1
|
Liu PC, Chang TY, Chen XA, Cheng CC, Huang CH, Chen AY, Tsai SK, Young JJ, Chen CC. Synergistic antiviral potential of N-(2-hydroxy)propyl-3-trimethylammoniumchitosan-functionalized silver nanoparticles with oseltamivir against influenza A viruses. Int J Biol Macromol 2025; 284:137996. [PMID: 39586441 DOI: 10.1016/j.ijbiomac.2024.137996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/06/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
This study introduced a novel antiviral approach by combining three substances with different antiviral mechanisms: N-(2-hydroxy)propyl-3-trimethylammoniumchitosan (HTC), silver nanoparticles (AgNPs), and oseltamivir. First, positively surface-charged AgNPs were prepared using an environmentally friendly method. The surfaces of these AgNPs were capped with cationic quaternary chitosan HTC. It exhibits a positive zeta potential with extraordinary stability in aqueous solutions and facilitates substantial and rapid cellular uptake including entry into the cell nucleus. HTC-AgNPs display broad-spectrum antiviral activity against three influenza A viruses (H5N1, H3N2, and H1N1) at biocompatible concentrations. When blended with oseltamivir, HTC-AgNPs enhances the antiviral activity from that of oseltamivir alone by at least 20 times. After 24 h of combined treatment, the inhibition efficiency against influenza A virus can attain up to 99.9 %. We anticipate that this combination could reduce the effective dose of Tamiflu by 10-fold when used in clinic, thus shortening recovery period and lowering the medication costs. Moreover, the synergistic effects of the three active substances would reduce the likelihood of the emergence of drug-resistant viral strains. This would, in turn, enhance the effectiveness and safety of this medication.
Collapse
Affiliation(s)
- Ping-Cheng Liu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, ROC
| | - Tein-Yao Chang
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC; Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 11490, Taiwan, ROC
| | - Xin-An Chen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, ROC; Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, ROC; Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, ROC
| | - Chih-Heng Huang
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC; Graduate Institute of Medical Science, National Defense Medical Center, Taipei 11490, Taiwan, ROC; Department of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan, ROC
| | - An-Yu Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC; Graduate Institute of Medical Science, National Defense Medical Center, Taipei 11490, Taiwan, ROC
| | - Shan-Ko Tsai
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC; Graduate Institute of Medical Science, National Defense Medical Center, Taipei 11490, Taiwan, ROC
| | - Jenn-Jong Young
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC; Graduate Institute of Biodefense, National Defense Medical Center, Taipei 11490, Taiwan, ROC
| | - Cheng-Cheung Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC; Graduate Institute of Medical Science, National Defense Medical Center, Taipei 11490, Taiwan, ROC; Graduate Institute of Biodefense, National Defense Medical Center, Taipei 11490, Taiwan, ROC.
| |
Collapse
|
2
|
Liang X, Zhou J, Wang M, Wang J, Song H, Xu Y, Li Y. Progress and prospect of polysaccharides as adjuvants in vaccine development. Virulence 2024; 15:2435373. [PMID: 39601191 PMCID: PMC11622597 DOI: 10.1080/21505594.2024.2435373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/07/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024] Open
Abstract
Vaccines are an effective approach to confer immunity against infectious diseases. Modern subunit vaccines offer more precise target and safe protection compared to traditional whole-pathogen vaccines. However, subunit vaccines require adjuvants to stimulate the immune system due to the less immunogenicity. Adjuvants strengthen immunogenicity by enhancing, modulating, and prolonging the immune response. Unfortunately, few adjuvants have sufficient potency and low enough toxicity for clinical use, highlighting the urgent need for new vaccine adjuvants with the characteristics of safety, efficacy, and cost-effectiveness. Notably, some natural polysaccharides have been approved as adjuvants in human vaccines, owing to their intrinsic immunomodulation, low toxicity, and high safety. Natural polysaccharides are mainly derived from plants, bacteria, and yeast. Partly owing to the difficulty of obtaining them, synthetic polysaccharides emerged in clinical trials. The immune mechanisms of both natural and synthetic polysaccharides remain incompletely understood, hindering the rational development of polysaccharide adjuvants. This comprehensive review primarily focused on several promising polysaccharide adjuvants, discussing their recent applications in vaccines and highlighting their immune-modulatory effects. Furthermore, the future perspectives of polysaccharides offer insightful guidance to adjuvant development and application.
Collapse
Affiliation(s)
- Xinlong Liang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Jiaying Zhou
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Mengmeng Wang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Jing Wang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Houhui Song
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yigang Xu
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yuan Li
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
- Research and Development Department, Zhejiang Huijia Biotechnology Co. Ltd ., Huzhou, People’s Republic of China
| |
Collapse
|
3
|
Lu C, Ouyang J, Zhang J. Core-shell upconversion nanoparticles with suitable surface modification to overcome endothelial barrier. DISCOVER NANO 2024; 19:181. [PMID: 39532756 PMCID: PMC11557796 DOI: 10.1186/s11671-024-04139-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Upconversion nanoparticles (UCNPs), capable of converting near-infrared (NIR) light into high-energy emission, hold significant promise for bioimaging applications. However, the presence of tissue barriers poses a challenge to the effective delivery of nanoparticles (NPs) to target organs. In this study, we demonstrate the core-shell UCNPs modified with cationic biopolymer, i.e., N, N-trimethyl chitosan (TMC), can overcome endothelial barriers. The core-shell UCNP is composed of NaGdF4: Yb3+,Tm3+ (16.7 ± 2.7 nm) as core materials and silica (SiO2) shell. The average particle size of UCNPs@SiO2 is estimated at 26.1 ± 3.7 nm. X-ray diffraction (XRD), transmission electron microscopy (TEM) and element mapping shows the formation of hexagonal crystal structure of β-NaGdF4 and elements doping. The surface of UCNPs@SiO2 has been modified with poly(ethylene glycol) (PEG) to enhance water dispersibility and colloidal stability, and further modified with TMC with the zeta potential increasing from -2.1 ± 0.96 mV to 26.9 ± 12.6 mV. No significant toxic effect is imposed to HUVECs when the cells are treated with core-shell UCNPs with surface modification up to 250 µg/mL. The transport ability of the core-shell UCNPs has been evaluated by using the in vitro endothelial barrier model. Transepithelial electrical resistance (TEER) and immunofluorescence staining of tight junction proteins have been employed to verify the integrity of the in vitro endothelial barrier model. The results indicate that the transport percentage of the UCNPs@SiO2 with PEG and TMC through the model is up to 4.56%, which is twice higher than that of the UCNPs@SiO2 with PEG but without TMC and six times that of the UCNPs@SiO2.
Collapse
Affiliation(s)
- Chao Lu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Jianying Ouyang
- Quantum and Nanotechnologies Research Center, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Jin Zhang
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada.
- School of Biomedical Engineering, University of Western Ontario, London, ON, 6A 5B9, Canada.
| |
Collapse
|
4
|
Almajidi YQ, Muslim RK, Issa AA, Al-Musawi MH, Shahriari-Khalaji M, Mirhaj M. Three-dimensional printed polyelectrolyte construct containing mupirocin-loaded quaternized chitosan nanoparticles for skin repair. Int J Biol Macromol 2024; 280:136214. [PMID: 39362446 DOI: 10.1016/j.ijbiomac.2024.136214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Despite substantial advancements in wound dressing development, effective skin repair remains a significant challenge, largely due to the persistent issue of recurrent infections. Three-dimensional printed constructs that integrate bioactive and antibacterial agents hold significant potential to address this challenge. In this study, a 3D-printed hydrogel scaffold composed of polyallylamine hydrochloride (PAH) and pectin (Pc), incorporated with mupirocin (Mp)-loaded quaternized chitosan nanoparticles (QC NPs) was fabricated. The primary objective of this study was to facilitate a controlled and sustained release of Mp via the QC NPs. The average size of QC-Mp nanoparticles was measured to be 66.05 nm and the average strand diameter and pore size of the 3D-printed construct were measured as 147.22 ± 5.83 and 388.44 ± 14.50 μm, respectively. The hemolysis rate of all scaffolds was below 2 %, indicating that they can be classified as non-hemolytic materials with sufficient blood compatibility. The PAH-Pc/QC-Mp scaffold exhibited significant antibacterial activity, enhanced cell viability in HaCat cells, sustained Mp release until day 7 (⁓60 %), and in-vivo wound healing promotion by stimulation of human keratinocytes. In conclusion, the proposed biocompatible construct demonstrates significant potential for the treatment of chronic and infected wounds by preventing infection and promoting accelerated wound healing.
Collapse
Affiliation(s)
- Yasir Qasim Almajidi
- Department of Pharmaceutics, College of Pharmacy, Al-Nahrain university, Baghdad, Iraq
| | - Rana Kadum Muslim
- Department of Pharmacy, Baghdad College of Medical Sciences, Baghdad, Iraq.
| | - Anmar A Issa
- College of pharmacy, Al-Esraa University, Baghdad, Iraq.
| | - Mastafa H Al-Musawi
- Department of Clinical Laboratory Science, College of Pharmacy, Mustansiriyah University, Baghdad 10052, Iraq.
| | | | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
5
|
Reyes-Guzmán VL, Villarreal-Gómez LJ, Vázquez-Mora R, Méndez-Ramírez YI, Paz-González JA, Zizumbo-López A, Borbón H, Lizarraga-Medina EG, Cornejo-Bravo JM, Pérez-González GL, Ontiveros-Zepeda AS, Pérez-Sánchez A, Chavira-Martínez E, Huirache-Acuña R, Estévez-Martínez Y. Integrating an antimicrobial nanocomposite to bioactive electrospun fibers for improved wound dressing materials. Sci Rep 2024; 14:25118. [PMID: 39443526 PMCID: PMC11499993 DOI: 10.1038/s41598-024-75814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
This study investigates the fabrication and characterization of electrospun poly (ε-caprolactone)/poly (vinyl pyrrolidone) (PCL/PVP) fibers integrated with a nanocomposite of chitosan, silver nanocrystals, and graphene oxide (ChAgG), aimed at developing advanced wound dressing materials. The ChAgG nanocomposite, recognized for its antimicrobial and biocompatible properties, was incorporated into PCL/PVP fibers through electrospinning techniques. We assessed the resultant fibers' morphological, physicochemical, and mechanical properties, which exhibited significant enhancements in mechanical strength and demonstrated effective antimicrobial activity against common bacterial pathogens. The findings suggest that the PCL/PVP-ChAgG fibers maintain biocompatibility and facilitate controlled therapeutic delivery, positioning them as a promising solution for managing chronic and burn-related wounds. This study underscores the potential of these advanced materials to improve healing outcomes cost-effectively, particularly in settings plagued by high incidences of burn injuries. Further clinical investigations are recommended to explore these innovative fibers' full potential and real-world applicability.
Collapse
Affiliation(s)
- Victoria Leonor Reyes-Guzmán
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd. Universitario, #1000. Unidad Valle de las Palmas. Tijuana, Baja, Tijuana, CP. 21500, Baja California, México
| | - Luis Jesús Villarreal-Gómez
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd. Universitario, #1000. Unidad Valle de las Palmas. Tijuana, Baja, Tijuana, CP. 21500, Baja California, México.
- Facultad de Ciencias Química e Ingeniería, Universidad Autónoma de Baja California, Universidad #14418, UABC, Parque Internacional Industrial Tijuana, Tijuana, 22424, Baja California, México.
| | - Rubi Vázquez-Mora
- Tecnológico Nacional de México, Unidad Tecnológica Acatlán, Campús Acatlán de Osorio, Carretera Acatlán - San Juan Ixcaquistla kilómetro 5.5, Del Maestro, Acatlán, 74949, Puebla, México
| | - Yesica Itzel Méndez-Ramírez
- Tecnológico Nacional de México, Unidad Tecnológica Acatlán, Campús Acatlán de Osorio, Carretera Acatlán - San Juan Ixcaquistla kilómetro 5.5, Del Maestro, Acatlán, 74949, Puebla, México
| | - Juan Antonio Paz-González
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd. Universitario, #1000. Unidad Valle de las Palmas. Tijuana, Baja, Tijuana, CP. 21500, Baja California, México
| | - Arturo Zizumbo-López
- Tecnológico Nacional de México, Campus Tijuana, Blvd. Alberto Limón Padilla y Av. ITR Tijuana S/N, Colonia Mesa de Otay, Tijuana, C.P. 22500, Baja California, México
| | - Hugo Borbón
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Carr. Tijuana-Ensenada km107, C.I.C.E.S.E, Ensenada, 22860, Baja California, México
| | - Eder Germán Lizarraga-Medina
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd. Universitario, #1000. Unidad Valle de las Palmas. Tijuana, Baja, Tijuana, CP. 21500, Baja California, México
| | - José Manuel Cornejo-Bravo
- Facultad de Ciencias Química e Ingeniería, Universidad Autónoma de Baja California, Universidad #14418, UABC, Parque Internacional Industrial Tijuana, Tijuana, 22424, Baja California, México
| | - Graciela Lizeth Pérez-González
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd. Universitario, #1000. Unidad Valle de las Palmas. Tijuana, Baja, Tijuana, CP. 21500, Baja California, México
| | - Arturo Sinue Ontiveros-Zepeda
- Facultad de Ciencias de la Ingeniería, Administrativas y Sociales, Universidad Autónoma de Baja California, Blvrd Universidad 1, San Fernando, Tecate, 21460, Baja California, México
| | - Armando Pérez-Sánchez
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd. Universitario, #1000. Unidad Valle de las Palmas. Tijuana, Baja, Tijuana, CP. 21500, Baja California, México
| | - Elizabeth Chavira-Martínez
- Instituto de Investigaciones en Materiales, Circuito Exterior S/N Circuito de la Investigación Científica, C.U, Ciudad de México, 04510, México.
| | - Rafael Huirache-Acuña
- Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Michoacán, 58060, Morelia, Mexico
| | - Yoxkin Estévez-Martínez
- Tecnológico Nacional de México, Unidad Tecnológica Acatlán, Campús Acatlán de Osorio, Carretera Acatlán - San Juan Ixcaquistla kilómetro 5.5, Del Maestro, Acatlán, 74949, Puebla, México.
| |
Collapse
|
6
|
Jiang Y, Yan C, Li M, Chen S, Chen Z, Yang L, Luo K. Delivery of natural products via polysaccharide-based nanocarriers for cancer therapy: A review on recent advances and future challenges. Int J Biol Macromol 2024; 278:135072. [PMID: 39191341 DOI: 10.1016/j.ijbiomac.2024.135072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024]
Abstract
Cancer, caused by uncontrolled proliferation of abnormal cells, has long been a global public health issue. For decades, natural products have been proven to be an essential source for novel anticancer drug discovery. But their instability, low solubility and bioavailability, poor targeting impede therapeutic efficacy. With the development of nanotechnology, nanomedicine delivery systems have emerged as promising strategies to improve bioavailability and enhance the therapeutic efficacy of drugs. However, constructing suitable nanocarrier is still a major challenge. Polysaccharides are extensively employed as carrier materials in nanomedicine delivery systems, owing to their unique physicochemical properties, biocompatibility and low immunogenicity. Polysaccharide-based nanomedicine delivery systems show high drug delivery efficiency, controlled drug release, and precise tumor targeting. This paper reviews influencing factors in the construction of polysaccharide-based nanocarriers and the application of polysaccharide-based nanocarriers for the delivery of natural products in treating various cancers. It focuses on their in vitro and in vivo anticancer efficacy and mechanisms. Furthermore, the review contrasts the capabilities and limitations of polysaccharide-based nanocarriers with traditional delivery methods, underlining their potential to enable targeted, reduced toxicity and excellent cancer treatment modalities. Finally, we discuss the current research limitations and future prospects in this emerging field.
Collapse
Affiliation(s)
- Yingjie Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Minghao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Siying Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhimin Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan 620010, China.
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
7
|
Sinani G, Sessevmez M, Şenel S. Applications of Chitosan in Prevention and Treatment Strategies of Infectious Diseases. Pharmaceutics 2024; 16:1201. [PMID: 39339237 PMCID: PMC11434819 DOI: 10.3390/pharmaceutics16091201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Chitosan is the most commonly investigated functional cationic biopolymer in a wide range of medical applications due to its promising properties such as biocompatibility, biodegradability, and bioadhesivity, as well as its numerous bioactive properties. Within the last three decades, chitosan and its derivatives have been investigated as biomaterials for drug and vaccine delivery systems, besides for their bioactive properties. Due to the functional groups in its structure, it is possible to tailor the delivery systems with desired properties. There has been a great interest in the application of chitosan-based systems also for the prevention and treatment of infectious diseases, specifically due to their antimicrobial, antiviral, and immunostimulatory effects. In this review, recent applications of chitosan in the prevention and treatment of infectious diseases are reviewed, and possibilities and limitations with regards to technical and regulatory aspects are discussed. Finally, the future perspectives on utilization of chitosan as a biomaterial are discussed.
Collapse
Affiliation(s)
- Genada Sinani
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Altinbas University, 34147 Istanbul, Türkiye;
| | - Melike Sessevmez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Türkiye;
| | - Sevda Şenel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe Univesity, 06100 Ankara, Türkiye
| |
Collapse
|
8
|
Safarov R, Fedotova O, Uvarova A, Gordienko M, Menshutina N. Review of Intranasal Active Pharmaceutical Ingredient Delivery Systems. Pharmaceuticals (Basel) 2024; 17:1180. [PMID: 39338342 PMCID: PMC11435088 DOI: 10.3390/ph17091180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
In recent decades, there has been an increased interest in the development of intranasal delivery systems for active pharmaceutical ingredients (APIs) not only for treating local nasal diseases but also for treating systemic diseases, central nervous system (CNS) disorders, and vaccine delivery. The nasal cavity possesses a unique set of anatomical characteristics for delivering active pharmaceutical ingredients, but there are several limitations that recent research in the field of the intranasal administration of APIs aims to overcome. For the effective delivery of nasal preparations, active pharmaceutical ingredients are incorporated into various micro- and nanosystems. Some of the most commonly encountered API delivery systems in the scientific literature include liposomal systems, polymer particles with mucoadhesive properties, in situ gels, nano- and microemulsions, and solid lipid particles. This article provides a review of research on the development of nasal preparations for treating local nasal cavity diseases (in particular, for antibiotic delivery), systemic diseases (analgesics, drugs for cardiovascular diseases, antiviral and antiemetic drugs), CNS disorders (Alzheimer's disease, Parkinson's disease, epilepsy, schizophrenia, depression), and vaccine delivery. The literature data show that active research is underway to reformulate drugs of various pharmacotherapeutic groups into a nasal form.
Collapse
Affiliation(s)
| | - Olga Fedotova
- Department of Chemical and Pharmaceutical Engineering, Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047 Moscow, Russia (A.U.)
| | | | | | | |
Collapse
|
9
|
Chen Z, Zhang Y, Feng K, Hu T, Huang B, Tang J, Ai J, Guo L, Hu W, Wang Z. Facile fabrication of quaternized chitosan-incorporated biomolecular patches for non-compressive haemostasis and wound healing. FUNDAMENTAL RESEARCH 2024; 4:1243-1253. [PMID: 39431147 PMCID: PMC11489470 DOI: 10.1016/j.fmre.2023.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/04/2023] [Accepted: 05/10/2023] [Indexed: 08/25/2024] Open
Abstract
Cell-free wound dressings (WDs) with desirable effectiveness and safety have received much attention in the field of regenerative medicine. However, the weak linkages between bioactive polymers and the spatial structure of WDs frequently result in interventional treatment failure. Herein, we create a series of quaternized chitosan (QCS)-incorporated composite hydrogels (referred to as GHCH-n) by UV cross-linking and then convert them into microneedle patches (MNPs). QCS, which is positively charged and amphiphilic, is essential for broad-spectrum antibacterial and haemostatic activities. QCS is proven to be slightly toxic, so it is immobilized into the methacrylate gelatine (GelMA) molecular cage to minimize adverse effects. A polydimethylsiloxane micro-mould is used to shape the MNPs. MNPs can pierce tissue, seal off bleeding sites, and cling to wounds securely. Thus, MNPs can cooperate with GHCH-n hydrogels to halt bleeding and accelerate wound healing. This study recommends GHCH-10 MNPs as an advanced biomaterial. Several preclinical research models have thoroughly validated the application effect of GHCH-10 MNPs. This research also proposes a novel strategy for integrating the nature of bioactive polymers and the structure of composite biomaterials. This strategy is not only applicable to the fabrication of next-generation WDs but also shows great potential in expanding interdisciplinary domains.
Collapse
Affiliation(s)
- Zesheng Chen
- Department of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yixuan Zhang
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Kexin Feng
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Tao Hu
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Bohan Huang
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Jinlan Tang
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Junjie Ai
- Department of Clinical Laboratory, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China
| | - Liang Guo
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Weikang Hu
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zijian Wang
- Department of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
10
|
Khan MUA, Aslam MA, Abdullah MFB, Gul H, Stojanović GM, Abdal-Hay A, Hasan A. Microneedle system for tissue engineering and regenerative medicines: a smart and efficient therapeutic approach. Biofabrication 2024; 16:042005. [PMID: 39121888 DOI: 10.1088/1758-5090/ad6d90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
The global demand for an enhanced quality of life and extended lifespan has driven significant advancements in tissue engineering and regenerative medicine. These fields utilize a range of interdisciplinary theories and techniques to repair structurally impaired or damaged tissues and organs, as well as restore their normal functions. Nevertheless, the clinical efficacy of medications, materials, and potent cells used at the laboratory level is always constrained by technological limitations. A novel platform known as adaptable microneedles has been developed to address the abovementioned issues. These microneedles offer a solution for the localized distribution of various cargos while minimizing invasiveness. Microneedles provide favorable patient compliance in clinical settings due to their effective administration and ability to provide a painless and convenient process. In this review article, we summarized the most recent development of microneedles, and we started by classifying various microneedle systems, advantages, and fundamental properties. Subsequently, it provides a comprehensive overview of different types of microneedles, the material used to fabricate microneedles, the fundamental properties of ideal microneedles, and their applications in tissue engineering and regenerative medicine, primarily focusing on preserving and restoring impaired tissues and organs. The limitations and perspectives have been discussed by concluding their future therapeutic applications in tissue engineering and regenerative medicines.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Muhammad Azhar Aslam
- Department of Physics, University of Engineering and Technology, Lahore 39161, Pakistan
| | - Mohd Faizal Bin Abdullah
- Oral and Maxillofacial Surgery Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
- Oral and Maxillofacial Surgery Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Hilal Gul
- Department of Biomedical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Goran M Stojanović
- Department of Electronics, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Abdalla Abdal-Hay
- School of Dentistry, University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia
- Department of Mechanical Engineering, Faculty of Engineering, South Valley University, Qena 83523, Egypt
- Faculty of Industry and Energy Technology, Mechatronics Technology Program, New Cairo Technological University, New Cairo-Fifth Settlement, Cairo 11835, Egypt
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| |
Collapse
|
11
|
Masimov R, Wasan EK. Chitosan non-particulate vaccine delivery systems. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:12921. [PMID: 39114808 PMCID: PMC11303186 DOI: 10.3389/jpps.2024.12921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024]
Abstract
Chitosan is an extensively used polymer for drug delivery applications in particulate and non-particulate carriers. Chitosan-based particulate, nano-, and microparticle, carriers have been the most extensively studied for the delivery of therapeutics and vaccines. However, chitosan has also been used in vaccine applications for its adjuvant properties in various hydrogels or as a carrier coating material. The focus of this review will be on the usage of chitosan as a vaccine adjuvant based on its intrinsic immunogenicity; the various forms of chitosan-based non-particulate delivery systems such as thermosensitive hydrogels, microneedles, and conjugates; and the advantages of its role as a coating material for vaccine carriers.
Collapse
Affiliation(s)
| | - Ellen K. Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
12
|
Shi S, Shi W, Zhou B, Qiu S. Research and Application of Chitosan Nanoparticles in Orthopedic Infections. Int J Nanomedicine 2024; 19:6589-6602. [PMID: 38979535 PMCID: PMC11228078 DOI: 10.2147/ijn.s468848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/15/2024] [Indexed: 07/10/2024] Open
Abstract
Orthopedic infection is one of the most intractable orthopedic problems. Bacteria resistant to antibiotics also develop gradually. Chitosan is widely used in the Biomedical field because of its high biocompatibility, biodegradability, and antibacterial activity. Chitosan-based drug delivery systems are frequently utilized to produce controlled medication release. When combined with antibiotics, synergistic antibacterial effects can be achieved. Chitosan-based nanoparticles are one of the most widely used applications in drug delivery systems. The focus of this review is to provide information on new methods being developed for chitosan-based nanoparticles in the field of bone infection treatment, including chitosan nanoparticles for antibacterial purposes, Ch-loaded with antibiotics, Ch-loaded with metal, and used as immune adjuvants. It may Provide ideas for the fundamental research and the prospects of future clinical applications of orthopedic infections.
Collapse
Affiliation(s)
- Sifeng Shi
- Department of Orthopedic Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Weiran Shi
- Department of Orthopedic Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Bing Zhou
- Department of Orthopedic Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Shang Qiu
- Department of Orthopedic Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| |
Collapse
|
13
|
Xu C, Xing R, Liu S, Qin Y, Li K, Yu H, Li P. In vivo immunological activity of chitosan-derived nanoparticles. Int J Biol Macromol 2024; 262:130105. [PMID: 38346623 DOI: 10.1016/j.ijbiomac.2024.130105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/11/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
Chitosan has been studied as an immunomodulator, but few studies have used chitosan derivatives as adjuvants alone. After a preliminary study, we found that nanoparticles prepared from chitosan derivatives had better cellular immune activity when used as an adjuvant. Therefore, animal experiments were conducted to further investigate the performance and mechanism of these nanoparticles as immune adjuvants. We injected mice with the chitosan nanoparticle vaccine and measured the expression levels of immunoglobulins, immune factors, and immune genes in tissues and tissue sections. The results showed that C236-HACC-OVA (C2,3,6-chitosan sulfate-chitosan quaternary ammonium salt-ovalbumin) and NO-HACC-OVA (NO-carboxymethyl chitosan-chitosan quaternary ammonium salt-ovalbumin) nanoparticles can significantly improve the secretion of the immune factors IL-6, TNF, and IL-1β. The level of IgG1 was highly significant after administering both nanoparticles, but IgG2 was not significant in mice. Three immune factors (IL-4, IL-6, and IL-17) were secreted at high levels in mouse serum at a nanoparticle dose of 0.3 mg/mouse. These nanoparticles also have high safety in the liver, kidney, and spleen of mice. This study proves the possibility of using chitosan derivative nanoparticles as vaccine adjuvants. These data further indicate that chitosan derivative nanoparticles have potential for use as vaccine adjuvants and demonstrate that polysaccharides have a unique position in green vaccine research.
Collapse
Affiliation(s)
- Chaojie Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China.
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Kecheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
14
|
Huang J, Tang X, Yang Z, Chen J, Wang K, Shi C, Liu Z, Wu M, Du Q. Enhancing oral delivery and anticancer efficacy of 7-ethyl-10-hydroxycamptothecin through self-assembled micelles of deoxycholic acid grafted N'-nonyl-trimethyl chitosan. Colloids Surf B Biointerfaces 2024; 234:113736. [PMID: 38215603 DOI: 10.1016/j.colsurfb.2023.113736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/14/2024]
Abstract
Irinotecan (CPT-11) is used as a first or second-line chemotherapy drug for the treatment and management of colorectal cancers. In vitro studies have shown that 7-ethyl-10-hydroxycamptothecin (SN38), the active metabolite of CPT-11, displays promising anticancer efficacy. However, its poor aqueous solubility and hydrolytic degradation result in its lower oral bioavailability and impracticable clinical application. To overcome these limitations, a novel amphiphilic chitosan derivative, deoxycholic acid decorated N'-nonyl-trimethyl chitosan, was synthesized. Nano-micelles loaded with SN38 were subsequently prepared to enhance the bioavailability and anti-tumor efficacy of the drug through oral administration. The nano-micelles demonstrated improved dilution stability, enhanced greater mucosal adherence, significant P-gp efflux inhibition, and increased drug transport in the intestine by paracellular and transcellular pathways. Consequently, both the in vivo pharmacokinetic profile and therapeutic efficacy of SN38 against cancer were substantially improved via the micellar system. Thus, the developed polymeric micelles can potentially enhance the SN38 oral absorption for cancer therapy, offering prospective avenues for further exploration.
Collapse
Affiliation(s)
- Jie Huang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiao Tang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ziqiong Yang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jianqiu Chen
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Kun Wang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Chengnan Shi
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zihan Liu
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ming Wu
- Institute of Pediatrics, Xuzhou Medical University, Xuzhou, China
| | - Qian Du
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
15
|
Imran H, Tang Y, Wang S, Yan X, Liu C, Guo L, Wang E, Xu C. Optimized DOX Drug Deliveries via Chitosan-Mediated Nanoparticles and Stimuli Responses in Cancer Chemotherapy: A Review. Molecules 2023; 29:31. [PMID: 38202616 PMCID: PMC10780101 DOI: 10.3390/molecules29010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Chitosan nanoparticles (NPs) serve as useful multidrug delivery carriers in cancer chemotherapy. Chitosan has considerable potential in drug delivery systems (DDSs) for targeting tumor cells. Doxorubicin (DOX) has limited application due to its resistance and lack of specificity. Chitosan NPs have been used for DOX delivery because of their biocompatibility, biodegradability, drug encapsulation efficiency, and target specificity. In this review, various types of chitosan derivatives are discussed in DDSs to enhance the effectiveness of cancer treatments. Modified chitosan-DOX NP drug deliveries with other compounds also increase the penetration and efficiency of DOX against tumor cells. We also highlight the endogenous stimuli (pH, redox, enzyme) and exogenous stimuli (light, magnetic, ultrasound), and their positive effect on DOX drug delivery via chitosan NPs. Our study sheds light on the importance of chitosan NPs for DOX drug delivery in cancer treatment and may inspire the development of more effective approaches for cancer chemotherapy.
Collapse
Affiliation(s)
- HafizMuhammad Imran
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Yixin Tang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Siyuan Wang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Xiuzhang Yan
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Lei Guo
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Erlei Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Caina Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| |
Collapse
|
16
|
Parmaksız S, Pekcan M, Özkul A, Türkmen E, Rivero-Arredondo V, Ontiveros-Padilla L, Forbes N, Perrie Y, López-Macías C, Şenel S. In vivo evaluation of new adjuvant systems based on combination of Salmonella Typhi porins with particulate systems: Liposomes versus polymeric particles. Int J Pharm 2023; 648:123568. [PMID: 37925042 DOI: 10.1016/j.ijpharm.2023.123568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
Subunit vaccines that have weak immunogenic activity require adjuvant systems for enhancedcellular and long-acting humoral immune responses. Both lipid-based and polymeric-based particulate adjuvants have been widely investigated to induce the desired immune responses against the subunit vaccines. The adjuvant efficacy of these particulate adjuvants depends upon their physicochemical properties such as particle size, surface charge, shape and their composition. Previously, we showed in vitro effect of adjuvant systems based on combination of chitosan and Salmonella Typhi porins in microparticle or nanoparticle form, which were spherical with positive surface charge. In the present study, we have further developed an adjuvant system based on combination of porins with liposomes (cationic and neutral) and investigated the adjuvant effect of both the liposomal and polymeric systems in BALB/c mice using a model antigen, ovalbumin. Humoral immune responses were determined following priming and booster dose at 15-day intervals. In overall, IgM and IgG levels were induced in the presence of both the liposomal and polymeric adjuvant systems indicating the positive impact of combination with porins. The highest IgM levels were obtained on Day 8, and liposomal adjuvant systems were found to elicit significantly higher IgM levels compared to polymeric systems. IgG levels were increased significantly after booster, particularly more profound with the micro-sized polymeric system when compared to cationic liposomal system with nano-size. Our results demonstrated that the developed particulate systems are promising both as an adjuvant and delivery system, providing enhanced immune responses against subunit antigens, and have the potential for long-term protection.
Collapse
Affiliation(s)
- Selin Parmaksız
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Ankara, Turkey
| | - Mert Pekcan
- Ankara University, Faculty of Veterinary Medicine, Department of Biochemistry, 06110 Ankara, Turkey
| | - Aykut Özkul
- Ankara University, Faculty of Veterinary Medicine, Department of Virology, Ankara University, 06110 Ankara, Turkey
| | - Ece Türkmen
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Ankara, Turkey
| | - Vanessa Rivero-Arredondo
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI", Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Luis Ontiveros-Padilla
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI", Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Neil Forbes
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, United Kingdom
| | - Yvonne Perrie
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, United Kingdom
| | - Constantino López-Macías
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre "Siglo XXI", Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Sevda Şenel
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Ankara, Turkey.
| |
Collapse
|
17
|
Shriky B, Babenko M, Whiteside BR. Dissolving and Swelling Hydrogel-Based Microneedles: An Overview of Their Materials, Fabrication, Characterization Methods, and Challenges. Gels 2023; 9:806. [PMID: 37888379 PMCID: PMC10606778 DOI: 10.3390/gels9100806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
Polymeric hydrogels are a complex class of materials with one common feature-the ability to form three-dimensional networks capable of imbibing large amounts of water or biological fluids without being dissolved, acting as self-sustained containers for various purposes, including pharmaceutical and biomedical applications. Transdermal pharmaceutical microneedles are a pain-free drug delivery system that continues on the path to widespread adoption-regulatory guidelines are on the horizon, and investments in the field continue to grow annually. Recently, hydrogels have generated interest in the field of transdermal microneedles due to their tunable properties, allowing them to be exploited as delivery systems and extraction tools. As hydrogel microneedles are a new emerging technology, their fabrication faces various challenges that must be resolved for them to redeem themselves as a viable pharmaceutical option. This article discusses hydrogel microneedles from a material perspective, regardless of their mechanism of action. It cites the recent advances in their formulation, presents relevant fabrication and characterization methods, and discusses manufacturing and regulatory challenges facing these emerging technologies before their approval.
Collapse
Affiliation(s)
- Bana Shriky
- Faculty of Engineering and Digital Technologies, University of Bradford, Bradford BD7 1DP, UK;
| | | | - Ben R. Whiteside
- Faculty of Engineering and Digital Technologies, University of Bradford, Bradford BD7 1DP, UK;
| |
Collapse
|
18
|
Anisiei A, Andreica BI, Mititelu-Tartau L, Coman CG, Bilyy R, Bila G, Rosca I, Sandu AI, Amler E, Marin L. Biodegradable trimethyl chitosan nanofiber mats by electrospinning as bioabsorbable dressings for wound closure and healing. Int J Biol Macromol 2023; 249:126056. [PMID: 37524280 DOI: 10.1016/j.ijbiomac.2023.126056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
The paper aimed to prepare quaternary chitosan-based nanofibers as bioabsorbable wound dressings. To this aim, fully biodegradable chitosan/N,N,N-trimethyl chitosan (TMC) nanofibers were designed and prepared via electrospinning, using poly(ethylene glycol) as sacrificial additive. The new biomaterials were structurally and morphologically characterized by FTIR and NMR spectroscopy, thermogravimetric analysis, X-ray diffraction and scanning electron microscopy, and their properties required for wound dressings application were investigated and discussed in detail. Thus, the nanofiber behavior was investigated by swelling, dynamic vapor sorption, and in vitro biodegradation in media mimicking the wound exudate. The mechanical properties were analysed from the stress-strain curves, the bioadhesivity from the texture analysis and the mucoadhesivity from the Zeta potential and transmittance measurements. The antimicrobial activity was assessed against S. aureus and E. coli strains, and the biocompatibility was tested in vitro on normal human dermal fibroblasts, and in vivo on rats. The application of the fiber mats with the best balance of properties as dressings on deep burn wound models in rats showed wound closure and active healing, with fully restoration of epithelia. It was concluded that the combination of chitosan with TMC into nanofibers provides new potential bioabsorbable wound dressing, opening new perspectives in regenerative medicine.
Collapse
Affiliation(s)
- Alexandru Anisiei
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | | | | | - Corneliu G Coman
- "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Rostyslav Bilyy
- Lectinotest R&D, Mechamichna Str 2, 79022, Ukraine; Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Galyna Bila
- Lectinotest R&D, Mechamichna Str 2, 79022, Ukraine; Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Irina Rosca
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Andreea-Isabela Sandu
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Evžen Amler
- Research and Development Department Inocure, Prague, Czech Republic; Charles University, Prague, Czech Republic
| | - Luminita Marin
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania.
| |
Collapse
|
19
|
Cui J, Sun Y, Wang L, Tan W, Guo Z. Preparation of chitosan derivatives containing aromatic five-membered heterocycles for efficient antimicrobial and antioxidant activities. Int J Biol Macromol 2023; 247:125850. [PMID: 37460067 DOI: 10.1016/j.ijbiomac.2023.125850] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
In this study, nine chitosan derivatives containing aromatic five-membered heterocycles were prepared and the effects of different grafting methods on the biological activities of chitosan derivatives were investigated. The structures of all the compounds were characterized by Fourier Transform Infrared (FT-IR) spectroscopy and Nuclear Magnetic Resonance (NMR) spectroscopy, while the antioxidant, antifungal and antibacterial activities of the chitosan derivatives were tested. The experimental data suggested that the chitosan derivatives had outstanding inhibitory ability against Fusarium graminearum, Fusarium oxysporum f.sp.cucumbrum, Staphylococcus aureus and Escherichia coli. At the same time, some of the compounds showed strong scavenging ability against DPPH radical and superoxide radical. Cytotoxicity experiments have demonstrated that some chitosan derivatives are non-toxic to L929 cells. More importantly, compared to chitosan, these chitosan derivatives have good water solubility and can be used as potential polymers for antifungal and antibacterial biomaterials in agriculture.
Collapse
Affiliation(s)
- Jingmin Cui
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Sun
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linqing Wang
- School of Chemical and Materials Science, Ludong University, Yantai 264025, China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
20
|
Gaglio SC, Perduca M, Zipeto D, Bardi G. Efficiency of Chitosan Nanocarriers in Vaccinology for Mucosal Immunization. Vaccines (Basel) 2023; 11:1333. [PMID: 37631901 PMCID: PMC10459455 DOI: 10.3390/vaccines11081333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023] Open
Abstract
The mucosal barrier constitutes a huge surface area, close to 40 m2 in humans, located mostly in the respiratory, gastrointestinal and urogenital tracts and ocular cavities. It plays a crucial role in tissue interactions with the microbiome, dietary antigens and other environmental materials. Effective vaccinations to achieve highly protective mucosal immunity are evolving strategies to counteract several serious diseases including tuberculosis, diphtheria, influenzae B, severe acute respiratory syndrome, Human Papilloma Virus infection and Acquired Immune Deficiency Syndrome. Interestingly, one of the reasons behind the rapid spread of severe acute respiratory syndrome coronavirus 2 variants has been the weakness of local immunization at the level of the respiratory mucosa. Mucosal vaccines can outperform parenteral vaccination as they specifically elicit protective mucosal immune responses blocking infection and transmission. In this scenario, chitosan-based nanovaccines are promising adjuvants-carrier systems that rely on the ability of chitosan to cross tight junctions and enhance particle uptake due to chitosan-specific mucoadhesive properties. Indeed, chitosan not only improves the adhesion of antigens to the mucosa promoting their absorption but also shows intrinsic immunostimulant abilities. Furthermore, by finely tuning the colloidal properties of chitosan, it can provide sustained antigen release to strongly activate the humoral defense. In the present review, we agnostically discuss the potential reasons why chitosan-based vaccine carriers, that efficiently elicit strong immune responses in experimental setups and in some pre-clinical/clinical studies, are still poorly considered for therapeutic formulations.
Collapse
Affiliation(s)
- Salvatore Calogero Gaglio
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Massimiliano Perduca
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Giuseppe Bardi
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
21
|
Fan B, Gu J, Deng B, Guo W, Zhang S, Li L, Li B. Positively Charged-Amylose-Entangled Au-Nanoparticles Acting as Protein Carriers and Potential Adjuvants to SARS-CoV-2 Subunit Vaccines. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37330942 DOI: 10.1021/acsami.3c05295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The COVID-19 pandemic continues to spread worldwide. To protect and control the spread of SARS-CoV-2, varieties of subunit vaccines based on spike (S) proteins have been approved for human applications. Here, we report a new subunit vaccine design strategy that functions as both an antigen carrier and an adjuvant in immunization to elicit high-level immune responses. The complex of 2-hydroxypropyl-trimethylammonium chloride chitosan and amylose entangles Au nanoparticles (HTCC/amylose/AuNPs) forming 40 nm nanocarriers with a positive charge. The obtained positively charged nanoparticles reveal many merits, including the larger S protein loading capacity in PBS buffer, higher cellular uptake ability, and lower cell cytotoxicity, supporting their potential as safe vaccine nanocarriers. Two functionalized nanoparticle subunit vaccines are prepared via loading full-length S proteins derived from SARS-CoV-2 variants. In mice, both prepared vaccines elicit high specific IgG antibodies, neutralize antibodies, and immunoglobulin IgG1 and IgG2a. The prepared vaccines also elicit robust T- and B-cell immune responses and increase CD19+ B cells, CD11C+ dendritic cells, and CD11B+ macrophages at the alveoli and bronchi of the immunized mice. Furthermore, the results of skin safety tests and histological observation of organs indicated in vivo safety of HTCC/amylose/AuNP-based vaccines. Summarily, our prepared HTCC/amylose/AuNP have significant potential as general vaccine carriers for the delivery of different antigens with potent immune stimulation.
Collapse
Affiliation(s)
- Baochao Fan
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212000, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225000, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Jun Gu
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212000, China
| | - Bin Deng
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- College of Pharmacy, China Pharmaceutical University, Nanjing 210000, China
| | - Weilu Guo
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Pharmaceutical, Nanjing Tech University, Nanjing 210000, China
| | - Shuaifeng Zhang
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212000, China
| | - Li Li
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212000, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225000, China
| | - Bin Li
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212000, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225000, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| |
Collapse
|
22
|
Wu N, Chen Q, Zou Y, Miao C, Ma G, Wu J. Chitosan particle-emulsion complex adjuvants: The effect of particle distribution on the immune intensity and response type. Carbohydr Polym 2023; 309:120673. [PMID: 36906359 DOI: 10.1016/j.carbpol.2023.120673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Particle-emulsion complex adjuvants as a new trend in the research of vaccine formulation, can improve the immune strength and balance the immune type. However, the location of the particle in the formulation is a key factor that has not been investigated extensively and its type of immunity. In order to investigate the effect of different combining modes of emulsion and particle on the immune response, three types of particle-emulsion complex adjuvant formulations were designed with the combination of chitosan nanoparticles (CNP) and an o/w emulsion with squalene as the oil phase. The complex adjuvants included the CNP-I group (particle inside the emulsion droplet), CNP-S group (particle on the surface of emulsion droplet) and CNP-O group (particle outside the emulsion droplet), respectively. The formulations with different particle locations behaved with different immunoprotective effects and immune-enhancing mechanisms. Compared with CNP-O, CNP-I and CNP-S significantly improve humoral and cellular immunity. CNP-O was more like two independent systems for immune enhancement. As a result, CNP-S triggered a Th1-type immune bias and CNP-I had more of a Th2-type of the immune response. These data highlight the key influence of the subtle difference of particle location in the droplets for immune response.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Qiuting Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Yongjuan Zou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Chunyu Miao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jie Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
23
|
Liu J, Guo S, Jin Z, Zhao K. Adjuvanted quaternized chitosan composite aluminum nanoparticles-based vaccine formulation promotes immune responses in chickens. Vaccine 2023; 41:2982-2989. [PMID: 37032226 DOI: 10.1016/j.vaccine.2023.03.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/11/2023]
Abstract
Aluminum adjuvant is a typical adjuvant that can promote humoral immune response, but it lacks the ability to effectively induce cellular immune response. The water-soluble N-2-Hydroxypropyl trimethyl ammonium chloride chitosan nanoparticles (N-2-HACC NPs) can enhance humoral and cellular immune responses of vaccines. To enable aluminum adjuvant to induce cellular immunity, the composite nano adjuvant N-2-HACC-Al NPs were synthesized by the N-2-HACC and aluminum sulfate (Al2(SO4)3). The particle size and zeta potential of the N-2-HACC-Al NPs were 300.70 ± 24.90 nm and 32.28 ± 0.52 mV, respectively. The N-2-HACC-Al NPs have good thermal stability and biodegradability and lower cytotoxicity. In addition, to investigate the immunogenicity of the composite nano adjuvant, the combined inactivated vaccine against Newcastle disease (ND) and H9N2 avian influenza (AI) was prepared with the N-2-HACC-Al NPs as a vaccine adjuvant. The immune effect of the vaccine (N-2-HACC-Al/NDV-AIV) was evaluated by chicken in vivo immunization. The vaccine induced higher levels of serum IgG, IL-4, and IFN-γ than those of the commercial combined inactivated vaccine against ND and H9N2 AI. The levels of IFN-γ were more than twice those of the commercial vaccine at 7 days post the immunization. The N-2-HACC-Al NPs could be used as an efficient nano adjuvant to enhance the effectiveness of vaccine and have immense application potential.
Collapse
Affiliation(s)
- Jiali Liu
- College of Chemistry and Material Sciences, School of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150080, China
| | - Sihan Guo
- College of Chemistry and Material Sciences, School of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150080, China
| | - Zheng Jin
- College of Chemistry and Material Sciences, School of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150080, China; Institute of Nanobiomaterials and Immunology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China.
| | - Kai Zhao
- College of Chemistry and Material Sciences, School of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150080, China; Institute of Nanobiomaterials and Immunology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China.
| |
Collapse
|
24
|
Li H, Liang X, Sun W, Zhuang B, Cao Y, Zhang J, Shen J, Wang Y, Yu L. Immunological evaluation of a recombinant vaccine delivered with an analogous hyaluronic acid chitosan nanoparticle-hydrogel against Toxoplasma gondii in mice. Microb Pathog 2023; 179:106092. [PMID: 37003502 DOI: 10.1016/j.micpath.2023.106092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Toxoplasma gondii (T. gondii) is not only a threat to the public health but it also poses adverse impacts on the livestock industry. This study aimed to develop a recombinant vaccine composed of T. gondii microneme protein 6 (TgMIC6) and T. gondii rhoptry protein 18 (TgROP18).The vaccine was delivered with a novel vector, named analogous hyaluronic acid chitosan nanoparticle-hydrogel (AHACNP-HG) and its immune protection was evaluated. METHODS The recombinant MIC6 and ROP18 proteins were obtained by affinity chromatography and loaded onto AHACNP-HG by magnetic stirring. The characterizations of AHACNP-HG were investigated, including its structure, rheological property, nanoparticle size and zeta potential, its ability to release protein in vitro and toxicology in vivo. The immunological and anti-infection effects of AHACNP-HG/rMIC6/rROP18 were examined in the mice model. RESULTS AHACNP-HG presented a characteristic of composite system and possessed biosecurity with excellent protein control-release property. AHACNP-HG/rMIC6/rROP18 vaccine enhanced a mixed Th1/Th2 cellular immune response accompanied by an increased level of the cytokines, IFN-γ and IL-10. It also provoked a stronger humoral immune response. Additionally, after challenge with T. gondii tachyzoite, AHACNP-HG/rMIC6/rROP18 inoculation prolonged the survival time of mice. CONCLUSION Our data indicated that mixed rMIC6 and rROP18 induced strong immune response and played a certain protective role in controlling T. gondii infection, and the novel adjuvant AHACNP-HG improved modestly some immunogenicity properties in mouse model, which indicated that it can be used as a novel delivery system in vaccine development.
Collapse
Affiliation(s)
- Hu Li
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China; Department of Clinical Laboratory, Taihe People's Hospital, Fuyang, 236600, China.
| | - Xiao Liang
- School of Life Sciences, Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230032, China.
| | - Wenze Sun
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Baocan Zhuang
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Yuanyuan Cao
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Junling Zhang
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Jilong Shen
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Yongzhong Wang
- School of Life Sciences, Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230032, China.
| | - Li Yu
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
25
|
He X, Chen X, Wang H, Du G, Sun X. Recent advances in respiratory immunization: A focus on COVID-19 vaccines. J Control Release 2023; 355:655-674. [PMID: 36787821 PMCID: PMC9937028 DOI: 10.1016/j.jconrel.2023.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
The development of vaccines has always been an essential task worldwide since vaccines are regarded as powerful weapons in protecting the global population. Although the vast majority of currently authorized human vaccinations are administered intramuscularly or subcutaneously, exploring novel routes of immunization has been a prominent area of study in recent years. This is particularly relevant in the face of pandemic diseases, such as COVID-19, where respiratory immunization offers distinct advantages, such as inducing systemic and mucosal responses to prevent viral infections in both the upper and lower respiratory tracts and also leading to higher patient compliance. However, the development of respiratory vaccines confronts challenges due to the physiological barriers of the respiratory tract, with most of these vaccines still in the research and development stage. In this review, we detail the structure of the respiratory tract and the mechanisms of mucosal immunity, as well as the obstacles to respiratory vaccination. We also examine the considerations necessary in constructing a COVID-19 respiratory vaccine, including the dosage form of the vaccines, potential excipients and mucosal adjuvants, and delivery systems and devices for respiratory vaccines. Finally, we present a comprehensive overview of the COVID-19 respiratory vaccines currently under clinical investigation. We hope this review can provide valuable insights and inspiration for the future development of respiratory vaccinations.
Collapse
Affiliation(s)
- Xiyue He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoyan Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hairui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
26
|
Cao Z, Chen L, Niu G, Li Y, Hu Z, Hong R, Zhang X, Hong L, Han S, Ke C. Preparation and characterization of a novel triple composite scaffold containing silk fibroin, chitosan, extracellular matrix and the mechanism of Akt/FoxO signaling pathway in colonic cancer cells cultured in 3D. Front Bioeng Biotechnol 2023; 11:1139649. [PMID: 37207122 PMCID: PMC10188982 DOI: 10.3389/fbioe.2023.1139649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
This work examined the physical and chemical properties and biocompatibility in vivo and in vitro of a unique triple composite scaffold incorporating silk fibroin, chitosan, and extracellular matrix. The materials were blended, cross-linked, and freeze-dried to create a composite scaffold of silk fibroin/chitosan/colon extracellular matrix (SF/CTS/CEM) with varying CEM contents. The SF/CTS/CEM (1:1:1) scaffold demonstrated the preferable shape, outstanding porosity, favorable connectivity, good moisture absorption, and acceptable and controlled swelling and degradation properties. Additionally, HCT-116 cells cultivated with SF/CTS/CEM (1:1:1) showed excellent proliferation capacity, cell malignancy, and delayed apoptosis, according to the in vitro cytocompatibility examination. We also examined the PI3K/PDK1/Akt/FoxO signaling pathway and discovered that cell culture using a SF/CTS/CEM (1:1:1) scaffold may prevent cell death by phosphorylating Akt and suppressing FoxO expression. Our findings demonstrate the potential of the SF/CTS/CEM (1:1:1) scaffold as an experimental model for colonic cancer cell culture and for replicating the three-dimensional in vivo cell growth environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Chongwei Ke
- *Correspondence: Shanliang Han, ; Chongwei Ke,
| |
Collapse
|
27
|
Tattiyapong P, Kitiyodom S, Yata T, Jantharadej K, Adamek M, Surachetpong W. Chitosan nanoparticle immersion vaccine offers protection against tilapia lake virus in laboratory and field studies. FISH & SHELLFISH IMMUNOLOGY 2022; 131:972-979. [PMID: 36351543 DOI: 10.1016/j.fsi.2022.10.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Tilapia lake virus (TiLV), an enveloped negative-sense single-stranded RNA virus, causes tilapia lake virus disease (TiLVD), which is associated with mass mortality and severe economic impacts in wild and farmed tilapia industries worldwide. In this study, we developed a chitosan nanoparticle TiLV immersion vaccine and assessed the efficacy of the vaccine in laboratory and field trials. Transmission electron microscopy showed that the inactivated vaccine had a particle size of 210.3 nm, while the nano inactivated vaccine had a spherical shape with a diameter of 120.4 nm. Further analysis using fluorescent staining and immunohistochemistry analysis revealed the mucoadhesive properties of the nanovaccine (CN-KV) through fish gills. We assessed the efficacy of an immersion-based TiLV nanovaccine using a cohabitation challenge model. The fish that received the nanovaccine showed better relative percent survival (RPS) at 68.17% compared with the RPS of the inactivated virus vaccine (KV) group at 25.01%. The CN-KV group also showed a higher TiLV-specific antibody response than the control and KV groups (p < 0.05). Importantly, under field conditions, the fish receiving the CN-KV nanovaccine had better RPS at 52.2% than the nonvaccinated control group. Taken together, the CN-KV nanovaccinated fish showed better survival and antibody response than the control and KV groups both under laboratory control challenge conditions and field trials. The newly developed immersion-based nanovaccine is easy to administer in small fish, is less labor-intensive, and allows for mass vaccination to protect fish from TiLV infection.
Collapse
Affiliation(s)
- Puntanat Tattiyapong
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, Thailand; Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Thailand
| | - Sirikorn Kitiyodom
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Thailand
| | - Teerapong Yata
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Thailand
| | - Krittayapong Jantharadej
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Thailand
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Win Surachetpong
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, Thailand; Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Thailand.
| |
Collapse
|
28
|
Lin Y, Sun B, Jin Z, Zhao K. Enhanced Immune Responses to Mucosa by Functionalized Chitosan-Based Composite Nanoparticles as a Vaccine Adjuvant for Intranasal Delivery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52691-52701. [PMID: 36382954 DOI: 10.1021/acsami.2c17627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nasal administration for vaccine delivery is a novel non-invasive vaccine administration approach that can induce local or systemic immune responses and overcome the disadvantages caused by traditional injectable administration. However, mucosal vaccine and adjuvant delivery systems with sustained-release ability and enhanced immune effects at mucosal sites have still been highly demanded. In this work, N-2-hydroxypropyl trimethyl ammonium chloride chitosan/N,O-carboxymethyl chitosan nanoparticles (N-2-HACC/CMCS NPs) with excellent mucosal absorption, high drug loading capacity, and enhanced immune responses were prepared by the ionic cross-linking method. To evaluate the potential capacity of the N-2-HACC/CMCS NPs as a vaccine adjuvant and the molecular mechanism for the induction of enhanced mucosal and systemic immune responses, bovine serum albumin (BSA) was employed as a general model antigen and loaded into the N-2-HACC/CMCS NPs to prepare a BSA-loaded N-2-HACC/CMCS adjuvant vaccine (N-2-HACC/CMCS/BSA NPs). It was well demonstrated that the N-2-HACC/CMCS/BSA NPs with great biostability and mucosal absorption could effectively promote the proliferation of lymphocytes and the secretion of related pro-inflammatory factors, resulting in the stimulation of specific mucosal and systemic immune responses. This study revealed that the chitosan-based nano-delivery system can act as the mucosal vaccine adjuvant and possesses great promise in viral infectious diseases and immunization therapy.
Collapse
Affiliation(s)
- Yuhong Lin
- Institute of Nanobiomaterials and Immunology, School of Life Science, Taizhou University, Zhejiang, Taizhou318000, China
| | - Beini Sun
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangdong, Guangzhou510631, China
| | - Zheng Jin
- Institute of Nanobiomaterials and Immunology, School of Life Science, Taizhou University, Zhejiang, Taizhou318000, China
| | - Kai Zhao
- Institute of Nanobiomaterials and Immunology, School of Life Science, Taizhou University, Zhejiang, Taizhou318000, China
| |
Collapse
|
29
|
Gong X, Gao Y, Shu J, Zhang C, Zhao K. Chitosan-Based Nanomaterial as Immune Adjuvant and Delivery Carrier for Vaccines. Vaccines (Basel) 2022; 10:1906. [PMID: 36423002 PMCID: PMC9696061 DOI: 10.3390/vaccines10111906] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 08/26/2023] Open
Abstract
With the support of modern biotechnology, vaccine technology continues to iterate. The safety and efficacy of vaccines are some of the most important areas of development in the field. As a natural substance, chitosan is widely used in numerous fields-such as immune stimulation, drug delivery, wound healing, and antibacterial procedures-due to its good biocompatibility, low toxicity, biodegradability, and adhesion. Chitosan-based nanoparticles (NPs) have attracted extensive attention with respect to vaccine adjuvants and delivery systems due to their excellent properties, which can effectively enhance immune responses. Here, we list the classifications and mechanisms of action of vaccine adjuvants. At the same time, the preparation methods of chitosan, its NPs, and their mechanism of action in the delivery system are introduced. The extensive applications of chitosan and its NPs in protein vaccines and nucleic acid vaccines are also introduced. This paper reviewed the latest research progress of chitosan-based NPs in vaccine adjuvant and drug delivery systems.
Collapse
Affiliation(s)
- Xiaochen Gong
- Institute of Nanobiomaterials and Immunology, School of Pharmaceutical Sciences & School of Life Science, Taizhou University, Taizhou 318000, China
- School of Medical Technology, Qiqihar Medical University, Qiqihar 161006, China
| | - Yuan Gao
- Institute of Nanobiomaterials and Immunology, School of Pharmaceutical Sciences & School of Life Science, Taizhou University, Taizhou 318000, China
| | - Jianhong Shu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Hom-Sun Biotechnology Co., Ltd., Shaoxing 312366, China
| | - Chunjing Zhang
- School of Medical Technology, Qiqihar Medical University, Qiqihar 161006, China
| | - Kai Zhao
- Institute of Nanobiomaterials and Immunology, School of Pharmaceutical Sciences & School of Life Science, Taizhou University, Taizhou 318000, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Hom-Sun Biotechnology Co., Ltd., Shaoxing 312366, China
| |
Collapse
|
30
|
Elkomy MH, Ali AA, Eid HM. Chitosan on the surface of nanoparticles for enhanced drug delivery: A comprehensive review. J Control Release 2022; 351:923-940. [DOI: 10.1016/j.jconrel.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/26/2022]
|
31
|
Recent progress in application of nanovaccines for enhancing mucosal immune responses. Acta Pharm Sin B 2022. [DOI: 10.1016/j.apsb.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
32
|
Functionalized chitosan as a promising platform for cancer immunotherapy: A review. Carbohydr Polym 2022; 290:119452. [DOI: 10.1016/j.carbpol.2022.119452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/20/2022]
|
33
|
Baker JR, Farazuddin M, Wong PT, O'Konek JJ. The unfulfilled potential of mucosal immunization. J Allergy Clin Immunol 2022; 150:1-11. [PMID: 35569567 PMCID: PMC9098804 DOI: 10.1016/j.jaci.2022.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 01/31/2023]
Abstract
Recent events involving the global coronavirus pandemic have focused attention on vaccination strategies. Although tremendous advances have been made in subcutaneous and intramuscular vaccines during this time, one area that has lagged in implementation is mucosal immunization. Mucosal immunization provides several potential advantages over subcutaneous and intramuscular routes, including protection from localized infection at the site of entry, clearance of organisms on mucosal surfaces, induction of long-term immunity through establishment of central and tissue-resident memory cells, and the ability to shape regulatory responses. Despite these advantages, significant barriers remain to achieving effective mucosal immunization. The epithelium itself provides many obstacles to immunization, and the activation of immune recognition and effector pathways that leads to mucosal immunity has been difficult to achieve. This review will highlight the potential advantages of mucosal immunity, define the barriers to mucosal immunization, examine the immune mechanisms that need to be activated on mucosal surfaces, and finally address recent developments in methods for mucosal vaccination that have shown promise in generating immunity on mucosal surfaces in human trials.
Collapse
Affiliation(s)
- James R Baker
- From the Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich.
| | - Mohammad Farazuddin
- From the Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | - Pamela T Wong
- From the Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | - Jessica J O'Konek
- From the Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| |
Collapse
|
34
|
Cao J, He G, Ning X, Chen X, Fan L, Yang M, Yin Y, Cai W. Preparation and properties of O-chitosan quaternary ammonium salt/polyvinyl alcohol/graphene oxide dual self-healing hydrogel. Carbohydr Polym 2022; 287:119318. [DOI: 10.1016/j.carbpol.2022.119318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/05/2022] [Accepted: 03/02/2022] [Indexed: 01/27/2023]
|
35
|
Pol T, Chonkaew W, Hocharoen L, Niamnont N, Butkhot N, Roshorm YM, Kiatkamjornwong S, Hoven VP, Pratumyot K. Amphiphilic Chitosan Bearing Double Palmitoyl Chains and Quaternary Ammonium Moieties as a Nanocarrier for Plasmid DNA. ACS OMEGA 2022; 7:10056-10068. [PMID: 35382269 PMCID: PMC8973028 DOI: 10.1021/acsomega.1c06101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Amphiphilic chitosan, bPalm-CS-HTAP, having N-(2-((2,3-bis(palmitoyloxy)propyl)amino)-2-oxoethyl) (bPalm) groups as double hydrophobic tails and O-[(2-hydroxyl-3-trimethylammonium)] propyl (HTAP) groups as hydrophilic heads was synthesized and evaluated for its self-assembly properties and potential as a gene carrier. The degree of bis-palmitoyl group substitution (DS bPalm) and the degree of quaternization (DQ) were approximately 2 and 56%, respectively. bPalm-CS-HTAP was found to assemble into nanosized spherical particles with a hydrodynamic diameter (D H) of 265.5 ± 7.40 nm (PDI = 0.5) and a surface charge potential of 40.1 ± 0.04 mV. bPalm-CS-HTAP condensed the plasmid pVAX1.CoV2RBDme completely at a bPalm-CS-HTAP:pDNA ratio of 2:1. The self-assembled bPalm-CS-HTAP/pDNA complexes could enter HEK 293A and CHO cells and enabled gene expression at negligible cytotoxicity compared to commercial PEI (20 kDa). These results suggested that bPalm-CS-HTAP can be used as a promising nonviral gene carrier.
Collapse
Affiliation(s)
- Thev Pol
- Organic
Synthesis, Electrochemistry & Natural Product Research Unit, Department
of Chemistry, Faculty of Science, King Mongkut’s
University of Technology Thonburi, Pracha Uthit Road, Bang Mod, Thung
Khru, Bangkok 10140, Thailand
| | - Wunpen Chonkaew
- Sustainable
Polymer & Innovative Composite Materials Research Group, Department
of Chemistry, Faculty of Science, King Mongkut’s
University of Technology Thonburi, Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand
| | - Lalintip Hocharoen
- Bioprocess
Research and Innovation Centre (BRIC), National Biopharmaceutical
Facility (NBF), King Mongkut’s University
of Technology Thonburi (KMUTT), Bangkhuntian-Chai Thale Road, Tha Kham, Bangkhuntian, Bangkok 10150, Thailand
| | - Nakorn Niamnont
- Organic
Synthesis, Electrochemistry & Natural Product Research Unit, Department
of Chemistry, Faculty of Science, King Mongkut’s
University of Technology Thonburi, Pracha Uthit Road, Bang Mod, Thung
Khru, Bangkok 10140, Thailand
| | - Namphueng Butkhot
- Division
of Biotechnology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkhuntian-Chai Thale Road, Tha Kham, Bangkhuntian, Bangkok 10150, Thailand
| | - Yaowaluck Maprang Roshorm
- Division
of Biotechnology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkhuntian-Chai Thale Road, Tha Kham, Bangkhuntian, Bangkok 10150, Thailand
| | - Suda Kiatkamjornwong
- FRST,
Academy of Science, Office of the Royal Society, Sanam Suea Pa, Khet Dusit, Bangkok 10300, Thailand
- Office of
Research Affairs, Chulalongkorn University, Phayathai Road,
Pathumwan, Bangkok 10330, Thailand
| | - Voravee P. Hoven
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Phayathai
Road, Pathumwan, Bangkok 10330, Thailand
- Center
of Excellence in Materials and Bio-interfaces, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Kornkanya Pratumyot
- Organic
Synthesis, Electrochemistry & Natural Product Research Unit, Department
of Chemistry, Faculty of Science, King Mongkut’s
University of Technology Thonburi, Pracha Uthit Road, Bang Mod, Thung
Khru, Bangkok 10140, Thailand
| |
Collapse
|
36
|
Dmour I, Islam N. Recent advances on chitosan as an adjuvant for vaccine delivery. Int J Biol Macromol 2022; 200:498-519. [PMID: 34973993 DOI: 10.1016/j.ijbiomac.2021.12.129] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/05/2021] [Accepted: 12/19/2021] [Indexed: 12/21/2022]
Abstract
Chitosan (CS) is a natural polymer derived from chitin that has wide applications in drugs, vaccines, and antigen delivery. The distinctive mucoadhesive, biocompatibility, biodegradable, and less toxic properties of chitosan compared to the currently used vaccine adjuvants made it a promising candidate for use as an adjuvant/carrier in vaccine delivery. In addition, chitosan exhibits intrinsic immunomodulating properties making it a suitable adjuvant in preparing vaccines delivery systems. Nanoparticles (NPs) of chitosan and its derivatives loaded with antigen have been shown to induce cellular and humoral responses. Versatility in the physicochemical properties of chitosan can provide an excellent opportunity to engineer antigen-specific adjuvant/delivery systems. This review discusses the recent advances of chitosan and its derivatives as adjuvants in vaccine deliveryand the published literature in the last fifteen years. The impact of physicochemical properties of chitosan on vaccine formulation has been described in detail. Applications of chitosan and its derivatives, their physicochemical properties, and mechanisms in enhancing immune responses have been discussed. Finally, challenges and future aspects of chitosan use has been pointed out.
Collapse
Affiliation(s)
- Isra Dmour
- Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan.
| | - Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Centre for Immunology and Infection Control (CIIC), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
37
|
Sączyńska V, Romanik-Chruścielewska A, Florys-Jankowska K, Cecuda-Adamczewska V, Kęsik-Brodacka M. Chitosan-based formulation of hemagglutinin antigens for oculo-nasal booster vaccination of chickens against influenza viruses. Vet Immunol Immunopathol 2022; 247:110406. [DOI: 10.1016/j.vetimm.2022.110406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022]
|
38
|
Ji Z, Xu J, Li M, Wang H, Xu B, Yang Y, Hu Y. The Mechanisms of Immune-chemotherapy with Nanocomplex Codelivery of pTRP-2 and Adjuvant of Paclitaxel against Melanoma. Drug Dev Ind Pharm 2022; 47:1744-1752. [PMID: 35193436 DOI: 10.1080/03639045.2022.2045306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Melanoma accounts for the highest proportion of all skin cancer deaths. Immune-chemotherapy has transformed anti-melanoma therapy and is a preferred first-line combination strategy for melanoma. We previously prepared dendritic cells (DCs) targeting the nanocomplex paclitaxel (PTX)-encapsulated sulfobutylether-β-cyclodextrin (SBE)/mannosylated N,N,N-trimethyl chitosan (mTMC)/DNA (PTX/SBE-DNA/Man-TMC) for the co-delivery of pTRP-2 DNA and adjuvant PTX. The nanocomplex PTX/SBE-DNA/Man-TMC promoted DC maturation and antigen presentation and spur potent anti-melanoma immunity. However, the mechanism by which PTX/SBE-DNA/Man-TMC regulates the biological functions of DCs and T lymphocytes is unknown. Therefore, we explored the underlying signaling pathways and mixed leukocyte reactions, resulting in enhanced T cell-mediated anti-tumor immunity. Interleukin-12 secretion from nanocomplex-pulsed mouse bone marrow-derived dendritic cells was inhibited by treatment with Toll-like receptor 4 (TLR-4), nuclear factor kappa-B (NF-κB), and a specific blocker of p38 mitogen-activated protein kinase (MAPK). The results revealed that TLR-4, NF-κB, and MAPK signaling pathways were essential anti-tumor immune responses regulation factors. Furthermore, mixed leukocytes pulsed with PTX/SBE-DNA/Man-TMC induced tumor cell apoptosis and arrested the cell cycle in G0/G1, significantly promoting the synergy. Thus, we concluded that the mechanism driving the PTX/SBE-DNA/Man-TMC immune-chemotherapy synergistic effect was multifactorial.
Collapse
Affiliation(s)
- Zhonghua Ji
- Pharmacy, Zhejiang pharmaceutical college, Ningbo, Zhejiang, People's republic of China
| | - Jiaojiao Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's republic of China
| | - Min Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's republic of China
| | - Hui Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's republic of China
| | - Beihua Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's republic of China
| | - Yunxu Yang
- Pharmacy, Zhejiang pharmaceutical college, Ningbo, Zhejiang, People's republic of China
| | - Ying Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's republic of China.,Pharmacy, Zhejiang pharmaceutical college, Ningbo, Zhejiang, People's republic of China
| |
Collapse
|
39
|
Ren G, He Y, Liu C, Ni F, Luo X, Shi J, Song Y, Li T, Huang M, Shen Q, Xie H. Encapsulation of curcumin in ZEIN-HTCC complexes: Physicochemical characterization, in vitro sustained release behavior and encapsulation mechanism. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112909] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
40
|
Zare S, Kabiri M, Amini Y, Najafi A, Mohammadpour F, Ayati SH, Nikpoor AR, Tafaghodi M. Immunological Assessment of Chitosan or Trimethyl Chitosan-Coated PLGA Nanospheres Containing Fusion Antigen as the Novel Vaccine Candidates Against Tuberculosis. AAPS PharmSciTech 2021; 23:15. [PMID: 34893923 DOI: 10.1208/s12249-021-02146-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/19/2021] [Indexed: 01/02/2023] Open
Abstract
The crucial challenge in tuberculosis (TB) as a chronic infectious disease is to present a novel vaccine candidate that improves current vaccination and provides efficient protection in individuals. The present study aimed to evaluate the immune efficacy of multi-subunit vaccines containing chitosan (CHT)- or trimethyl chitosan (TMC)-coated PLGA nanospheres to stimulate cell-mediated and mucosal responses against Mycobacterium Tuberculosis (Mtb) in an animal model. The surface-modified PLGA nanoparticles (NPs) containing tri-fusion protein from three Mtb antigens were produced by the double emulsion technique. The subcutaneously or nasally administered PLGA vaccines in the absence or presence of BCG were assessed to compare the levels of mucosal IgA, IgG1, and IgG2a production as well as secretion of IFN-γ, IL-17, IL-4, and TGF-β cytokines. According to the release profile, the tri-fusion encapsulated in modified PLGA NPs demonstrated a biphasic release profile including initial burst release on the first day and sustained release within 18 days. All designed PLGA vaccines induced a shift of Th1/Th2 balance toward Th1-dominant response. Although immunized mice through subcutaneous injection elicited higher cell-mediated responses relative to the nasal vaccination, the intranasally administered groups stimulated robust mucosal IgA immunity. The modified PLGA NPs using TMC cationic polymer were more efficient to elevate Th1 and mucosal responses in comparison with the CHT-coated PLGA nanospheres. Our findings highlighted that the tri-fusion loaded in TMC-PLGA NPs may represent an efficient prophylactic vaccine and can be considered as a novel candidate against TB.
Collapse
|
41
|
Kumbhar PS, Pandya AK, Manjappa AS, Disouza JI, Patravale VB. Carbohydrates-based diagnosis, prophylaxis and treatment of infectious diseases: Special emphasis on COVID-19. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [PMCID: PMC7935400 DOI: 10.1016/j.carpta.2021.100052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
COVID-19 pandemic is taking a dangerous turn due to unavailability of approved and effective vaccines and therapy. Currently available diagnostic techniques are time-consuming, expensive, and maybe impacted by the mutations produced in the virus. Therefore, investigation of novel, rapid, and economic diagnosis techniques, prophylactic vaccines and targeted efficacious drug delivery systems as treatment strategy is imperative. Carbohydrates are essential biomolecules which also act as markers in the realization of immune systems. Moreover, they exhibit antiviral, antimicrobial, and antifungal properties. Carbohydrate-based vaccines and therapeutics including stimuli sensitive systems can be developed successfully and used effectively to fight COVID-19. Thus, carbohydrate-based diagnostic, prophylactic and therapeutic alternatives could be promising to defeat COVID-19 propitiously. Morphology of SARS-CoV-2 and its relevance in devising combat strategies has been discussed. Carbohydrate-based approaches for tackling infectious diseases and their importance in the design of various diagnostic and treatment modalities have been reviewed.
Collapse
|
42
|
Shen S, Chen X, Shen Z, Chen H. Marine Polysaccharides for Wound Dressings Application: An Overview. Pharmaceutics 2021; 13:1666. [PMID: 34683959 PMCID: PMC8541487 DOI: 10.3390/pharmaceutics13101666] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 01/11/2023] Open
Abstract
Wound dressings have become a crucial treatment for wound healing due to their convenience, low cost, and prolonged wound management. As cutting-edge biomaterials, marine polysaccharides are divided from most marine organisms. It possesses various bioactivities, which allowing them to be processed into various forms of wound dressings. Therefore, a comprehensive understanding of the application of marine polysaccharides in wound dressings is particularly important for the studies of wound therapy. In this review, we first introduce the wound healing process and describe the characteristics of modern commonly used dressings. Then, the properties of various marine polysaccharides and their application in wound dressing development are outlined. Finally, strategies for developing and enhancing marine polysaccharide wound dressings are described, and an outlook of these dressings is given. The diverse bioactivities of marine polysaccharides including antibacterial, anti-inflammatory, haemostatic properties, etc., providing excellent wound management and accelerate wound healing. Meanwhile, these biomaterials have higher biocompatibility and biodegradability compared to synthetic ones. On the other hand, marine polysaccharides can be combined with copolymers and active substances to prepare various forms of dressings. Among them, emerging types of dressings such as nanofibers, smart hydrogels and injectable hydrogels are at the research frontier of their development. Therefore, marine polysaccharides are essential materials in wound dressings fabrication and have a promising future.
Collapse
Affiliation(s)
- Shenghai Shen
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (S.S.); (X.C.)
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China
| | - Xiaowen Chen
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (S.S.); (X.C.)
| | - Zhewen Shen
- School of Humanities, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Selangor, Malaysia;
| | - Hao Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China
| |
Collapse
|
43
|
Gao X, Gong J, Cai Y, Wang J, Wen J, Peng L, Ji H, Jiang S, Guo D. Chitosan modified squalene nanostructured lipid carriers as a promising adjuvant for freeze-dried ovalbumin vaccine. Int J Biol Macromol 2021; 188:855-862. [PMID: 34411614 DOI: 10.1016/j.ijbiomac.2021.08.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/30/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023]
Abstract
As immune adjuvants assisting vaccines, nanoparticle delivery systems have been widely exploited. Squalene, the major ingredient of approved adjuvant MF59, has great potential in activating immune responses. In the current study, model antigen ovalbumin (OVA) was encapsulated into squalene-based nanostructured lipid carriers (NLCs), and the chitosan, a cationic polysaccharide, was used for modifying nanoparticles to develop a functionalized and cationic nanoparticle delivery system (OVA-csNLCs). Firstly, the optimal formulation of csNLCs was successfully screened out, and had hydrodynamic diameter of 235.80 ± 5.99 nm and zeta potential of 34.90 ± 6.95 mV. Then, the generated OVA-csNLCs had no significant difference in hydrodynamic diameter and exhibited lower zeta potential of 19.03 ± 0.31 mV and high encapsulation efficiency of 83.4%. Sucrose (10%, w/w) was selected as optimal lyoprotectant, exhibiting good stability of OVA-csNLCs in the form of freeze-dried powder. More importantly, the OVA-csNLCs effectively promoted OVA antigen uptake by macrophage, significantly enhanced the level of OVA-specific IgG, and induced a Th2-based immune response in vivo. Furthermore, mice immunization experiment demonstrated that OVA-csNLCs had well biocompatibility and facilitated spleen lymphocytes proliferation. Above findings indicate that chitosan modified squalene nanostructured lipid carriers show promise as antigen delivery system and an open adjuvant platform.
Collapse
Affiliation(s)
- Xiuge Gao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Jiahao Gong
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Ying Cai
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Jiacai Wang
- Shandong Vocational Animal Science and Veterinary College, 88 Shengli East Street, Weifang 261061, China
| | - Jia Wen
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Lin Peng
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Hui Ji
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Shanxiang Jiang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Dawei Guo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China.
| |
Collapse
|
44
|
Fan Q, Miao C, Huang Y, Yue H, Wu A, Wu J, Wu J, Ma G. Hydroxypropyltrimethyl ammonium chloride chitosan-based hydrogel as the split H5N1 mucosal adjuvant: Structure-activity relationship. Carbohydr Polym 2021; 266:118139. [PMID: 34044953 DOI: 10.1016/j.carbpol.2021.118139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/03/2021] [Accepted: 04/27/2021] [Indexed: 01/16/2023]
Abstract
In this study, 2-hydroxypropyltrimethyl ammonium chloride chitosan (HTCC)-based hydrogel was devised as a mucosal adjuvant for H5N1 vaccine. Aimed to investigate the structure activity relationship between HTCC hydrogel and immune response, we prepared a series of HTCC hydrogel with defined quaternization degrees (DQs, 0%, 21%, 41%, 60%, 80%). Results suggested that with DQ increasing, the positive charge and gelation time of HTCC hydrogel increased but the viscosity decreased. We applied in vivo imaging system and found that the moderate DQ 41% prolonged antigen residence time in nasal cavity, resulting in the most potent systemic responses (IgG, IgG1, IgG2a, HI). While, the lowest DQ 0% produced the best mucosal IgA antibody responses, most likely due to the closer contact with mucosa. Furthermore, the influence of animal gender was also discussed. These data add to the growing understanding of the relationship between physicochemical features of chitosan-based hydrogel and how they influence the immune responses.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/chemistry
- Adjuvants, Immunologic/pharmacology
- Administration, Intranasal
- Animals
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Chitosan/administration & dosage
- Chitosan/analogs & derivatives
- Chitosan/chemistry
- Chitosan/pharmacology
- Female
- Hydrogels/administration & dosage
- Hydrogels/chemistry
- Hydrogels/pharmacology
- Immunity/drug effects
- Immunity, Mucosal/drug effects
- Influenza A Virus, H5N1 Subtype/drug effects
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Male
- Mice, Inbred BALB C
- Nasal Mucosa/virology
- Quaternary Ammonium Compounds/administration & dosage
- Quaternary Ammonium Compounds/chemistry
- Quaternary Ammonium Compounds/pharmacology
- Rats, Sprague-Dawley
- Sex Factors
- Structure-Activity Relationship
- Mice
- Rats
Collapse
Affiliation(s)
- Qingze Fan
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Chunyu Miao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yilan Huang
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Anguo Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Jianming Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Jie Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
45
|
Synthesis, Characterization, and Evaluation of Nanoparticles Loading Adriamycin Based on 2-Hydroxypropyltrimethyl Ammonium Chloride Chitosan Grafting Folic Acid. Polymers (Basel) 2021; 13:polym13142229. [PMID: 34300987 PMCID: PMC8309428 DOI: 10.3390/polym13142229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
Chitosan nanoparticles have been considered as potential candidates for drug loading/release in drug delivery systems. In this paper, nanoparticles (HACAFNP) loading adriamycin based on 2-hydroxypropyltrimethyl ammonium chloride chitosan grafting folic acid (HACF) were synthesized. The surface morphology of the novel nanoparticles was spherical or oval, and the nanoparticles exhibited a relatively small hydrodynamic diameter (85.6 ± 2.04 nm) and positive zeta potential (+21.06 ± 0.96 mV). The drug release of nanoparticles was assayed and represented a burst effect followed by a long-term steady release. Afterward, the antioxidant efficiencies of nanoparticles were assayed. In particular, the target nanoparticles exhibited significant enhancement in radical scavenging activities. Cytotoxicities against cancer cells (MCF-7, BGC-823, and HEPG-2) were estimated in vitro, and results showed nanoparticles inhibited the growth of cancer cells. It's worth noting that the inhibition index of HACAFNP against BGC-823 cells was 71.19% with the sample concentration of 25 μg/mL, which was much higher than the inhibitory effect of ADM. It was demonstrated that the novel nanoparticles with dramatically enhanced biological activity, reduced cytotoxicity, and steady release could be used as the practical candidates for drug loading/release in a delivery system.
Collapse
|
46
|
|
47
|
Gorantla S, Dabholkar N, Sharma S, Rapalli VK, Alexander A, Singhvi G. Chitosan-based microneedles as a potential platform for drug delivery through the skin: Trends and regulatory aspects. Int J Biol Macromol 2021; 184:438-453. [PMID: 34126145 DOI: 10.1016/j.ijbiomac.2021.06.059] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022]
Abstract
Microneedles (MNs) fabrication using chitosan has gained significant interest due to its ability of film-forming, biodegradability, and biocompatibility, making it suitable for topical and transdermal drug delivery. The presence of amine and hydroxyl functional groups on chitosan permits the modification with tunable properties and functionalities. In this regard, chitosan is the preferred material for fabrication of MNs because it does not produce an immune response in the body and can be tailored as per required strength and functionalities. Therefore, many researchers have attempted to use chitosan as a drug delivery vehicle for hydrophilic drugs, peptides, and hormones. In 2020, the FDA has issued "Regulatory Considerations for Microneedling Products". This official guidance is a sign for future opportunities in the development of MNs. The present review focuses on properties, and modifications of chitosan used in the fabrication of MNs. The therapeutic and diagnostic applications of different types of chitosan-based MNs have been discussed. Further, the regulatory aspects of MN-based devices, and patents related to chitosan-based MNs are discussed.
Collapse
Affiliation(s)
- Srividya Gorantla
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India
| | - Neha Dabholkar
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India
| | - Sudhanshu Sharma
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India
| | - Vamshi Krishna Rapalli
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India.
| |
Collapse
|
48
|
Gulati N, Dua K, Dureja H. Role of chitosan based nanomedicines in the treatment of chronic respiratory diseases. Int J Biol Macromol 2021; 185:20-30. [PMID: 34116092 DOI: 10.1016/j.ijbiomac.2021.06.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/23/2021] [Accepted: 06/05/2021] [Indexed: 01/23/2023]
Abstract
Chitosan-loaded nanomedicines provide a greater opportunity for the treatment of respiratory diseases. Natural biopolymer chitosan and its derivatives have a large number of proven pharmacological actions like antioxidant, wound healing, immuno-stimulant, hypocholesterolemic, antimicrobial, obesity treatment, anti-inflammatory, anticancer, bone tissue engineering, antifungal, regenerative medicine, anti-diabetic and mucosal adjuvant, etc. which attracted its use in the pharmaceutical industry. As compared to other polysaccharides, chitosan has excellent mucoadhesive characteristics, less viscous, easily modified into the chemical and biological molecule and gel-forming property due to which the drugs retain in the respiratory tract for a longer period of time providing enhanced therapeutic action of the drug. Chitosan-based nanomedicines would have the greatest effect when used to transport poor water soluble drugs, macromolecules like proteins, and peptides through the lungs. In this review, we highlight and discuss the role of chitosan and its nanomedicines in the treatment of chronic respiratory diseases such as pneumonia, asthma, COPD, lung cancer, tuberculosis, and COVID-19.
Collapse
Affiliation(s)
- Nisha Gulati
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India.
| |
Collapse
|
49
|
Zuo S, Song J, Zhang J, He Z, Sun B, Sun J. Nano-immunotherapy for each stage of cancer cellular immunity: which, why, and what? Theranostics 2021; 11:7471-7487. [PMID: 34158861 PMCID: PMC8210608 DOI: 10.7150/thno.59953] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy provides a new avenue for combating cancer. Current research in anticancer immunotherapy is primary based on T cell-mediated cellular immunity, which can be divided into seven steps and is named the cancer-immunity cycle. Unfortunately, clinical applications of cancer immunotherapies are restricted by inefficient drug delivery, low response rates, and unmanageable adverse reactions. In response to these challenges, the combination of nanotechnology and immunotherapy (nano-immunotherapy) has been extensively studied in recent years. Rational design of advanced nano-immunotherapies requires in-depth consideration of "which" immune step is targeted, "why" it needs to be further enhanced, and "what" nanotechnology can do for immunotherapy. However, the applications and effects of nanotechnology in the cancer-immunity cycle have not been well reviewed. Herein, we summarize the current developments in nano-immunotherapy for each stage of cancer cellular immunity, with special attention on the which, why and what. Furthermore, we summarize the advantages of nanotechnology for combination immunotherapy in two categories: enhanced efficacy and reduced toxicity. Finally, we discuss the challenges of nano-immunotherapy in detail and provide a perspective.
Collapse
Affiliation(s)
| | | | | | | | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
50
|
Miao Q, Mi Y, Cui J, Zhang J, Tan W, Li Q, Guo Z. Determination of chitosan content with Schiff base method and HPLC. Int J Biol Macromol 2021; 182:1537-1542. [PMID: 34022309 DOI: 10.1016/j.ijbiomac.2021.05.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 01/16/2023]
Abstract
Tremendous awareness of determination of chitosan content accurately is increasing, due to it has great significance to the quality control of chitosan. In this article, two kinds of chitosan-Schiff base derivatives (BCSB and PCSB) were synthesized by the different average degrees of deacetylation (DD) of chitosan with benzaldehyde or propanal, respectively. The total mass of Schiff base derivative product was dried and obtained without washing and loss. Then, a certain amount of the prepared Schiff base compound was taken to hydrolyze into glucosamine hydrochloride (GAH) in strong hydrochloric acidic environment, whose concentration was quantified by HPLC, and the mass of GAH contained in hydrolysis solution could be calculated. Subsequently, the total quality of GAH obtained by hydrolysis of all of the Schiff base product was calculated and obtained, and then the theoretical mass of chitosan could be deduced and calculated by further converse calculation. Finally, the chitosan content was obtained by combining the sample mass used in Schiff base reaction and the theoretical mass of chitosan. This method was accurate and convenient, providing a preeminent idea and method for the determination of chitosan content.
Collapse
Affiliation(s)
- Qin Miao
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingmin Cui
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|