1
|
Pandey V, Pandey T. Chitosan-functionalized nanobubbles for precision oncology: advances in targeted cancer therapeutics. J Mater Chem B 2024. [PMID: 39385619 DOI: 10.1039/d4tb01930j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The convergence of nanotechnology and cancer therapeutics has opened new frontiers in the development of advanced drug delivery systems. Among the various nanocarriers, nanobubbles offer significant potential due to their unique properties, such as high payload capacity, responsiveness to external stimuli like ultrasound, and enhanced permeability and retention (EPR) effects. Functionalizing these nanobubbles with chitosan, a naturally derived biopolymer known for its biocompatibility, biodegradability, and ability to enhance cellular uptake, further improves their therapeutic efficacy. This review provides a comprehensive analysis of the synthesis, functionalization, and application of chitosan-functionalized nanobubbles in cancer therapy. We discuss their mechanism of action, including targeted drug delivery, ultrasound-mediated release, and immune modulation, alongside recent advancements and challenges in their clinical translation. This review also explores future directions in this rapidly evolving field, aiming to offer insights into the development of next-generation cancer therapeutics.
Collapse
Affiliation(s)
- Vivek Pandey
- Department of Chemistry, School for Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Tejasvi Pandey
- Department of Forensic Sciences, School for Bioengineering and Biosciences Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
2
|
Mahmoud Abd-Alaziz D, Mansour M, Nasr M, Sammour O. Tailored green synthesized silymarin-selenium nanoparticles: Topical nanocarrier of promising antileishmanial activity. Int J Pharm 2024; 660:124275. [PMID: 38797252 DOI: 10.1016/j.ijpharm.2024.124275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Poor drug penetration, emerging drug resistance, and systemic toxicity are among the major obstacles challenging the current treatment of cutaneous leishmaniasis. Hence, developing advanced strategies for effective and targeted delivery of antileishmanial agents is crucial. Several drug delivery carriers have been developed till current date for dermal/transdermal delivery, especially those which are fabricated using eco-friendly synthesis approaches, since they protect the environment from the harmful effects of chemical waste disposal. This work describes the preparation of selenium nanoparticles loaded with silymarin via one-pot green reduction technique, for treatment of cutaneous leishmaniasis. The selected silymarin loaded selenium nanoparticles (SSNs4-0.1) displayed good loading efficiency of 58.22 ± 0.56 %, zeta potential of -30.63 ± 0.40 mV, hydrodynamic diameter of 245.77 ± 11.12 nm, and polydispersity index of 0.19 ± 0.01. It exhibited good physical stability, as well as high ex vivo deposition % in the epidermis (46.98 ± 1.51 %) and dermis (35.23 ± 1.72 %), which was further proven using confocal laser microscopy. It also exhibited significant cytocompatibility and noticeable cellular internalization of 90.02 ± 3.81 % in human fibroblasts, as well as high trypanothione reductase inhibitory effect (97.10 ± 0.30 %). Results of this study confirmed the successful green synthesis of silymarin-loaded selenium nanoparticles; delineating them as one of the promising antileishmanial topical delivery systems.
Collapse
Affiliation(s)
- Dina Mahmoud Abd-Alaziz
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Mai Mansour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Omaima Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Abd-Allah H, Abdel Jaleel GA, Hassan A, El Madani M, Nasr M. Ferulic acid nanoemulsion as a promising anti-ulcer tool: in vitro and in vivo assessment. Drug Dev Ind Pharm 2024; 50:460-469. [PMID: 38602337 DOI: 10.1080/03639045.2024.2341786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
OBJECTIVE Ferulic acid (FA) is a promising nutraceutical molecule which exhibits antioxidant and anti-inflammatory properties, but it suffers from poor solubility and bioavailability. In the presented study, FA nanoemulsions were prepared to potentiate the therapeutic efficacy of FA in prevention of gastric ulcer. METHODS FA nanoemulsions were prepared, pharmaceutically characterized, and the selected nanoemusion was tested for its ulcer-ameliorative properties in rats after induction of gastric ulcer using ethanol, by examination of stomach tissues, assessment of serum IL-1β and TNF-α, assessment of nitric oxide, prostaglandin E2, glutathione, catalase and thiobarbituric acid reactive substance in stomach homogenates, as well as histological and immunohistochemical evaluation. RESULTS Results revealed that the selected FA nanoemulsion showed a particle size of 90.43 nm, sustained release of FA for 8 h, and better in vitro anti-inflammatory properties than FA. Moreover, FA nanoemulsion exhibited significantly better anti-inflammatory and antioxidant properties in vivo, and the gastric tissue treated with FA nanoemulsion was comparable to the normal control upon histological and immunohistochemical evaluation. CONCLUSION Findings suggest that the prepared ferulic acid nanoemulsion is an ideal anti-ulcer system, which is worthy of further investigations.
Collapse
Affiliation(s)
- Hend Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain shams University, Cairo, Egypt
| | | | - Azza Hassan
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | | | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain shams University, Cairo, Egypt
| |
Collapse
|
4
|
Kabil MF, Gaber SAA, Hamzawy MA, El-Sherbiny IM, Nasr M. Folic/lactobionic acid dual-targeted polymeric nanocapsules for potential treatment of hepatocellular carcinoma. Drug Deliv Transl Res 2024; 14:1338-1351. [PMID: 37930630 DOI: 10.1007/s13346-023-01467-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor that affects many patients diagnosed with hepatic cell inflammation and liver cirrhosis. Targeted polymeric nanocapsules could facilitate the internalization and accumulation of anticancer drugs. Dual-targeted folic acid/lactobionic acid-poly lactic co-glycolic acid nanocapsules (NCs) were prepared and loaded with pterostilbene (PTN) and characterized for their physicochemical properties, as well as in vitro and in vivo anticancer activity. NCs displayed a size of 222 nm, zeta potential of - 16.5 mV, and sustained release for 48 h. The IC50 of PTN NCs (5.87 ± 0.8 µg/mL) was 20 times lower than unencapsulated PTN (121.26 ± 9.42 µg/mL) on HepG2 liver cancer cells owing to the enhanced cellular uptake of the former, as delineated by flow cytometry. In vivo study on HCC-induced animals delineated the superiority of the dual-targeted NCs over the unencapsulated PTN, which significantly reduced the liver markers ALT, AST, and ALP, as well as the tumor-related markers AFP and Bcl2, and elevated the anti-apoptotic marker caspase 3. Furthermore, the NCs significantly reduced the oxidative stress and exhibited almost comparable histological features to the normal group. Therefore, it can be concluded that the dual-ligated folic acid/lactobionic acid nanocapsules can be considered a promising potential treatment option for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Mohamed Fawzi Kabil
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, Giza, Egypt
| | - Sara A Abdel Gaber
- Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafr Elsheikh University, Kafr Elsheikh, Egypt
| | - Mohamed A Hamzawy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, Giza, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
5
|
Nirmal N, Demir D, Ceylan S, Ahmad S, Goksen G, Koirala P, Bono G. Polysaccharides from shell waste of shellfish and their applications in the cosmeceutical industry: A review. Int J Biol Macromol 2024; 265:131119. [PMID: 38522682 DOI: 10.1016/j.ijbiomac.2024.131119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Shell waste from shellfish processing contains valuable natural polysaccharides, including sulfated polysaccharides, acidic polysaccharides, glycosaminoglycans, chitin and their derivatives. These shellfish waste-derived polysaccharides have numerous functional and biological properties that can be applied in various industries, including the cosmeceutical industry. In keeping with global sustainability and green industry trends, the cosmeceuticals industry is transitioning from petrochemical-based ingredients to natural substitutes. In this context, shell waste-derived polysaccharides and their derivatives can play a major role as natural substitutes for petroleum-based components in various cosmeceutical skincare, hair care, oral care and body care products. This review focuses on the presence of polysaccharides and their derivatives in shell waste and discusses their various cosmeceutical applications in skin care, hair care, sun care, oral care and body care products. This indicates that shell waste utilization will help create a circular economy in which extracted polysaccharides are used to produce green cosmeceutical products.
Collapse
Affiliation(s)
- Nilesh Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| | - Didem Demir
- Department of Chemistry and Chemical Process Technologies, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Türkiye
| | - Seda Ceylan
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, 01250 Adana, Türkiye
| | - Sameer Ahmad
- Food Technology Department, Jamia Hamdard, G782+55X, Mehrauli - Badarpur Rd, Hamdard Nagar, New Delhi, Delhi 110062, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Türkiye
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Gioacchino Bono
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Via L. Vaccara 61, 91026 Mazara del Vallo, TP, Italy; Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Di Palermo, Palermo, Italy
| |
Collapse
|
6
|
Kabil MF, Azzazy HMES, Nasr M. Recent progress on polySarcosine as an alternative to PEGylation: Synthesis and biomedical applications. Int J Pharm 2024; 653:123871. [PMID: 38301810 DOI: 10.1016/j.ijpharm.2024.123871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Biotherapeutic PEGylation to prolong action of medications has gained popularity over the last decades. Various hydrophilic natural polymers have been developed to tackle the drawbacks of PEGylation, such as its accelerated blood clearance and non-biodegradability. Polypeptoides, such as polysarcosine (pSar), have been explored as hydrophilic substitutes for PEG. pSar has PEG-like physicochemical characteristics such as water solubility and no reported cytotoxicity and immunogenicity. This review discusses pSar derivatives, synthesis, characterization approaches, biomedical applications, in addition to the challenges and future perspectives of pSar based biomaterials as an alternative to PEG.
Collapse
Affiliation(s)
- Mohamed Fawzi Kabil
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
7
|
Damyanova T, Dimitrova PD, Borisova D, Topouzova-Hristova T, Haladjova E, Paunova-Krasteva T. An Overview of Biofilm-Associated Infections and the Role of Phytochemicals and Nanomaterials in Their Control and Prevention. Pharmaceutics 2024; 16:162. [PMID: 38399223 PMCID: PMC10892570 DOI: 10.3390/pharmaceutics16020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Biofilm formation is considered one of the primary virulence mechanisms in Gram-positive and Gram-negative pathogenic species, particularly those responsible for chronic infections and promoting bacterial survival within the host. In recent years, there has been a growing interest in discovering new compounds capable of inhibiting biofilm formation. This is considered a promising antivirulence strategy that could potentially overcome antibiotic resistance issues. Effective antibiofilm agents should possess distinctive properties. They should be structurally unique, enable easy entry into cells, influence quorum sensing signaling, and synergize with other antibacterial agents. Many of these properties are found in both natural systems that are isolated from plants and in synthetic systems like nanoparticles and nanocomposites. In this review, we discuss the clinical nature of biofilm-associated infections and some of the mechanisms associated with their antibiotic tolerance. We focus on the advantages and efficacy of various natural and synthetic compounds as a new therapeutic approach to control bacterial biofilms and address multidrug resistance in bacteria.
Collapse
Affiliation(s)
- Tsvetozara Damyanova
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 26, 1113 Sofia, Bulgaria; (T.D.); (P.D.D.); (D.B.)
| | - Petya D. Dimitrova
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 26, 1113 Sofia, Bulgaria; (T.D.); (P.D.D.); (D.B.)
| | - Dayana Borisova
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 26, 1113 Sofia, Bulgaria; (T.D.); (P.D.D.); (D.B.)
| | - Tanya Topouzova-Hristova
- Faculty of Biology, Sofia University “St. K. Ohridski”, 8 D. Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Emi Haladjova
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 103-A, 1113 Sofia, Bulgaria;
| | - Tsvetelina Paunova-Krasteva
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 26, 1113 Sofia, Bulgaria; (T.D.); (P.D.D.); (D.B.)
| |
Collapse
|
8
|
Abd-Allah H, Youshia J, Abdel Jaleel GA, Hassan A, El Madani M, Nasr M. Gastroprotective Chitosan Nanoparticles Loaded with Oleuropein: An In Vivo Proof of Concept. Pharmaceutics 2024; 16:153. [PMID: 38276520 PMCID: PMC10819437 DOI: 10.3390/pharmaceutics16010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/31/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Oleuropein is the main constituent of olive leaf extract, and it has shown antioxidant and gastroprotective properties against gastric ulcers. Chitosan nanoparticles are known for their mucoadhesive abilities, and consequently, they can increase the retention time of drugs in the gastrointestinal tract. Therefore, loading oleuropein onto chitosan nanoparticles is expected to enhance its biological efficiency. Oleuropein-loaded chitosan nanoparticles were prepared and characterized for particle size, surface charge, in vitro release, and anti-inflammatory activity. Their in vivo efficacy was assessed by measuring specific inflammatory and protective biomarkers, along with histopathological examination. The optimum oleuropein chitosan nanoparticles were cationic, had a size of 174.3 ± 2.4 nm and an entrapment efficiency of 92.81%, and released 70% of oleuropein within 8 h. They recorded a lower IC50 in comparison to oleuropein solutions for membrane stabilization of RBCs (22.6 vs. 25.6 µg/mL) and lipoxygenase inhibition (7.17 vs. 15.6 µg/mL). In an ethanol-induced gastric ulcer in vivo model, they decreased IL-1β, TNF-α, and TBARS levels by 2.1, 1.7, and 1.3 fold, respectively, in comparison to increments caused by exposure to ethanol. Moreover, they increased prostaglandin E2 and catalase enzyme levels by 2.4 and 3.8 fold, respectively. Immunohistochemical examination showed that oleuropein chitosan nanoparticles markedly lowered the expression of IL-6 and caspase-3 in gastric tissues in comparison to oleuropein solution. Overall, oleuropein chitosan nanoparticles showed superior gastroprotective effects to oleuropein solution since comparable effects were demonstrated at a 12-fold lower drug dose, delineating that chitosan nanoparticles indeed enhanced the potency of oleuropein as a gastroprotective agent.
Collapse
Affiliation(s)
- Hend Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (H.A.-A.)
| | - John Youshia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (H.A.-A.)
| | | | - Azza Hassan
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo 12613, Egypt
| | | | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (H.A.-A.)
| |
Collapse
|
9
|
Osi B, Al-Kinani AA, Al-Qaysi ZK, Khoder M, Alany RG. Exploring the Ocular Absorption Pathway of Fasudil Hydrochloride towards Developing a Nanoparticulate Formulation with Improved Performance. Pharmaceutics 2024; 16:112. [PMID: 38258122 PMCID: PMC10819904 DOI: 10.3390/pharmaceutics16010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Rho-kinase (ROCK) inhibitors represent a new category of anti-glaucoma medications. Among them, Fasudil hydrochloride, a selective ROCK inhibitor, has demonstrated promising outcomes in glaucoma treatment. It works by inhibiting the ROCK pathway, which plays a crucial role in regulating the trabecular meshwork and canal of Schlemm's aqueous humor outflow. This study aims to investigate the ocular absorption pathway of Fasudil hydrochloride and, subsequently, develop a nanoparticle-based delivery system for enhanced corneal absorption. Employing the ionic gelation method and statistical experimental design, the factors influencing chitosan nanoparticle (Cs NP) characteristics and performance were explored. Fasudil in vitro release and ex vivo permeation studies were performed, and Cs NP ocular tolerability and cytotoxicity on human lens epithelial cells were evaluated. Permeation studies on excised bovine eyes revealed significantly higher Fasudil permeation through the sclera compared to the cornea (370.0 μg/cm2 vs. 96.8 μg/cm2, respectively). The nanoparticle size (144.0 ± 15.6 nm to 835.9 ± 23.4 nm) and entrapment efficiency range achieved (17.2% to 41.4%) were predominantly influenced by chitosan quantity. Cs NPs showed a substantial improvement in the permeation of Fasudil via the cornea, along with slower release compared to the Fasudil aqueous solution. The results from the Hen's Egg Test Chorioallantoic Membrane (HET-CAM) and Bovine Corneal Opacity and Permeability (BCOP) tests indicated good conjunctival and corneal biocompatibility of the formulated chitosan nanoparticles, respectively. Lens epithelial cells displayed excellent tolerance to low concentrations of these nanoparticles (>94% cell viability). To the best of our knowledge, this is the first report on the ocular absorption pathway of topically applied Fasudil hydrochloride where the cornea has been identified as a potential barrier that could be overcome using Cs NPs.
Collapse
Affiliation(s)
- Barzan Osi
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, London KT1 2EE, UK; (A.A.A.-K.); (Z.K.A.-Q.); (M.K.)
| | - Ali A. Al-Kinani
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, London KT1 2EE, UK; (A.A.A.-K.); (Z.K.A.-Q.); (M.K.)
| | - Zinah K. Al-Qaysi
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, London KT1 2EE, UK; (A.A.A.-K.); (Z.K.A.-Q.); (M.K.)
| | - Mouhamad Khoder
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, London KT1 2EE, UK; (A.A.A.-K.); (Z.K.A.-Q.); (M.K.)
| | - Raid G. Alany
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, London KT1 2EE, UK; (A.A.A.-K.); (Z.K.A.-Q.); (M.K.)
- School of Pharmacy, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
10
|
Imran H, Tang Y, Wang S, Yan X, Liu C, Guo L, Wang E, Xu C. Optimized DOX Drug Deliveries via Chitosan-Mediated Nanoparticles and Stimuli Responses in Cancer Chemotherapy: A Review. Molecules 2023; 29:31. [PMID: 38202616 PMCID: PMC10780101 DOI: 10.3390/molecules29010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Chitosan nanoparticles (NPs) serve as useful multidrug delivery carriers in cancer chemotherapy. Chitosan has considerable potential in drug delivery systems (DDSs) for targeting tumor cells. Doxorubicin (DOX) has limited application due to its resistance and lack of specificity. Chitosan NPs have been used for DOX delivery because of their biocompatibility, biodegradability, drug encapsulation efficiency, and target specificity. In this review, various types of chitosan derivatives are discussed in DDSs to enhance the effectiveness of cancer treatments. Modified chitosan-DOX NP drug deliveries with other compounds also increase the penetration and efficiency of DOX against tumor cells. We also highlight the endogenous stimuli (pH, redox, enzyme) and exogenous stimuli (light, magnetic, ultrasound), and their positive effect on DOX drug delivery via chitosan NPs. Our study sheds light on the importance of chitosan NPs for DOX drug delivery in cancer treatment and may inspire the development of more effective approaches for cancer chemotherapy.
Collapse
Affiliation(s)
- HafizMuhammad Imran
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Yixin Tang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Siyuan Wang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Xiuzhang Yan
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Lei Guo
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Erlei Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Caina Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| |
Collapse
|
11
|
Hamed A, Ghareeb D, Mohamed TM, Hamed M, Nofal MS, Gaber M. Caffeine-folic acid-loaded-chitosan nanoparticles combined with methotrexate as a novel HepG2 immunotherapy targeting adenosine A2A receptor downstream cascade. BMC Complement Med Ther 2023; 23:384. [PMID: 37891562 PMCID: PMC10604858 DOI: 10.1186/s12906-023-04212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Methotrexate (MTX) is a common chemotherapeutic drug that inhibits DNA synthesis and induces apoptosis. Treatment with MTX increased CD73 expression, which leads to higher levels of extracellular adenosine. Adenosine levels are also high in the tumor microenvironment through Cancer cells metabolism. That promotes the survival of cancer cells and contributes to tumor immune evasion through the Adenosine 2a Receptor. A2A receptor antagonists are an emerging class of agents that treat cancers by enhancing immunotherapy, both as monotherapy and in combination with other therapeutic agents. Caffeine is an adenosine receptor antagonist. Herein, we demonstrate the ability of a novel well prepared and characterized nano formula CAF-FA-CS-NPs (D4) for A2aR blockade when combination with MTX to improve its antitumor efficacy by enhancing the immune system and eliminating immune suppression. METHODS CAF-FA-CS-NPs (D4) were prepared and characterized for particle size, loading efficiency, and release profile. Molecular docking was used to validate the binding affinity of caffeine and folic acid to A2A receptor. The effects of the nano formula were evaluated on human liver cancer cells (HepG2), breast cancer cells (MCF-7), and MDA-MB-231, as well as normal human cells (WI-38). Different combination ratios of MTX and D4 were studied to identify the optimal combination for further genetic studies. RESULTS Molecular docking results validated that caffeine and folic acid have binding affinity to A2A receptor. The CS-NPs were successfully prepared using ionic gelation method, with caffeine and folic acid being loaded and conjugated to the nanoparticles through electrostatic interactions. The CAF loading capacity in D4 was 77.9 ± 4.37% with an encapsulation efficiency of 98.5 ± 0.37. The particle size was optimized through ratio variations. The resulting nanoparticles were fully characterized. The results showed that (D4) had antioxidant activity and cytotoxicity against different cancer cells. The combination of D4 with MTX (IC50 D4 + 0.5 IC50 MTX) resulted in the downregulation of Bcl-2, FOXP3, CD39, and CD73 gene expression levels and upregulation of Bax and A2AR gene expression levels in HepG2 cells. CONCLUSIONS This study suggests that CAF-FA-CS-NPs (D4) in combination with MTX may be a promising candidate for cancer immunotherapy, by inhibiting A2aR signaling and leading to improved immune activation and anti-tumor activity of MTX.
Collapse
Affiliation(s)
- Alaa Hamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Doaa Ghareeb
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mahmoud Hamed
- Pharmaceutical Services Center, Faculty of Pharmacy, Tanta University, Tanta, 31111, Egypt
| | - Mohammed S Nofal
- Center of Excellency for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industries Development Centre, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt
| | - M Gaber
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
12
|
Abd-Alaziz DM, Mansour M, Nasr M, Sammour OA. Spanethosomes as a novel topical carrier for silymarin in contrast to conventional spanlastics: Formulation development, in vitro and ex vivo evaluation for potential treatment of leishmaniasis. J Drug Deliv Sci Technol 2023; 88:104887. [DOI: 10.1016/j.jddst.2023.104887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
13
|
Hanna DMF, Youshia J, Fahmy SF, George MY. Nose to brain delivery of naringin-loaded chitosan nanoparticles for potential use in oxaliplatin-induced chemobrain in rats: impact on oxidative stress, cGAS/STING and HMGB1/RAGE/TLR2/MYD88 inflammatory axes. Expert Opin Drug Deliv 2023; 20:1859-1873. [PMID: 37357778 DOI: 10.1080/17425247.2023.2228685] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/26/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVES Oxaliplatin induces chemobrain in cancer patients/survivors. Nutraceutical naringin has antioxidant and anti-inflammatory properties with low oral bioavailability. Our aim was to formulate naringin in chitosan nanoparticles for nose to brain delivery and assess its neuroprotective effect against oxaliplatin-induced chemobrain in rats. METHODS Naringin chitosan nanoparticles were prepared by ionic gelation. Rats were administered oral naringin (80 mg/kg), intranasal naringin (0.3 mg/kg) or intranasal naringin-loaded chitosan nanoparticles (0.3 mg/kg). Naringin's neuroprotective efficacy was assessed based on behavioral tests, histopathology, and measuring oxidative stress and inflammatory markers. RESULTS Selected nanoparticles formulation showed drug loading of 5%, size of 150 nm and were cationic. Intranasal naringin administration enhanced memory function, inhibited hippocampal acetylcholinesterase activity, and corrected oxaliplatin-induced histological changes. Moreover, it reduced malondialdehyde and elevated reduced glutathione hippocampal levels. Furthermore, it decreased levels of inflammatory markers: NF-kB and TNF-α by 1.25-fold. Upstream to this inflammatory status, intranasal naringin downregulated the hippocampal protein levels of two pathways: cGAS/STING and HMGB1/RAGE/TLR2/MYD88. CONCLUSION Intranasal naringin-loaded chitosan nanoparticles showed superior amelioration of oxaliplatin-induced chemobrain in rats at a dose 267-fold lower to that administered orally. The potential involvement of cGAS/STING and HMGB1/RAGE/TLR2/MYD88 pathways in the mechanistic process of either oxaliplatin-induced chemobrain or naringin-mediated neuroprotection was evidenced.
Collapse
Affiliation(s)
- Diana M F Hanna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - John Youshia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sarah Farid Fahmy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
14
|
Petrovici AR, Anghel N, Dinu MV, Spiridon I. Dextran-Chitosan Composites: Antioxidant and Anti-Inflammatory Properties. Polymers (Basel) 2023; 15:polym15091980. [PMID: 37177127 PMCID: PMC10180777 DOI: 10.3390/polym15091980] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
This study presents the development of new formulations consisting of dextran (Dex) and chitosan (Ch) matrices, with fillings such as chitosan stearate (MCh), citric acid, salicylic acid, or ginger extract. These materials were characterized using Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and mechanical tests, and evaluated for antioxidant properties, including scavenging activities, metal chelation, and ferric ion reducing power, as well as anti-inflammatory properties, measuring the binding affinity between serum albumin and the bioactive substances, which can influence their bioavailability, transport, and overall anti-inflammatory effect. Compounds in ginger such as 6-gingerol reduce inflammation by inhibiting the production of inflammatory substances, such as prostaglandin, cytokines, interleukin-1β, and pro-inflammatory transcription factor (NF-κB) and, alongside citric and salicylic acids, combat oxidative stress, stabilizes cell membranes, and promote membrane fluidity, thereby preserving membrane integrity and function. Incorporating chitosan stearate in chitosan:dextran samples created a dense, stiff film with an elastic modulus approximately seventeen times higher than for the chitosan:dextran matrix. The Dex:Ch:MCh sample exhibited low compressibility at 48.74 ± 1.64 kPa, whereas the Dex:Ch:MCh:citric acid:salicylic acid composite had a compact network, allowing for 70.61 ± 3.9% compression at 109.30 kPa. The lipid peroxidation inhibitory assay revealed that Dex:Ch:MCh:citric acid had the highest inhibition value with 83 ± 0.577% at 24 h. The study highlights that adding active substances like ginger extract and citric acid to Dex:Ch composites enhances antioxidant properties, while modified chitosan improves mechanical properties. These composites may have potential medical applications in repairing cell membranes and regulating antioxidant enzyme activities.
Collapse
Affiliation(s)
- Anca Roxana Petrovici
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Narcis Anghel
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Maria Valentina Dinu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Iuliana Spiridon
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
15
|
Yang C, Zhang Z, Gan L, Zhang L, Yang L, Wu P. Application of Biomedical Microspheres in Wound Healing. Int J Mol Sci 2023; 24:7319. [PMID: 37108482 PMCID: PMC10138683 DOI: 10.3390/ijms24087319] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Tissue injury, one of the most common traumatic injuries in daily life, easily leads to secondary wound infections. To promote wound healing and reduce scarring, various kinds of wound dressings, such as gauze, bandages, sponges, patches, and microspheres, have been developed for wound healing. Among them, microsphere-based tissue dressings have attracted increasing attention due to the advantage of easy to fabricate, excellent physicochemical performance and superior drug release ability. In this review, we first introduced the common methods for microspheres preparation, such as emulsification-solvent method, electrospray method, microfluidic technology as well as phase separation methods. Next, we summarized the common biomaterials for the fabrication of the microspheres including natural polymers and synthetic polymers. Then, we presented the application of the various microspheres from different processing methods in wound healing and other applications. Finally, we analyzed the limitations and discussed the future development direction of microspheres in the future.
Collapse
Affiliation(s)
- Caihong Yang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Zhikun Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Lu Gan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Lexiang Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Lei Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
16
|
Abd-Allah H, Ragaie MH, Elmowafy E. Unraveling the pharmaceutical and clinical relevance of the influence of syringic acid loaded linoleic acid transferosomes on acne. Int J Pharm 2023; 639:122940. [PMID: 37040824 DOI: 10.1016/j.ijpharm.2023.122940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/13/2023]
Abstract
Natural medicines are promising platforms for competent topical treatment modalities benefiting the cosmetic implementation and proffering solutions to the current remedies. Therefore, the objective of this study was to formulate syringic acid (SA), well-known for its multilateral anti-inflammatory, antimicrobial and antioxidant potentials, in newly developed linoleic acid (LA) transferosomes as an anti-acne nano-form remedy. Herein, LA was incorporated in transferosomes owing to its antimicrobial effect and dermal penetrability. Comprehensive appraisal through physicochemical, antioxidant and dermal deposition investigations was conducted. Clinical assessment was also performed in acne patients and compared with the marketed product (Adapalene® gel). The relevant investigations of the optimum formula indicated stable vesicles with a small-sized diameter (147.46 nm), surface charge (-26.86 mV), spherical architecture, reasonable entrapment (76.63%), considerable antioxidant activity (IC50 = 11.1 µg/mL) and remarkable skin deposition (78.72%).More importantly, LA based transferosomes enclosing SA exhibited inflammation lessening in acne sufferers as manifested by greater reduction in the total count of the acne lesions reaching 79.5% in contrast to Adapalene® gel with only 18.7% reduction in acne lesions. Interestingly, no irritation and erythema were reported for the proposed transferosomes. Inclusively, the cosmetic formulation practice could reap benefits of the development of such vesicles.
Collapse
Affiliation(s)
- Hend Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, AinShams University, Cairo, Egypt,Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo, Egypt, P.O.B. 11566
| | - Maha H Ragaie
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| | - Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, AinShams University, Cairo, Egypt,Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo, Egypt, P.O.B. 11566.
| |
Collapse
|
17
|
Sachdeva B, Sachdeva P, Negi A, Ghosh S, Han S, Dewanjee S, Jha SK, Bhaskar R, Sinha JK, Paiva-Santos AC, Jha NK, Kesari KK. Chitosan Nanoparticles-Based Cancer Drug Delivery: Application and Challenges. Mar Drugs 2023; 21:211. [PMID: 37103352 PMCID: PMC10142570 DOI: 10.3390/md21040211] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Chitin is the second most abundant biopolymer consisting of N-acetylglucosamine units and is primarily derived from the shells of marine crustaceans and the cell walls of organisms (such as bacteria, fungi, and algae). Being a biopolymer, its materialistic properties, such as biodegradability, and biocompatibility, make it a suitable choice for biomedical applications. Similarly, its deacetylated derivative, chitosan, exhibits similar biocompatibility and biodegradability properties, making it a suitable support material for biomedical applications. Furthermore, it has intrinsic material properties such as antioxidant, antibacterial, and antitumor. Population studies have projected nearly 12 million cancer patients across the globe, where most will be suffering from solid tumors. One of the shortcomings of potent anticancer drugs is finding a suitable cellular delivery material or system. Therefore, identifying new drug carriers to achieve effective anticancer therapy is becoming essential. This paper focuses on the strategies implemented using chitin and chitosan biopolymers in drug delivery for cancer treatment.
Collapse
Affiliation(s)
- Bhuvi Sachdeva
- Department of Physics and Astrophysics, Bhagini Nivedita College, University of Delhi, Delhi 110072, India
| | - Punya Sachdeva
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
| | - Arvind Negi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076 Espoo, Finland
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
- ICMR—National Institute of Nutrition, Tarnaka, Hyderabad 500007, India
| | - Sungsoo Han
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India
- Department of Biotechnology Engineering & Food Technology, Chandigarh University, Mohali 140413, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea
| | | | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland
| |
Collapse
|
18
|
El-Dahmy RM, Elsayed I, Hussein J, Althubiti M, Almaimani RA, El-Readi MZ, Elbaset MA, Ibrahim BMM. Development of Transdermal Oleogel Containing Olmesartan Medoxomil: Statistical Optimization and Pharmacological Evaluation. Pharmaceutics 2023; 15:1083. [PMID: 37111569 PMCID: PMC10146305 DOI: 10.3390/pharmaceutics15041083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Olmesartan medoxomil (OLM) is a first-line antihypertensive drug with low oral bioavailability (28.6%). This study aimed to develop oleogel formulations to decrease OLM side effects and boost its therapeutic efficacy and bioavailability. OLM oleogel formulations were composed of Tween 20, Aerosil 200, and lavender oil. A central composite response surface design chose the optimized formulation, containing Oil/Surfactant (SAA) ratio of 1:1 and Aerosil % of 10.55%, after showing the lowest firmness and compressibility, and the highest viscosity, adhesiveness, and bioadhesive properties (Fmax and Wad). The optimized oleogel increased OLM release by 4.21 and 4.97 folds than the drug suspension and gel, respectively. The optimized oleogel formulation increased OLM permeation by 5.62 and 7.23 folds than the drug suspension and gel, respectively. The pharmacodynamic study revealed the superiority of the optimized formulation in maintaining normal blood pressure and heart rate for 24 h. The biochemical analysis revealed that the optimized oleogel achieved the best serum electrolyte balance profile, preventing OLM-induced tachycardia. The pharmacokinetic study showed that the optimized oleogel increased OLM's bioavailability by more than 4.5- and 2.5-folds compared to the standard gel and the oral market tablet, respectively. These results confirmed the success of oleogel formulations in the transdermal delivery of OLM.
Collapse
Affiliation(s)
- Rania Moataz El-Dahmy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Central Axis, Cairo 12585, Egypt
| | - Ibrahim Elsayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 04184, United Arab Emirates
| | - Jihan Hussein
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, Giza 12622, Egypt
| | - Mohammad Althubiti
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah 24381, Saudi Arabia
| | - Riyad A. Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah 24381, Saudi Arabia
| | - Mahmoud Zaki El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah 24381, Saudi Arabia
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assuit 71524, Egypt
| | - Marawan A. Elbaset
- Pharmacology Department, Medicine and Clinical Studies Research Institute, National Research Centre, Giza 12622, Egypt
| | - Bassant M. M. Ibrahim
- Pharmacology Department, Medicine and Clinical Studies Research Institute, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
19
|
Chitosan Based Materials in Cosmetic Applications: A Review. Molecules 2023; 28:molecules28041817. [PMID: 36838805 PMCID: PMC9959028 DOI: 10.3390/molecules28041817] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
This review provides a report on the properties and recent advances in the application of chitosan and chitosan-based materials in cosmetics. Chitosan is a polysaccharide that can be obtained from chitin via the deacetylation process. Chitin most commonly is extracted from cell walls in fungi and the exoskeletons of arthropods, such as crustaceans and insects. Chitosan has attracted significant academic interest, as well as the attention of the cosmetic industry, due to its interesting properties, which include being a natural humectant and moisturizer for the skin and a rheology modifier. This review paper covers the structure of chitosan, the sources of chitosan used in the cosmetic industry, and the role played by this polysaccharide in cosmetics. Future aspects regarding applications of chitosan-based materials in cosmetics are also mentioned.
Collapse
|
20
|
Soliman SM, Teaima MH, Rashwan KO, Ali BM, Jasti BR, El-Nabarawi MA, Abd El-Halim SM. The deleterious effect of xylene-induced ear edema in rats: Protective role of dexketoprofen trometamol transdermal invasomes via inhibiting the oxidative stress/NF-κB/COX-2 pathway. Int J Pharm 2023; 631:122525. [PMID: 36549402 DOI: 10.1016/j.ijpharm.2022.122525] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/23/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Pain and inflammation could have a negative impact on a patient's quality of life and performance, causing them to sleep less. Dexketoprofen trometamol (DKT) is a water-soluble, nonselective NSAIDs. Because DKT is quickly eliminated in the urine after oral delivery, its efficacy is limited and must be taken repeatedly throughout the day. The main ambition of this work is to develop and characterize the potential of invasomes to enhance the transdermal transport of DKT to achieve efficient anti-inflammatory and pain management. The optimum formulation (C1) showed the least %RE (53.29 ± 2.68 %), the highest %EE (86.51 ± 1.05 %), and spherical nanosized vesicles (211.9 ± 0.57 nm) with (PDI) of 0.353 ± 0.01 and (ZP) of -19.15 ± 2.45 mV. DKT flux and deposition in stratum corneum, epidermal, and dermal skin layers were significantly augmented by 2.6 and 3.51 folds, respectively, from the optimum invasomal gel formulation (C1-G) compared to DKT conventional gel (DKT-G). The anti-inflammatory activity of C1-G was evaluated using a model of xylene-induced ear edema in rats. Xylene exposure upregulated the ear expression of COX-2 level and MPO activity. Xylene also significantly increased the ear NF-κB p65, TNF-α, IL-Iβ, and MDA levels. Furthermore, xylene induced oxidative stress, as evidenced by a significant decrease in ear GSH and serum TAC levels. These impacts were drastically improved by applying C1-G compared to rats that received DKT-G and plain invasomal gel formulation (plain C1-G). The histopathological findings imparted substantiation to the biochemical and molecular investigations. Thereby, C1-G could be a promising transdermal drug delivery system to improve the anti-inflammatory and pain management of DKT.
Collapse
Affiliation(s)
- Sara M Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6(th) of October City, Giza 12585, Egypt
| | - Mahmoud Hassan Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Kareem Omar Rashwan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6(th) of October City, Giza 12585, Egypt
| | - Bassam Mohamed Ali
- Department of Biochemistry, Faculty of Pharmacy, October 6 University, 6(th) of October City, Giza 12585, Egypt
| | - Bhaskara R Jasti
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, USA
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Shady M Abd El-Halim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6(th) of October City, Giza 12585, Egypt.
| |
Collapse
|
21
|
Decrypting the Potential of Nanotechnology-Based Approaches as Cutting-Edge for Management of Hyperpigmentation Disorder. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010220. [PMID: 36615414 PMCID: PMC9822493 DOI: 10.3390/molecules28010220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
The abundant synthesis and accretion of melanin inside skin can be caused by activation of melanogenic enzymes or increase in number of melanocytes. Melasma is defined as hyperpigmented bright or dark brown spots which are symmetrically distributed and have serrated and irregular borders. The three general categories of pigmentation pattern include centro facial pattern, malar pattern, and mandibular pattern. Exposure to UV rays, heat, use of cosmetics and photosensitizing drugs, female sex hormonal therapies, aberrant production of melanocyte stimulating hormone, and increasing aesthetic demands are factors which cause the development of melasma disease. This review gives a brief overview regarding the Fitzpatrick skin phototype classification system, life cycle of melanin, mechanism of action of anti-hyperpigmenting drugs, and existing pharmacotherapy strategies for the treatment of melasma. The objectives of this review are focused on role of cutting-edge nanotechnology-based strategies, such as lipid-based nanocarriers, i.e., lipid nanoparticles, microemulsions, nanoemulsions, liposomes, ethosomes, niosomes, transfersomes, aspasomes, invasomes penetration-enhancing vesicles; inorganic nanocarriers, i.e., gold nanoparticles and fullerenes; and polymer-based nanocarriers i.e., polymeric nanoparticles, polymerosomes, and polymeric micelles for the management of hyperpigmentation.
Collapse
|
22
|
Bseiso EA, AbdEl-Aal SA, Nasr M, Sammour OA, El Gawad NAA. Nose to brain delivery of melatonin lipidic nanocapsules as a promising post-ischemic neuroprotective therapeutic modality. Drug Deliv 2022; 29:2469-2480. [PMID: 35892291 PMCID: PMC9341381 DOI: 10.1080/10717544.2022.2104405] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ischemic stroke accounts for about 87% of all strokes, causing long-term disability in adults, and is the second leading cause of death worldwide. In search of new therapeutic modalities, the use of neuroprotective agents loaded in nanocarriers to be delivered by noninvasive means (i.e. via intranasal route) became a popular approach. In the current study, melatonin (MEL) was loaded in lipidic nanocapsules (LNCs) prepared using the phase inversion method, and characterized in terms of size, polydispersity, zeta potential, in vitro drug release, viscosity, storage stability, and ex vivo permeation across sheep nasal mucosa. Moreover, MEL-LNCs were tested for efficacy in cerebral ischemia/reperfusion (I/R/) injury model through histopathological assessment, and analysis of oxidative stress markers, pro-inflammatory cytokines, and apoptotic markers. Results showed that LNCs exhibited particle size ranging from 18.26 to 109.8 nm, negative zeta potential, good storage stability, spherical morphology, and a burst release followed by a sustained release pattern. LNCs exhibited 10.35 folds higher permeation of MEL than the drug solution across sheep nasal mucosa. Post-ischemic intranasal administration of MEL-LNCs revealed lowering of oxidative stress manifested by a decrease in malondialdehyde levels, and elevation of glutathione and superoxide dismutase levels, lowering of the inflammatory markers tumor necrosis factor-α, NO, myeloperoxidase, and significant inhibition of Caspase-3 activity as an apoptotic marker. Western blot analysis delineated a recovery of protein expression Nrf-2 and HO-1 with downregulation in the parent inflammatory markers nuclear factor kappa B p65, inducible nitric oxide synthase, Bax, and Cytochrome C expressions, and upregulation of B-cell lymphoma-2 Bcl-2, hence promoting neuronal survival. This was supported by histological evidence, revealing significant restoration of hippocampal neurons. In light of the above, it can be concluded that MEL-LNCs could be a promising delivery system for nose to brain delivery for treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Eman A Bseiso
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza Governorate, Egypt
| | - Sarah A AbdEl-Aal
- Pharmacology and Toxicology Division, Department of Pharmacy, KUT University College, Al Kut, Wasit52001, Iraq
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Omaima A Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Nabaweya A Abd El Gawad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza Governorate, Egypt.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
23
|
Elbaset MA, Nasr M, Ibrahim BMM, Ahmed-Farid OAH, Bakeer RM, Hassan NS, Ahmed RF. Curcumin nanoemulsion counteracts hepatic and cardiac complications associated with high-fat/high-fructose diet in rats. J Food Biochem 2022; 46:e14442. [PMID: 36165438 DOI: 10.1111/jfbc.14442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 01/14/2023]
Abstract
The relationship between the incidence of cardiovascular abnormalities and non-alcoholic fatty liver disease (NAFLD) has long been postulated. Curcumin (CUR) is a potential anti-atherosclerotic agent but its poor water solubility hinders its pharmacological use. Therefore, the present study aimed to investigate the effect of formulation of CUR nanoemulsion prepared using the spontaneous emulsification technique on high fat high fructose (HFHF)-induced hepatic and cardiac complications. Fifty Wistar rats were divided into five groups. CUR nanoemulsion at doses of 5 and 10 mg/kg and conventional powdered CUR at a dose of 50 mg/kg were orally administered daily to rats for two weeks, and compared with normal control and HFHF control. Results revealed that the high dose level of CUR nanoemulsion was superior to conventional CUR in ameliorating the HFHF-induced insulin resistance status and hyperlipidemia, with beneficial impact on rats' recorded electrocardiogram (ECG), serum aspartate aminotransferase (ALT) and alanine aminotransferase (AST) levels, leptin, adiponectin, creatine phosphokinase, lactate dehydrogenase and cardiac troponin-I. In addition, hepatic and cardiac oxidative and nitrosative stresses, oxidative DNA damage and disrupted cellular energy statuses were counteracted. Results were also confirmed by histopathological examination. PRACTICAL APPLICATIONS: The use of curcumin nanoemulsion could be beneficial in combating hepatic and cardiac complications resulting from HFHF diets.
Collapse
Affiliation(s)
- Marawan Abd Elbaset
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Bassant M M Ibrahim
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Omar A H Ahmed-Farid
- Department of Physiology, National Organization for Drug Control and Research, Giza, Egypt
| | - Rofanda M Bakeer
- Department of Pathology, Faculty of Medicine, Helwan University, Helwan, Egypt
| | - Nabila S Hassan
- Department of Pathology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Rania F Ahmed
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
24
|
Chitosan: A Promising Multifunctional Cosmetic Ingredient for Skin and Hair Care. COSMETICS 2022. [DOI: 10.3390/cosmetics9050099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The cosmetic industry has an undeniable need to design and develop new ecosustainable products to respond to the demands of consumers and international regulations. This requires substituting some traditional ingredients derived from petrochemical sources with new ones with more ecofriendly profiles. However, this transition towards the use of green ingredients in the cosmetic industry cannot compromise the effectiveness of the obtained products. Emerging ingredients in this new direction of the cosmetic industry are chitosan and its derivatives, which combine many interesting physicochemical and biological properties for the fabrication of cosmetic products. Thus, the use of chitosan opens a promising future path to the design of cosmetic formulations. In particular, chitosan’s ability for interacting electrostatically with negatively charged substrates (e.g., skin or damaged hair), resulting in the formation of polymeric films which contribute to the conditioning and moisturizing of cosmetic substrates, makes this polymer an excellent candidate for the design of skin and hair care formulations. This review tries to provide an updated perspective on the potential interest of chitosan and its derivatives as ingredients of cosmetics for skin and hair care.
Collapse
|
25
|
Novel topical drug delivery systems in acne management: Molecular mechanisms and role of targeted delivery systems for better therapeutic outcomes. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Intranasally administered melatonin core-shell polymeric nanocapsules: A promising treatment modality for cerebral ischemia. Life Sci 2022; 306:120797. [PMID: 35841976 DOI: 10.1016/j.lfs.2022.120797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022]
Abstract
AIMS The neurohormone melatonin (MEL) has been reported as a promising neuroprotective molecule, however it suffers pharmaceutical limitations such as poor solubility and low bioavailability, which hinder its pharmacological and clinical potential. In the current work, MEL was loaded in core-shell nanocarrier system; polymeric nanocapsules (PNCs), and assessed for its potential in cerebral ischemia reperfusion injury rat model when administered intranasally. KEY FINDINGS Adopting a D-optimal factorial design, MEL-PNCs were successfully formulated using the nanoprecipitation technique. MEL-PNCs exhibited a particle size ranging from 143.5 to 444 nm, negative zeta potential values ranging from -24.2 to -38.7 mV, cumulative release % for MEL ranging from 36.79 to 41.31 % over 8 h period, with overall good storage properties. The selected MEL-PNCs formulation displayed 8-fold higher permeation than the drug solution across sheep nasal mucosa. MEL-PNCs administered intranasally decreased oxidative stress and hippocampal inflammation, and the histological examination revealed the significant restoration of hippocampal neurons. SIGNIFICANCE MEL-PNCs administered intranasally could be a promising treatment modality in brain ischemia.
Collapse
|
27
|
Yasin G, Nasr M, Abdel Gaber SA, Hüttenberger D, Fadel M. Response surface methodological approach for optimization of photodynamic therapy of onychomycosis using chlorin e6 loaded nail penetration enhancer vesicles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 232:112461. [PMID: 35551052 DOI: 10.1016/j.jphotobiol.2022.112461] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/07/2021] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Antimicrobial photodynamic inactivation (aPDI) has a tremendous potential as an alternative therapeutic modality to conventional antifungals in treatment of onychomycosis, yet the nail barrier properties and the deep-seated nature of fungi within the nails remain challenging. Therefore, the aim of this study was to prepare, optimize, and characterize Chorin e6 (Ce6) nail penetration enhancer containing vesicles (Ce6-nPEVs) and evaluate their photodynamic mediated effect against Trichophyton rubrum (T.rubrum); the main causative agent of onychomycosis. Optimization of the particle size and encapsulation efficiency of nPEVs was performed using a four-factor two-level full factorial design. The transungual delivery potential of the selected formulation was assessed in comparison with the free drug. The photodynamic treatment conditions for T.rubrum aPDI by free Ce6 was optimized using response surface methodology based on Box-Behnken design, and the aPDI effect of the selected Ce6-nPEVs was evaluated versus the free Ce6 at the optimized condition. Results showed that formulations exhibited high encapsulation efficiency for Ce6 ranging from 79.4 to 98%, particle sizes ranging from 225 to 859 nm, positive zeta potential values ranging from +30 to +70 mV, and viscosity ranging from 1.26 to 3.43 cP. The predominant parameters for maximizing the encapsulation efficiency and minimizing the particle size of Ce6-nPEVs were identified. The selected formulation showed 1.8-folds higher nail hydration and 2.3 folds improvement in percentage of Ce6 up-taken by nails compared to the free drug. Results of the microbiological study confirmed the reliability and adequacy of the Box-Behnken model, and delineated Ce6 concentration and incubation time as the significant model terms. Free Ce6 and Ce6-nPEVs showed an equipotent in vitro fungicidal effect on T.rubrum at the optimized conditions, however Ce6-nPEVs is expected to show a differential effect at the in vivo level where the advantage of the enhanced nail penetration feature will be demonstrated.
Collapse
Affiliation(s)
- Ghada Yasin
- Pharmaceutical Nano-Technology Laboratory, Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sara A Abdel Gaber
- Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt
| | | | - Maha Fadel
- Pharmaceutical Nano-Technology Laboratory, Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Cairo, Egypt.
| |
Collapse
|
28
|
Hatem S, Elkheshen SA, Kamel AO, Nasr M, Moftah NH, Ragai MH, Elezaby RS, El Hoffy NM. Functionalized chitosan nanoparticles for cutaneous delivery of a skin whitening agent: an approach to clinically augment the therapeutic efficacy for melasma treatment. Drug Deliv 2022; 29:1212-1231. [PMID: 35403519 PMCID: PMC9004510 DOI: 10.1080/10717544.2022.2058652] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The increase in the production of melanin level inside the skin prompts a patient-inconvenient skin color disorder namely; melasma. This arouses the need to develop efficacious treatment modalities, among which are topical nano-delivery systems. This study aimed to formulate functionalized chitosan nanoparticles (CSNPs) in gel form for enhanced topical delivery of alpha-arbutin as a skin whitening agent to treat melasma. Ionic gelation method was employed to prepare α-arbutin-CSNPs utilizing a 24 full factorial design followed by In vitro, Ex vivo and clinical evaluation of the nano-dispersions and their gel forms. Results revealed that the obtained CSNPs were in the nanometer range with positive zeta potential, high entrapment efficiency, good stability characteristics and exhibited sustained release of α-arbutin over 24 h. Ex vivo deposition of CSNPs proved their superiority in accumulating the drug in deep skin layers with no transdermal delivery. DSC and FTIR studies revealed the successful amorphization of α-arbutin into the nanoparticulate system with no interaction between the drug and the carrier system. The comparative split-face clinical study revealed that α-arbutin loaded CSNPs hydrogels showed better therapeutic efficacy compared to the free drug hydrogel in melasma patients, as displayed by the decrease in: modified melasma area and severity index (mMASI) scores, epidermal melanin particle size surface area (MPSA) and the number of epidermal monoclonal mouse anti–melanoma antigen recognized by T cells-1 (MART-1) positive cells which proved that the aforementioned system is a promising modality for melasma treatment.
Collapse
Affiliation(s)
- Shymaa Hatem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, New Cairo, Egypt
| | - Seham A. Elkheshen
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Amany O. Kamel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Noha H. Moftah
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| | - Maha H Ragai
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| | - Reham S. Elezaby
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nada M. El Hoffy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, New Cairo, Egypt
| |
Collapse
|
29
|
Hamedi H, Moradi S, Hudson SM, Tonelli AE, King MW. Chitosan based bioadhesives for biomedical applications: A review. Carbohydr Polym 2022; 282:119100. [DOI: 10.1016/j.carbpol.2022.119100] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/21/2021] [Accepted: 01/02/2022] [Indexed: 11/02/2022]
|
30
|
Nano-Therapeutics to Treat Acne Vulgaris. Indian J Microbiol 2022; 62:167-174. [DOI: 10.1007/s12088-022-01001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/10/2022] [Indexed: 11/05/2022] Open
|
31
|
Abuelella KE, Abd-Allah H, Soliman SM, Abdel-Mottaleb MMA. Polysaccharide Based Biomaterials for Dermal Applications. FUNCTIONAL BIOMATERIALS 2022:105-127. [DOI: 10.1007/978-981-16-7152-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
32
|
Folle C, Marqués AM, Díaz-Garrido N, Espina M, Sánchez-López E, Badia J, Baldoma L, Calpena AC, García ML. Thymol-loaded PLGA nanoparticles: an efficient approach for acne treatment. J Nanobiotechnology 2021; 19:359. [PMID: 34749747 PMCID: PMC8577023 DOI: 10.1186/s12951-021-01092-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/17/2021] [Indexed: 11/17/2022] Open
Abstract
Background Acne is a common skin disorder that involves an infection inside the hair follicle, which is usually treated with antibiotics, resulting in unbalanced skin microbiota and microbial resistance. For this reason, we developed polymeric nanoparticles encapsulating thymol, a natural active compound with antimicrobial and antioxidant properties. In this work, optimization physicochemical characterization, biopharmaceutical behavior and therapeutic efficacy of this novel nanostructured system were assessed. Results Thymol NPs (TH-NP) resulted on suitable average particle size below 200 nm with a surface charge around − 28 mV and high encapsulation efficiency (80%). TH-NP released TH in a sustained manner and provide a slow-rate penetration into the hair follicle, being highly retained inside the skin. TH-NP possess a potent antimicrobial activity against Cutibacterium acnes and minor effect towards Staphylococcus epidermis, the major resident of the healthy skin microbiota. Additionally, the stability and sterility of developed NPs were maintained along storage. Conclusion TH-NP showed a promising and efficient alternative for the treatment of skin acne infection, avoiding antibiotic administration, reducing side effects, and preventing microbial drug resistance, without altering the healthy skin microbiota. Additionally, TH-NP enhanced TH antioxidant activity, constituting a natural, preservative-free, approach for acne treatment. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01092-z.
Collapse
Affiliation(s)
- Camila Folle
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
| | - Ana M Marqués
- Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
| | - Natalia Díaz-Garrido
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, 08028, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), 08028, Barcelona, Spain.,Research Institute Sant Joan De Déu (IR-SJD), 08950, Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain. .,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain.
| | - Josefa Badia
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, 08028, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), 08028, Barcelona, Spain.,Research Institute Sant Joan De Déu (IR-SJD), 08950, Barcelona, Spain
| | - Laura Baldoma
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, 08028, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), 08028, Barcelona, Spain.,Research Institute Sant Joan De Déu (IR-SJD), 08950, Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain
| | - Maria Luisa García
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain. .,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
33
|
Bayoumi M, Arafa MG, Nasr M, Sammour OA. Nobiletin-loaded composite penetration enhancer vesicles restore the normal miRNA expression and the chief defence antioxidant levels in skin cancer. Sci Rep 2021; 11:20197. [PMID: 34642396 PMCID: PMC8511031 DOI: 10.1038/s41598-021-99756-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/27/2021] [Indexed: 12/27/2022] Open
Abstract
Skin cancer is one of the most dangerous diseases, leading to massive losses and high death rates worldwide. Topical delivery of nutraceuticals is considered a suitable approach for efficient and safe treatment of skin cancer. Nobiletin; a flavone occurring in citrus fruits has been reported to inhibit proliferation of carcinogenesis since 1990s, is a promising candidate in this regard. Nobiletin was loaded in various vesicular systems to improve its cytotoxicity against skin cancer. Vesicles were prepared using the thin film hydration method, and characterized for particle size, zeta potential, entrapment efficiency, TEM, ex-vivo skin deposition and physical stability. Nobiletin-loaded composite penetration enhancer vesicles (PEVs) and composite transfersomes exhibited particle size 126.70 ± 11.80 nm, 110.10 ± 0.90 nm, zeta potential + 6.10 ± 0.40 mV, + 9.80 ± 2.60 mV, entrapment efficiency 93.50% ± 3.60, 95.60% ± 1.50 and total skin deposition 95.30% ± 3.40, 100.00% ± 2.80, respectively. These formulations were selected for cytotoxicity study on epidermoid carcinoma cell line (A431). Nobiletin-loaded composite PEVs displayed the lowest IC50 value, thus was selected for the in vivo study, where it restored skin condition in DMBA induced skin carcinogenesis mice, as delineated by histological and immuno-histochemical analysis, biochemical assessment of skin oxidative stress biomarkers, in addition to miRNA21 and miRNA29A. The outcomes confirmed that nobiletin- loaded composite PEVs is an efficient delivery system combating skin cancer.
Collapse
Affiliation(s)
- Mahitab Bayoumi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
| | - Mona G Arafa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
- Chemotherapeutic Unit, Mansoura University Hospitals, Mansoura, 35516, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Organization Unity Street, Cairo, 11561, Egypt.
| | - Omaima A Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Organization Unity Street, Cairo, 11561, Egypt
| |
Collapse
|
34
|
Clinical insights into topically applied multipronged nanoparticles in subjects with atopic dermatitis. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Mikušová V, Mikuš P. Advances in Chitosan-Based Nanoparticles for Drug Delivery. Int J Mol Sci 2021; 22:9652. [PMID: 34502560 PMCID: PMC8431817 DOI: 10.3390/ijms22179652] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/17/2022] Open
Abstract
Nanoparticles (NPs) have an outstanding position in pharmaceutical, biological, and medical disciplines. Polymeric NPs based on chitosan (CS) can act as excellent drug carriers because of some intrinsic beneficial properties including biocompatibility, biodegradability, non-toxicity, bioactivity, easy preparation, and targeting specificity. Drug transport and release from CS-based particulate systems depend on the extent of cross-linking, morphology, size, and density of the particulate system, as well as physicochemical properties of the drug. All these aspects have to be considered when developing new CS-based NPs as potential drug delivery systems. This comprehensive review is summarizing and discussing recent advances in CS-based NPs being developed and examined for drug delivery. From this point of view, an enhancement of CS properties by its modification is presented. An enhancement in drug delivery by CS NPs is discussed in detail focusing on (i) a brief summarization of basic characteristics of CS NPs, (ii) a categorization of preparation procedures used for CS NPs involving also recent improvements in production schemes of conventional as well as novel CS NPs, (iii) a categorization and evaluation of CS-based-nanocomposites involving their production schemes with organic polymers and inorganic material, and (iv) very recent implementations of CS NPs and nanocomposites in drug delivery.
Collapse
Affiliation(s)
- Veronika Mikušová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia;
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| |
Collapse
|
36
|
Paiva-Santos AC, Mascarenhas-Melo F, Coimbra SC, Pawar KD, Peixoto D, Chá-Chá R, Araujo AR, Cabral C, Pinto S, Veiga F. Nanotechnology-based formulations toward the improved topical delivery of anti-acne active ingredients. Expert Opin Drug Deliv 2021; 18:1435-1454. [PMID: 34214003 DOI: 10.1080/17425247.2021.1951218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Acne vulgaris is a chronic inflammatory skin disorder that affects an extremely concerning percentage of teenagers (ca. 85%), gathering serious negative impacts on the social life and psychological well-being of individuals. Conventional topical formulations for acne show low tolerability and side effects, such as skin irritation, leading to a decrease in the user's adherence to therapy. Nanotechnology-based formulations were developed as new strategies for topical acne management, particularly to overcome the difficulties associated with conventional treatments.Areas covered: This paper presents a critical analysis of reviewed nanosized anti-acne technological strategies, strongly supporting controlled active ingredient release, improved skin permeation, and lower skin irritation. An updated regulatory framework, considering the promising applications in nanomedicine, and the toxicity of these nanosystems are also addressed.Expert opinion: Nanosystems evidence several advantages, attending to the possibility of controlled active ingredient release, better skin permeation, and lower skin irritation. However, novel nanotechnological strategies for acne treatment and care can lead to new side effects, but also environmental nano pollution. Little is known about the toxicology of these nanotechnology-based formulations, therefore, as future trends, more studies should be conducted to assure the consumers' health and environmental safety.
Collapse
Affiliation(s)
- Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Filipa Mascarenhas-Melo
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Sara Cabanas Coimbra
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Kiran D Pawar
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra, India
| | - Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Raquel Chá-Chá
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - André Rts Araujo
- Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, Guarda, Portugal.,Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Célia Cabral
- Faculty of Medicine, University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (Icbr), Clinic Academic Center of Coimbra (CACC), Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Selmo Pinto
- INFARMED - Autoridade Nacional Do Medicamento E Produtos De Saúde, I.P., Parque De Saúde De Lisboa, Lisboa, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
37
|
Theerawattanawit C, Phaiyarin P, Wanichwecharungruang S, Noppakun N, Asawanonda P, Kumtornrut C. Inhibitory Effects of Chitosan on Sebum Production on Facial Skin. Skin Pharmacol Physiol 2021; 35:23-30. [PMID: 34348343 DOI: 10.1159/000517965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/17/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Chinathip Theerawattanawit
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,
| | - Punnawich Phaiyarin
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Nopadon Noppakun
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pravit Asawanonda
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chanat Kumtornrut
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
38
|
El-Zaafarany GM, Abdel-Aziz RTA, Montaser MHA, Nasr M. Coenzyme Q10 phospholipidic vesicular formulations for treatment of androgenic alopecia: ex vivo permeation and clinical appraisal. Expert Opin Drug Deliv 2021; 18:1513-1522. [PMID: 34047661 DOI: 10.1080/17425247.2021.1936497] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Coenzyme Q10 (CoQ10) is an antioxidant molecule with anti-aging activity on human hair, and because of its pharmaceutical limitations such as large molecular weight, high lipophilicity and poor water solubility, its therapeutic effectiveness has been hampered. Therefore, different vesicular nanocarriers were developed in the current work, for enhancement of the skin penetration of CoQ10 for treatment of androgenic alopecia. AREAS COVERED In order to overcome the poor skin penetration of CoQ10, it was formulated in liposomes, transfersomes, ethosomes, cerosomes and transethosomes using the thin-film hydration method. Results revealed that transethosomes were the carrier of choice for CoQ10, in which it displayed a particle size of 146 nm, zeta potential -55 mV and entrapment efficiency of 97.63%. Transethosomes also achieved the highest deposition percentage for CoQ10, exceeding 95% in the different skin layers. Upon clinical examination in patients suffering from androgenic alopecia, CoQ10 transethosomes displayed better clinical response than the administration of CoQ10 solution, which was further confirmed by dermoscopic examination. EXPERT OPINION Findings of this study further prove that loading antioxidants such as CoQ10 in nanocarriers maximizes their therapeutic efficiency, and opens many opportunities for their application in treatment of several other topical diseases.
Collapse
Affiliation(s)
- Ghada M El-Zaafarany
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rasha T A Abdel-Aziz
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al Minya, Egypt
| | | | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
39
|
El-Gogary RI, Ragai MH, Moftah N, Nasr M. Oleuropein as a novel topical antipsoriatic nutraceutical: formulation in microemulsion nanocarrier and exploratory clinical appraisal. Expert Opin Drug Deliv 2021; 18:1523-1532. [PMID: 34010073 DOI: 10.1080/17425247.2021.1932813] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Introduction: Oleuropein is a promising nutraceutical found in abundance in olive leaf, with reported antioxidant and anti-inflammatory properties, and hence could be a valuable treatment for dermatological diseases such as psoriasis.Areas covered: In order to overcome the poor skin penetration of oleuropein, it was formulated in a microemulsion nanocarrier. The selected microemulsion formulation displayed a particle size of 30.25 ± 4.8 nm, zeta potential 0.15 ± 0.08 mV and polydispersity index 0.3 ± 0.08, with storage stability for 1 year in room temperature and total deposition in skin layers amounting to 95.67%. Upon clinical examination in psoriatic patients, the oleuropein microemulsion formulation was proven superior to the marketed Dermovate cream composed of clobetasol propionate, in terms of reduction of Psoriasis Area and Severity Index (PASI) scores, as well dermoscopic imaging and morphometric analysis of the psoriasis lesions, in which oleuropein microemulsion exhibited marked improvement in the clinical manifestations of psoriasis.Expert opinion: The findings of this study further prove the promising role of nutraceuticals, as well as nanoparticles in enhancing the therapeutic outcome of treatments, and open new era of applications in a variety of diseases.
Collapse
Affiliation(s)
- Riham I El-Gogary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Maha H Ragai
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al Minya, Egypt
| | - Noha Moftah
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al Minya, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
40
|
The beneficial activity of curcumin and resveratrol loaded in nanoemulgel for healing of burn-induced wounds. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Muluh TA, Chen Z, Li Y, Xiong K, Jin J, Fu S, Wu J. Enhancing Cancer Immunotherapy Treatment Goals by Using Nanoparticle Delivery System. Int J Nanomedicine 2021; 16:2389-2404. [PMID: 33790556 PMCID: PMC8007559 DOI: 10.2147/ijn.s295300] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/14/2021] [Indexed: 12/14/2022] Open
Abstract
Recently, there has been an incredible increase in research about the abnormal growth of cells (neoplasm), focusing on the management, treatment and preventing reoccurrence. It has been understood that the natural defense system, composed of a variety of immune defensive cells, does not just limit its function in eliminating neoplastic cells, but also controls the growth and spread of tumor cells of different kinds to other parts of the body. Cancer immunotherapy, is a cancer treatment plan that educates the body’s defensive system to forestall, control, and eliminate tumor cells. The effectiveness of immunotherapy is achieved, to its highest efficacy, by the use of nanoparticles (NPs) for precise and timely delivery of immunotherapies to specific targeted neoplasms, with less or no harm to the healthy cells. Immunotherapies have been affirmed in clinical trials as a cancer regimen for various types of cancers, the side effects resulting from imprecise and non-targeted conveyance is well managed with the use of nanoparticles. Nonetheless, we will concentrate on enhancing cancer immunotherapy approaches by the use of nanoparticles for the productivity of antitumor immunity. Nanoparticles will be presented and utilized as an objective immunotherapy delivery system for high exactness and are thus a promising methodology for cancer treatment.
Collapse
Affiliation(s)
- Tobias Achu Muluh
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Zhuo Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yi Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Kang Xiong
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jing Jin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - ShaoZhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, People's Republic of China.,Department of Oncology, Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, 646000, People's Republic of China
| | - JingBo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, People's Republic of China.,Department of Oncology, Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, 646000, People's Republic of China
| |
Collapse
|
42
|
Chitosan Nanocarrier Entrapping Hydrophilic Drugs as Advanced Polymeric System for Dual Pharmaceutical and Cosmeceutical Application: A Comprehensive Analysis Using Box-Behnken Design. Polymers (Basel) 2021; 13:polym13050677. [PMID: 33668161 PMCID: PMC7956268 DOI: 10.3390/polym13050677] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
The objective of the present research is to propose chitosan as a nanocarrier for caffeine—a commonly used drug in combating cellulite. Being a hydrophilic drug, caffeine suffers from insufficient topical penetration upon application on the skin. Chitosan nanoparticles loaded with caffeine were prepared via the ionic gelation technique and optimized according to a Box–Behnken design. The effect of (A) chitosan concentration, (B) chitosan solution pH, and (C) chitosan to sodium tripolyphosphate mass ratio on (Y1) entrapment efficiency percent, (Y2) particle size, (Y3) polydispersity index, and (Y4) zeta potential were studied. Subsequently, the desired constraints on responses were applied, and validation of the optimization procedure was confirmed by the parameters exhibited by the optimal formulation. A caffeine entrapment efficiency percent of 17.25 ± 1.48%, a particle size of 173.03 ± 4.32 nm, a polydispersity index of 0.278 ± 0.01, and a surface charge of 41.7 ± 3.0 mV were attained. Microscopical evaluation using transmission electron microscope revealed a typical spherical nature of the nanoparticles arranged in a network with a further confirmation of the formation of particles in the nano range. The results proved the successful implementation of the Box–Behnken design for optimization of chitosan-based nanoparticles in the field of advanced polymeric systems for pharmaceutical and cosmeceutical applications.
Collapse
|
43
|
Irfan MM, Shah SU, Khan IU, Munir MU, Khan NR, Shah KU, Rehman SU, Sohaib M, Basit HM, Mahmood S. Physicochemical Characterization of Finasteride Nanosystem for Enhanced Topical Delivery. Int J Nanomedicine 2021; 16:1207-1220. [PMID: 33623383 PMCID: PMC7896786 DOI: 10.2147/ijn.s296793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/21/2021] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION The current work aimed to formulate a novel chitosan-based finasteride nanosystem (FNS-NS) for skin delivery to optimize the drug availability in skin for a longer time and enhance ex vivo performance of finasteride against androgenic alopecia. METHODS Both undecorated and chitosan decorated FNS-NSs were synthesized by a high energy emulsification technique. All the prepared nanosystems were further subjected to physicochemical characterizations like pH, viscosity, encapsulation efficiency, surface morphology and in vitro drug release behavior. The influence of the nanosystem on the drug permeation and retention in rat skin was examined using Franz diffusion cell apparatus. RESULTS The droplet size of developed nanosystems ranged from 41 to 864 nm with a low polydispersity index. The zeta potential of the nanosystems was between -10 mV and +56 mV. This chitosan decorated nanosystem exhibited controlled drug release, ie about 78-97% in 24 h. Among all the nanosystems, our chitosan decorated formulation (F5) had low drug permeation (16.35 µg/cm2) and higher drug retention (10.81 µg/cm2). CONCLUSION The abovementioned results demonstrate satisfactory in vitro drug release, skin retention profiles and ex vivo performance with chitosan decorated FNS-NS (F5). This optimized formulation could increase drug availability in skin and could become a promising carrier for topical delivery to treat androgenic alopecia.
Collapse
Affiliation(s)
- Malik Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, D.I. Khan, 29050, KPK, Pakistan
- Gomal Centre for Skin/Regenerative Medicine and Drug Delivery Research (GCSRDDR), Faculty of Pharmacy, Gomal University, D.I. Khan, 29050, KPK, Pakistan
| | - Shefaat Ullah Shah
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, D.I. Khan, 29050, KPK, Pakistan
- Gomal Centre for Skin/Regenerative Medicine and Drug Delivery Research (GCSRDDR), Faculty of Pharmacy, Gomal University, D.I. Khan, 29050, KPK, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University Sakaka, Aljouf, 72388, Saudi Arabia
| | - Nauman Rahim Khan
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, D.I. Khan, 29050, KPK, Pakistan
- Gomal Centre for Skin/Regenerative Medicine and Drug Delivery Research (GCSRDDR), Faculty of Pharmacy, Gomal University, D.I. Khan, 29050, KPK, Pakistan
| | - Kifayat Ullah Shah
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, D.I. Khan, 29050, KPK, Pakistan
| | - Saif Ur Rehman
- Department of Pharmacy, Faculty of Medical and Health Sciences, University of Poonch, Rawlakot, AJK, Pakistan
| | - Muhammad Sohaib
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, D.I. Khan, 29050, KPK, Pakistan
- Gomal Centre for Skin/Regenerative Medicine and Drug Delivery Research (GCSRDDR), Faculty of Pharmacy, Gomal University, D.I. Khan, 29050, KPK, Pakistan
| | - Hafiz Muhammad Basit
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, D.I. Khan, 29050, KPK, Pakistan
- Gomal Centre for Skin/Regenerative Medicine and Drug Delivery Research (GCSRDDR), Faculty of Pharmacy, Gomal University, D.I. Khan, 29050, KPK, Pakistan
| | - Saima Mahmood
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, D.I. Khan, 29050, KPK, Pakistan
- Gomal Centre for Skin/Regenerative Medicine and Drug Delivery Research (GCSRDDR), Faculty of Pharmacy, Gomal University, D.I. Khan, 29050, KPK, Pakistan
| |
Collapse
|
44
|
Kuo CW, Chiu YF, Wu MH, Li MH, Wu CN, Chen WS, Huang CH. Gelatin/Chitosan Bilayer Patches Loaded with Cortex Phellodendron amurense/ Centella asiatica Extracts for Anti-Acne Application. Polymers (Basel) 2021; 13:polym13040579. [PMID: 33671908 PMCID: PMC7918957 DOI: 10.3390/polym13040579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 02/08/2023] Open
Abstract
Acne is a chronic inflammatory skin disease that often occurs with anaerobic Propionibacterium acnes (P. acnes). Anti-acne patches, made of hydrocolloid or hydrogel, have become a popular way of topical treatment. The outer water-impermeable layer of commercial patches might create hypoxic conditions and promote P. acnes growth. In this study, gelatin/chitosan (GC) bilayer patches were prepared at different temperatures that included room temperature (RT), −20 °C/RT, and −80 °C/RT. The most promising GC bilayer patch (−80 °C /RT) contained a dense upper layer for protection from bacteria and infection and a porous lower layer for absorbing pus and fluids from pimples. The anti-acne bilayer patch was loaded with Cortex Phellodendri amurensis (PA) and Centella asiatica (CA) extracts. PA extract could inhibit the growth of P. acnes and CA extract was reported to improve wound healing and reduce scar formation. Moreover, the water retention rate, weight loss rate, antibacterial activity, and in vitro cytotoxicity of the patches were investigated. The porous structure of the patches promoted water retention and contributed to absorbing the exudate when used on open acne wounds. The GC bilayer patches loaded with PA/CA extracts were demonstrated to inhibit the growth of P. acnes, and accelerate the skin fibroblast cell viability. Based on their activities and characteristics, the GC bilayer patches with PA/CA extract prepared at −80 °C/RT obtain the potential for the application of acne spot treatment.
Collapse
Affiliation(s)
- Chi-Wen Kuo
- Department of Pharmacy, Jen-Ai Hospital No. 483, Dong Rong Rd., Tali, Taichung 412, Taiwan;
- Department of Nursing, College of Nursing, Central Taiwan University of Science and Technology, 666 Buzi Rd., Beitun District, Taichung City 406, Taiwan
- School of Pharmacy, College of Pharmacy, China Medical University, 91 Hsueh Shih Rd., Taichung 404, Taiwan
| | - Yi-Fang Chiu
- Department of Medical Laboratory, Chung-Kang Branch, Cheng-Ching Hospital, 966 Section 4, Taiwan Avenue, Taichung 407, Taiwan; (Y.-F.C.); (M.-H.W.)
| | - Min-Hua Wu
- Department of Medical Laboratory, Chung-Kang Branch, Cheng-Ching Hospital, 966 Section 4, Taiwan Avenue, Taichung 407, Taiwan; (Y.-F.C.); (M.-H.W.)
| | - Ming-Hsien Li
- Department of Medical Laboratory Science and Technology, Central Taiwan University of Science and Technology, 666 Buzi Rd., Beitun District, Taichung City 406, Taiwan; (M.-H.L.); (C.-N.W.); (W.-S.C.)
| | - Cheng-Nan Wu
- Department of Medical Laboratory Science and Technology, Central Taiwan University of Science and Technology, 666 Buzi Rd., Beitun District, Taichung City 406, Taiwan; (M.-H.L.); (C.-N.W.); (W.-S.C.)
| | - Wan-Sin Chen
- Department of Medical Laboratory Science and Technology, Central Taiwan University of Science and Technology, 666 Buzi Rd., Beitun District, Taichung City 406, Taiwan; (M.-H.L.); (C.-N.W.); (W.-S.C.)
| | - Chiung-Hua Huang
- Department of Medical Laboratory Science and Technology, Central Taiwan University of Science and Technology, 666 Buzi Rd., Beitun District, Taichung City 406, Taiwan; (M.-H.L.); (C.-N.W.); (W.-S.C.)
- Correspondence:
| |
Collapse
|
45
|
Abd-Allah H, Nasr M, Ahmed-Farid OAH, El-Marasy SA, Bakeer RM, Ahmed RF. Biological and Pharmacological Characterization of Ascorbic Acid and Nicotinamide Chitosan Nanoparticles against Insulin-Resistance-Induced Cognitive Defects: A Comparative Study. ACS OMEGA 2021; 6:3587-3601. [PMID: 33585742 PMCID: PMC7876703 DOI: 10.1021/acsomega.0c05096] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/14/2021] [Indexed: 05/06/2023]
Abstract
High consumption of industrialized food with high fat content is generally associated with insulin resistance, which in turn causes memory impairment and cognitive decline. Nicotinamide and ascorbic acid are among the promising neuroprotective molecules; however, an appreciable therapeutic activity necessitates the administration of a large dose of either. Therefore, the study aimed to assess if loading them in chitosan nanoparticles in doses 5-10 times lower than the unencapsulated forms would achieve comparable therapeutic results. Animals were fed a high-fat-high-fructose (HFHF) diet for 75 days. The vitamins in their conventional form (100 mg/kg) and the nanoparticles under investigation (10 and 20 mg/kg) were given orally concomitantly with the diet in the last 15 days. The intake of HFHF diet for 75 days led to an insulin-resistant state, with memory impairment, which was verified behaviorally through the object recognition test. This was accompanied by significant reduction in brain insulin-like growth factor 1 (IGF-1), increased acetylcholine esterase activity, increase in the serotonin and dopamine turnover ratio, and increase in oxidative stress and 8-OHdG, indicating cellular DNA fragmentation. Cellular energy was also decreased, and immunohistochemical examination verified the high immunoreactivity in both the cortex and hippocampus of the brain. The administration of nanoparticulated nicotinamide or ascorbic acid with a 10 times lesser dose than the unencapsulated forms managed to reverse all aforementioned harmful effects, with an even lesser immunoreactivity score than the unencapsulated form. Therefore, it can be concluded that nicotinamide or ascorbic acid chitosan nanoparticles can be recommended as daily supplements for neuroprotection in patients suffering from insulin resistance after conduction of clinical investigations.
Collapse
Affiliation(s)
- Hend Abd-Allah
- Department
of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Organization Unity Street, 11561 Cairo, Egypt
| | - Maha Nasr
- Department
of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Organization Unity Street, 11561 Cairo, Egypt
| | - Omar A. H. Ahmed-Farid
- Department
of Physiology, National Organization for
Drug Control and Research, 35521 Giza, Egypt
| | - Salma A. El-Marasy
- Department
of Pharmacology, Medical Research Division, National Research Centre, Dokki, 12622 Giza, Egypt
| | - Rofanda M. Bakeer
- Department
of Pathology, Faculty of Medicine, Helwan
University, 11795 Helwan, Egypt
- October
University of Modern Sciences and Arts (MSA) University, 12451 6th October
City, Egypt
| | - Rania F. Ahmed
- Department
of Pharmacology, Medical Research Division, National Research Centre, Dokki, 12622 Giza, Egypt
| |
Collapse
|
46
|
Hatem S, El Hoffy NM, Elezaby RS, Nasr M, Kamel AO, Elkheshen SA. Background and different treatment modalities for melasma: Conventional and nanotechnology-based approaches. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Drug delivery systems integrated with conventional and advanced treatment approaches toward cellulite reduction. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|