1
|
Rajabimashhadi Z, Gallo N, Russo F, Ghiyami S, Mele C, Giordano ME, Lionetto MG, Salvatore L, Lionetto F. Production and physico-chemical characterization of nano-sized collagen from equine tendon. Int J Biol Macromol 2024; 277:134220. [PMID: 39069054 DOI: 10.1016/j.ijbiomac.2024.134220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
In recent years, significant academic and commercial interest has focused on collagen derived from horse tendons, with potential applications across diverse sectors such as medicine, pharmaceuticals, and cosmetics. Nano collagen, with its enhanced wound penetration, improved cell contact, and heightened cellular regeneration and repair capabilities due to its high surface area, holds promise for a wide range of applications. In this study, we present a novel method for producing nano collagen from the equine tendon. Our approach is characterized by its speed, affordability, simplicity and environmentally friendly nature, with precise temperature-control to prevent collagen denaturation. We conducted a comprehensive characterization of the obtained samples, including assessments of morphology, chemical and thermal properties, particle size distribution and biocompatibility. Importantly, our results indicate improvements in thermal stability, and surface roughness of nano collagen, while preserving its molecular weight. These advancements expand the potential applications of nano collagen in various fields.
Collapse
Affiliation(s)
- Zahra Rajabimashhadi
- Department of Engineering for Innovation, University of Salento, via per Monteroni, Lecce, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, via per Monteroni, Lecce, Italy; Typeone Biomaterials S.r.l., Via Europa 167, 73021 Calimera, Lecce, Italy
| | - Francesca Russo
- Department of Engineering for Innovation, University of Salento, via per Monteroni, Lecce, Italy
| | - Sajjad Ghiyami
- Department of Engineering for Innovation, University of Salento, via per Monteroni, Lecce, Italy
| | - Claudio Mele
- Department of Engineering for Innovation, University of Salento, via per Monteroni, Lecce, Italy
| | - Maria Elena Giordano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via per Monteroni, Lecce, Italy
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via per Monteroni, Lecce, Italy
| | - Luca Salvatore
- Typeone Biomaterials S.r.l., Via Europa 167, 73021 Calimera, Lecce, Italy
| | - Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, via per Monteroni, Lecce, Italy.
| |
Collapse
|
2
|
Li C, Wan Y, Yang J, Feng C, Liu J, Cao Z, Li C, Wang P, Wang X, Zeng Q. Ultra-small platinum nano-enzymatic spray with ROS scavenging and anti-inflammatory properties for photoaging treatment. Int J Biol Macromol 2024; 280:135743. [PMID: 39304038 DOI: 10.1016/j.ijbiomac.2024.135743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/28/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Photoaging induced by ultraviolet (UV) results in oxidative stress and inflammation. Noble metal nanozymes have strong antioxidant and anti-inflammatory capacity, which are expected to eliminate the excessive reactive oxygen species (ROS) and inflammatory factors in the photoaged skin. Hence, we have synthesized ultrasmall platinum nanoparticles coated with polyvinylpyrrolidone (Pt NPs) with a diameter of nearly 5 nm for photoaging treatment. Thanks to multi-enzymatic capacities (catalase, peroxidase, and superoxide dismutase) of Pt NPs, they can effectively protect fibroblasts from UV-induced ROS attack, relieve fibroblasts from UV-induced cell cycle arrest, downregulate matrix metalloproteinases (MMPs) to regenerate type I collagen, and inhibit M1 macrophage polarization to decrease the expression of inflammatory factors. For photoaged mice treatment, we employ the concept of routine spray skincare and encapsulate Pt NPs solution in a spray bottle. In combination with roller needle, following Pt NPs nano-enzymatic spray given, UV-induced photoaged mice display reduced wrinkle formation in the collagen-depleted dermal tissue of mice and more youthful performance in both appearance and organizational structure. Consequently, multi-enzymatic functions of Pt NPs nano-spray offers a promising avenue for anti-photoaging therapy, providing potential benefits in both preventative and restorative skincare applications.
Collapse
Affiliation(s)
- Chunying Li
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200040, China
| | - Yilin Wan
- Institute of Nano Biomedicine and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jin Yang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200040, China
| | - Chunmei Feng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200040, China
| | - Jia Liu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200040, China
| | - Zhi Cao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200040, China
| | - Chunxiao Li
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200040, China
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200040, China.
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200040, China.
| | - Qingyu Zeng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200040, China.
| |
Collapse
|
3
|
Zhang X, Zhu S, Liang Y, Jiang H, Cui Z, Li Z. Poloxamer 407 modified collagen/β-tricalcium phosphate scaffold for localized delivery of alendronate. J Biomater Appl 2024; 39:179-194. [PMID: 38842552 DOI: 10.1177/08853282241257613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Systemic administration of alendronate is associated with various adverse reactions in clinical settings. To mitigate these side effects, poloxamer 407 (P-407) modified with cellulose was chosen to encapsulate alendronate. This drug-loaded system was then incorporated into a collagen/β-tricalcium phosphate (β-TCP) scaffold to create a localized drug delivery system. Nuclear magnetic resonance spectrum and rheological studies revealed hydrogen bonding between P-407 and cellulose as well as a competitive interaction with water that contributed to the delayed release of alendronate (ALN). Analysis of the degradation kinetics of P-407 and release kinetics of ALN indicated zero-order kinetics for the former and Fickian or quasi-Fickian diffusion for the latter. The addition of cellulose, particularly carboxymethyl cellulose (CMC), inhibited the degradation of P-407 and prolonged the release of ALN. The scaffold's structure increased the contact area of P-407 with the PBS buffer, thereby, influencing the release rate of ALN. Finally, biocompatibility testing demonstrated that the drug delivery system exhibited favorable cytocompatibility and hemocompatibility. Collectively, these findings suggest that the drug delivery system holds promise for implantation and bone healing applications.
Collapse
Affiliation(s)
- Xuefeng Zhang
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Shengli Zhu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Yanqin Liang
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Hui Jiang
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Zhenduo Cui
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Zhaoyang Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
4
|
Balikci E, Baran ET, Tahmasebifar A, Yilmaz B. Characterization of Collagen from Jellyfish Aurelia aurita and Investigation of Biomaterials Potentials. Appl Biochem Biotechnol 2024:10.1007/s12010-023-04848-5. [PMID: 38224393 DOI: 10.1007/s12010-023-04848-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/16/2024]
Abstract
Marine collagen sources are potent alternatives due to abundant yield, low pathogen infection risk, high biocompatibility, and any religious and ethical restrictions compared to terrestrial collagen sources. In this research, we aim to investigate the biomaterials potential of the collagen from Aurelia aurita, which is a native jellyfish species in the Marmara Sea. Spectroscopic techniques were used to investigate the structure of jellyfish collagen (JCol) from acid-soluble fraction and compared to Jellagen® from Rhizostoma pulmo. MALDI-TOF showed the main peak of Jellagen® at 276,765.161 Da and jellyfish collagen at 276,761.687 Da. SDS-PAGE indicated α1 and α2 bands at about 122 kDa and 140 kDa, respectively. In FTIR and Raman spectra, the locations of amide bands of both species were almost the same. The pI of JCol was determined as 4.46. The particle size decreased abruptly at 43 oC from 890 to 290 nm. Water, organic and inorganic ratios of collagen were determined at 7.14%, 63.59, and 29.27 respectively. In DSC, the denaturation temperature (Td) of JCol was found at 43.7 oC and found to be higher than that of the collagens from jellyfishes that have been reported so far in the literature. Biocompatibility testing by metabolic assay revealed significantly higher fibroblast proliferation on collagen film than on the Tissue Culture Plate. To conclude, Aurelia aurita collagen would be a suitable source of collagen when biomaterials are needed to have high biocompatibility and unique macromolecular properties such as high denaturation temperatures.
Collapse
Affiliation(s)
- Elif Balikci
- University of Health Sciences Turkey, Institute of Health Sciences, Department of Tissue Engineering, 34668, Istanbul, Turkey
- University of Health Sciences Turkey, Experimental Medicine Application and Research Center, Uskudar, 34662, Istanbul, Turkey
- University of Health Sciences Turkey, Regenerative Medicine Application and Research Center, Uskudar, 34668, Istanbul, Turkey
| | - Erkan Türker Baran
- University of Health Sciences Turkey, Institute of Health Sciences, Department of Tissue Engineering, 34668, Istanbul, Turkey.
- University of Health Sciences Turkey, Experimental Medicine Application and Research Center, Uskudar, 34662, Istanbul, Turkey.
- University of Health Sciences Turkey, Regenerative Medicine Application and Research Center, Uskudar, 34668, Istanbul, Turkey.
- University of Health Sciences Turkey, Institute of Health Sciences, Department of Biomaterials, 34668, Istanbul, Turkey.
| | - Aydin Tahmasebifar
- University of Health Sciences Turkey, Institute of Health Sciences, Department of Tissue Engineering, 34668, Istanbul, Turkey
- University of Health Sciences Turkey, Experimental Medicine Application and Research Center, Uskudar, 34662, Istanbul, Turkey
- University of Health Sciences Turkey, Regenerative Medicine Application and Research Center, Uskudar, 34668, Istanbul, Turkey
- University of Health Sciences Turkey, Institute of Health Sciences, Department of Biomaterials, 34668, Istanbul, Turkey
| | - Bengi Yilmaz
- University of Health Sciences Turkey, Institute of Health Sciences, Department of Tissue Engineering, 34668, Istanbul, Turkey
- University of Health Sciences Turkey, Experimental Medicine Application and Research Center, Uskudar, 34662, Istanbul, Turkey
- University of Health Sciences Turkey, Regenerative Medicine Application and Research Center, Uskudar, 34668, Istanbul, Turkey
- University of Health Sciences Turkey, Institute of Health Sciences, Department of Biomaterials, 34668, Istanbul, Turkey
| |
Collapse
|
5
|
Salvatore L, Russo F, Natali ML, Rajabimashhadi Z, Bagheri S, Mele C, Lionetto F, Sannino A, Gallo N. On the effect of pepsin incubation on type I collagen from horse tendon: Fine tuning of its physico-chemical and rheological properties. Int J Biol Macromol 2024; 256:128489. [PMID: 38043667 DOI: 10.1016/j.ijbiomac.2023.128489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Type I collagen is commonly recognized as the gold standard biomaterial for the manufacturing of medical devices for health-care related applications. In recent years, with the final aim of developing scaffolds with optimal bioactivity, even more studies focused on the influence of processing parameters on collagen properties, since processing can strongly affect the architecture of collagen at various length scales and, consequently, scaffolds macroscopic performances. The ability to finely tune scaffold properties in order to closely mimic the tissues' hierarchical features, preserving collagen's natural conformation, is actually of great interest. In this work, the effect of the pepsin-based extraction step on the material final properties was investigated. Thus, the physico-chemical properties of fibrillar type I collagens upon being extracted under various conditions were analyzed in depth. Correlations of collagen structure at the supramolecular scale with its microstructural properties were done, confirming the possibility of tuning rheological, viscoelastic and degradation properties of fibrillar type I collagen.
Collapse
Affiliation(s)
- Luca Salvatore
- Typeone Biomaterials Srl, Via Europa 167, Calimera, 73021 Lecce, Italy.
| | - Francesca Russo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | | | - Zahra Rajabimashhadi
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Sonia Bagheri
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Claudio Mele
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Nunzia Gallo
- Typeone Biomaterials Srl, Via Europa 167, Calimera, 73021 Lecce, Italy; Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
6
|
Carnamucio F, Aiello D, Foti C, Napoli A, Giuffrè O. Aqueous chemistry of nalidixic acid and its complexes with biological relevant cations: A combination of potentiometric, UV spectrophotometric, MS and MS/MS study. J Inorg Biochem 2023; 249:112366. [PMID: 37734219 DOI: 10.1016/j.jinorgbio.2023.112366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023]
Abstract
Nalidixic acid (NAL) is a broad-spectrum antimicrobial widely used for urinary tract infections. As demonstrated, complexation of NAL with Zn2+, Mn2+ and Cu2+ was often used to get new formulations with an enhanced efficiency and potency. Therefore, the elucidation of behavior of NAL in solution and of its interaction with metal cations are crucial to better understand the influence of complexation on NAL efficiency and to find the optimal conditions to propose novel formulations. As a preliminary study, spectrophotometric titrations were carried out on NAL to determine the values of the protonation constants and to define its acid-base behavior. Then, the interaction with the three metal cations Zn2+, Mn2+ and Cu2+ was investigated by potentiometric and spectrophotometric titrations, varying the conditions of temperature, ionic strength and metal-ligand ratio, thus allowing to get the most robust speciation model and to determine the formation constants with Zn2+, Mn2+, and Cu2+ under different conditions, the sequestering ability of NAL towards metal cations, the formation enthalpic and entropic changes. A simulation under serum conditions was reported to show the relevance of the investigated species. Finally, LD-MS (laser desorption ionization mass spectrometry) and MS/MS analyses highlighted for all systems the formation of the complex species between Zn2+, Mn2+ and Cu2+ with NAL. MS/MS investigations assigned the sites of coordination of the ligand with the metal cation. More precisely, deprotonated NAL coordinates the metal cation via the oxygens of the carboxylate and the carbonyl groups.
Collapse
Affiliation(s)
- Federica Carnamucio
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Donatella Aiello
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy
| | - Claudia Foti
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Anna Napoli
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy.
| | - Ottavia Giuffrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
7
|
Tawonsawatruk T, Panaksri A, Hemstapat R, Praenet P, Rattanapinyopituk K, Boonyagul S, Tanadchangsaeng N. Fabrication and biological properties of artificial tendon composite from medium chain length polyhydroxyalkanoate. Sci Rep 2023; 13:20973. [PMID: 38017019 PMCID: PMC10684518 DOI: 10.1038/s41598-023-48075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023] Open
Abstract
Medium chain length polyhydroxyalkanoate (MCL-PHA), a biodegradable and biocompatible material, has a mechanical characteristic of hyper-elasticity, comparable to elastomeric material with similar properties to human tendon flexibility. These MCL-PHA properties gave rise to applying this material as an artificial tendon or ligament implant. In this study, the material was solution-casted in cylinder and rectangular shapes in the molds with the designated small holes. A portion of the torn human tendon was threaded into the holes as a suture to generate a composite tendon graft. The tensile testing of the three types of MCL-PHA/tendon composite shows that the cylinder material shape with the zigzag threaded three holes has the highest value of maximum tensile strength at 56 MPa, closing to the ultimate tendon tensile stress (50-100 MPa). Fibroblast cells collected from patients were employed as primary tendon cells for growing to attach to the surface of the MCL-PHA material to prove the concept of the composite tendon graft. The cells could attach and proliferate with substantial viability and generate collagen, leading to chondrogenic induction of tendon cells. An in vivo biocompatibility was also conducted in a rat subcutaneous model in comparison with medical-grade silicone. The MCL-PHA material was found to be biocompatible with the surrounding tissues. For surgical application, after the MCL-PHA material is decomposed, tendon cells should develop into an attached tendon and co-generated as a tendon graft.
Collapse
Affiliation(s)
- Tulyapruek Tawonsawatruk
- Department of Orthopaedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thung Phaya Thai, Ratchathewi, Bangkok, Thailand
| | - Anuchan Panaksri
- College of Biomedical Engineering, Rangsit University, Lak Hok, Pathumthani, Thailand
| | - Ruedee Hemstapat
- Department of Pharmacology, Faculty of Science, Mahidol University, Thung Phaya Thai, Ratchathewi, Bangkok, Thailand
| | - Passavee Praenet
- College of Biomedical Engineering, Rangsit University, Lak Hok, Pathumthani, Thailand
| | - Kasem Rattanapinyopituk
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathum Wan, Bangkok, Thailand
| | - Sani Boonyagul
- College of Biomedical Engineering, Rangsit University, Lak Hok, Pathumthani, Thailand
| | | |
Collapse
|
8
|
Ortiz F, Díaz-Barrios A, Lopez-Cabaña ZE, González G. Effect of the Electric Field on the Biomineralization of Collagen. Polymers (Basel) 2023; 15:3121. [PMID: 37514510 PMCID: PMC10384922 DOI: 10.3390/polym15143121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Collagen/hydroxyapatite hybrids are promising biomimetic materials that can replace or temporarily substitute bone tissues. The process of biomineralization was carried out through a double diffusion system. The methodological principle consisted in applying an electric field on the incubation medium to promote the opposite migration of ions into collagen membranes to form hydroxyapatite (HA) on the collagen membrane. Two physically separated solutions were used for the incubation medium, one rich in phosphate ions and the other in calcium ions, and their effects were evaluated against the traditional mineralization in Simulated Body Fluid (SBF). Pre-polarization of the organic membranes and the effect of incubation time on the biomineralization process were also assessed by FTIR and Raman spectroscopies.Our results demonstrated that the membrane pre-polarization significantly accelerated the mineralization process on collagen. On the other side, it was found that the application of the electric field influenced the collagen structure and its interactions with the mineral phase. The increment of the mineralization degree enhanced the photoluminescence properties of the collagen/HA materials, while the conductivity and the dielectric constant were reduced. These results might provide a useful approach for future applications in manufacturing biomimetic bone-like materials.
Collapse
Affiliation(s)
- Fiorella Ortiz
- School of Chemical Sciences and Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
- Institute of Chemistry of Natural Resources, Universidad de Talca, Talca 3460000, Chile
| | - Antonio Díaz-Barrios
- School of Chemical Sciences and Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Zoraya E Lopez-Cabaña
- Institute of Chemistry of Natural Resources, Universidad de Talca, Talca 3460000, Chile
| | - Gema González
- School of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuquí 100119, Ecuador
| |
Collapse
|
9
|
Terzi A, Gallo N, Sibillano T, Altamura D, Masi A, Lassandro R, Sannino A, Salvatore L, Bunk O, Giannini C, De Caro L. Travelling through the Natural Hierarchies of Type I Collagen with X-rays: From Tendons of Cattle, Horses, Sheep and Pigs. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4753. [PMID: 37445069 DOI: 10.3390/ma16134753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Type I collagen physiological scaffold for tissue regeneration is considered one of the widely used biomaterials for tissue engineering and medical applications. It is hierarchically organized: five laterally staggered molecules are packed within fibrils, arranged into fascicles and bundles. The structural organization is correlated to the direction and intensity of the forces which can be loaded onto the tissue. For a tissue-specific regeneration, the required macro- and microstructure of a suitable biomaterial has been largely investigated. Conversely, the function of multiscale structural integrity has been much less explored but is crucial for scaffold design and application. In this work, collagen was extracted from different animal sources with protocols that alter its structure. Collagen of tendon shreds excised from cattle, horse, sheep and pig was structurally investigated by wide- and small-angle X-ray scattering techniques, at both molecular and supramolecular scales, and thermo-mechanically with thermal and load-bearing tests. Tendons were selected because of their resistance to chemical degradation and mechanical stresses. The multiscale structural integrity of tendons' collagen was studied in relation to the animal source, anatomic location and source for collagen extraction.
Collapse
Affiliation(s)
- Alberta Terzi
- Institute of Crystallography, National Research Council, 70125 Bari, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
| | - Teresa Sibillano
- Institute of Crystallography, National Research Council, 70125 Bari, Italy
| | - Davide Altamura
- Institute of Crystallography, National Research Council, 70125 Bari, Italy
| | - Annalia Masi
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
| | - Rocco Lassandro
- Institute of Crystallography, National Research Council, 70125 Bari, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
| | - Luca Salvatore
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
- Typeone Biomaterials Srl, Via Europa 167, 73021 Calimera, Italy
| | - Oliver Bunk
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Cinzia Giannini
- Institute of Crystallography, National Research Council, 70125 Bari, Italy
| | - Liberato De Caro
- Institute of Crystallography, National Research Council, 70125 Bari, Italy
| |
Collapse
|
10
|
Prontera CT, Gallo N, Giannuzzi R, Pugliese M, Primiceri V, Mariano F, Maggiore A, Gigli G, Sannino A, Salvatore L, Maiorano V. Collagen Membrane as Water-Based Gel Electrolyte for Electrochromic Devices. Gels 2023; 9:gels9040310. [PMID: 37102922 PMCID: PMC10137362 DOI: 10.3390/gels9040310] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Bio-based polymers are attracting great interest due to their potential for several applications in place of conventional polymers. In the field of electrochemical devices, the electrolyte is a fundamental element that determines their performance, and polymers represent good candidates for developing solid-state and gel-based electrolytes toward the development of full-solid-state devices. In this context, the fabrication and characterization of uncrosslinked and physically cross-linked collagen membranes are reported to test their potential as a polymeric matrix for the development of a gel electrolyte. The evaluation of the membrane's stability in water and aqueous electrolyte and the mechanical characterization demonstrated that cross-linked samples showed a good compromise in terms of water absorption capability and resistance. The optical characteristics and the ionic conductivity of the cross-linked membrane, after overnight dipping in sulfuric acid solution, demonstrated the potential of the reported membrane as an electrolyte for electrochromic devices. As proof of concept, an electrochromic device was fabricated by sandwiching the membrane (after sulfuric acid dipping) between a glass/ITO/PEDOT:PSS substrate and a glass/ITO/SnO2 substrate. The results in terms of optical modulation and kinetic performance of such a device demonstrated that the reported cross-linked collagen membrane could represent a valid candidate as a water-based gel and bio-based electrolyte for full-solid-state electrochromic devices.
Collapse
Affiliation(s)
- Carmela Tania Prontera
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovations, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Roberto Giannuzzi
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via per Arnesano, 73100 Lecce, Italy
| | - Marco Pugliese
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Vitantonio Primiceri
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via per Arnesano, 73100 Lecce, Italy
| | - Fabrizio Mariano
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Antonio Maggiore
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Giuseppe Gigli
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via per Arnesano, 73100 Lecce, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovations, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Luca Salvatore
- Department of Engineering for Innovations, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Vincenzo Maiorano
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
11
|
Li M, Li M, Li X, Shao W, Pei X, Dong R, Ren H, Jia L, Li S, Ma W, Zeng Y, Liu Y, Sun H, Yu P. Preparation, Characterization and ex vivo Skin Permeability Evaluation of Type I Collagen-Loaded Liposomes. Int J Nanomedicine 2023; 18:1853-1871. [PMID: 37057190 PMCID: PMC10086223 DOI: 10.2147/ijn.s404494] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/14/2023] [Indexed: 04/08/2023] Open
Abstract
Purpose In the present study, we prepared collagen liposomes with the addition of polyol, which is expected to not only increase the solubility of collagen but also improve skin penetration. Methods Collagen liposomes were prepared by the film dispersion method, and their characteristics, integrity and biosafety were evaluated by Fourier transform infrared spectroscopy (FTIR), UV-VIS spectroscopy, polyacrylamide gel electrophoresis (SDS-PAGE), dynamic light scattering (DLS) and transmission electron microscope (TEM). The transdermal absorption of collagen and collagen liposomes were tested by an ex vivo horizontal Valia-Chien diffusion cell system. Results We first demonstrated that collagen extracted from bovine Achilles tendon was type I collagen. The results of DLS measurement and TEM observation showed that the collagen liposomes were spherical in shape with average diameter (75.34±0.93 nm) and maintained high stability at low temperature (4°C) for at least 42 days without toxicity. The encapsulation rate of collagen liposomes was 57.80 ± 0.51%, and SDS-PAGE analysis showed that collagen was intact in liposomes. Finally, permeability studies indicated that the collagen-loaded liposomes more easily penetrated the skin compared to collagen itself. Conclusion This study proposed a new method to improve the bioavailability and permeability of bovine type I collagen, which improves the applicability of collagen in biomedicine, cosmeceuticals and pharmaceutical industries.
Collapse
Affiliation(s)
- Mingyuan Li
- College of Biotechnology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin University of Science & Technology, Tianjin, 300457, People’s Republic of China
| | - Meng Li
- College of Biotechnology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin University of Science & Technology, Tianjin, 300457, People’s Republic of China
| | - Xinyi Li
- College of Biotechnology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin University of Science & Technology, Tianjin, 300457, People’s Republic of China
| | - Wanhui Shao
- College of Biotechnology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin University of Science & Technology, Tianjin, 300457, People’s Republic of China
| | - Xiujuan Pei
- Tianjin Shiji Kangtai Biomedical Engineering Co.,Ltd, Tianjin, 300462, People’s Republic of China
| | - Ruyue Dong
- College of Biotechnology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin University of Science & Technology, Tianjin, 300457, People’s Republic of China
| | - Hongmeng Ren
- College of Biotechnology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin University of Science & Technology, Tianjin, 300457, People’s Republic of China
| | - Lin Jia
- College of Biotechnology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin University of Science & Technology, Tianjin, 300457, People’s Republic of China
| | - Shiqin Li
- College of Biotechnology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin University of Science & Technology, Tianjin, 300457, People’s Republic of China
| | - Wenlin Ma
- College of Biotechnology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin University of Science & Technology, Tianjin, 300457, People’s Republic of China
| | - Yi Zeng
- College of Biotechnology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin University of Science & Technology, Tianjin, 300457, People’s Republic of China
| | - Yun Liu
- College of Biotechnology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin University of Science & Technology, Tianjin, 300457, People’s Republic of China
| | - Hua Sun
- College of Biotechnology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin University of Science & Technology, Tianjin, 300457, People’s Republic of China
- Correspondence: Hua Sun; Peng Yu, Email ;
| | - Peng Yu
- College of Biotechnology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin University of Science & Technology, Tianjin, 300457, People’s Republic of China
| |
Collapse
|
12
|
Xu Y, Liu J, Dai L, Wang H, He L, Xu C, Wei B, Zhang J, Kou H. Modification of natural pigskin collagen via cryogrinding: a focused study on its physiochemical properties. JOURNAL OF POLYMER ENGINEERING 2023. [DOI: 10.1515/polyeng-2022-0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Abstract
Natural pigskin was subjected to cryogrinding before extraction, and effects of the approach on extraction rate, structure, and properties of collagen were prospected systematically. It was found that the extraction rate multiplied gradually from 22% to 40% with an extended grinding duration from 0 to 20 min. Compared with natural collagen, the ground one soared by about 80% concerning the net yield. Electrophoresis revealed the stereo structures of the extracted collagen were not destroyed when ground, while a small amount of it degraded accordingly, whose conclusion was further corroborated by circular dichroism (CD) and infrared spectrometry. Results from contact angle (CA) test clarified that the hydrophilicity of collagen enhanced with prolonged grinding. Moreover, analysis of fibrillogenesis behavior verified that, after grinding, the assembly rate for collagen in the turbidity assay dented with a lengthened equilibrium time; finer fibril network with larger pore size and weakened elasticity was later observed. Methyl thiazolyl tetrazolium (MTT) analysis manifested that ground collagen was more conducive to cell proliferation. This polymer processing approach not only provides us with a facile approach to manipulate capacities of collagen but also sheds light on other potential substances beneath the same principle.
Collapse
Affiliation(s)
- Yuling Xu
- School of Chemical and Environmental Engineering , Wuhan Polytechnic University , Wuhan , Hubei 430000 , P.R. China
| | - Jialin Liu
- School of Chemical and Environmental Engineering , Wuhan Polytechnic University , Wuhan , Hubei 430000 , P.R. China
| | - Lei Dai
- School of Chemical and Environmental Engineering , Wuhan Polytechnic University , Wuhan , Hubei 430000 , P.R. China
| | - Haibo Wang
- School of Chemical and Environmental Engineering , Wuhan Polytechnic University , Wuhan , Hubei 430000 , P.R. China
| | - Lang He
- School of Chemical and Environmental Engineering , Wuhan Polytechnic University , Wuhan , Hubei 430000 , P.R. China
| | - Chengzhi Xu
- School of Chemical and Environmental Engineering , Wuhan Polytechnic University , Wuhan , Hubei 430000 , P.R. China
| | - Benmei Wei
- School of Chemical and Environmental Engineering , Wuhan Polytechnic University , Wuhan , Hubei 430000 , P.R. China
| | - Juntao Zhang
- School of Chemical and Environmental Engineering , Wuhan Polytechnic University , Wuhan , Hubei 430000 , P.R. China
| | - Huizhi Kou
- School of Chemical and Environmental Engineering , Wuhan Polytechnic University , Wuhan , Hubei 430000 , P.R. China
| |
Collapse
|
13
|
An Update on the Clinical Efficacy and Safety of Collagen Injectables for Aesthetic and Regenerative Medicine Applications. Polymers (Basel) 2023; 15:polym15041020. [PMID: 36850304 PMCID: PMC9963981 DOI: 10.3390/polym15041020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Soft tissues diseases significantly affect patients quality of life and usually require targeted, costly and sometimes constant interventions. With the average lifetime increase, a proportional increase of age-related soft tissues diseases has been witnessed. Due to this, the last two decades have seen a tremendous demand for minimally invasive one-step resolutive procedures. Intensive scientific and industrial research has led to the recognition of injectable formulations as a new advantageous approach in the management of complex diseases that are challenging to treat with conventional strategies. Among them, collagen-based products are revealed to be one of the most promising among bioactive biomaterials-based formulations. Collagen is the most abundant structural protein of vertebrate connective tissues and, because of its structural and non-structural role, is one of the most widely used multifunctional biomaterials in the health-related sectors, including medical care and cosmetics. Indeed, collagen-based formulations are historically considered as the "gold standard" and from 1981 have been paving the way for the development of a new generation of fillers. A huge number of collagen-based injectable products have been approved worldwide for clinical use and have routinely been introduced in many clinical settings for both aesthetic and regenerative surgery. In this context, this review article aims to be an update on the clinical outcomes of approved collagen-based injectables for both aesthetic and regenerative medicine of the last 20 years with an in-depth focus on their safety and effectiveness for the treatment of diseases of the integumental, gastrointestinal, musculoskeletal, and urogenital apparatus.
Collapse
|
14
|
Rajabimashhadi Z, Gallo N, Salvatore L, Lionetto F. Collagen Derived from Fish Industry Waste: Progresses and Challenges. Polymers (Basel) 2023; 15:544. [PMID: 36771844 PMCID: PMC9920587 DOI: 10.3390/polym15030544] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Fish collagen garnered significant academic and commercial focus in the last decades featuring prospective applications in a variety of health-related industries, including food, medicine, pharmaceutics, and cosmetics. Due to its distinct advantages over mammalian-based collagen, including the reduced zoonosis transmission risk, the absence of cultural-religious limitations, the cost-effectiveness of manufacturing process, and its superior bioavailability, the use of collagen derived from fish wastes (i.e., skin, scales) quickly expanded. Moreover, by-products are low cost and the need to minimize fish industry waste's environmental impact paved the way for the use of discards in the development of collagen-based products with remarkable added value. This review summarizes the recent advances in the valorization of fish industry wastes for the extraction of collagen used in several applications. Issues related to processing and characterization of collagen were presented. Moreover, an overview of the most relevant applications in food industry, nutraceutical, cosmetics, tissue engineering, and food packaging of the last three years was introduced. Lastly, the fish-collagen market and the open technological challenges to a reliable recovery and exploitation of this biopolymer were discussed.
Collapse
Affiliation(s)
- Zahra Rajabimashhadi
- Department of Engineering for Innovation, University of Salento, Ecotekne Center, 73100 Lecce, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Ecotekne Center, 73100 Lecce, Italy
| | | | - Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, Ecotekne Center, 73100 Lecce, Italy
| |
Collapse
|
15
|
Gallo N, Terzi A, Sibillano T, Giannini C, Masi A, Sicuro A, Blasi FS, Corallo A, Pennetta A, De Benedetto GE, Montagna F, Maffezzoli A, Sannino A, Salvatore L. Age-Related Properties of Aquaponics-Derived Tilapia Skin ( Oreochromis niloticus): A Structural and Compositional Study. Int J Mol Sci 2023; 24:ijms24031938. [PMID: 36768265 PMCID: PMC9916702 DOI: 10.3390/ijms24031938] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
In the last two decades, fisheries and fish industries by-products have started to be recovered for the extraction of type I collagen because of issues related to the extraction of traditional mammalian tissues. In this work, special attention has been paid to by-products from fish bred in aquaponic plants. The valorization of aquaponic fish wastes as sources of biopolymers would make the derived materials eco-friendlier and attractive in terms of profitability and cost effectiveness. Among fish species, Nile Tilapia is the second-most farmed species in the world and its skin is commonly chosen as a collagen extraction source. However, to the best of our knowledge, no studies have been carried out to investigate, in depth, the age-related differences in fish skin with the final aim of selecting the most advantageous fish size for collagen extraction. In this work, the impact of age on the structural and compositional properties of Tilapia skin was evaluated with the aim of selecting the condition that best lends itself to the extraction of type I collagen for biomedical applications, based on the known fact that the properties of the original tissue have a significant impact on those of the final product. Performed analysis showed statistically significant age-related differences. In particular, an increase in skin thickness (+110 µm) and of wavy-like collagen fiber bundle diameter (+3 µm) besides their organization variation was observed with age. Additionally, a preferred collagen molecule orientation along two specific directions was revealed, with a higher fiber orientation degree according to age. Thermal analysis registered a shift of the endothermic peak (+1.7 °C) and an increase in the enthalpy (+3.3 J/g), while mechanical properties were found to be anisotropic, with an age-dependent brittle behavior. Water (+13%) and ash (+0.6%) contents were found to be directly proportional with age, as opposed to protein (-8%) and lipid (-10%) contents. The amino acid composition revealed a decrease in the valine, leucine, isoleucine, and threonine content and an increase in proline and hydroxyproline. Lastly, fatty acids C14:0, C15:0, C16:1, C18:2n6c, C18:3n6, C18:0, C20:3n3, and C23:0 were revealed to be upregulated, while C18:1n9c was downregulated with age.
Collapse
Affiliation(s)
- Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Alberta Terzi
- Institute of Crystallography, National Research Council, 70125 Bari, Italy
| | - Teresa Sibillano
- Institute of Crystallography, National Research Council, 70125 Bari, Italy
- Correspondence:
| | - Cinzia Giannini
- Institute of Crystallography, National Research Council, 70125 Bari, Italy
| | - Annalia Masi
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Alessandro Sicuro
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Federica Stella Blasi
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Angelo Corallo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Antonio Pennetta
- Department of Cultural Heritage, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | | | - Francesco Montagna
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Alfonso Maffezzoli
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Luca Salvatore
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Typeone Biomaterials Srl, Via Vittorio Veneto, 73036 Muro Leccese, Italy
| |
Collapse
|
16
|
Aiello D, Barbera M, Bongiorno D, Cammarata M, Censi V, Indelicato S, Mazzotti F, Napoli A, Piazzese D, Saiano F. Edible Insects an Alternative Nutritional Source of Bioactive Compounds: A Review. Molecules 2023; 28:molecules28020699. [PMID: 36677756 PMCID: PMC9861065 DOI: 10.3390/molecules28020699] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Edible insects have the potential to become one of the major future foods. In fact, they can be considered cheap, highly nutritious, and healthy food sources. International agencies, such as the Food and Agriculture Organization (FAO), have focused their attention on the consumption of edible insects, in particular, regarding their nutritional value and possible biological, toxicological, and allergenic risks, wishing the development of analytical methods to verify the authenticity, quality, and safety of insect-based products. Edible insects are rich in proteins, fats, fiber, vitamins, and minerals but also seem to contain large amounts of polyphenols able to have a key role in specific bioactivities. Therefore, this review is an overview of the potential of edible insects as a source of bioactive compounds, such as polyphenols, that can be a function of diet but also related to insect chemical defense. Currently, insect phenolic compounds have mostly been assayed for their antioxidant bioactivity; however, they also exert other activities, such as anti-inflammatory and anticancer activity, antityrosinase, antigenotoxic, and pancreatic lipase inhibitory activities.
Collapse
Affiliation(s)
- Donatella Aiello
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Marcella Barbera
- Department of Earth and Marine Sciences, University of Palermo, 90123 Palermo, Italy
| | - David Bongiorno
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90123 Palermo, Italy
| | - Matteo Cammarata
- Department of Earth and Marine Sciences, University of Palermo, 90123 Palermo, Italy
| | - Valentina Censi
- Department of Earth and Marine Sciences, University of Palermo, 90123 Palermo, Italy
| | - Serena Indelicato
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90123 Palermo, Italy
| | - Fabio Mazzotti
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Anna Napoli
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy
- Correspondence: (A.N.); (D.P.)
| | - Daniela Piazzese
- Department of Earth and Marine Sciences, University of Palermo, 90123 Palermo, Italy
- Correspondence: (A.N.); (D.P.)
| | - Filippo Saiano
- Department Agricultural Food and Forestry Sciences, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
17
|
Ma L, Liang X, Yu S, Zhou J. Expression, characterization, and application potentiality evaluation of recombinant human-like collagen in Pichia pastoris. BIORESOUR BIOPROCESS 2022; 9:119. [PMID: 38647896 PMCID: PMC10992492 DOI: 10.1186/s40643-022-00606-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
Collagen is a biofunctional protein that has been widely used in many fields, including but not limited to biomedical, cosmetics and skin care, food, and novel materials. Recombinant collagen has great potential as an alternative to collagen extracted from animals because it avoids the immune response, and the yield and properties are stable. However, challenges remain in the industrial application of recombinant collagen, including improving the expression yield, reducing the cost of purification for industry and expanding applications. In this study, a cloning and recombination method was used to heterologously express the recombinant human-like collagen (RHLC) in Pichia pastoris GS115 using the pPIC9k expression vector. The RHLC expression titre was 2.33 g/L via a 5-L fermenter, and the purification was completed within 48 h and was 98% pure. The characteristics of RHLC were investigated. Furthermore, potential applications for RHLC were explored, such as basal collagen sponge preparation, forming films with chitosan and production of collagen hydrolysed peptides. RHLC has various potential applications due to its triple helical structure, thermostability, good biocompatibility and film-forming ability.
Collapse
Affiliation(s)
- Lingling Ma
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Xiaolin Liang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Shiqin Yu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
18
|
Carr BP, Chen Z, Chung JHY, Wallace GG. Collagen Alignment via Electro-Compaction for Biofabrication Applications: A Review. Polymers (Basel) 2022; 14:4270. [PMID: 36297848 PMCID: PMC9609630 DOI: 10.3390/polym14204270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/24/2022] Open
Abstract
As the most prevalent structural protein in the extracellular matrix, collagen has been extensively investigated for biofabrication-based applications. However, its utilisation has been impeded due to a lack of sufficient mechanical toughness and the inability of the scaffold to mimic complex natural tissues. The anisotropic alignment of collagen fibres has been proven to be an effective method to enhance its overall mechanical properties and produce biomimetic scaffolds. This review introduces the complicated scenario of collagen structure, fibril arrangement, type, function, and in addition, distribution within the body for the enhancement of collagen-based scaffolds. We describe and compare existing approaches for the alignment of collagen with a sharper focus on electro-compaction. Additionally, various effective processes to further enhance electro-compacted collagen, such as crosslinking, the addition of filler materials, and post-alignment fabrication techniques, are discussed. Finally, current challenges and future directions for the electro-compaction of collagen are presented, providing guidance for the further development of collagenous scaffolds for bioengineering and nanotechnology.
Collapse
Affiliation(s)
| | | | - Johnson H. Y. Chung
- Australian Research Council Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Gordon G. Wallace
- Australian Research Council Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
19
|
Amirrah IN, Lokanathan Y, Zulkiflee I, Wee MFMR, Motta A, Fauzi MB. A Comprehensive Review on Collagen Type I Development of Biomaterials for Tissue Engineering: From Biosynthesis to Bioscaffold. Biomedicines 2022; 10:2307. [PMID: 36140407 PMCID: PMC9496548 DOI: 10.3390/biomedicines10092307] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Collagen is the most abundant structural protein found in humans and mammals, particularly in the extracellular matrix (ECM). Its primary function is to hold the body together. The collagen superfamily of proteins includes over 20 types that have been identified. Yet, collagen type I is the major component in many tissues and can be extracted as a natural biomaterial for various medical and biological purposes. Collagen has multiple advantageous characteristics, including varied sources, biocompatibility, sustainability, low immunogenicity, porosity, and biodegradability. As such, collagen-type-I-based bioscaffolds have been widely used in tissue engineering. Biomaterials based on collagen type I can also be modified to improve their functions, such as by crosslinking to strengthen the mechanical property or adding biochemical factors to enhance their biological activity. This review discusses the complexities of collagen type I structure, biosynthesis, sources for collagen derivatives, methods of isolation and purification, physicochemical characteristics, and the current development of collagen-type-I-based scaffolds in tissue engineering applications. The advancement of additional novel tissue engineered bioproducts with refined techniques and continuous biomaterial augmentation is facilitated by understanding the conventional design and application of biomaterials based on collagen type I.
Collapse
Affiliation(s)
- Ibrahim N. Amirrah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Izzat Zulkiflee
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - M. F. Mohd Razip Wee
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38122 Trento, Italy
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
20
|
WAXS and SAXS Investigation of Collagen-Rich Diet Effect on Multiscale Arrangement of Type I Collagen in Tilapia Skin Fed in Aquaponics Plant. CRYSTALS 2022. [DOI: 10.3390/cryst12050700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Type I collagen is the main component of the extracellular matrix that acts as the physical and biochemical support of tissues. Thanks to its characteristics, collagen is widely employed as a biomaterial for implantable device fabrication and as antiaging food supplementation. Because of the BSE transmission in the 1990s, aquatic animals have become a more suitable extraction source than warm-blooded animals. Moreover, as recently demonstrated, a supplementing diet with fish collagen can increase the body’s collagen biosynthesis. In this context, Tilapia feeding was supplemented with hydrolyzed collagen in order to enhance the yield of extracted collagen. Tilapia skin was investigated with wide and small angle scattering techniques, analyzing the collagen structure from the submolecular to the nanoscale and correlated with Differential Scanning Calorimetry (DSC) measurements. Our studies demonstrated that the supplementation appears to have an effect at the nanoscale in which fibrils appear more randomly oriented than in fish fed with no supplemented feed. Conversely, no effect of a collagen-rich diet was observed at the submolecular scale.
Collapse
|
21
|
Aquaponics-Derived Tilapia Skin Collagen for Biomaterials Development. Polymers (Basel) 2022; 14:polym14091865. [PMID: 35567034 PMCID: PMC9103308 DOI: 10.3390/polym14091865] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Collagen is one of the most widely used biomaterials in health-related sectors. The industrial production of collagen mostly relies on its extraction from mammals, but several issues limited its use. In the last two decades, marine organisms attracted interest as safe, abundant, and alternative source for collagen extraction. In particular, the possibility to valorize the huge quantity of fish industry waste and byproducts as collagen source reinforced perception of fish collagen as eco-friendlier and particularly attractive in terms of profitability and cost-effectiveness. Especially fish byproducts from eco-sustainable aquaponics production allow for fish biomass with additional added value and controlled properties over time. Among fish species, Oreochromis niloticus is one of the most widely bred fish in large-scale aquaculture and aquaponics systems. In this work, type I collagen was extracted from aquaponics-raised Tilapia skin and characterized from a chemical, physical, mechanical, and biological point of view in comparison with a commercially available analog. Performed analysis confirmed that the proprietary process optimized for type I collagen extraction allowed to isolate pure native collagen and to preserve its native conformational structure. Preliminary cellular studies performed with mouse fibroblasts indicated its optimal biocompatibility. All data confirmed the eligibility of the extracted Tilapia-derived native type I collagen as a biomaterial for healthcare applications.
Collapse
|
22
|
Aiello D, Cordaro M, Napoli A, Foti C, Giuffrè O. Speciation Study on O-Phosphorylethanolamine and O-Phosphorylcholine: Acid-Base Behavior and Mg 2+ Interaction. Front Chem 2022; 10:864648. [PMID: 35419347 PMCID: PMC8996081 DOI: 10.3389/fchem.2022.864648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/04/2022] [Indexed: 12/31/2022] Open
Abstract
In the present study, the acid-base behavior of compounds constituting the headgroups of biomembranes, O-phosphorylethanolamine (PEA), and O-phosphorylcholine (PPC) was investigated by potentiometric titrations in NaCl aqueous solutions at different temperatures (15 ≤ t/°C ≤ 37) and ionic strength (0.15 ≤ I/mol L-1 ≤ 1) values. The complexation properties and the speciation of these ligands with Mg2+ were defined under different temperatures (15 ≤ t/°C ≤ 37) and I = 0.15 mol L-1. The results evidenced the formation of three species for PEA, namely, MLH2, MLH, and ML and two species for PPC, namely, MLH and ML. 1H-NMR titrations were performed on solutions containing ligand and metal-ligand solutions at t = 25°C and I = 0.15 mol L-1. The estimated values of ligand protonation and complex formation constants and the speciation model are in accordance with the potentiometric data. The enthalpy changes were also determined at t = 25°C and I = 0.15 mol L-1 by the dependence of formation constants on the temperature, confirming the electrostatic nature of the interactions. Matrix-assisted laser desorption mass spectrometry (MALDI-MS) was applied for the characterization of Mg2+-L systems (L = PEA or PCC). MS/MS spectra of free ligands and of Mg2+-L species were obtained. The observed fragmentation patterns of both Mg2+-L systems allowed elucidating the interaction mechanism that occurs via the phosphate group generating a four-membered cycle.
Collapse
Affiliation(s)
- Donatella Aiello
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Arcavacata di Rende (CS), Italy
| | - Massimiliano Cordaro
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
- CNR-ITAE, Messina, Italy
| | - Anna Napoli
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Arcavacata di Rende (CS), Italy
| | - Claudia Foti
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Ottavia Giuffrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| |
Collapse
|
23
|
Gallo N, Natali ML, Curci C, Picerno A, Gallone A, Vulpi M, Vitarelli A, Ditonno P, Cascione M, Sallustio F, Rinaldi R, Sannino A, Salvatore L. Analysis of the Physico-Chemical, Mechanical and Biological Properties of Crosslinked Type-I Collagen from Horse Tendon: Towards the Development of Ideal Scaffolding Material for Urethral Regeneration. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7648. [PMID: 34947245 PMCID: PMC8707771 DOI: 10.3390/ma14247648] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 11/19/2022]
Abstract
Urethral stenosis is a pathological condition that consists in the narrowing of the urethral lumen because of the formation of scar tissue. Unfortunately, none of the current surgical approaches represent an optimal solution because of the high stricture recurrence rate. In this context, we preliminarily explored the potential of an insoluble type-I collagen from horse tendon as scaffolding material for the development of innovative devices for the regeneration of injured urethral tracts. Non-porous collagen-based substrates were produced and optimized, in terms of crosslinking density of the macromolecular structure, to either provide mechanical properties compliant with the urinary tract physiological stress and better sustain tissue regeneration. The effect of the adopted crosslinking strategy on the protein integrity and on the substrate physical-chemical, mechanical and biological properties was investigated in comparison with a decellularized matrix from porcine small intestinal submucosa (SIS patch), an extensively used xenograft licensed for clinical use in urology. The optimized production protocols allowed the preservation of the type I collagen native structure and the realization of a substrate with appealing end-use properties. The biological response, preliminarily investigated by immunofluorescence experiments on human adult renal stem/progenitor cells until 28 days, showed the formation of a stem-cell monolayer within 14 days and the onset of spheroids within 28 days. These results suggested the great potential of the collagen-based material for the development of scaffolds for urethral plate regeneration and for in vitro cellular studies.
Collapse
Affiliation(s)
- Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (M.L.N.); (A.S.); (L.S.)
| | - Maria Lucia Natali
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (M.L.N.); (A.S.); (L.S.)
- Typeone Biomaterials, Via Vittorio Veneto 64/C, 73036 Muro Leccese, Italy
| | - Claudia Curci
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy; (C.C.); (A.G.)
| | - Angela Picerno
- Nephrology Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Anna Gallone
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy; (C.C.); (A.G.)
| | - Marco Vulpi
- Urology and Andrology Unit, Department of Emergency and Organ Transplant, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.V.); (A.V.); (P.D.)
| | - Antonio Vitarelli
- Urology and Andrology Unit, Department of Emergency and Organ Transplant, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.V.); (A.V.); (P.D.)
| | - Pasquale Ditonno
- Urology and Andrology Unit, Department of Emergency and Organ Transplant, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.V.); (A.V.); (P.D.)
| | - Mariafrancesca Cascione
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, 73100 Lecce, Italy; (M.C.); (R.R.)
| | - Fabio Sallustio
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Rosaria Rinaldi
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, 73100 Lecce, Italy; (M.C.); (R.R.)
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (M.L.N.); (A.S.); (L.S.)
| | - Luca Salvatore
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (M.L.N.); (A.S.); (L.S.)
- Typeone Biomaterials, Via Vittorio Veneto 64/C, 73036 Muro Leccese, Italy
| |
Collapse
|
24
|
Tonndorf R, Aibibu D, Cherif C. Isotropic and Anisotropic Scaffolds for Tissue Engineering: Collagen, Conventional, and Textile Fabrication Technologies and Properties. Int J Mol Sci 2021; 22:9561. [PMID: 34502469 PMCID: PMC8431235 DOI: 10.3390/ijms22179561] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022] Open
Abstract
In this review article, tissue engineering and regenerative medicine are briefly explained and the importance of scaffolds is highlighted. Furthermore, the requirements of scaffolds and how they can be fulfilled by using specific biomaterials and fabrication methods are presented. Detailed insight is given into the two biopolymers chitosan and collagen. The fabrication methods are divided into two categories: isotropic and anisotropic scaffold fabrication methods. Processable biomaterials and achievable pore sizes are assigned to each method. In addition, fiber spinning methods and textile fabrication methods used to produce anisotropic scaffolds are described in detail and the advantages of anisotropic scaffolds for tissue engineering and regenerative medicine are highlighted.
Collapse
Affiliation(s)
- Robert Tonndorf
- Institute of Textile Machinery and High Performance Material Technology, Technische Universität Dresden, 01069 Dresden, Germany; (D.A.); (C.C.)
| | | | | |
Collapse
|
25
|
Xu J, Liu F, Yu Z, Chen M, Zhong F. Influence of softwood cellulose fiber and chitosan on the film-forming properties of collagen fiber. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Aiello D, Lucà F, Siciliano C, Frati P, Fineschi V, Rongo R, Napoli A. Analytical Strategy for MS-Based Thanatochemistry to Estimate Postmortem Interval. J Proteome Res 2021; 20:2607-2617. [PMID: 33905255 DOI: 10.1021/acs.jproteome.0c01038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An analytical strategy for a matrix-assisted laser desorption mass spectrometry-based untargeted metabolomic study on vitreous humor (VH) was developed, looking for statistically significant parameters correlated to death time estimation. Five incubation stages of VH, 0, 24, 48, 72, and 96 h, at physiological pH and controlled temperature, were adopted to monitor time-dependent changes and correlate them with the postmortem interval (PMI). Using two multivariate statistical approaches, principal component regression (PCR) and partial least squares regression (PLSR), the PMI was assessed, considering the m/z values from mass spectra and the incubation time (ISt) as predictors. An independent validation set was used to evaluate the predictive capability of the models through the coefficient of determination (R2) and the root-mean-square error (RMSE). Different pre-treatments were applied to the raw mass spectra, and their performance in assessing PMI was evaluated. Based on the best outcomes in terms of both R2 and RMSE, multiplicative scatter correction combined with a logarithmic transformation was chosen. The results of PCR and PLSR based on the selected pre-treatment are encouraging because validation R2 is about 0.95 for both models. Moreover, the prediction error is 6 h for both models, when PMI is lower than 1 day. Although these results are obtained by the uncritical application of the models, they are comparable to or even better than those reported in the literature. Notwithstanding, we consider that many in situ influences, such as passive diffusion, functional loss of tissues, and advanced autolytic processes, could not get captured in vitro. However, the developed approach was optimized using VH samples and overcomes the limitations of the vast majority of methods that require validation for serum and/or urine samples.
Collapse
Affiliation(s)
- Donatella Aiello
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende 87036, Italy
| | - Federica Lucà
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende 87036, Italy
| | - Carlo Siciliano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende 87036, Italy
| | - Paola Frati
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Rocco Rongo
- Department of Mathematics and Computer Science, University of Calabria, Rende 87036, Italy
| | - Anna Napoli
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende 87036, Italy
| |
Collapse
|
27
|
Aiello D, Carnamucio F, Cordaro M, Foti C, Napoli A, Giuffrè O. Ca 2+ Complexation With Relevant Bioligands in Aqueous Solution: A Speciation Study With Implications for Biological Fluids. Front Chem 2021; 9:640219. [PMID: 33718329 PMCID: PMC7953420 DOI: 10.3389/fchem.2021.640219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
A speciation study on the interaction between Ca2+ and ligands of biological interest in aqueous solution is reported. The ligands under study are l-cysteine (Cys), d-penicillamine (PSH), reduced glutathione (GSH), and oxidized glutathione (GSSG). From the elaboration of the potentiometric experimental data the most likely speciation patterns obtained are characterized by only protonated species with a 1:1 metal to ligand ratio. In detail, two species, CaLH2 and CaLH, for systems containing Cys, PSH, and GSH, and five species, CaLH5, CaLH4, CaLH3, CaLH2, and CaLH, for system containing GSSG, were observed. The potentiometric titrations were performed at different temperatures (15 ≤ t/°C ≤ 37, at I = 0.15 mol L-1). The enthalpy and entropy change values were calculated for all systems, and the dependence of the formation constants of the complex species on the temperature was evaluated. 1H NMR spectroscopy, MALDI mass spectrometry, and tandem mass spectrometry (MS/MS) investigations on Ca2+-ligand solutions were also employed, confirming the interactions and underlining characteristic complexing behaviors of Cys, PSH, GSH, and GSSG toward Ca2+. The results of the analysis of 1H NMR experimental data are in full agreement with potentiometric ones in terms of speciation models and stability constants of the species. MALDI mass spectrometry and tandem mass spectrometry (MS/MS) analyses confirm the formation of Ca2+-L complex species and elucidate the mechanism of interaction. On the basis of speciation models, simulations of species formation under conditions of some biological fluids were reported. The sequestering ability of Cys, PSH, GSH, and GSSG toward Ca2+ was evaluated under different conditions of pH and temperature and under physiological condition.
Collapse
Affiliation(s)
- Donatella Aiello
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Arcavacata di Rende, Italy
| | - Federica Carnamucio
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche Ed Ambientali, Università di Messina, Messina, Italy
| | - Massimiliano Cordaro
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche Ed Ambientali, Università di Messina, Messina, Italy
| | - Claudia Foti
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche Ed Ambientali, Università di Messina, Messina, Italy
| | - Anna Napoli
- Dipartimento di Chimica e Tecnologie Chimiche, Università Della Calabria, Arcavacata di Rende, Italy
| | - Ottavia Giuffrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche Ed Ambientali, Università di Messina, Messina, Italy
| |
Collapse
|
28
|
Nitti P, Kunjalukkal Padmanabhan S, Cortazzi S, Stanca E, Siculella L, Licciulli A, Demitri C. Enhancing Bioactivity of Hydroxyapatite Scaffolds Using Fibrous Type I Collagen. Front Bioeng Biotechnol 2021; 9:631177. [PMID: 33614615 PMCID: PMC7890361 DOI: 10.3389/fbioe.2021.631177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/11/2021] [Indexed: 11/20/2022] Open
Abstract
In the field of bone tissue regeneration, the development of osteoconductive and osteoinductive scaffolds is an open challenge. The purpose of this work was the design and characterization of composite structures made of hydroxyapatite scaffold impregnated with a collagen slurry in order to mimic the bone tissue structure. The effect of magnesium and silicon ions enhancing both mechanical and biological properties of partially substituted hydroxyapatite were evaluated and compared with that of pure hydroxyapatite. The use of an innovative freeze-drying approach was developed, in which composite scaffolds were immersed in cold water, frozen and then lyophilized, thereby creating an open-pore structure, an essential feature for tissue regeneration. The mechanical stability of bone scaffolds is very important in the first weeks of slow bone regeneration process. Therefore, the biodegradation behavior of 3D scaffolds was evaluated by incubating them for different periods of time in Tris-HCl buffer. The microstructure observation, the weight loss measurements and mechanical stability up to 28 days of incubation (particularly for HA-Mg_Coll scaffolds), revealed moderate weight loss and mechanical performances reduction due to collagen dissolution. At the same time, the presence of collagen helps to protect the ceramic structure until it degrades. These results, combined with MTT tests, confirm that HA-Mg_Coll scaffolds may be the suitable candidate for bone remodeling.
Collapse
Affiliation(s)
- Paola Nitti
- Biomaterials Laboratory, Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | | | - Serena Cortazzi
- Biomaterials Laboratory, Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Eleonora Stanca
- Laboratory of Biochemistry and Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Luisa Siculella
- Laboratory of Biochemistry and Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Antonio Licciulli
- Biomaterials Laboratory, Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Christian Demitri
- Biomaterials Laboratory, Department of Engineering for Innovation, University of Salento, Lecce, Italy
| |
Collapse
|
29
|
Oliveira VDM, Assis CRD, Costa BDAM, Neri RCDA, Monte FTD, Freitas HMSDCV, França RCP, Santos JF, Bezerra RDS, Porto ALF. Physical, biochemical, densitometric and spectroscopic techniques for characterization collagen from alternative sources: A review based on the sustainable valorization of aquatic by-products. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129023] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Gallo N, Natali ML, Sannino A, Salvatore L. An Overview of the Use of Equine Collagen as Emerging Material for Biomedical Applications. J Funct Biomater 2020; 11:jfb11040079. [PMID: 33139660 PMCID: PMC7712325 DOI: 10.3390/jfb11040079] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022] Open
Abstract
Type I collagen has always aroused great interest in the field of life-science and bioengineering, thanks to its favorable structural properties and bioactivity. For this reason, in the last five decades it has been widely studied and employed as biomaterial for the manufacture of implantable medical devices. Commonly used sources of collagen are represented by bovine and swine but their applications are limited because of the zoonosis transmission risks, the immune response and the religious constrains. Thus, type-I collagen isolated from horse tendon has recently gained increasing interest as an attractive alternative, so that, although bovine and porcine derived collagens still remain the most common ones, more and more companies started to bring to market a various range of equine collagen-based products. In this context, this work aims to overview the properties of equine collagen making it particularly appealing in medicine, cosmetics and pharmaceuticals, as well as its main biomedical applications and the currently approved equine collagen-based medical devices, focusing on experimental studies and clinical trials of the last 15 years. To the best of our knowledge, this is the first review focusing on the use of equine collagen, as well as on equine collagen-based marketed products for healthcare.
Collapse
|