular environment. This review summarizes current knowledge of bacterial activation of taste receptors and identifies important questions remaining in this field.
Collapse
Affiliation(s)
- Yobouet Ines Kouakou
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Robert J. Lee
- Department of Otorhinolaryngology and Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Lu H, Yang P, Zhong M, Bilal M, Xu H, Zhang Q, Xu J, Liang N, Liu S, Zhao L, Zhao Y, Geng C. Isolation of a potential probiotic strain Bacillus amyloliquefaciensLPB-18 and identification of antimicrobial compounds responsible for inhibition of food-borne pathogens. Food Sci Nutr 2023; 11:2186-2196. [PMID: 37181301 PMCID: PMC10171509 DOI: 10.1002/fsn3.3094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/07/2022] [Accepted: 09/25/2022] [Indexed: 12/15/2022] Open
Abstract
This study was carried out to screen a potential probiotic microbe with broad-spectrum antagonistic activity against food-borne pathogens and identify the antimicrobial compounds. Based on morphological and molecular analysis, a new Bacillus strain with the ability to produce effective antimicrobial agents was isolated from the breeding soil of earthworms and identified as having a close evolutionary footprint to Bacillus amyloliquefaciens. The antimicrobial substances produced by B. amyloliquefaciens show effective inhibition of Aspergillus flavus and Fusarium oxysporum in an agar diffusion assay. Antimicrobial agents were identified as a series of fengycin and its isoforms (fengycin A and fengycin B) after being submitted to RT-HPLC and MALDI-TOF MS analyses. To evaluate the probiotic activity of the B. amyloliquefaciens, antibiotic safety and viability of the isolated strain in a simulated gastrointestinal environment were carried out. The safety test result revealed that strain LPB-18 is susceptible to multiple common antibiotics. Moreover, acidic condition and bile salts assay were carried out, and the results revealed that it couble be a potential probiotic microbe B. amyloliquefaciens LPB-18 is good choice for biological strains in agricultural commodities and animal feedstuffs.
Collapse
Affiliation(s)
- Hedong Lu
- School of Life Science and Food EngineeringHuaiyin Institute of TechnologyHuaianChina
- National Engineering Research Center for Functional FoodJiangnan UniversityWuxiChina
| | - Panping Yang
- School of Life Science and Food EngineeringHuaiyin Institute of TechnologyHuaianChina
| | - Mengyuan Zhong
- School of Life Science and Food EngineeringHuaiyin Institute of TechnologyHuaianChina
| | - Muhammad Bilal
- School of Life Science and Food EngineeringHuaiyin Institute of TechnologyHuaianChina
| | - Hai Xu
- School of Life Science and Food EngineeringHuaiyin Institute of TechnologyHuaianChina
| | - Qihan Zhang
- School of Life Science and Food EngineeringHuaiyin Institute of TechnologyHuaianChina
| | - Jiangnan Xu
- School of Life Science and Food EngineeringHuaiyin Institute of TechnologyHuaianChina
| | - Naiguo Liang
- School of Life Science and Food EngineeringHuaiyin Institute of TechnologyHuaianChina
| | - Shuai Liu
- School of Life Science and Food EngineeringHuaiyin Institute of TechnologyHuaianChina
| | - Li Zhao
- School of Life Science and Food EngineeringHuaiyin Institute of TechnologyHuaianChina
| | - Yuping Zhao
- School of Life Science and Food EngineeringHuaiyin Institute of TechnologyHuaianChina
| | - Chengxin Geng
- School of Life Science and Food EngineeringHuaiyin Institute of TechnologyHuaianChina
| |
Collapse
|
13
|
Sánchez-León E, Huang-Lin E, Amils R, Abrusci C. Production and Characterisation of an Exopolysaccharide by Bacillus amyloliquefaciens: Biotechnological Applications. Polymers (Basel) 2023; 15:polym15061550. [PMID: 36987330 PMCID: PMC10056187 DOI: 10.3390/polym15061550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
The Bacillus amyloliquefaciens RT7 strain was isolated from an extreme acidic environment and identified. The biodegradation capabilities of the strain using different carbon sources (glucose, oleic acid, Tween 80, PEG 200, and the combination of glucose-Tween 80) were evaluated via an indirect impedance technique. The glucose-Tween 80 combination was further studied using nuclear magnetic resonance (NMR). The exopolysaccharide (EPSRT7) that had been produced with the strain when biodegrading glucose-Tween 80 was isolated and characterised using different techniques (GC-MS, HPLC/MSMS, ATR-FTIR, TGA, and DSC), and its molecular weight was estimated. The results show that the average molecular weight of EPSRT7 was approximately 7.0794 × 104 Da and a heteropolysaccharide composed of mannose, glucose, galactose, and xylose (molar ratio, 1:0.5:0.1:0.1) with good thermostability. EPSRT7 showed good emulsifying activity against different natural oils and hydrocarbons at high concentrations (2 mg/mL) and at the studied pH range (3.1-7.2). It also presented good emulsifying activity compared to that of commercial emulsifiers. Lastly, EPSRT7 showed antioxidant capacity for different free radicals, a lack of cytotoxicity, and antioxidant activity at the cellular level. EPSRT7 has promising applications in bioremediation processes and other industrial applications.
Collapse
Affiliation(s)
- Enrique Sánchez-León
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, UAM, Cantoblanco, 28049 Madrid, Spain
| | - Elisa Huang-Lin
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, UAM, Cantoblanco, 28049 Madrid, Spain
| | - Ricardo Amils
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, UAM, Cantoblanco, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Concepción Abrusci
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, UAM, Cantoblanco, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| |
Collapse
|
14
|
Li F, Hu X, Qin L, Li H, Yang Y, Zhang X, Lu J, Li Y, Bao M. Characterization and protective effect against ultraviolet radiation of a novel exopolysaccharide from Bacillus marcorestinctum QDR3-1. Int J Biol Macromol 2022; 221:1373-1383. [PMID: 36151616 DOI: 10.1016/j.ijbiomac.2022.09.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/05/2022]
Abstract
Although exopolysaccharide (EPS) has been applied to various fields, EPS for UVR-mediated oxidative stress repair still needs further exploration. In this study, a novel EPS was isolated from the fermentation medium of Bacillus sp. QDR3-1 and its yield was 4.8 g/L (pH 8.0, 12 % glucose, 30 °C and 6 % NaCl). The pure fraction (named EPS-M1) was purified by DEAE-cellulose and Sephadex G-100 column. EPS-M1 was a heteropolysaccharide composed of Man, Glc, Gal, and Fuc with a molecular weight of 33.8 kDa. Scanning electron microscopy (SEM) observed a rough surface and reticular structure of EPS-M1, and EPS-M1 formed spherical aggregates in aqueous solution observed in atomic force microscopy (AFM). Thermal analysis revealed that the degradation temperature of EPS-M1 was 306 °C. Moreover, methylation and NMR analysis determined that EPS-M1 was consisted of →3)-Manp-(1→, →2,6)-Manp-(1→, →4,6)-Glcp-(1→, →3)-Glcp-(1→, →4)-Galp-(1→, →4)-Fucp-(1→, and T-Manp-(1→. Furthermore, the cytotoxicity and the repair ability of UVR-mediated cell damage of EPS-M1 were studied with L929 cells. The results showed that EPS-M1 had good biocompatibility and it could mitigate UVR-mediated cell damage by regulating the levels of cellular reactive oxygen species (ROS), depolarization of mitochondrial membrane potential (MMP) and Caspase-3/7 activity. Overall, the structure analysis and the protective effects of EPS against L929 cells exposed to UVR provided an experimental basis for EPS in practical applications.
Collapse
Affiliation(s)
- Fengshu Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xin Hu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Liying Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Haoshuai Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yan Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Xiuli Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jinren Lu
- College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
15
|
Lu S, Na K, Li Y, Zhang L, Fang Y, Guo X. Bacillus-derived probiotics: metabolites and mechanisms involved in bacteria-host interactions. Crit Rev Food Sci Nutr 2022; 64:1701-1714. [PMID: 36066454 DOI: 10.1080/10408398.2022.2118659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bacillus probiotics have a sporulation capacity that makes them more suitable for processing and storage and for surviving passage through the gastrointestinal tract. The probiotic functions and regulatory mechanisms of different Bacillus have been exploited in many reports, but little is known about how various Bacillus probiotics perform different functions. This knowledge gap results in a lack of specificity in the selection and application of Bacillus. The probiotic properties are strain-specific and cell-type-specific, and are related to the germination potential and to the diversity of metabolites produced following intestinal germination, as this causes the variation in probiotic function and mechanisms. In this review, we discuss the Bacillus metabolites produced during germination and sporulation in the GI tract, as well as possible processes affecting intestinal homeostasis. We conclude that the oxygen-capturing capability and the production of antimicrobials, exoenzymes, competence and sporulation factors (CSF), exopolysaccharides, lactic acid, and cell components are specifically associated with the functional mechanisms of probiotic Bacillus. The aim of this review is to guide the screening of potential Bacillus strains for probiotics and their application in nutrition research. The information provided will also promote further research on Bacillus-derived functional metabolites in human nutrition.
Collapse
Affiliation(s)
- Shuang Lu
- College of Life Science, South-Central Minzu University, Hubei Province, China
| | - Kai Na
- College of Life Science, South-Central Minzu University, Hubei Province, China
| | - Yuanrong Li
- College of Life Science, South-Central Minzu University, Hubei Province, China
| | - Li Zhang
- College of Life Science, South-Central Minzu University, Hubei Province, China
| | - Ying Fang
- College of Life Science, South-Central Minzu University, Hubei Province, China
| | - Xiaohua Guo
- College of Life Science, South-Central Minzu University, Hubei Province, China
| |
Collapse
|
16
|
Exopolysaccharides of Bacillus amyloliquefaciens Amy-1 Mitigate Inflammation by Inhibiting ERK1/2 and NF-κB Pathways and Activating p38/Nrf2 Pathway. Int J Mol Sci 2022; 23:ijms231810237. [PMID: 36142159 PMCID: PMC9499622 DOI: 10.3390/ijms231810237] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/28/2022] Open
Abstract
Bacillus amyloliquefaciens is a probiotic for animals. Evidence suggests that diets supplemented with B. amyloliquefaciens can reduce inflammation; however, the underlying mechanism is unclear and requires further exploration. The exopolysaccharides of B. amyloliquefaciens amy-1 displayed hypoglycemic activity previously, suggesting that they are bioactive molecules. In addition, they counteracted the effect of lipopolysaccharide (LPS) on inducing cellular insulin resistance in exploratory tests. Therefore, this study aimed to explore the anti-inflammatory effect and molecular mechanisms of the exopolysaccharide preparation of amy-1 (EPS). Consequently, EPS reduced the expression of proinflammatory factors, the phagocytic activity and oxidative stress of LPS-stimulated THP-1 cells. In animal tests, EPS effectively ameliorated ear inflammation of mice. These data suggested that EPS possess anti-inflammatory activity. A mechanism study revealed that EPS inhibited the nuclear factor-κB pathway, activated the mitogen-activated protein kinase (MAPK) p38, and prohibited the extracellular signal-regulated kinase 1/2, but had no effect on the c-Jun-N-terminal kinase 2 (JNK). EPS also activated the anti-oxidative nuclear factor erythroid 2–related factor 2 (Nrf2) pathway. Evidence suggested that p38, but not JNK, was involved in activating the Nrf2 pathway. Together, these mechanisms reduced the severity of inflammation. These findings support the proposal that exopolysaccharides may play important roles in the anti-inflammatory functions of probiotics.
Collapse
|
17
|
Ren L, Yuan Z, Xie T, Wu D, Kang Q, Li J, Li J. Extraction and characterization of cyclic lipopeptides with antifungal and antioxidant activities from Bacillus amyloliquefaciens. J Appl Microbiol 2022; 133:3573-3584. [PMID: 36000263 DOI: 10.1111/jam.15791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/09/2022] [Accepted: 08/21/2022] [Indexed: 11/26/2022]
Abstract
AIMS This study aimed to isolate active substances from metabolites of Bacillus amyloliquefaciens SJ100001 and examine their antifungal activity against Fusarium oxysporum (F. oxysporum) SJ300024 screened from the root-soil of cucumber wilt. METHODS AND RESULTS An active substance, anti-SJ300024, was obtained from the fermentation broth of strain SJ100001 by reversed-phase silica gel and gel chromatography, and further got its chemical structure as cyclic lipopeptide Epichlicin through nuclear magnetic resonance (NMR) and mass spectrometry (MS). In vitro experiments showed that Epichlicin had a better inhibitory rate (67.46%) against the strain SJ300024 than the commercially available fungicide hymexazol (45.1%) at the same concentration. The MTT assays proved that Epichlicin was non-cytotoxic, besides it also had good free radical scavenging ability and total reducing ability. CONCLUSIONS Epichlicin isolated from strain SJ100001 can effectively control F. oxysporum SJ300024 screened from the root-soil of cucumber wilt. SIGNIFICANCE AND IMPACT OF THE STUDY Epichlicin may be used as an environmentally friendly and efficient biocontrol agent for controlling Fusarium wilt of cucumber and reducing crop losses. More importantly, the non-cytotoxicity of Epichlicin can avoid harm to consumers. Additionally, Epichlicin has broad application prospects in medicine due to its antioxidant properties.
Collapse
Affiliation(s)
- Li Ren
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Ziqiang Yuan
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Tingyu Xie
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Daren Wu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Qianjin Kang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, China
| | - Jieming Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Jian Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| |
Collapse
|
18
|
Chen P, Li S, Zhou Z, Wang X, Shi D, Li Z, Li X, Xiao Y. Liver fat metabolism of broilers regulated by Bacillus amyloliquefaciens TL via stimulating IGF-1 secretion and regulating the IGF signaling pathway. Front Microbiol 2022; 13:958112. [PMID: 35966703 PMCID: PMC9363834 DOI: 10.3389/fmicb.2022.958112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
Bacillus amyloliquefaciens TL (B.A-TL) is well-known for its capability of promoting protein synthesis and lipid metabolism, in particular, the abdominal fat deposition in broilers. However, the underlying molecular mechanism remains unclear. In our study, the regulations of lipid metabolism of broilers by B.A-TL were explored both in vivo and in vitro. The metabolites of B.A-TL were used to simulate in vitro the effect of B.A-TL on liver metabolism based on the chicken hepatocellular carcinoma cell line (i.e., LMH cells). The effects of B.A-TL on lipid metabolism by regulating insulin/IGF signaling pathways were investigated by applying the signal pathway inhibitors in vitro. The results showed that the B.A-TL metabolites enhanced hepatic lipid synthesis and stimulated the secretion of IGF-1. The liver transcriptome analysis revealed the significantly upregulated expressions of four genes (SI, AMY2A, PCK1, and FASN) in the B.A-TL treatment group, mainly involved in carbohydrate digestion and absorption as well as biomacromolecule metabolism, with a particularly prominent effect on fatty acid synthase (FASN). Results of cellular assays showed that B.A-TL metabolites were involved in the insulin/IGF signaling pathway, regulating the expressions of lipid metabolism genes (e.g., FASN, ACCα, LPIN, and ACOX) and the FASN protein, ultimately regulating the lipid metabolism via the IGF/PI3K/FASN pathway in broilers.
Collapse
|
19
|
ZHAO H, ZHENG Z, ZHANG M, WANG Y, ZHANG M, YANG Z. Fermentation optimization of rennet-producing Bacillus amyloliquefaciens GSBa-1 for high-density culture and its kinetic model. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.40122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Affiliation(s)
- Hua ZHAO
- Beijing Technology and Business University, P. R. China
| | - Zhe ZHENG
- Beijing Technology and Business University, P. R. China
| | - Man ZHANG
- Beijing Technology and Business University, P. R. China
| | - Yihui WANG
- Beijing Technology and Business University, P. R. China
| | - Min ZHANG
- Beijing Technology and Business University, P. R. China
| | - Zhennai YANG
- Beijing Technology and Business University, P. R. China
| |
Collapse
|
20
|
Sung WW, Tu JH, Yu JS, Ulfa MZ, Chang JH, Cheng HL. Bacillus amyloliquefaciens exopolysaccharide preparation induces glucagon-like peptide 1 secretion through the activation of bitter taste receptors. Int J Biol Macromol 2021; 185:562-571. [PMID: 34216658 DOI: 10.1016/j.ijbiomac.2021.06.187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/23/2022]
Abstract
The exopolysaccharide preparation of Bacillus amyloliquefaciens amy-1 (EPS) regulates glycemic levels and promotes glucagon-like peptide 1 (GLP-1) secretion in vivo and in vitro. This study aimed to identify the molecular mechanism underlying EPS-induced GLP-1 secretion. HEK293T cells stably expressing human Gα-gustducin were used as a heterologous system for expressing the genes of human bitter taste receptor (T2R) 10, 14, 30, 38 (PAV), 38 (AVI), 43, and 46, which were expressed as recombinant proteins with an N-terminal tag composed of a Lucy peptide and a human somatostatin receptor subtype 3 fragment for membrane targeting and a C-terminal red fluorescent protein for expression monitoring. EPS induced a dose-dependent calcium response from the human NCI-H716 enteroendocrine cell line revealed by fluorescent calcium imaging, but inhibitors of the G protein-coupled receptor pathway suppressed the response. EPS activated heterologously expressed T2R14 and T2R38 (PAV). shRNAs of T2R14 effectively inhibited EPS-induced calcium response and GLP-1 secretion in NCI-H716 cells, suggesting the involvement of T2R14 in these effects. The involvement of T2R38 was not characterized because NCI-H716 cells express T2R38 (AVI). In conclusion, the activation of T2Rs mediates EPS-induced GLP-1 secretion from enteroendocrine cells, and T2R14 is a critical target activated by EPS in these cells.
Collapse
Affiliation(s)
- Wei-Wen Sung
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, No. 1, Shuehfu Rd., Neipu Township, Pingtung 912301, Taiwan
| | - Jing-Hong Tu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, No. 1, Shuehfu Rd., Neipu Township, Pingtung 912301, Taiwan
| | - Jyun-Sian Yu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, No. 1, Shuehfu Rd., Neipu Township, Pingtung 912301, Taiwan
| | - Marisa Zakiya Ulfa
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, No. 1, Shuehfu Rd., Neipu Township, Pingtung 912301, Taiwan; Department of Agroindustrial Biotechnology, Brawijaya University, Jalan Veteran, Malang 65145, Indonesia
| | - Jia-Hong Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, No. 1, Shuehfu Rd., Neipu Township, Pingtung 912301, Taiwan
| | - Hsueh-Ling Cheng
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, No. 1, Shuehfu Rd., Neipu Township, Pingtung 912301, Taiwan.
| |
Collapse
|
21
|
Tang C, Kong L, Shan M, Lu Z, Lu Y. Protective and ameliorating effects of probiotics against diet-induced obesity: A review. Food Res Int 2021; 147:110490. [PMID: 34399486 DOI: 10.1016/j.foodres.2021.110490] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 05/05/2021] [Accepted: 05/23/2021] [Indexed: 02/07/2023]
Abstract
Diet-induced obesity is one of the major public health concerns all over the world, and obesity also contributes to the development of other chronic diseases such as non-alcoholic fatty acid liver disease, type 2 diabetes mellitus and cardiovascular diseases. Evidence shows that the pathogenesis of obesity and obesity-associated chronic diseases are closely related to dysregulation of lipid metabolism, glucose metabolism and cholesterol metabolism, and oxidative stress, endoplasmic reticulum stress, abnormal gut microbiome and chronic low-grade inflammation. Recently, in view of potential effects on lipid metabolism, glucose metabolism, cholesterol metabolism and intestinal microbiome, as well as anti-oxidative and anti-inflammatory activities, natural probiotics, including live and dead probiotics, and probiotic components and metabolites, have attracted increasing attention and are considered as novel strategies for preventing and ameliorating obesity and obesity-related chronic diseases. Specifically, this review is presented on the anti-obesity effects of probiotics and underlying molecular mechanisms, which will provide a theoretical basis of anti-obesity probiotics for the development of functional foods.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Liangyu Kong
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengyuan Shan
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoxin Lu
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yingjian Lu
- College of Food Science & Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
22
|
Kirby TO, Ochoa-Reparaz J, Roullet JB, Gibson KM. Dysbiosis of the intestinal microbiome as a component of pathophysiology in the inborn errors of metabolism. Mol Genet Metab 2021; 132:1-10. [PMID: 33358495 DOI: 10.1016/j.ymgme.2020.12.289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/26/2022]
Abstract
Inborn errors of metabolism (IEMs) represent monogenic disorders in which specific enzyme deficiencies, or a group of enzyme deficiencies (e.g., peroxisomal biogenesis disorders) result in either toxic accumulation of metabolic intermediates or deficiency in the production of key end-products (e.g., low cholesterol in Smith-Lemli-Opitz syndrome (Gedam et al., 2012 [1]); low creatine in guanidinoacetic acid methyltransferase deficiency (Stromberger, 2003 [2])). Some IEMs can be effectively treated by dietary restrictions (e.g., phenylketonuria (PKU), maple syrup urine disease (MSUD)), and/or dietary intervention to remove offending compounds (e.g., acylcarnitine excretion with the oral intake of l-carnitine in the disorders of fatty acid oxidation). While the IEMs are predominantly monogenic disorders, their phenotypic presentation is complex and pleiotropic, impacting multiple physiological systems (hepatic and neurological function, renal and musculoskeletal impairment, cardiovascular and pulmonary activity, etc.). The metabolic dysfunction induced by the IEMs, as well as the dietary interventions used to treat them, are predicted to impact the gut microbiome in patients, and it is highly likely that microbiome dysbiosis leads to further exacerbation of the clinical phenotype. That said, only recently has the gut microbiome been considered as a potential pathomechanistic consideration in the IEMs. In this review, we overview the function of the gut-brain axis, the crosstalk between these compartments, and the expanding reports of dysbiosis in the IEMs recently reported. The potential use of pre- and probiotics to improve clinical outcomes in IEMs is also highlighted.
Collapse
Affiliation(s)
- Trevor O Kirby
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Javier Ochoa-Reparaz
- Department of Biological Sciences, Eastern Washington University, Cheney, WA, USA
| | - Jean-Baptiste Roullet
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - K Michael Gibson
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA.
| |
Collapse
|
23
|
Chang CI, Cheng SY, Nurlatifah AO, Sung WW, Tu JH, Lee LL, Cheng HL. Bitter Melon Extract Yields Multiple Effects on Intestinal Epithelial Cells and Likely Contributes to Anti-diabetic Functions. Int J Med Sci 2021; 18:1848-1856. [PMID: 33746602 PMCID: PMC7976585 DOI: 10.7150/ijms.55866] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
The intestines have been recognized as important tissues for metabolic regulation, including glycemic control, but their vital role in promoting the anti-diabetic effects of bitter melon, the fruit of Momordica charantia L, has seldom been characterized, nor acknowledged. Evidence suggests that bitter melon constituents can have substantial interactions with the intestinal epithelial cells before circulating to other tissues. We therefore characterized the effects of bitter melon extract (BME) on intestinal epithelial cells. BME was found to contain substantial amounts of carbohydrates, proteins, and triterpenoids. TNF-α induced insulin resistance in an enterocyte cell line of IEC-18 cells, and BME promoted glucose utilization of the insulin-resistant cells. Further analysis suggested that the increased glucose consumption was a result of the combined effects of insulin sensitizing and insulin substitution functions of BME. The functions of insulin substitution were likely generated due to the activation of AMP-activated protein kinase. Meanwhile, BME acted as a glucagon-like peptide 1 (GLP-1) secretagogue on enteroendocrine cells, which may be mediated by the activation of bitter-taste receptors. Therefore, BME possesses insulin sensitizing, insulin substitution, and GLP-1 secretagogue functions upon intestinal cells. These effects of BME on intestinal cells likely play a significant part in the anti-diabetic action of bitter melon.
Collapse
Affiliation(s)
- Chi-I Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Shi-Yie Cheng
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | - Annisa Oktafianti Nurlatifah
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.,Department of Agroindustrial Biotechnology, Brawijaya University, Jalan, Veteran Malang 65145, Indonesia
| | - Wei-Wen Sung
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Jing-Hong Tu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Lin-Lee Lee
- Department of English, National Kaohsiung Normal University, Kaohsiung 80201, Taiwan
| | - Hsueh-Ling Cheng
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
24
|
WoldemariamYohannes K, Wan Z, Yu Q, Li H, Wei X, Liu Y, Wang J, Sun B. Prebiotic, Probiotic, Antimicrobial, and Functional Food Applications of Bacillus amyloliquefaciens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14709-14727. [PMID: 33280382 DOI: 10.1021/acs.jafc.0c06396] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Bacillus amyloliquefaciens belongs to the genus Bacillus and family Baciliaceae. It is ubiquitously found in food, plants, animals, soil, and in different environments. In this review, the application of B. amyloliquefaciens in probiotic and prebiotic microbes in fermentation, synthesis, and hydrolysis of food compounds is discussed as well as further insights into its potential application and gaps. B. amyloliquefaciens is also a potential microbe in the synthesis of bioactive compounds including peptides and exopolysaccharides. In addition, it can synthesize antimicrobial compounds (e.g., Fengycin, and Bacillomycin Lb), which makes its novelty in the food sector greater. Moreover, it imparts and improves the functional, sensory, and shelf life of the end products. The hydrolysis of complex compounds including insoluble proteins, carbohydrates, fibers, hemicellulose, and lignans also shows that B. amyloliquefaciens is a multifunctional and potential microbe which can be applied in the food industry and in functional food processing.
Collapse
Affiliation(s)
- Kalekristos WoldemariamYohannes
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Zhen Wan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Qinglin Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Hongyan Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xuetuan Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingli Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|