1
|
Wang YD, Han LS, Li GY, Yang KL, Shen YL, Zhang H, Hou JF, Wang EP. A Comparative Study of the Chemical Composition and Skincare Activities of Red and Yellow Ginseng Berries. Molecules 2024; 29:4962. [PMID: 39459330 PMCID: PMC11510097 DOI: 10.3390/molecules29204962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
This study was conducted to investigate the differences in chemical composition between red (RGBs) and yellow ginseng berries (YGBs) and their whitening and anti-aging skincare effects. The differences in the chemical composition between RGB and YGB were analyzed by ultra-high-performance liquid chromatography tandem quadrupole electrostatic field orbit trap mass spectrometry (UHPLC-Q-Exactive-MS/MS) combined with multivariate statistics. An aging model was established using UVB radiation induction, and the whitening and anti-aging effects of the two ginseng berries were verified in vitro and in vivo using cell biology (HaCaT and B16-F10 cells) and zebrafish model organisms. A total of 31 differential compounds, including saponins, flavonoids, phenolic acids, and other chemical constituents, were identified between the two groups. Superoxide dismutase (SOD) activity was more significantly increased (p < 0.05) and malondialdehyde (MDA) content was more significantly decreased (p < 0.01) in RGB more than YGB induced by UVB ultraviolet radiation. In terms of whitening effects, YGB was more effective in inhibiting the melanin content of B16-F10 cells (p < 0.01). The results of zebrafish experiments were consistent with those of in vitro experiments and cell biology experiments. The DCFH fluorescence staining results revealed that both ginseng berries were able to significantly reduce the level of reactive oxygen species (ROS) in zebrafish (p < 0.01). Comparison of chemical composition and skin care activities based on RGB and YGB can provide a theoretical basis for the deep development and utilization of ginseng berry resources.
Collapse
Affiliation(s)
- Yu-Dan Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.-D.W.); (L.-S.H.); (G.-Y.L.); (K.-L.Y.)
| | - Lu-Sheng Han
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.-D.W.); (L.-S.H.); (G.-Y.L.); (K.-L.Y.)
| | - Gen-Yue Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.-D.W.); (L.-S.H.); (G.-Y.L.); (K.-L.Y.)
| | - Kai-Li Yang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.-D.W.); (L.-S.H.); (G.-Y.L.); (K.-L.Y.)
| | - Yan-Long Shen
- College of Innovation and Entrepreneurship, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Hao Zhang
- Institute of Special Animal and Plant Sciences CAAS, Changchun 130112, China;
| | - Jian-Feng Hou
- Shiqi Biological R&D Centre (Suzhou Industrial Park) Co., Ltd., Suzhou 215125, China;
| | - En-Peng Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.-D.W.); (L.-S.H.); (G.-Y.L.); (K.-L.Y.)
| |
Collapse
|
2
|
Seong J, Lee HY, Jeong JB, Cho DY, Kim DH, Lee JH, Lee GY, Jang MY, Lee JH, Cho KM. Comparison in Bioactive Compounds and Antioxidant Activity of Cheonggukjang Containing Mountain-Cultivated Ginseng Using Two Bacillus Genus. Foods 2024; 13:3155. [PMID: 39410190 PMCID: PMC11475840 DOI: 10.3390/foods13193155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
In this study, the nutrients, phytochemicals (including isoflavone and ginsenoside derivatives), and antioxidant activities of cheonggukjang with different ratios (0%, 2.5%, 5%, and 10%) of mountain-cultivated ginseng (MCG) were compared and analyzed using microorganisms isolated from traditional cheonggukjang. The IDCK 30 and IDCK 40 strains were confirmed as Bacillus licheniformis and Bacillus subtilis, respectively, based on morphological, biological, biochemical, and molecular genetic identification, as well as cell wall fatty acid composition. The contents of amino acids and fatty acids showed no significant difference in relation to the ratio of MCG. After fermentation, isoflavone glycoside (such as daidzin, glycitin, and genistin) contents decreased, while aglycone (daidzein, glycitein, and genistein) contents increased. However, total ginsenoside contents were higher according to the ratio of MCG. After fermentation, ginsenoside Rg2, F2, and protopanaxadiol contents of cheonggukjang decreased. Conversely, ginsenoside Rg3 (2.5%: 56.51 → 89.43 μg/g, 5.0%: 65.56 → 94.71 μg/g, and 10%: 96.05 → 166.90 μg/g) and compound K (2.5%: 28.54 → 69.43 μg/g, 5.0%: 41.63 → 150.72 μg/g, and 10%: 96.23 → 231.33 μg/g) increased. The total phenolic and total flavonoid contents were higher with increasing ratios of MCG and fermentation (fermented cheonggukjang with 10% MCG: 13.60 GAE and 1.87 RE mg/g). Additionally, radical scavenging activities and ferric reducing/antioxidant power were significantly increased in fermented cheonggukjang. This study demonstrates that the quality of cheonggukjang improved, and cheonggukjang with MCG as natural antioxidants may be useful in food and pharmaceutical applications.
Collapse
Affiliation(s)
- Jina Seong
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National Univesity, Jinju 52725, Republic of Korea
| | - Hee Yul Lee
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National Univesity, Jinju 52725, Republic of Korea
| | - Jong Bin Jeong
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National Univesity, Jinju 52725, Republic of Korea
| | - Du Yong Cho
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National Univesity, Jinju 52725, Republic of Korea
| | - Da Hyun Kim
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National Univesity, Jinju 52725, Republic of Korea
| | - Ji Ho Lee
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National Univesity, Jinju 52725, Republic of Korea
| | - Ga Young Lee
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National Univesity, Jinju 52725, Republic of Korea
| | - Mu Yeun Jang
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National Univesity, Jinju 52725, Republic of Korea
| | - Jin Hwan Lee
- Department of Life Resource Industry, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Kye Man Cho
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National Univesity, Jinju 52725, Republic of Korea
| |
Collapse
|
3
|
Khan IU, Aqsa A, Jamil Y, Khan N, Iqbal A, Ali S, Hamayun M, Alrefaei AF, Faraj TK, Lee B, Ahmad A. Anti-Oxidative and Anti-Apoptotic Oligosaccharides from Pichia pastoris-Fermented Cress Polysaccharides Ameliorate Chromium-Induced Liver Toxicity. Pharmaceuticals (Basel) 2024; 17:958. [PMID: 39065806 PMCID: PMC11280323 DOI: 10.3390/ph17070958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Oxidative stress impairs the structure and function of the cell, leading to serious chronic diseases. Antioxidant-based therapeutic and nutritional interventions are usually employed for combating oxidative stress-related disorders, including apoptosis. Here, we investigated the hepatoprotective effect of oligosaccharides, produced through Pichia pastoris-mediated fermentation of water-soluble polysaccharides isolated from Lepidium sativum (cress) seed mucilage, on chromium(VI)-induced oxidative stress and apoptosis in mice. Gel permeation chromatography (GPC), using Bio-Gel P-10 column, of the oligosaccharides product of fermentation revealed that P. pastoris effectively fermented polysaccharides as no long chain polysaccharides were observed. At 200 µg/mL, fractions DF73, DF53, DF72, and DF62 exhibited DPPH radical scavenging activity of 92.22 ± 2.69%, 90.35 ± 0.43%, 88.83 ± 3.36%, and 88.83 ± 3.36%, respectively. The antioxidant potential of the fermentation product was further confirmed through in vitro H2O2 radical scavenging assay. Among the screened samples, the highest H2O2 radical scavenging activity was displayed by DF73, which stabilized the free radicals by 88.83 ± 0.38%, followed by DF53 (86.48 ± 0.83%), DF62 (85.21 ± 6.66%), DF72 (79.9 4± 1.21%), and EPP (77.76 ± 0.53%). The oligosaccharide treatment significantly alleviated chromium-induced liver damage, as evident from the increase in weight gain, improved liver functions, and reduced histopathological alterations in the albino mice. A distinctly increased level of lipid peroxide (LPO) free radicals along with the endogenous hepatic enzymes were evident in chromium induced hepatotoxicity in mice. However, oligosaccharides treatment mitigated these effects by reducing the LPO production and increasing ALT, ALP, and AST levels, probably due to relieving the oxidative stress. DNA fragmentation assays illustrated that Cr(VI) exposure induced massive apoptosis in liver by damaging the DNA which was then remediated by oligosaccharides supplementation. Histopathological observations confirmed that the oligosaccharide treatment reverses the architectural changes in liver induced by chromium. These results suggest that oligosaccharides obtained from cress seed mucilage polysaccharides through P. pastoris fermentation ameliorate the oxidative stress and apoptosis and act as hepatoprotective agent against chromium-induced liver injury.
Collapse
Affiliation(s)
- Imdad Ullah Khan
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (I.U.K.); (A.A.); (Y.J.); (N.K.)
| | - Aqsa Aqsa
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (I.U.K.); (A.A.); (Y.J.); (N.K.)
| | - Yusra Jamil
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (I.U.K.); (A.A.); (Y.J.); (N.K.)
| | - Naveed Khan
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (I.U.K.); (A.A.); (Y.J.); (N.K.)
| | - Amjad Iqbal
- Department of Food Science and Technology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | | | - Turki Kh. Faraj
- Department of Soil Science, College of Food and Agriculture Sciences, King Saud University, Riyadh 145111, Saudi Arabia;
| | - Bokyung Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Ayaz Ahmad
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (I.U.K.); (A.A.); (Y.J.); (N.K.)
| |
Collapse
|
4
|
Chen YJ, Sui X, Wang Y, Zhao ZH, Han TH, Liu YJ, Zhang JN, Zhou P, Yang K, Ye ZH. Preparation, structural characterization, biological activity, and nutritional applications of oligosaccharides. Food Chem X 2024; 22:101289. [PMID: 38544933 PMCID: PMC10966145 DOI: 10.1016/j.fochx.2024.101289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 11/11/2024] Open
Abstract
Oligosaccharides are low-molecular-weight carbohydrates between monosaccharides and polysaccharides. They can be extracted directly from natural products by physicochemical methods or obtained by chemical synthesis or enzymatic reaction. Oligosaccharides have important physicochemical and physiological properties. Their research and production involve many disciplines such as medicine, chemical industry, and biology. Functional oligosaccharides, as an excellent functional food base, can be used as dietary fibrer and prebiotics to enrich the diet; improve the microecology of the gut; exert antitumour, anti-inflammatory, antioxidant, and lipid-lowering properties. Therefore, the industrial applications of oligosaccharides have increased rapidly in the past few years. It has great prospects in the field of food and medicinal chemistry. This review summarized the preparation, structural features and biological activities of oligosaccharides, with particular emphasis on the application of functional oligosaccharides in the food industry and human nutritional health. It aims to inform further research and development of oligosaccharides and food chemistry.
Collapse
Affiliation(s)
- Ya-jing Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Xin Sui
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yue Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Zhi-hui Zhao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Tao-hong Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Yi-jun Liu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Jia-ning Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Ping Zhou
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, Beijing 100191, China
| | - Ke Yang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China
| | - Zhi-hong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
5
|
Ito H, Ito M. Recent trends in ginseng research. J Nat Med 2024; 78:455-466. [PMID: 38512649 DOI: 10.1007/s11418-024-01792-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
Ginseng, the dried root of Panax ginseng, contains ginsenosides and has long been used in Korea, China, and Japan to treat various symptoms. Many studies on the utility of ginseng have been conducted and in this paper we investigate recent trends in ginseng research. P. ginseng studies were collected from scientific databases (PubMed, Web of Science, and SciFindern) using the keywords "Panax ginseng C.A. Meyer", "ginsenosides", "genetic diversity", "biosynthesis", "cultivation", and "pharmacology". We identified 1208 studies up to and including September 2023: 549 studies on pharmacology, 262 studies on chemical components, 131 studies on molecular biology, 58 studies on cultivation, 71 studies on tissue culture, 28 studies on clinical trials, 123 reviews, and 49 studies in other fields. Many researchers focused on the characteristic ginseng component ginsenoside to elucidate the mechanism of ginseng's pharmacological action, the relationship between component patterns and cultivation areas and conditions, and gene expression.
Collapse
Affiliation(s)
- Honoka Ito
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-Cho, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Michiho Ito
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-Ku, Kawasaki City, Kanagawa, 210-9501, Japan.
| |
Collapse
|
6
|
Ma Y, Zhang F, Xie Y, An L, Zhang B, Yu B, Li R. Oligosaccharides from Asparagus cochinchinensis for ameliorating LPS-induced acute lung injury in mice. Food Funct 2024; 15:2693-2705. [PMID: 38376424 DOI: 10.1039/d3fo05628g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Asparagi radix is an edible herb with medicinal properties and is now widely used in clinical applications for improving pulmonary inflammation. However, the lung-protective effect and the active constituents of Asparagi radix are yet to be elucidated. Herein, the potential pulmonary protective effect of the oligosaccharides of Asparagi radix was investigated. We firstly identified eighteen oligosaccharides with different degrees of polymerization from Asparagi radix using HPLC-QTOF MS. Oligosaccharides were analysed for 20 samples of Asparagi radix collected from various regions in China using HILIC-ELSD and were found to stably exist in this herb. In this study, we found that AROS significantly reduced NO production and effectively down-regulated the mRNA expression of IL-6, IL-1β and TNF-α in RAW 264.7 cells, thereby reducing the inflammatory response induced by LPS. AROS also inhibited LPS-stimulated intracellular ROS production. A murine model of lipopolysaccharide (LPS)-induced acute lung injury was used to evaluate the in vivo anti-inflammatory and lung protective efficacies of AROS. AROS ameliorated the damage to the pulmonary cellular architecture pathological injury and lung edema. AROS significantly decreased the levels of cytokines IL-6, TNF-α and IL-1β; the levels of MPO and MDA; and superoxide dismutase consumption in vivo. This effect of oligosaccharides can explain the traditional usage of Asparagus cochinchinensis as a tonic medicine for respiratory problems, and oligosaccharides from Asparagi radix used as a natural ingredient can play an important role in protecting lung injury.
Collapse
Affiliation(s)
- Yajie Ma
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, P.R. China.
| | - Fan Zhang
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, P.R. China.
| | - Yujun Xie
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, P.R. China.
| | - Luyao An
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, P.R. China.
| | - Boli Zhang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Boyang Yu
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, P.R. China.
| | - Renshi Li
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, P.R. China.
| |
Collapse
|
7
|
Liang S, Yu J, Zhao M, Chen S, Lu X, Ye F, Chen J, Zhao G, Lei L. In vitro digestion and fecal fermentation of selenocompounds: impact on gut microbiota, antioxidant activity, and short-chain fatty acids. Food Res Int 2024; 180:114089. [PMID: 38395585 DOI: 10.1016/j.foodres.2024.114089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/08/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Selenium bioavailability is critically influenced by gut microbiota, yet the interaction dynamics with selenocompounds remain unexplored. Our study found that L-Selenomethionine (SeMet) and Se-(Methyl)seleno-L-cysteine (MeSeCys) maintained stability during in vitro gastrointestinal digestion. In contrast, Selenite and L-Selenocystine (SeCys2) were degraded by approximately 13% and 35%. Intriguingly, gut microflora transformed MeSeCys, SeCys2, and Selenite into SeMet. Moreover, when SeCys2 and Selenite incubated with gut microbiota, they produced red selenium nanoparticles with diameters ranging between 100 and 400 nm and boosted glutathione peroxidase activity. These changes were positively associated with an increased relative abundance of unclassified_g__Blautia (Family Lachnospiraceae), Erysipelotrichaceae_UCG-003 (Family Erysipelatoclostridiaceae), and uncultured_bacterium_g__Subdoligranulum (Family Ruminococcaceae). Our findings implied that differential microbial sensitivities to selenocompounds, potentially attributable to their distinct mechanisms governing selenium uptake, storage, utilization, and excretion.
Collapse
Affiliation(s)
- Shuojia Liang
- College of Food Science, Southwest University, Chongqing 400715, PR China.
| | - Junlei Yu
- Food Inspection and Testing Research Institute of Jiangxi General Institute of Testing and Certification, Nanchang, Jiangxi 330046, PR China.
| | - Meng Zhao
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Sha Chen
- Food Inspection and Testing Research Institute of Jiangxi General Institute of Testing and Certification, Nanchang, Jiangxi 330046, PR China
| | - Xiang Lu
- Beijing Shiji Chuangzhan Food Technology Co., Ltd., Beijing 100068, PR China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Jia Chen
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Lin Lei
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China.
| |
Collapse
|
8
|
Zhang M, Xu L, Chen L, Wu H, Jia L, Zhu H. Dendrobium officinale Polysaccharides as a Natural Functional Component for Acetic-Acid-Induced Gastric Ulcers in Rats. Molecules 2024; 29:880. [PMID: 38398633 PMCID: PMC10891678 DOI: 10.3390/molecules29040880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Dendrobium officinale is an important edible and medicinal plant, with the Dendrobium officinale polysaccharide (DOP) being its primary active constituent, known for its diverse biological activities. In this study, DOP was extracted and characterized for its structural properties. The potential of DOP to ameliorate gastric ulcers (GUs) was investigated using an acetic-acid-induced GU model in rats. The results demonstrated that DOP exerted a multifaceted protective effect against GU, mitigating the deleterious impact on food intake and body weight in rats. DOP exhibited its protective action by attenuating cellular damage attributed to oxidative stress and inflammatory reactions mediated by enhanced activities of SOD, GSH, and GSH-PX, coupled with a downregulation in the expression of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α. Furthermore, DOP effectively inhibited apoptosis in gastric mucosa cells of acetic-acid-induced GU rat models and facilitated the self-repair of damaged tissues. Remarkably, the DOP-200 and DOP-400 groups outperformed omeprazole in reducing the expression of IL-6 and malondialdehyde (MDA) in tissues, as well as IL-1β, IL-6, and TNF-α in serum. These groups also exhibited an improved expression of SOD in tissues and SOD, GSH, and GSH-PX in serum. A Western blot analysis of gastric mucosa demonstrated that the DOP-200 and DOP-400 groups significantly reduced the expression of NF-κBp65, phosphorylated NF-κBp65, FoxO3a, and Bim. The observed antagonism to GU appeared to be associated with the NF-κB cell pathway. Additionally, qRT-PCR results indicate that DOP reduced the mRNA transcription levels of IL-6, and TNF-α, which shows that the healing of GU is related to the reduction in the inflammatory reaction by DOP. However, the expression of EGF and VEGF decreased, suggesting that the mechanism of DOP inhibiting GU may not be directly related to EGF and VEGF, or there is an uncertain competitive relationship between them, so further research is needed.
Collapse
Affiliation(s)
- Miao Zhang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China; (M.Z.); (L.J.)
- Guangxi Science Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China; (L.X.); (L.C.); (H.W.)
| | - Liba Xu
- Guangxi Science Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China; (L.X.); (L.C.); (H.W.)
| | - Long Chen
- Guangxi Science Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China; (L.X.); (L.C.); (H.W.)
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, 36310 Vigo, Spain
| | - Huan Wu
- Guangxi Science Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China; (L.X.); (L.C.); (H.W.)
| | - Li Jia
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China; (M.Z.); (L.J.)
| | - Hua Zhu
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China; (M.Z.); (L.J.)
- Guangxi Science Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China; (L.X.); (L.C.); (H.W.)
| |
Collapse
|
9
|
Zhang H, Sun Y, Fan M, Zhang Y, Liang Z, Zhang L, Gao X, He X, Li X, Zhao D, Sagratini G, Su H, Qi W. Prevention effect of total ginsenosides and ginseng extract from Panax ginseng on cyclophosphamide-induced immunosuppression in mice. Phytother Res 2023; 37:3583-3601. [PMID: 37070654 DOI: 10.1002/ptr.7836] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 04/19/2023]
Abstract
Oral decoction is widely applied in traditional Chinese medicines. The polysaccharides of decoction promote the exposure of small molecules and increase their bioavailability. This study mainly compared the component and activities of total ginsenosides (TGS) and ginseng extract (GE) on immunosuppressed mice induced by cyclophosphamide. Thirty-two mice were randomly divided into control, model, TGS, and GE groups. The mice were orally administered for 28 days and then injected with cyclophosphamide on the last four days. The results of component analysis showed the total content of 12 ginsenosides in TGS (67.21%) was higher than GE (2.04%); the total content of 17 amino acids in TGS (1.41%) was lower than GE (5.36%); the total content of 10 monosaccharides was similar in TGS (74.12%) and GE (76.36%). The animal results showed that both TGS and GE protected the hematopoietic function of bone marrow by inhibiting cell apoptosis, and recovering the normal cell cycle of BM; maintained the dynamic balance between the Th1 and Th2 cells; also protected the spleen, thymus, and liver. Meanwhile, TGS and GE protected the intestinal bacteria of immunosuppressed mice by increasing the abundance of lactobacillus and decreasing the abundance of the odoribacter and clostridia_UCG-014. The prevention effect of GE was superior to TGS in some parameters. In conclusion, TGS and GE protected the immune function of immunosuppressed mice induced by cyclophosphamide. Meanwhile, GE showed higher bioavailability and bioactivity compared with TGS, because the synergistic effect of polysaccharides and ginsenosides plays an important role in protecting the immune function.
Collapse
Affiliation(s)
- He Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun, China
| | - Yue Sun
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Meiling Fan
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yuyao Zhang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun, China
| | - Zuguo Liang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Lancao Zhang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun, China
| | - Xiang Gao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xinzhu He
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun, China
| | | | - Hang Su
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun, China
| | - Wenxiu Qi
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
10
|
Zhang H, Sun Y, Fan M, Zhang Y, Liang Z, Zhang L, Gao X, He X, Li X, Zhao D, Sagratini G, Su H, Qi W. Prevention effect of total ginsenosides and ginseng extract from Panax ginseng on cyclophosphamide‐induced immunosuppression in mice. Phytother Res 2023; 37:3583-3601. [DOI: doi.org/10.1002/ptr.7836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/01/2023] [Indexed: 07/02/2024]
Abstract
AbstractOral decoction is widely applied in traditional Chinese medicines. The polysaccharides of decoction promote the exposure of small molecules and increase their bioavailability. This study mainly compared the component and activities of total ginsenosides (TGS) and ginseng extract (GE) on immunosuppressed mice induced by cyclophosphamide. Thirty‐two mice were randomly divided into control, model, TGS, and GE groups. The mice were orally administered for 28 days and then injected with cyclophosphamide on the last four days. The results of component analysis showed the total content of 12 ginsenosides in TGS (67.21%) was higher than GE (2.04%); the total content of 17 amino acids in TGS (1.41%) was lower than GE (5.36%); the total content of 10 monosaccharides was similar in TGS (74.12%) and GE (76.36%). The animal results showed that both TGS and GE protected the hematopoietic function of bone marrow by inhibiting cell apoptosis, and recovering the normal cell cycle of BM; maintained the dynamic balance between the Th1 and Th2 cells; also protected the spleen, thymus, and liver. Meanwhile, TGS and GE protected the intestinal bacteria of immunosuppressed mice by increasing the abundance of lactobacillus and decreasing the abundance of the odoribacter and clostridia_UCG‐014. The prevention effect of GE was superior to TGS in some parameters. In conclusion, TGS and GE protected the immune function of immunosuppressed mice induced by cyclophosphamide. Meanwhile, GE showed higher bioavailability and bioactivity compared with TGS, because the synergistic effect of polysaccharides and ginsenosides plays an important role in protecting the immune function.
Collapse
Affiliation(s)
- He Zhang
- Research Center of Traditional Chinese Medicine The Affiliated Hospital to Changchun University of Chinese Medicine Changchun China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine Changchun China
| | - Yue Sun
- School of Pharmacy University of Camerino Camerino Italy
| | - Meiling Fan
- Research Center of Traditional Chinese Medicine The Affiliated Hospital to Changchun University of Chinese Medicine Changchun China
| | - Yuyao Zhang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine Changchun China
| | - Zuguo Liang
- College of Pharmacy Changchun University of Chinese Medicine Changchun China
| | - Lancao Zhang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine Changchun China
| | - Xiang Gao
- College of Pharmacy Changchun University of Chinese Medicine Changchun China
| | - Xinzhu He
- College of Pharmacy Changchun University of Chinese Medicine Changchun China
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine Changchun China
| | - Daqing Zhao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine Changchun China
| | | | - Hang Su
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine Changchun China
| | - Wenxiu Qi
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine Changchun China
| |
Collapse
|
11
|
Zhao Y, Li X, Guo S, Xu J, Cui Y, Zheng M, Liu J. Thermodynamics and Physicochemical Properties of Immobilized Maleic Anhydride-Modified Xylanase and Its Application in the Extraction of Oligosaccharides from Wheat Bran. Foods 2023; 12:2424. [PMID: 37372634 DOI: 10.3390/foods12122424] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Xylanases are the preferred enzymes for the extracting of oligosaccharides from wheat bran. However, free xylanases have poor stability and are difficult to reuse, which limit their industrial application. In the present study, we covalently immobilized free maleic anhydride-modified xylanase (FMA-XY) to improve its reusability and stability. The immobilized maleic anhydride-modified xylanase (IMA-XY) exhibited better stability compared with the free enzyme. After six repeated uses, 52.24% of the activity of the immobilized enzyme remained. The wheat bran oligosaccharides extracted using IMA-XY were mainly xylopentoses, xylohexoses, and xyloheptoses, which were the β-configurational units and α-configurational units of xylose. The oligosaccharides also exhibited good antioxidant properties. The results indicated that FMA-XY can easily be recycled and can remain stable after immobilization; therefore, it has good prospects for future industrial applications.
Collapse
Affiliation(s)
- Yang Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Xinrui Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Shuo Guo
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Jingwen Xu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Yan Cui
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| |
Collapse
|
12
|
Zhang S, Ding C, Liu X, Zhao Y, Ding Q, Sun S, Zhang J, Yang J, Liu W, Li W. Research Progress on Extraction, Isolation, Structural Analysis and Biological Activity of Polysaccharides from Panax Genus. Molecules 2023; 28:molecules28093733. [PMID: 37175143 PMCID: PMC10179830 DOI: 10.3390/molecules28093733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The panax genus is a widely used medicinal plant with good biological activity. As one of the main active components of the Panax genus, polysaccharides have various pharmacological effects. This review summarizes the latest research reports on ginseng, American ginseng, and Panax notoginseng polysaccharides and compares the differences in extraction, isolation and purification, structural characteristics, and biological activities. The current research mainly focuses on ginseng polysaccharides, and the process of extraction, isolation, and structure analysis of each polysaccharide is roughly the same. Modern pharmacological studies have shown that these polysaccharides have antioxidants, antitumor, immunomodulatory, antidiabetic, intestinal protection, skin repair, and other biological activities. This review provides new insights into the differences between the three kinds of ginseng polysaccharides which will help to further study the medicinal value of ginseng in traditional Chinese medicine.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Xinglong Liu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Yingchun Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shuwen Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jinping Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jiali Yang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543003, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
13
|
Wang L, Fu X, Hyun J, Xu J, Gao X, Jeon YJ. In Vitro and In Vivo Protective Effects of Agaro-Oligosaccharides against Hydrogen Peroxide-Stimulated Oxidative Stress. Polymers (Basel) 2023; 15:polym15071612. [PMID: 37050226 PMCID: PMC10096889 DOI: 10.3390/polym15071612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/18/2023] [Accepted: 03/20/2023] [Indexed: 03/28/2023] Open
Abstract
In our previous research, we investigated the anti-inflammatory activity of the agaro-oligosaccharides prepared from the agar of Gracilaria lemaneiformis (AO). In the present study, in order to further explore the bioactivities of AO, the antioxidant activity of AO was investigated in vitro in Vero cells and in vivo in zebrafish. AO scavenged alkyl, 1,1-diphenyl-2-picrylhydrazyl, and hydroxyl radicals at the IC50 value of 4.86 ± 0.13, 3.02 ± 0.44, and 1.33 ± 0.05 mg/mL, respectively. AO significantly suppressed hydrogen peroxide (H2O2)-stimulated oxidative damage by improving cell viability. This happened via suppressing apoptosis by scavenging intracellular reactive oxygen species (ROS). Furthermore, the in vivo results displayed that AO protected zebrafish against H2O2-stimulated oxidative damage by reducing the levels of intracellular ROS, cell death, and lipid peroxidation in a dose-dependent manner. These results indicate that AO effectively alleviated in vitro and in vivo oxidative damage stimulated by H2O2, and suggest the potential of AO in the cosmetic and functional food industries.
Collapse
Affiliation(s)
- Lei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiaoting Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Correspondence: (X.F.); (Y.-J.J.)
| | - Jimin Hyun
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Jiachao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xin Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
- Marine Science Institute, Jeju National University, Jeju 63333, Republic of Korea
- Correspondence: (X.F.); (Y.-J.J.)
| |
Collapse
|
14
|
Lin G, Li Y, Chen X, Zhang F, Linhardt RJ, Zhang A. Extraction, structure and bioactivities of polysaccharides from Sanghuangporus spp.: A review. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
15
|
Influences of Ultrasonic Treatments on the Structure and Antioxidant Properties of Sugar Beet Pectin. Foods 2023; 12:foods12051020. [PMID: 36900538 PMCID: PMC10001074 DOI: 10.3390/foods12051020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
The objective of this study was to explore the structural changes and oxidation resistance of ultrasonic degradation products of sugar beet pectin (SBP). The changes in the structures and antioxidant activity between SBP and its degradation products were compared. As the ultrasonic treatment time increased, the content of α-D-1,4-galacturonic acid (GalA) also increased, to 68.28%. In addition, the neutral sugar (NS) content, esterification degree (DE), particle size, intrinsic viscosity and viscosity-average molecular weight (MV) of the modified SBP decreased. Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM) were used to study the degradation of the SBP structure after ultrasonication. After ultrasonic treatment, the DPPH and ABTS free radical scavenging activities of the modified SBP reached 67.84% and 54.67% at the concentration of 4 mg/mL, respectively, and the thermal stability of modified SBP was also improved. All of the results indicate that the ultrasonic technology is an environmentally friendly, simple, and effective strategy to improve the antioxidant capacity of SBP.
Collapse
|
16
|
Soliman HM. Preparation of a Regioselective Quercetin-3-palmitate and Its Using for Boosting Cooking Oil Stability. J Oleo Sci 2023; 72:139-151. [PMID: 36631100 DOI: 10.5650/jos.ess22162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Due to over worldwide use of frying oil, and due to its oxidation and deterioration after the usage for short time, huge oil amounts are wasted. So, most attempts are aimed to increase oil stability. Quercetin is a common name for the lipophobic strong natural phenolic antioxidant 2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-4H-1-benzopyran-4-one. Thus, its solubility had been improved by converting it to a lipophilic compound via its appending to a fatty acid residue. So, regioselectively 2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-3-[Hexadecanyl]oxychromen-4-one commonly named as (Quercetin-3-palmitate) was synthesized. The formed compound was confirmed based on its elemental analysis and spectral data (IR, 1H NMR and MS). The partition coefficient of Quercetin-3-palmitate in octanol/water (k) was determined and compared to that of palmitic acid and quercetin individually to prove its solubility enhancement. Its radical scavenging activity was then tested. The effect of this new antioxidant compound on the oil stability was studied through the frying process. All physical and chemical parameters of this oil were considered before and after the frying process compared to another reference antioxidant (TBHQ) and control sample. The safety of this compound was determined by acute oral toxicity using albino mice. The liver and kidney functions of these mice were also examined. The results showed non-significant change. A sensory evaluation of the fried potato chips has been done. The results showed that the properties of the potato chips were improved by adding Quercetin-3-palmitate to the oil. Thus, good protection against frying oils oxidation was achieved via the addition of Quercetin-3-palmitate. The Quercetin-3-palmitate effectiveness is mainly attributed to its stability at high temperatures. Moreover, Quercetin-3-palmitate was found to be a safe compound according to an acute lethal toxicity test. Consequently, it can be used as a food additive.
Collapse
|
17
|
Song MW, Park JY, Kim WJ, Kim KT, Paik HD. Fermentative effects by probiotic Lactobacillus brevis B7 on antioxidant and anti-inflammatory properties of hydroponic ginseng. Food Sci Biotechnol 2023; 32:169-180. [PMID: 36647519 PMCID: PMC9839932 DOI: 10.1007/s10068-022-01183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 01/19/2023] Open
Abstract
Soil-cultivation presents environmental limitations and requires considerable labor, space, and water supply. Alternatively, hydroponically-cultured ginseng (HG) was improved its productivity, availability, and functionality. Improvement of bio-functionality by probiotic fermentation also has been studied. Therefore, in this study, HG was fermented using probiotics to enhance antioxidant and anti-inflammatory activities. Soil-cultivated ginseng (SG), 1 and 2-year HG (HG1, HG2) were extracted using 70% ethanol and fermented by Lactobacillus brevis B7. After fermentation, the phenolic and flavonoid contents, and antioxidant and NO scavenging activities were increased, and HG showed higher bioactivities than SG. Particularly, fermented HG2 showed the highest antioxidant and anti-inflammatory activities and significantly decreased the level of inflammatory mediators. Furthermore, fermented HG2 also effectively inhibited NF-κB signaling pathway. These results suggested that fermented HG significantly enhanced functionality compared to SG and non-fermented HG. This suggests that fermented HG is a potentially useful ingredient for developing health-functional foods or pharmaceutical materials.
Collapse
Affiliation(s)
- Myung Wook Song
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Ji-Young Park
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Won-Ju Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Kee-Tae Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
- Research Laboratory, WithBio Inc, Seoul, 05029 Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
- Research Laboratory, WithBio Inc, Seoul, 05029 Republic of Korea
| |
Collapse
|
18
|
Yu Y, Nie J, Zhao B, Tan J, Lv C, Lu J. Structure characterization and anti-fatigue activity of an acidic polysaccharide from Panax ginseng C. A. Meyer. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115831. [PMID: 36244638 DOI: 10.1016/j.jep.2022.115831] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng C. A. Meyer is a traditional Chinese herbal medicine, which has been used in China for more than 2000 years. Its traditional effect of "invigorating vitality" is mainly reflected in anti-fatigue. However, due to the difficulty of identification of polysaccharide structure, there are few reports on homogeneous ginseng polysaccharide, and the molecular mechanism of its anti-fatigue effect remains to be further explored. AIM OF THE STUDY In order to find the homogenous ginseng polysaccharide with the most anti-fatigue effect, this study is for the first time extracted, isolated and structurally identified polysaccharide monomer from Mountain Cultivated Ginseng (MCG). Then the anti-fatigue activity and molecular mechanism were studied. MATERIALS AND METHODS The structure of ginseng acidic polysaccharide APS-1 prepared by high performance gel permeation chromatography (HPGPC) was determined by acid hydrolysis/HPLC, methylation/GC-MS and NMR analysis. Anti-fatigue effect was evaluated by exhaustive swimming model, and AMPK axis-related proteins were detected by Western blot. RESULTS APS-1 significantly prolonged fatigue tolerance time, alleviated accumulation of BLA, LDH and BUN, increased activities of SOD and CAT, alleviated oxidative damage caused by MDA, increased activity of CK, regulated glycolysis, and alleviated muscle fiber contraction. The expressions of LKB1, p-AMPK, PGC-1α and Glut4 in muscle were significantly up-regulated. CONCLUSIONS The anti-fatigue effect of APS-1 was significantly, and the molecular mechanism may be related to the activation of AMPK axis signaling pathway to improve glucose uptake and mitochondrial function.
Collapse
Affiliation(s)
- Yang Yu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang, 110006, PR China.
| | - Jianing Nie
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang, 110006, PR China.
| | - Bin Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang, 110006, PR China.
| | - Jialiang Tan
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang, 110006, PR China.
| | - Chongning Lv
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang, 110006, PR China; Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, 110006, PR China.
| | - Jincai Lu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang, 110006, PR China; Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, 110006, PR China.
| |
Collapse
|
19
|
Chen J, Huang Q, Li J, Yao Y, Sun W, Zhang Z, Qi H, Chen Z, Liu J, Zhao D, Mi J, Li X. Panax ginseng against myocardial ischemia/reperfusion injury: A review of preclinical evidence and potential mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115715. [PMID: 36108895 DOI: 10.1016/j.jep.2022.115715] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng C. A. Meyer (P. ginseng) is effective in the prevention and treatment of myocardial ischemia-reperfusion (I/R) injury. The mechanism by which P. ginseng exerts cardioprotective effects is complex. P. ginseng contains many pharmacologically active ingredients, such as molecular glycosides, polyphenols, and polysaccharides. P. ginseng and each of its active components can potentially act against myocardial I/R injury. Myocardial I/R was originally a treatment for myocardial ischemia, but it also induced irreversible damage, including oxygen-containing free radicals, calcium overload, energy metabolism disorder, mitochondrial dysfunction, inflammation, microvascular injury, autophagy, and apoptosis. AIM OF THE STUDY This study aimed to clarify the protective effects of P. ginseng and its active ingredients against myocardial I/R injury, so as to provide experimental evidence and new insights for the research and application of P. ginseng in the field of myocardial I/R injury. MATERIALS AND METHODS This review was based on a search of PubMed, NCBI, Embase, and Web of Science databases from their inception to February 21, 2022, using terms such as "ginseng," "ginsenosides," and "myocardial reperfusion injury." In this review, we first summarized the active ingredients of P. ginseng, including ginsenosides, ginseng polysaccharides, and phytosterols, as well as the pathophysiological mechanisms of myocardial I/R injury. Importantly, preclinical models with myocardial I/R injury and potential mechanisms of these active ingredients of P. ginseng for the prevention and treatment of myocardial disorders were generally summarized. RESULTS P. ginseng and its active components can regulate oxidative stress related proteins, inflammatory cytokines, and apoptosis factors, while protecting the myocardium and preventing myocardial I/R injury. Therefore, P. ginseng can play a role in the prevention and treatment of myocardial I/R injury. CONCLUSIONS P. ginseng has a certain curative effect on myocardial I/R injury. It can prevent and treat myocardial I/R injury in several ways. When ginseng exerts its effects, should be based on the theory of traditional Chinese medicine and with the help of modern medicine; the clinical efficacy of P. ginseng in preventing and treating myocardial I/R injury can be improved.
Collapse
Affiliation(s)
- Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Qingxia Huang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China; Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Yao Yao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Weichen Sun
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Hongyu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Zhaoqiang Chen
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Jiaqi Liu
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Daqing Zhao
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Jia Mi
- Department of Endocrinology, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China.
| | - Xiangyan Li
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China.
| |
Collapse
|
20
|
Peng F, Huang H, Lin JX, Yang T, Xie M, Xiong T, Peng Z. Development of yacon syrup fermented by Lactiplantibacillus plantarum NCU001043: Metabolite profiling, antioxidant and glycosidase inhibition activity. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
21
|
Hyperproduction of a bacterial mannanase and its application for production of bioactive mannooligosaccharides from agro-waste. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Wang J, Fan M, Yin S, Xu X, Fu B, Jiang R, Sun L. Ginseng oligosaccharides (GSO) inhibit C48/80-stimulated pseudoallergic mechanisms through the PLC/Ca2+/PKC/MAPK/c-Fos signaling pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
23
|
Lee VJ, Heffern MC. Structure-activity assessment of flavonoids as modulators of copper transport. Front Chem 2022; 10:972198. [PMID: 36082200 PMCID: PMC9445161 DOI: 10.3389/fchem.2022.972198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022] Open
Abstract
Flavonoids are polyphenolic small molecules that are abundant in plant products and are largely recognized for their beneficial health effects. Possessing both antioxidant and prooxidant properties, flavonoids have complex behavior in biological systems. The presented work investigates the intersection between the biological activity of flavonoids and their interactions with copper ions. Copper is required for the proper functioning of biological systems. As such, dysregulation of copper is associated with metabolic disease states such as diabetes and Wilson's disease. There is evidence that flavonoids bind copper ions, but the biological implications of their interactions remain unclear. Better understanding these interactions will provide insight into the mechanisms of flavonoids' biological behavior and can inform potential therapeutic targets. We employed a variety of spectroscopic techniques to study flavonoid-Cu(II) binding and radical scavenging activities. We identified structural moieties important in flavonoid-copper interactions which relate to ring substitution but not the traditional structural subclassifications. The biological effects of the investigated flavonoids specifically on copper trafficking were assessed in knockout yeast models as well as in human hepatocytes. The copper modulating abilities of strong copper-binding flavonoids were largely influenced by the relative hydrophobicities. Combined, these spectroscopic and biological data help elucidate the intricate nature of flavonoids in affecting copper transport and open avenues to inform dietary recommendations and therapeutic development.
Collapse
Affiliation(s)
| | - Marie C. Heffern
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| |
Collapse
|
24
|
Yu Y, Liu H, Nie J, Tan J, Lv C, Lu J. Acidic polysaccharides of Mountain Cultivated Ginseng: The potential source of anti-fatigue nutrients. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
25
|
Tang Z, Lin W, Yang J, Feng S, Qin Y, Xiao Y, Chen H, Liu Y, Chen H, Bu T, Li Q, Yao H, Ding C. Ultrasound-assisted extraction of Cordyceps cicadae polyphenols: Optimization, LC-MS characterization, antioxidant and DNA damage protection activity evaluation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
26
|
A glycoprotein from mountain cultivated ginseng: Insights into their chemical characteristics and intracellular antioxidant activity. Int J Biol Macromol 2022; 217:761-774. [PMID: 35817242 DOI: 10.1016/j.ijbiomac.2022.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/19/2022]
Abstract
A glycoprotein (MGP2) from mountain-cultivated ginseng (MCG) was purified by Tris-HCl extraction followed by DEAE-52 ion exchange chromatography and Sephadex G-100 gel filtration chromatography. The approximate molecular weight (27.0 kDa) and monomeric nature were determined by reduced and non-reduced SDS-PAGE. The structure of MGP2 was characterized by a practical and reliable "protein-polysaccharide analyzed by spectroscopy combined with chemical analysis" strategy. The results showed that MGP2 belonged to Arabinogalactan proteins (AGPs) which contained high amount of Glc (35.1 %). The hemagglutination test concluded that MGP2 was not a lectin. In addition, the MGP2 exhibited antioxidant activity by scavenging radical capacity tests and the ability to protect human erythrocytes and RAW264.7 cells from oxidative damage induced by AAPH. Therefore, these results suggested that glycoprotein MGP2 could be used as a natural antioxidant in drug and food industry.
Collapse
|
27
|
Liu R, Gao Y, Yuan Y, Wu Q, Zhi Z, Muhindo EM, Wu T, Sui W, Zhang M. Transformation of ginsenosides by moderate heat-moisture treatment and their cytotoxicity toward HepG2 cells. Food Res Int 2022; 156:111155. [DOI: 10.1016/j.foodres.2022.111155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 11/15/2022]
|
28
|
Structural characterization and in vitro analysis of the prebiotic activity of oligosaccharides from lotus (Nelumbo nucifera Gaertn.) seeds. Food Chem 2022; 388:133045. [PMID: 35486989 DOI: 10.1016/j.foodchem.2022.133045] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 11/21/2022]
Abstract
In the present study, lotus seed oligosaccharides (LOSs) were isolated from lotus (Nelumbo nucifera Gaertn.) seeds using preparative liquid chromatography. LOS structures were characterized using fourier transform infrared spectroscopy (FT-IR), acid hydrolysis, tandemmass spectrometry (MS/MS) and 1D/2D nuclear magnetic resonance (NMR) spectroscopy. Then, Lactobacillus acidophilus was used to evaluate the prebiotic activity of LOSs in vitro. The structural analysis revealed that the monosaccharide components of LOSs included glucose, mannose, fructose and galactose. The MS/MS results indicated that disaccharides, trisaccharides, trisaccharides and tetrasaccharides were the constituents of isolated oligosaccharide polymers LOS2, LOS3-1, LOS3-2, and LOS4, respectively. The FT-IR and 1D/2D NMR data confirmed that LOS3 and LOS4 had a linear structure consisting of (1 → 6)-α-d-mannopyranosyl and glucopyranosyl residues. LOS3-1 and LOS4 effectively and selectively promoted the growth of an L. acidophilus strain, according to the results of the assays of optical density and the short-chain fatty acid (SCFA) content in the culture broth.
Collapse
|
29
|
Wang J, Shi S, Li F, Du X, Kong B, Wang H, Xia X. Physicochemical properties and antioxidant activity of polysaccharides obtained from sea cucumber gonads via ultrasound-assisted enzymatic techniques. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Li Z, Jiang R, Jing C, Liu J, Xu X, Sun L, Zhao D. Protective effect of oligosaccharides isolated from Panax ginseng C. A. Meyer against UVB-induced skin barrier damage in BALB/c hairless mice and human keratinocytes. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114677. [PMID: 34562563 DOI: 10.1016/j.jep.2021.114677] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 08/28/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Skin barrier dysfunction can lead to water and electrolyte loss, triggering homeostatic imbalances that can trigger atopic dermatitis and anaphylaxis. Panax ginseng C.A. Meyer is a traditional Chinese medicinal herb with known therapeutic benefits for the treatment of skin diseases, including photodamage repair effects and reduction of pigmentation. However, few reports exist that describe effectiveness of ginseng active components for repair of skin barrier damage. MATERIALS AND METHODS Ginseng oligosaccharide extract (GSO) was prepared from P. ginseng via water extraction followed by ethanol precipitation and resin and gel purification. GSO composition and structural characteristics were determined using LC-MS, HPLC, FT-IR, and NMR. To evaluate GSO as a skin barrier repair-promoting treatment, skin of UVB-irradiated BALB/c hairless mice was treated with or without GSO then skin samples were evaluated for epidermal thickness, transepidermal water loss (TEWL), and stratum corneum water content. In addition, UVB-exposed skin samples and HaCaT cells were analyzed to assess GSO treatment effects on levels of epidermal cornified envelope (CE) protein and other skin barrier proteins, such as filaggrin (FLG), involucrin (IVL), and aquaporin-3 (AQP3). Meanwhile, GSO treatment was also evaluated for effects on UVB-irradiated hairless mouse skin and HaCaT cells based on levels of serine protease inhibitor Kazal type-5 (SPINK5), trypsin-like kallikrein-related peptidase 5 (KLK5), chymotrypsin-like KLK7, and desmoglein 1 (DSG1). These proteins are associated with UVB-induced skin barrier damage manifesting as dryness and desquamation. RESULTS GSO was shown to consist of oligosaccharides comprised of seven distinct types of monosaccharides with molecular weights of approximately 1 kDa that were covalently linked together via β-glycosidic bonds. In vivo, GSO applied to dorsal skin of BALB/c hairless mice attenuated UVB-induced epidermal thickening and moisture loss. Furthermore, GSO ameliorated UVB-induced reductions of levels of FLG, IVL, and AQP3 proteins. Additionally, GSO treatment led to increased DSG1 protein levels due to decreased expression of KLK7. In vitro, GSO treatment of UVB-irradiated HaCaT cells led to increases of FLG, IVL, and AQP3 mRNA levels and corresponding proteins, while mRNA levels of desquamation-related proteins SPINK5, KLK5, KLK7, and DSG1 and associated protein levels were restored to normal levels. CONCLUSION A P. ginseng oligosaccharide preparation repaired UVB-induced skin barrier damage by alleviating skin dryness and desquamation symptoms, highlighting its potential as a natural cosmetic additive that can promote skin barrier repair after UVB exposure.
Collapse
Affiliation(s)
- Zhenzhuo Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin Province, China; Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Rui Jiang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Chenxu Jing
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin Province, China; Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Jianzeng Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Xiaohao Xu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin Province, China; Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin Province, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin Province, China; Jilin Province Traditional Chinese Medicine Characteristic Health Product Research and Development Cross-regional Cooperation Science and Technology Innovation Center, Changchun University of Chinese Medicine, Changchun, Jilin Province, China.
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin Province, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin Province, China.
| |
Collapse
|
31
|
Liu K, Xie L, Gu H, Luo J, Li X. Ultrasonic extraction, structural characterization, and antioxidant activity of oligosaccharides from red yeast rice. Food Sci Nutr 2022; 10:204-217. [PMID: 35035922 PMCID: PMC8751434 DOI: 10.1002/fsn3.2660] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/26/2021] [Accepted: 10/30/2021] [Indexed: 12/13/2022] Open
Abstract
Red yeast rice is consumed as a medicinal food to lower blood lipids. Besides, it is used to color food, make wine, etc. In this study, water-soluble oligosaccharides in red yeast rice were extracted by ultrasonic-assisted extraction method. The parameters to extract oligosaccharides from red yeast rice were optimized by the Box-Behnken design under the following optimal extraction conditions: extraction temperature, 60°C; extraction time, 97 min; and liquid/material ratio, 25 ml/g. The structure and the antioxidant activity of the new oligosaccharide were preliminarily investigated. Total carbohydrates extracted from red yeast rice with 80% ethanol-water solution (v/v) were first removed from pigments using D101 macroporous adsorption resin. The total sugar contents were then purified by DE52 resins and Sephadex G-25 resins to obtain red yeast rice oligosaccharides, coded as RYRO1. Structural characterization experiments indicated that RYRO1 is an oligosaccharide with a weight average molecular weight of 874 Da and a theoretical degree of polymerization of 4.86. RYRO1 is composed of mannose, glucosamine, glucose, and galactose with a molar ratio of 0.248:0.019:1:0.026. The ABTS, DPPH, and hydroxyl free radical scavenging assays showed antioxidant nature of RYRO1.
Collapse
Affiliation(s)
- Kai Liu
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Long Xie
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Huan Gu
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Jia Luo
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Xiaofang Li
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| |
Collapse
|
32
|
Jia H, Zhao B, Zhang F, Santhanam RK, Wang X, Lu J. Extraction, Structural Characterization, and Anti-Hepatocellular Carcinoma Activity of Polysaccharides From Panax ginseng Meyer. Front Oncol 2021; 11:785455. [PMID: 34912721 PMCID: PMC8666597 DOI: 10.3389/fonc.2021.785455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/02/2021] [Indexed: 12/25/2022] Open
Abstract
Polysaccharides are the main active ingredients of ginseng. To extract the most effective polysaccharides against hepatocellular carcinoma (HCC), we isolated and characterized the polysaccharides from the mountain cultivated ginseng (MCG) and compared their composition and cytotoxic effect with cultivated ginseng (CG) polysaccharide against HepG2 cell lines for the first time. MCG polysaccharides and CG polysaccharides were fractionated into two fractions such as MTPS-1, MTPS-2 and CTPS-1, CTPS-2 by salting out, respectively. Compared to CG, MCG possessed appreciable cytotoxic effect against HepG2 cells among that MTPS-1 possess fortified effect. Then, MTPS-1 was selected for further isolation process and seven acidic polysaccharides (MCGP-1–MCGP-7) were obtained using ethanol precipitation, ion-exchange, and gel permeation chromatography techniques. Structural characteristics of the polysaccharides (MCGP-1–MCGP-7) were done by adapting methylation/GC-MS and NMR analysis. Overall, MCGP-3 polysaccharide was found to possess significant cytotoxic effect against HepG2 cells with the IC50 value.
Collapse
Affiliation(s)
- Hui Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Bin Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Fangfang Zhang
- Department of Stomatology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Ramesh Kumar Santhanam
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Xinying Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jincai Lu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Traditional Chinese Medicine (TCM) Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
33
|
Liu N, Shu Y, Yan YY, Peng GP, Wen HM, Shan CX, Cui XB, Wang XZ, Zuo CB, Li XY. Oligosaccharide Profile Analysis and Quality Control of Atractylodes macrocephala Koidz. Using HPLC-HRMS/MS and a Simple HPLC-ELSD Method. Chromatographia 2021. [DOI: 10.1007/s10337-021-04107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
34
|
Cui Y, Li J, Deng D, Lu H, Tian Z, Liu Z, Ma X. Solid-state fermentation by Aspergillus niger and Trichoderma koningii improves the quality of tea dregs for use as feed additives. PLoS One 2021; 16:e0260045. [PMID: 34767609 PMCID: PMC8589212 DOI: 10.1371/journal.pone.0260045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022] Open
Abstract
This study evaluated the ability of Aspergillus niger and Trichoderma koningii to improve the quality of tea dregs (TDs) through solid-state fermentation as well as the value of the fermented tea dregs (FTDs) produced for use as bio-feed additives. After fermentation, FTDs differed in color and structure. Fermentation with A. niger and T. koningii increased the contents of crude protein, crude fiber, neutral detergent fiber, and acid detergent fiber of TDs. Compared to the unfermented group, the contents of reducing sugar, total flavonoids, total polyphenols, and theasaponins were increased in A. niger FTDs, while in T. koningii FTDs caffeine was completely degraded, the theasaponins were lower, and the contents of reducing sugar and caffeine higher. Regarding free amino acids, A. niger FTDs had the highest content of total amino acids, total essential amino acids, total non-essential amino acids, total aromatic amino acids, total branched-chain amino acids, and total non-protein amino acids, and all types of essential amino acids, followed by T. koningii FTDs and the control TDs. Fungal fermentation had similar effects on the content of various hydrolytic amino acids as those on above free amino acids, and increased the content of bitter and umami components. The composition of essential amino acids of TDs or FTDs was similar to that of the standard model, except for sulfur-containing amino acids and isoleucine. Solid-state fermentation with A. niger and T. koningii effectively improved the nutritional value of TDs, increased the contents of functional substances, and improved the flavor of TDs. This study demonstrated a feasible approach to utilize TDs that not only increases animal feed resources, but also reduces the production of resource waste and pollution.
Collapse
Affiliation(s)
- Yiyan Cui
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Jiazhou Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Dun Deng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Huijie Lu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Zhimei Tian
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Zhichang Liu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Xianyong Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| |
Collapse
|
35
|
Zhu Y, Wang A, Li R, Zhu H, Hu L, Chen W. Total ginsenosides promote the IEC-6 cell proliferation via affecting the regulatory mechanism mediated by polyamines. Saudi Pharm J 2021; 29:1223-1232. [PMID: 34744477 PMCID: PMC8551508 DOI: 10.1016/j.jsps.2021.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/11/2021] [Indexed: 01/17/2023] Open
Abstract
Epithelial cell proliferation has been demonstrated to be a critical modality for mucosal repair after gastrointestinal mucosal injury. This research aimed to investigate the effect of total ginsenosides upon the proliferation of intestinal epithelial cells (IEC-6), and elucidate its potential mechanisms through polyamine-regulated pathway including the expression of proliferation-related proteins. Total ginsenosides (PGE3) were extracted from Panax ginseng, a Chinese herbal medicine, whose chromatogram was obtained by high performance liquid chromatographic method with evaporative light scattering detection (HPLC-ELSD). The cell proliferation, cell cycle distribution and the level of c-Myc, RhoA, Cdk2 proteins were detected to determine the effects of PGE3 at 25, 50 and100 mg/l doses on IEC-6. Furthermore, rats model of intestinal mucosal injury were induced by the subcutaneous injection of indomethacin, and the effect of Panax ginseng aqueous extracts (PGE1) on intestinal mucosal injury was observed. PGE3 could promote IEC-6 cell proliferation, reduce the proportion of G0/G1 phase cells and elevate the proportion of G2/M + S phase cells, and revert the proliferation and cell cycle arrest induced by DFMO (DL-a-difluoromethylornithine, an inhibitor of polyamines synthesis). PGE3 exposure enhanced the level of c-Myc, RhoA and Cdk2 proteins, and reversed the inhibition of these proteins expression induced by DFMO. The results of gross and pathological scores showed administration of PGE1 significantly alleviated intestinal mucosal injury of rats. Our findings indicate that total ginsenosides promoted the IEC-6 proliferation presumably via its regulation on cell cycle and the expression of proliferation-related proteins regulated by polyamines, and provided a novel perspective for exploring the repair effect of Panax ginseng upon gastrointestinal mucosal injury.
Collapse
Affiliation(s)
| | | | - Ruliu Li
- Corresponding author at: Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang road, Guang zhou 510405, PR China.
| | | | | | | |
Collapse
|
36
|
The preservation effects of chitosan copolymers (gallic acid and protocatechuic acid) on sea bass (Lateolabrax japonicus) fillets. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2021.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Qi H, Zhang Z, Liu J, Chen Z, Huang Q, Li J, Chen J, Wang M, Zhao D, Wang Z, Li X. Comparisons of Isolation Methods, Structural Features, and Bioactivities of the Polysaccharides from Three Common Panax Species: A Review of Recent Progress. Molecules 2021; 26:4997. [PMID: 34443587 PMCID: PMC8400370 DOI: 10.3390/molecules26164997] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 12/27/2022] Open
Abstract
Panax spp. (Araliaceae family) are widely used medicinal plants and they mainly include Panax ginseng C.A. Meyer, Panax quinquefolium L. (American ginseng), and Panax notoginseng (notoginseng). Polysaccharides are the main active ingredients in these plants and have demonstrated diverse pharmacological functions, but comparisons of isolation methods, structural features, and bioactivities of these polysaccharides have not yet been reported. This review summarizes recent advances associated with 112 polysaccharides from ginseng, 25 polysaccharides from American ginseng, and 36 polysaccharides from notoginseng and it compares the differences in extraction, purification, structural features, and bioactivities. Most studies focus on ginseng polysaccharides and comparisons are typically made with the polysaccharides from American ginseng and notoginseng. For the extraction, purification, and structural analysis, the processes are similar for the polysaccharides from the three Panax species. Previous studies determined that 55 polysaccharides from ginseng, 18 polysaccharides from American ginseng, and 9 polysaccharides from notoginseng exhibited anti-tumor activity, immunoregulatory effects, anti-oxidant activity, and other pharmacological functions, which are mediated by multiple signaling pathways, including mitogen-activated protein kinase, nuclear factor kappa B, or redox balance pathways. This review can provide new insights into the similarities and differences among the polysaccharides from the three Panax species, which can facilitate and guide further studies to explore the medicinal properties of the Araliaceae family used in traditional Chinese medicine.
Collapse
Affiliation(s)
- Hongyu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China; (Z.Z.); (M.W.)
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jiaqi Liu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Zhaoqiang Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Qingxia Huang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China; (Z.Z.); (M.W.)
| | - Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Mingxing Wang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China; (Z.Z.); (M.W.)
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Zeyu Wang
- Department of Scientific Research, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| |
Collapse
|
38
|
Zhai L, Xu X, Liu J, Jing C, Yang X, Zhao D, Jiang R, Sun LW. A Novel Biochemical Study of Anti-Dermal Fibroblast Replicative Senescence Potential of Panax Notoginseng Oligosaccharides. Front Pharmacol 2021; 12:690538. [PMID: 34276377 PMCID: PMC8277921 DOI: 10.3389/fphar.2021.690538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/16/2021] [Indexed: 11/23/2022] Open
Abstract
Dermal fibroblast replicative senescence that often occurs in aging skin is characterized by loss of cell proliferative capacity, cell cycle arrest, decreased cell elongation, and decreased synthesis of dermal extracellular matrix (ECM) components. Although Panax notoginseng is known for its effectiveness in alleviating many age-related degenerative diseases, few studies have evaluated P. notoginseng components for efficacy or mechanisms of action in delaying cell replicative senescence. In this study, P. notoginseng oligosaccharides (PNO) were isolated using a stepwise purification procedure involving water extraction and alcohol precipitation followed by DEAE Sepharose Fast Flow column chromatography, preparative high performance liquid chromatography, and size-exclusion chromatography. Monosaccharides detected in PNO constituents included mannose, galactose, and sorbitose in relative molar proportions of 14.2:12.3:1, respectively, aligning with PNO absorption spectrum results resembling typical known spectra for sugars. In vitro, PNO treatment of replicative senescent NIH-3T3 fibroblasts significantly promoted cell vitality, inhibited SA-β-galactosidase (SA-β-Gal) activity, and reduced p16 and p21 protein-level expression. Moreover, PNO treatment of senescent fibroblasts led to a lower proportion of G1 phase cells and higher proportion of S phase cells, while also inducing aging NIH-3T3 cells to migrate and synthesize collagen-I (CoL-I). Mechanistically, PNO treatment up-regulated expression of proliferating cell nuclear antigen (PCNA), cyclin E, cyclin D1, and cyclin-dependent kinase 4 (CDK4) proteins and promoted phosphorylation of MEK, p38, and ERK1/2 to trigger cell cycle progression. Additionally, PNO treatment also up-regulated protein-level expression of TGF-β1 and levels of p-Smad2/3, p-FAK, and p-Pax to trigger CoL-I synthesis and cell migration. Taken together, these findings demonstrate that oligosaccharides purified from P. notoginseng could reverse fibroblast replicative senescence by promoting fibroblast cell proliferation, migration, and CoL-I production.
Collapse
Affiliation(s)
- Lu Zhai
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Xiaohao Xu
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Jiangzeng Liu
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Chenxu Jing
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Xinzhao Yang
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, China
| | - Rui Jiang
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Li-Wei Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
39
|
Liu M, Cai M, Ding P. Oligosaccharides from Traditional Chinese Herbal Medicines: A Review of Chemical Diversity and Biological Activities. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:577-608. [PMID: 33730992 DOI: 10.1142/s0192415x21500269] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Most of traditional Chinese herbal medicine (TCHM) substances come from medicinal plants, among which oligosaccharides have gradually attracted widespread attention at home and abroad due to their important biological activities and great medicinal potential. Numerous in vitro and in vivo experiments exhibited that oligosaccharides possess various activities, such as antitumor, anti-oxidation, modulate the gut microflora, anti-inflammatory, anti-infection, and immune-regulatory activities. Generally, biological activities are closely related to chemical structures, including molecular weight, monosaccharide composition, glycosidic bond connection, etc. The structural analysis of oligosaccharides is an important basis for studying their structure-activity relationship, but the structural diversity and complexity of carbohydrate compounds limit the study of oligosaccharides activities. Understanding the structures and biological functions of oligosaccharides is important for the development of new bioactive substances with natural oligosaccharides. This review provides a systematic introduction of the current knowledge of the chemical structures and biological activities of oligosaccharides. Most importantly, the reported chemical characteristics and biological activities of the famous TCHM oligosaccharides were briefly summarized, including Morinda officinalis, Rehmannia glutinosa, Arctium lappa, Polygala tenuifolia, Panax ginseng, Lycium barbarum and Astragalus membranaceus. TCHM oligosaccharides play an important role in nutrition, health care, disease diagnosis and prevention as well as have broad application prospects in the field of medicine.
Collapse
Affiliation(s)
- Mengyun Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Panyu District, Guangzhou 510006, P. R. China
| | - Miaomiao Cai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Panyu District, Guangzhou 510006, P. R. China
| | - Ping Ding
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Panyu District, Guangzhou 510006, P. R. China
| |
Collapse
|
40
|
Guo M, Shao S, Wang D, Zhao D, Wang M. Recent progress in polysaccharides from Panax ginseng C. A. Meyer. Food Funct 2020; 12:494-518. [PMID: 33331377 DOI: 10.1039/d0fo01896a] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Panax ginseng C. A. Meyer (P. ginseng) has a long history of medicinal use and can treat a variety of diseases. P. ginseng contains a variety of active ingredients, such as saponins, polypeptides, volatile oils, and polysaccharides. Among them, saponins have always been considered as the main components responsible for its pharmacological activities. However, more and more studies have shown that polysaccharides play an indispensable role in the medicinal value of ginseng. Modern biological and medical studies have found that ginseng polysaccharides have complex structural characteristics and diverse biological activities, such as immune regulation, anti-tumor, antioxidant, hypoglycemic, and anti-radiation functions, among others. Additionally, the structural characteristics of ginseng polysaccharides are closely related to their activity. In this review, the research background, extraction, purification, structural characteristics, and biological activities of ginseng polysaccharides from different parts of P. ginseng (roots, flowers stems and leaves, and berries) under different growth conditions (artificially cultivated ginseng, mountain ginseng, and wild ginseng) are summarized. The structural characteristics of purified polysaccharides were reviewed. Meanwhile, their biological activities were introduced, and some possible mechanisms were listed. Furthermore, the structure-activity relationship of polysaccharides was discussed. Some research perspectives for the study of ginseng polysaccharides were also provided.
Collapse
Affiliation(s)
- Mingkun Guo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130021, China
| | | | | | | | | |
Collapse
|
41
|
Dyshlyuk L, Dmitrieva A, Ivanova S, Golubtsova Y, Ostroumov L. Panax ginseng callus, suspension, and root cultures: extraction and qualitative analysis. FOODS AND RAW MATERIALS 2020. [DOI: 10.21603/2308-4057-2020-2-369-376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction. In recent years, scientists have been actively searching for medicinal plants containing biologically active substances with geroprotective properties to treat diseases of old age, in particular cancer, diabetes, cardiovascular diseases, and others. Ginseng (Panax ginseng L.) is a promising source of geroprotective compounds. We aimed to select optimal parameters for extracting organic compounds from ginseng callus, suspension, and root cultures and analyze their qualitative composition.
Study objects and methods. We studied ginseng callus, suspension, and root cultures, as well as their extracts. Biologically active substances were extracted with 30 to 70% ethanol. Organic compounds were determined by thin-layer chromatography. The results for each plant were archived and analyzed for the presence of quercetin, mangiferin, luteolin, rutin, quercetin-2-D-glucoside, malvidin, as well as caffeic, cinnamic, ferulic, and sinapinic acids.
Results and discussion. We developed a procedure for screening solvents and performed a fractional qualitative analysis of biologically active substances extracted from ginseng. As a result, we established the optimal parameters for extracting biologically
active substances from the dried biomass of ginseng cultures. In all cases, temperature and the ratio of solvent to biomass were the same (50°C, 1:5). However, the extraction time and ethanol concentration differed, amounting to 60 min and 50% for callus cultures, 30 min and 60% for suspension cultures, and 60 min and 70% for root cultures. The qualitative analysis of organic compounds showed the presence of rutin (0.25), quercetin (0.75), and mangiferin (0.57), as well as caffeic and sinapinic acids in the extracts.
Conclusion. Our set of experiments to isolate biologically active substances from ginseng callus, suspension, and root cultures resulted in selecting the optimal extraction parameters and analyzing the extracts for the presence of organic compounds.
Collapse
|
42
|
Comparison of In Vitro and In Vivo Antioxidant Activities of Six Flavonoids with Similar Structures. Antioxidants (Basel) 2020; 9:antiox9080732. [PMID: 32796543 PMCID: PMC7465758 DOI: 10.3390/antiox9080732] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/31/2022] Open
Abstract
The in vitro and in vivo antioxidant activities of six flavonoids with similar structures, including epicatechin (EC), epigallocatechin (EGC), procyanidin B2 (P), quercetin (Q), taxifolin (T), and rutin (R) were compared. The structures of the six flavonoids and their scavenging activities for 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+) radicals were closely related. The flavonoids decreased serum contents of malondialdehyde (MDA) and nitric oxide (NO), and increased serum total antioxidative capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) levels to different degrees in d-galactose-treated mice. The changes in mRNA expression of liver GSH-Px1, CAT, SOD1, and SOD2 by d-galactose were dissimilarly restored by the six flavonoids. Moreover, the six flavonoids differentially prevented the inflammatory response caused by oxidative stress by inhibiting interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α levels, and restoring IL-10 levels. These six flavonoids from two subclasses revealed the following antioxidant capability: P > EC, EGC > EC, Q > T, Q > R. Our results indicate that (1) the pyrogallol, dimerization, and C2=C3 double bonds of flavonoids enhanced antioxidant activity and (2) the C3 glycosylation of flavonoids attenuated antioxidant capacity.
Collapse
|
43
|
Zhao B, Wang XY, Luo W, Lin Y, Lv CN, Lu JC. Isolation and structural elucidation of a low-molecular-weight polysaccharide from the roots of Panax ginseng C. A. Meyer. Nat Prod Res 2020; 36:493-500. [PMID: 32603191 DOI: 10.1080/14786419.2020.1788025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A low-molecular-weight polysaccharide named MCGP-L was extracted and purified from the roots of Mountain cultivated ginseng (Panax ginseng C. A. Meyer). The polysaccharide MCGP-L was purified by molecular exclusion chromatography using the Sephadex G-25 column. The average molecular weight of MCGP-L was estimated to be 3 × 103 kDa. Monosaccharide composition analysis showed MCGP-L was composed of three kinds of monosaccharide: D-glucose, D-galactose and D-mannose. The physicochemical properties and structural characteristics of MCGP-L were investigated by the combination of chemical and instrumental analysis such as methylation analysis, High Performance Gel-Permeation Chromatography (HPGPC), High Performance Liquid Chromatography (HPLC) and Nuclear Magnetic Resonance (NMR). The backbone of MCGP-L was composed of (1→4)-linked-α-D-Glcp residues and with branch chain substituted at O-6 position of (1→4,6)-linked-α-D-Glcp. The branch chain consists of →6)-α-D-Galp-(1→, →2)-α-D-Manp-(1→ and β-D-Glcp-(1→.
Collapse
Affiliation(s)
- Bin Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Xin-Ying Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Wen Luo
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Yue Lin
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Chong-Ning Lv
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P. R. China.,Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Jin-Cai Lu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P. R. China.,Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, P. R. China
| |
Collapse
|
44
|
Zhang J, Tan W, Li Q, Dong F, Guo Z. Synthesis and Characterization of N, N, N-trimethyl- O-(ureidopyridinium)acetyl Chitosan Derivatives with Antioxidant and Antifungal Activities. Mar Drugs 2020; 18:md18030163. [PMID: 32188033 PMCID: PMC7142772 DOI: 10.3390/md18030163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 12/13/2022] Open
Abstract
Chitosan is an active biopolymer, and the combination of it with other active groups can be a valuable method to improve the potential application of the resultant derivatives in food, cosmetics, packaging materials, and other industries. In this paper, a series of N,N,N-trimethyl-O-(ureidopyridinium)acetyl chitosan derivatives were synthesized. The combination of chitosan with ureidopyridinium group and quaternary ammonium group made it achieve developed water solubility and biological properties. The structures of chitosan and chitosan derivatives were confirmed by FTIR, 1H NMR spectra, and elemental analysis. The prepared chitosan derivatives were evaluated for antioxidant property by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging ability, hydroxyl radical scavenging ability, and superoxide radical scavenging ability. The results revealed that the synthesized chitosan derivatives exhibited improved antioxidant activity compared with chitosan. The chitosan derivatives were also investigated for antifungal activity against Phomopsis asparagus as well as Botrytis cinerea, and they showed a significant inhibitory effect on the selected phytopathogen. Meanwhile, CCK-8 assay was used to test the cytotoxicity of chitosan derivatives, and the results showed that most derivatives had low toxicity. These data suggested to develop analogs of chitosan derivatives containing ureidopyridinium group and quaternary ammonium group, which will provide a new kind of promising biomaterials having decreased cytotoxicity as well as excellent antioxidant and antimicrobial activity.
Collapse
Affiliation(s)
- Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (J.Z.); (W.T.); (Q.L.); (F.D.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (J.Z.); (W.T.); (Q.L.); (F.D.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (J.Z.); (W.T.); (Q.L.); (F.D.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (J.Z.); (W.T.); (Q.L.); (F.D.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (J.Z.); (W.T.); (Q.L.); (F.D.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-535-2109171; Fax: +86-535-2109000
| |
Collapse
|
45
|
Xu L, Xu J, Shi G, Xiao S, Dai R, Wu S, Sun B, Zhang X, Zhao Y. Optimization of flash extraction, separation of ginsenosides, identification by HPLC-FT-ICR-MS and determination of rare ginsenosides in mountain cultivated ginseng. RSC Adv 2020; 10:44050-44057. [PMID: 35517153 PMCID: PMC9058395 DOI: 10.1039/d0ra07517e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022] Open
Abstract
In this paper, we used the flash extraction method (FEM) to extract ginsenosides from mountain cultivated ginseng (MCG), optimized the FEM process by response surface methodology (RSM), and separated 23 kinds of ginsenosides from MCG, including rare ginsenoside Rg3, 20(R/S)-Rg2, Rk3, 20(S)-Rh2, 20(R)-Rh1, F1 and Rg6. Among them, notoginsenoside R1 was isolated from MCG for the first time. Additionally, we established an HPLC-FT-ICR-MS method to accurately identify 20 ginsenosides in MCG, and quantitatively analyzed the differences in the content of rare ginsenosides in MCG and Garden-Cultivated Ginseng (CG) by HPLC-UV. The results showed that the chemical components of MCG and CG were similar, but the ginsenoside content of MCG was double that of CG. Notably, the content of ginsenoside 20 (S)-Rh2 and 20 (R)-Rh1 had the largest difference, and the content in MCG was 33 and 24 times higher than that in CG, respectively. Through quantitative analysis, we clarified the reason why the activity of MCG is stronger than that of CG, which provided a theoretical basis for clinical application and further research of MCG. 23 ginsenosides, including rare ginsenosides, were separated from MCG by flash extraction technique. Through quantitative analysis, we found that the content of rare ginsenosides in MCG was higher than that in CG.![]()
Collapse
Affiliation(s)
- Lei Xu
- School of Functional Food and Wine
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Jing Xu
- School of Functional Food and Wine
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Guohui Shi
- School of Functional Food and Wine
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Shengnan Xiao
- School of Functional Food and Wine
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Rongke Dai
- School of Functional Food and Wine
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Shao Wu
- School of Functional Food and Wine
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Baoshan Sun
- School of Functional Food and Wine
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Xiaoshu Zhang
- School of Functional Food and Wine
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Yuqing Zhao
- School of Functional Food and Wine
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
- Key Laboratory of Structure-based Drug Design & Discovery
| |
Collapse
|