1
|
García L, Braccini S, Pagliarini E, Del Gronchio V, Di Gioia D, Peniche H, Peniche C, Puppi D. Ionically-crosslinked carboxymethyl chitosan scaffolds by additive manufacturing for antimicrobial wound dressing applications. Carbohydr Polym 2024; 346:122640. [PMID: 39245504 DOI: 10.1016/j.carbpol.2024.122640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Chitosan chemical functionalization is a powerful tool to provide novel materials for additive manufacturing strategies. The main aim of this study was the employment of computer-aided wet spinning (CAWS) for the first time to design and fabricate carboxymethyl chitosan (CMCS) scaffolds. For this purpose, the synthesis of a chitosan derivative with a high degree of O-substitution (1.07) and water soluble in a large pH range allowed the fabrication of scaffolds with a 3D interconnected porous structure. In particular, the developed scaffolds were composed of CMCS fibers with a small diameter (< 60 μm) and a hollow structure due to a fast non solvent-induced coagulation. Zn2+ ionotropic crosslinking endowed the CMCS scaffolds with stability in aqueous solutions, pH-sensitive water uptake capability, and antimicrobial activity against Escherichia coli and Staphylococcus aureus. In addition, post-printing functionalization through collagen grafting resulted in a decreased stiffness (1.6 ± 0.3 kPa) and a higher elongation at break (101 ± 9 %) of CMCS scaffolds, as well as in their improved ability to support in vitro fibroblast viability and wound healing process. The obtained results encourage therefore further investigation of the developed scaffolds as antimicrobial wound dressing hydrogels for skin regeneration.
Collapse
Affiliation(s)
- Lorenzo García
- Biopolymers Department, Biomaterials Center, University of Havana, Havana 10400, Cuba
| | - Simona Braccini
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Elia Pagliarini
- Department of Agricultural and Food Sciences, University of Bologna, Via Fanin 44, Bologna, Italy
| | - Viola Del Gronchio
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Diana Di Gioia
- Department of Agricultural and Food Sciences, University of Bologna, Via Fanin 44, Bologna, Italy
| | - Hazel Peniche
- Biopolymers Department, Biomaterials Center, University of Havana, Havana 10400, Cuba
| | - Carlos Peniche
- Physical Chemistry Department, Faculty of Chemistry, University of Havana, Havana 10400, Cuba
| | - Dario Puppi
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, 56124 Pisa, Italy.
| |
Collapse
|
2
|
Kanwal S, Bibi S, Haleem R, Waqar K, Mir S, Maalik A, Sabahat S, Hassan S, Awwad NS, Ibrahium HA. Functional potential of chitosan-metal nanostructures: Recent developments and applications. Int J Biol Macromol 2024:136715. [PMID: 39454923 DOI: 10.1016/j.ijbiomac.2024.136715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Chitosan (Cs), a naturally occurring biopolymer, has garnered significant interest due to its inherent biocompatibility, biodegradability, and minimal toxicity. This study investigates the effectiveness of various reaction strategies, including acylation, acetylation, and carboxymethylation, to enhance the solubility profile of Cs. This review provides a detailed examination of the rapidly developing field of Cs-based metal complexes and nanoparticles. It delves into the diverse synthesis methodologies employed for their fabrication, specifically focusing on ionic gelation and in-situ reduction techniques. Furthermore, the review offers a comprehensive analysis of the characterization techniques utilized to elucidate the physicochemical properties of these complexes. A range of analytical techniques are utilized, including Ultraviolet-Visible Spectroscopy (UV-Vis), Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and others. By comprehensively exploring a wide range of applications, the review emphasizes the significant potential of Cs in various scientific disciplines. Diagrams, figures, and tables effectively illustrate the synthesis processes, promoting a clear understanding for the reader. Chitosan-metal nanostructures/nanocomposites significantly enhance antimicrobial efficacy, drug delivery, and environmental remediation compared to standard chitosan composites. The integration of metal nanoparticles, such as silver or gold, improves chitosan's effectiveness against a range of pathogens, including resistant bacteria. These nanocomposites facilitate targeted drug delivery and controlled release, boosting therapeutic bioavailability. Additionally, they enhance chitosan's ability to absorb heavy metals and dyes from wastewater, making them effective for environmental applications. Overall, chitosan-metal nanocomposites leverage chitosan's biocompatibility while offering improved functionalities, making them promising materials for diverse applications. This paper sheds light on recent advancements in the applications of Cs metal complexes for various purposes, including cancer treatment, drug delivery enhancement, and the prevention of bacterial and fungal infections.
Collapse
Affiliation(s)
- Shamsa Kanwal
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Sehrish Bibi
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Rabia Haleem
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Kashif Waqar
- Department of Chemistry, Kohat University of Science and Technology Kohat, KPK, Pakistan
| | - Sadullah Mir
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan.
| | - Aneela Maalik
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Sana Sabahat
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Safia Hassan
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
3
|
Raza MA, Kim SA, Kim DI, Song MK, Han SS, Park SH. Synthesis of carboxymethyl chitosan-guar gum-poly(vinylpyrrolidone) ternary blended hydrogels with antibacterial/anticancer efficacy and drug delivery applications. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1706-1725. [PMID: 38754029 DOI: 10.1080/09205063.2024.2349409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024]
Abstract
Biopolymers have the utmost significance in biomedical applications and blending synthetic polymers has shown favorable characteristics versus individual counterparts. The utilization of the blends can be restricted through the use of toxic chemical agents such as initiators or crosslinkers. In this regard, a chemical agent-free ionizing irradiation is a beneficial alternative for preparing the hydrogels for biomedical applications. In this study, carboxymethyl chitosan (CM-CS), guar gum (GG), and poly(vinylpyrrolidone) (PVP) based ternary blends (TB) were crosslinked using various doses of ionizing irradiation to fabricate hydrogels. The prepared hydrogels were characterized for physicochemical properties, swelling analysis, biological assays, and drug delivery applications. Swelling analysis in distilled water revealed that the hydrogels exhibit excellent swelling characteristics. An in vitro cytocompatibility assay showed that the hydrogels have greater than 90% cell viability for the human epithelial cell line and a decreasing cell viability trend for the human alveolar adenocarcinoma cell line. In addition, the prepared hydrogels possessed excellent antibacterial characteristics against gram-positive Staphylococcus aureus (S. aureus) and gram-negative Escherichia coli (E. coli). Finally, the release studies of anti-inflammatory Quercus acutissima (QA) loaded hydrogels exhibited more than 80% release in phosphate-buffered saline (pH = 7.4). These findings suggest that TB hydrogels can be used as suitable carrier media for different release systems and biomedical applications.
Collapse
Affiliation(s)
- Muhammad Asim Raza
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Radiation Science and Technology, University of Science and Technology, Daejeon, Republic of Korea
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Shin-Ae Kim
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Nuclear Engineering, Hanyang University, Seoul, Republic of Korea
| | - Dong Im Kim
- Inhalation Toxicology Centre for Airborne Risk Factor, Korea Institute of Toxicology, Jeongeup, Republic of Korea
| | - Mi-Kyung Song
- Inhalation Toxicology Centre for Airborne Risk Factor, Korea Institute of Toxicology, Jeongeup, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea
| | - Sang Hyun Park
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Radiation Science and Technology, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
4
|
Liang S, Chen H, Chen Y, Ali A, Yao S. Multi-dynamic-bond cross-linked antibacterial and adhesive hydrogel based on boronated chitosan derivative and loaded with peptides from Periplaneta americana with on-demand removability. Int J Biol Macromol 2024; 273:133094. [PMID: 38878926 DOI: 10.1016/j.ijbiomac.2024.133094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/30/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024]
Abstract
The design and development of a bio-adhesive hydrogel with on-demand removability and excellent antibacterial activities are meaningful to achieve high wound closure effectiveness and post-wound-closure care, which is desirable in clinical applications. In this work, a series of adhesive antioxidant antibacterial hydrogels containing peptides from Periplaneta americana (PAP) were prepared through multi-dynamic-bond cross-linking among 3,4-dihydroxybenzaldehyde (DBA) containing catechol and aldehyde groups and chitosan grafted with 3-carboxy-4-fluorophenylboronic acid (CS-FPBA) to enable the effective adhesion of skin tissues and prevention of bacterial infection of wound. PAP was derived from alcohol-extracted residues generated during the pharmaceutical process, aiming to minimize resource wastage and achieve the high-value development of such a medicinal insect. The hydrogel was prepared by freezing-thawing with no toxic crosslinkers. The multi-dynamic-bond cross-linking of dynamic borate ester bonds and dynamic Schiff base bonds can achieve reversible breakage and re-formation and the adhesive strength of CS-FPBA-DBA-P-gel treated with a 20 % glucose solution dramatically decreased from 3.79 kPa to 0.35 kPa within 10 s. Additionally, the newly developed hydrogel presents ideal biocompatibility, hemostasis and antibacterial activity against Staphylococcus aureus and Escherichia coli compared to commercial chitosan gel (approximately 50 % higher inhibition rate), demonstrating its great potential in dealing with infected full-thickness skin wounds.
Collapse
Affiliation(s)
- Siwei Liang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Hangping Chen
- College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Yu Chen
- South Sichuan Institute of Translational Medicine, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Ahamd Ali
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
5
|
Jiang F, Duan Y, Li Q, Li X, Li Y, Wang Y, Liu S, Liu M, Zhang C, Pan X. Insect chitosan/pullulan/gallium photo-crosslinking hydrogels with multiple bioactivities promote MRSA-infected wound healing. Carbohydr Polym 2024; 334:122045. [PMID: 38553241 DOI: 10.1016/j.carbpol.2024.122045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) and other drug-resistant bacteria have become more common in recent years, which has made it extremely difficult to treat and heal many different kinds of wounds and caused enormous financial losses. Because of its unique "Trojan horse" function, Ga3+ has been recognized as a new possible candidate for inhibiting and eradicating drug-resistant bacteria. Furthermore, natural polysaccharide materials with outstanding biological characteristics, such as insect chitosan (CS) and pullulan (PUL), have attracted significant interest. In this study, we used quaternized-catechol chitosan (QDCS-PA), methacrylate-dialdehyde pullulan (DPUL-GMA), and gallium ion (Ga) to create a multi-crosslinked photo-enhanced hydrogel (Q-D/Ga/UV) with antimicrobial, hemostatic, self-healing, and injectable properties for promoting MRSA-infected wound healing. In vitro, the Q-D/Ga/UV hydrogels demonstrated good mechanical properties, antioxidant capabilities, biocompatibility, hemostatic properties, and antibacterial activity. The addition of gallium ions enhanced the hydrogels' mechanical properties, hemostatic capabilities, antibacterial activity, and ability to induce wound healing. Q-D/Ga/UV hydrogel significantly promoted wound contraction, collagen deposition, and angiogenesis while also suppressing inflammation in a whole-skin wound model of MRSA-infected rats. In conclusion, Q-D/Ga/UV hydrogels demonstrate significant promise for healing wounds infected with drug-resistant bacteria.
Collapse
Affiliation(s)
- Fuchen Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yun Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xuebo Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yingxi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ying Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shuang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Meiyan Liu
- Department of Pharmacy, Nanchong Central Hospital, Nanchong 637003, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiaoli Pan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
6
|
Qin S, Niu Y, Zhang Y, Wang W, Zhou J, Bai Y, Ma G. Metal Ion-Containing Hydrogels: Synthesis, Properties, and Applications in Bone Tissue Engineering. Biomacromolecules 2024; 25:3217-3248. [PMID: 38237033 DOI: 10.1021/acs.biomac.3c01072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Hydrogel, as a unique scaffold material, features a three-dimensional network system that provides conducive conditions for the growth of cells and tissues in bone tissue engineering (BTE). In recent years, it has been discovered that metal ion-containing hybridized hydrogels, synthesized with metal particles as the foundation, exhibit excellent physicochemical properties, osteoinductivity, and osteogenic potential. They offer a wide range of research prospects in the field of BTE. This review provides an overview of the current state and recent advancements in research concerning metal ion-containing hydrogels in the field of BTE. Within materials science, it covers topics such as the binding mechanisms of metal ions within hydrogel networks, the types and fabrication methods of various metal ion-containing hydrogels, and the influence of metal ions on the properties of hydrogels. In the context of BTE, the review delves into the osteogenic mechanisms of various metal ions, the applications of metal ion-containing hydrogels in BTE, and relevant experimental studies in vitro and in vivo. Furthermore, future improvements in bone repair can be anticipated through advancements in bone bionics, exploring interactions between metal ions and the development of a wider range of metal ions and hydrogel types.
Collapse
Affiliation(s)
- Shengao Qin
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, P. R. China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, P. R. China
| | - Yimeng Niu
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, P. R. China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, P. R. China
| | - Yihan Zhang
- School of Stomatology, Harbin Medical University, Harbin 150020, P. R. China
| | - Weiyi Wang
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, P. R. China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, P. R. China
| | - Jian Zhou
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, P. R. China
- Department of VIP Dental Service, School of Stomatology, Capital Medical University, Beijing 100050, P. R. China
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P. R. China
| | - Yingjie Bai
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, P. R. China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, P. R. China
| | - Guowu Ma
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, P. R. China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, P. R. China
- Department of Stomatology, Stomatological Hospital Affiliated School of Stomatology of Dalian Medical University, No. 397 Huangpu Road, Shahekou District, Dalian 116086, P. R. China
| |
Collapse
|
7
|
Liu Y, Huang J, Li S, Li Z, Chen C, Qu G, Chen K, Teng Y, Ma R, Ren J, Wu X. Recent Advances in Functional Hydrogel for Repair of Abdominal Wall Defects: A Review. Biomater Res 2024; 28:0031. [PMID: 38845842 PMCID: PMC11156463 DOI: 10.34133/bmr.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024] Open
Abstract
The abdominal wall plays a crucial role in safeguarding the internal organs of the body, serving as an essential protective barrier. Defects in the abdominal wall are common due to surgery, infection, or trauma. Complex defects have limited self-healing capacity and require external intervention. Traditional treatments have drawbacks, and biomaterials have not fully achieved the desired outcomes. Hydrogel has emerged as a promising strategy that is extensively studied and applied in promoting tissue regeneration by filling or repairing damaged tissue due to its unique properties. This review summarizes the five prominent properties and advances in using hydrogels to enhance the healing and repair of abdominal wall defects: (a) good biocompatibility with host tissues that reduces adverse reactions and immune responses while supporting cell adhesion migration proliferation; (b) tunable mechanical properties matching those of the abdominal wall that adapt to normal movement deformations while reducing tissue stress, thereby influencing regulating cell behavior tissue regeneration; (c) drug carriers continuously delivering drugs and bioactive molecules to sites optimizing healing processes enhancing tissue regeneration; (d) promotion of cell interactions by simulating hydrated extracellular matrix environments, providing physical support, space, and cues for cell migration, adhesion, and proliferation; (e) easy manipulation and application in surgical procedures, allowing precise placement and close adhesion to the defective abdominal wall, providing mechanical support. Additionally, the advances of hydrogels for repairing defects in the abdominal wall are also mentioned. Finally, an overview is provided on the current obstacles and constraints faced by hydrogels, along with potential prospects in the repair of abdominal wall defects.
Collapse
Affiliation(s)
- Ye Liu
- School of Medicine,
Southeast University, Nanjing 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Jinjian Huang
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Sicheng Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Ze Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Canwen Chen
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Guiwen Qu
- School of Medicine,
Southeast University, Nanjing 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Kang Chen
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Yitian Teng
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Rui Ma
- School of Medicine,
Southeast University, Nanjing 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Jianan Ren
- School of Medicine,
Southeast University, Nanjing 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Xiuwen Wu
- School of Medicine,
Southeast University, Nanjing 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| |
Collapse
|
8
|
Yang Z, Wang C, Zhang Z, Yu F, Wang Y, Ding J, Zhao Z, Liu Y. A pH responsive tannic acid/quaternized carboxymethyl chitosan/oxidized sodium alginate hydrogels for accelerated diabetic wound healing and real-time monitoring. Int J Biol Macromol 2024; 264:130741. [PMID: 38460649 DOI: 10.1016/j.ijbiomac.2024.130741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Treatment of diabetic wounds is a major clinical issue. Diabetic wound dressings have higher requirements for anti-oxidant, antibacterial and wound monitoring properties compared to conventional wound dressings. In this study, a novel tannic acid (TA)/quaternized carboxymethyl chitosan (QCMCS)/oxidized sodium alginate (OSA)@carbon quantum dots (CQD) (TA/QCMCS/OSA@CQD) hydrogels for promoting diabetic wound healing and real-time monitoring have been developed. The TA/QCMCS/OSA@CQD hydrogels exhibited excellent self-healing, antibacterial and antioxidant properties. Besides, these hydrogels possessed good biocompatibility and effective hemostasis in a mouse liver injury model and significantly facilitated the healing process in a diabetic wound model. In addition, these hydrogels can reliable and timely measure the diabetic wound pH information by collecting image signals of hydrogels to monitor the healing status. Therefore, the pH responsive TA/QCMCS/OSA@CQD hydrogels could be utilized as wound dressing for promoting diabetic wound healing and real-time monitoring.
Collapse
Affiliation(s)
- Zhifei Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Chen Wang
- Hainan Institute of Wuhan University of Technology, Sanya 572000, China
| | - Zhiyuan Zhang
- Hainan Institute of Wuhan University of Technology, Sanya 572000, China
| | - Fangzheng Yu
- Hainan Institute of Wuhan University of Technology, Sanya 572000, China
| | - Yu Wang
- Hainan Institute of Wuhan University of Technology, Sanya 572000, China
| | - Jianqiang Ding
- Hainan Institute of Wuhan University of Technology, Sanya 572000, China
| | - Zheng Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; Hainan Institute of Wuhan University of Technology, Sanya 572000, China.
| | - Yichao Liu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430070, China.
| |
Collapse
|
9
|
Lin J, Li S, Ying Y, Zheng W, Wu J, Wang P, Liu X. In Situ Formation of Hydrogel Wound Dressing Based on Carboxymethyl Chitin/Tannic Acid for Promoting Skin Wound Healing. ACS OMEGA 2024; 9:4386-4394. [PMID: 38313508 PMCID: PMC10831824 DOI: 10.1021/acsomega.3c06683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024]
Abstract
Triggering the healing process of drug-resistant bacteria-infected wounds has attracted great attention due to global morbidity that may induce gangrene, amputation, and even death. Here, a chitin derivative, carboxymethyl chitosan (CMC), tannic acid (TA), and Cu2+ were used for hydrogel engineering. Using sodium bicarbonate as the neutralizer and reductant, hydrogen bonds between CMC and TA and in situ Cu(OH)2 generation via ion coordination force between Cu2+ and TA facilitated the synthesis of CMC/TA/Cu hydrogel. Cu2+ and TA release, cytotoxicity, in vitro cell migration, angiogenesis, and antidrug-resistant bacteria were measured. Besides, wound closure was evaluated in vivo using the methicillin-resistant Staphylococcus aureus (MRSA)-infected excisional dermal wound mouse model. Negligible toxicity was observed both in vitro and in vivo. Dermal cell migration and angiogenesis were significantly enhanced. In vivo, the CMC/TA/Cu hydrogel induced effective re-epithelialization, collagen deposition, inflammatory alleviation, and MRSA inhibition during wound repair in mice. All these results confirmed that the CMC/TA/Cu hydrogel is a promising novel dressing for chronic wound healing in clinic.
Collapse
Affiliation(s)
- Jinhui Lin
- Key
Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- College
of Life Sciences, Fujian Agriculture and
Forestry University, Fuzhou 350002, China
| | - Siyaqi Li
- Key
Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- College
of Life Sciences, Fujian Agriculture and
Forestry University, Fuzhou 350002, China
| | - Yunfei Ying
- Key
Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Department
of Biochemistry and Molecular Biology, the Key Laboratory of Ecological
Environment and Critical Human Diseases Prevention of Hunan Province
Department of Education, Hunan Province Cooperative Innovation Center
for Molecular Target New Drug Study, School of Basic Medicine, University of South China, Hengyang 421001, P. R. China
| | - Weilin Zheng
- School
of Medicine and School of Biomedical Sciences, Huaqiao University, Quanzhou, Fujian 362021, China
| | - Jingcheng Wu
- Department
of Health Science, Technology and Education, National Health Commission of the People’s Republic of China, Beijing 100088, China
| | - Peiyuan Wang
- Key
Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- College
of Life Sciences, Fujian Agriculture and
Forestry University, Fuzhou 350002, China
| | - Xiaolong Liu
- Key
Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- College
of Life Sciences, Fujian Agriculture and
Forestry University, Fuzhou 350002, China
- The
United Innovation of Mengchao Hepatobiliary Technology Key Laboratory
of Fujian Province, Mengchao Hepatobiliary,
Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| |
Collapse
|
10
|
Zong M, Zhang Z, Ning X, Cheng H, Zhao Y, Ren J, Liu Y, Zhang R, Cui J, Hou Y, Li B, Wu X. Synthesis of multicolor luminescent carbon dots based on carboxymethyl chitosan for cell imaging and wound healing application: In vitro and in vivo studies. Int J Biol Macromol 2023; 253:127405. [PMID: 37832617 DOI: 10.1016/j.ijbiomac.2023.127405] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
The construction of biomaterials that can facilitate wound healing is significantly challenging in the medical field, and bacterial infections increase this complexity. In this study, we selected the biomacromolecule carboxymethyl chitosan as a carbon source and citric acid as an auxiliary carbon source. We prepared carbon quantum dots with multicolor luminescence properties and higher quantum yields (QYs) using a facile one-pot hydrothermal method. We characterized them to select carbon dots (CDs) suitable for cell growth. Subsequently, their biocompatibility with L929 cells, antibacterial properties against Staphylococcus aureus, and efficiency in promoting wound healing in vivo were investigated. Our experimental results showed that CDs at an appropriate concentration had excellent bioimaging ability, were suitable for cell growth, and accelerated the healing of infected wounds. We believe these bioactive CDs have great potential in promoting wound healing.
Collapse
Affiliation(s)
- Mingrui Zong
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China
| | - Zheyuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China
| | - Xiao Ning
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China
| | - Huaiyi Cheng
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China
| | - Yifan Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China
| | - Jianing Ren
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China
| | - Yingyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China
| | - Ran Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China
| | - Jiayu Cui
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China
| | - Yuxi Hou
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China.
| | - Xiuping Wu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Material, Taiyuan 030001, Shanxi, China.
| |
Collapse
|
11
|
Zhou F, Sun S, Cui C, Li X, Wu S, Ma J, Chen S, Li CM. Zinc ions and ciprofloxacin-encapsulated chitosan/poly(ɛ-caprolactone) composite nanofibers promote wound healing via enhanced antibacterial and immunomodulatory. Int J Biol Macromol 2023; 253:127086. [PMID: 37769775 DOI: 10.1016/j.ijbiomac.2023.127086] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/18/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
Antibacterial and anti-inflammatory nanofibrous membranes have attracted extensive attention, especially for the cutaneous wound treatment. In this study, zinc ions and ciprofloxacin-encapsulated chitosan/poly(ɛ-caprolactone) (CS/PCL) electrospun core-shell nanofibers were prepared by employing zinc ions-coordinated chitosan as the shell, and ciprofloxacin-functionalized PCL as the core. The morphology and core-shell structure of the as-prepared composite nanofibers were examined by SEM and TEM, respectively. The physical structure and mechanical property of the electrospun membrane were explored by FTIR, swelling, porosity and tensile test. Tensile strength of the zinc ions-coordinated CS/PCL composite nanofibers was enhanced to ca. 16 MPa. Meanwhile, the composite nanofibers can rapidly release of ciprofloxacin during 11 days and effectively suppress above 98 % of S. aureus proliferation. Moreover, the composite nanofibers exhibited excellent guide cell alignment and cyto-activity, as well as significantly down-regulated the inflammation factors, IL-6 and TNF-α in vitro. Animal experiments in vivo showed that the zinc ions-coordinated CS/PCL membrane by means of the synergistic effect of ciprofloxacin and active zinc ions, could significantly alleviate macrophage infiltration, promote collagen deposition and accelerate the healing process of wounds.
Collapse
Affiliation(s)
- Fang Zhou
- College of Textiles and Clothing, Qingdao University, Qingdao 266061, China.
| | - Shibin Sun
- College of Textiles and Clothing, Qingdao University, Qingdao 266061, China
| | - Congjing Cui
- College of Textiles and Clothing, Qingdao University, Qingdao 266061, China
| | - Xueyan Li
- College of Textiles and Clothing, Qingdao University, Qingdao 266061, China
| | - Shaohua Wu
- College of Textiles and Clothing, Qingdao University, Qingdao 266061, China
| | - Jianwei Ma
- College of Textiles and Clothing, Qingdao University, Qingdao 266061, China
| | - Shaojuan Chen
- College of Textiles and Clothing, Qingdao University, Qingdao 266061, China.
| | - Chang Ming Li
- Institute of Advanced Cross-field Science, College of Life Science, Qingdao University, Shandong 266071, China; Institute of Material Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
12
|
Iqbal Y, Ahmed I, Irfan MF, Chatha SAS, Zubair M, Ullah A. Recent advances in chitosan-based materials; The synthesis, modifications and biomedical applications. Carbohydr Polym 2023; 321:121318. [PMID: 37739510 DOI: 10.1016/j.carbpol.2023.121318] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/24/2023]
Abstract
The attention to polymer-based biomaterials, for instance, chitosan and its derivatives, as well as the techniques for using them in numerous scientific domains, is continuously rising. Chitosan is a decomposable naturally occurring polymeric material that is mostly obtained from seafood waste. Because of its special ecofriendly, biocompatible, non- toxic nature as well as antimicrobial properties, chitosan-based materials have received a lot of interest in the field of biomedical applications. The reactivity of chitosan is mainly because of the amino and hydroxyl groups in its composition, which makes it further fascinating for various uses, including biosensing, textile finishing, antimicrobial wound dressing, tissue engineering, bioimaging, gene, DNA and drug delivery and as a coating material for medical implants. This study is an overview of the different types of chitosan-based materials which now a days have been fabricated by applying different techniques and modifications that include etherification, esterification, crosslinking, graft copolymerization and o-acetylation etc. for hydroxyl groups' processes and acetylation, quaternization, Schiff's base reaction, and grafting for amino groups' reactions. Furthermore, this overview summarizes the literature from recent years related to the important applications of chitosan-based materials (i.e., thin films, nanocomposites or nanoparticles, sponges and hydrogels) in different biomedical applications.
Collapse
Affiliation(s)
- Yasir Iqbal
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; Department of Chemistry, Government College University Faisalabad, 38000, Pakistan
| | - Iqbal Ahmed
- Department of Chemistry, Government College University Faisalabad, 38000, Pakistan
| | - Muhammad Faisal Irfan
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | | | - Muhammad Zubair
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Aman Ullah
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| |
Collapse
|
13
|
Liu W, Kang S, Xue J, Chen S, Yang W, Yan B, Liu D. Self-assembled carboxymethyl chitosan/zinc alginate composite film with excellent water resistant and antimicrobial properties for chilled meat preservation. Int J Biol Macromol 2023; 247:125752. [PMID: 37429349 DOI: 10.1016/j.ijbiomac.2023.125752] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/17/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
A major way to reduce meat waste is to extend the shelf life of chilled meat with appropriate packaging. However, most of the packaging film cannot keep meat fresh because of its poor antibacterial and water resistance performance. In this paper, a composite film for chilled meat packaging was synthesized by simple self-assembly of zinc ions with chelating carboxyl groups. Introducing zinc ions into the composite system endows excellent water resistance and antibacterial properties to the film, which are demonstrated by the water vapor permeability and Escherichia coli and Staphylococcus aureus antibacterial tests. The as-prepared composite film also showed enhanced mechanical properties due to the formation of chelation bonds between zinc ions and carboxyl groups. Moreover, the chilled meat preservation test demonstrated the as-prepared composite film can significantly extend the shelf life of pork by five days, indicating its outstanding freshness preservation property. This work demonstrated a facile method to synthesize water-resistant and antimicrobial composite film, which can appear as an effective packaging material for chilled meat and offer a new idea to solve its short shelf-life problem.
Collapse
Affiliation(s)
- Wenlong Liu
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China; School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Shuai Kang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China; National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Ji Xue
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Sheng Chen
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Wenshuai Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 1H9, Alberta, Canada; Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Dayu Liu
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
14
|
Jia B, Li G, Cao E, Luo J, Zhao X, Huang H. Recent progress of antibacterial hydrogels in wound dressings. Mater Today Bio 2023; 19:100582. [PMID: 36896416 PMCID: PMC9988584 DOI: 10.1016/j.mtbio.2023.100582] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Hydrogels are essential biomaterials due to their favorable biocompatibility, mechanical properties similar to human soft tissue extracellular matrix, and tissue repair properties. In skin wound repair, hydrogels with antibacterial functions are especially suitable for dressing applications, so novel antibacterial hydrogel wound dressings have attracted widespread attention, including the design of components, optimization of preparation methods, strategies to reduce bacterial resistance, etc. In this review, we discuss the fabrication of antibacterial hydrogel wound dressings and the challenges associated with the crosslinking methods and chemistry of the materials. We have investigated the advantages and limitations (antibacterial effects and antibacterial mechanisms) of different antibacterial components in the hydrogels to achieve good antibacterial properties, and the response of hydrogels to stimuli such as light, sound, and electricity to reduce bacterial resistance. Conclusively, we provide a systematic summary of antibacterial hydrogel wound dressings findings (crosslinking methods, antibacterial components, antibacterial methods) and an outlook on long-lasting antibacterial effects, a broader antibacterial spectrum, diversified hydrogel forms, and the future development prospects of the field.
Collapse
Affiliation(s)
- Ben Jia
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Guowei Li
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Ertai Cao
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Jinlong Luo
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Heyuan Huang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518063, China
| |
Collapse
|
15
|
Recent advances in carboxymethyl chitosan-based materials for biomedical applications. Carbohydr Polym 2023; 305:120555. [PMID: 36737218 DOI: 10.1016/j.carbpol.2023.120555] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/12/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Chitosan (CS) and its derivatives have been applied extensively in the biomedical field owing to advantageous characteristics including biodegradability, biocompatibility, antibacterial activity and adhesive properties. The low solubility of CS at physiological pH limits its use in systems requiring higher dissolving ability and a suitable drug release rate. Besides, CS can result in fast drug release because of its high swelling degree and rapid water absorption in aqueous media. As a water-soluble derivative of CS, carboxymethyl chitosan (CMC) has certain improved properties, rendering it a more suitable candidate for wound healing, drug delivery and tissue engineering applications. This review will focus on the antibacterial, anticancer and antitumor, antioxidant and antifungal bioactivities of CMC and the most recently described applications of CMC in wound healing, drug delivery, tissue engineering, bioimaging and cosmetics.
Collapse
|
16
|
Lončarević A, Ostojić K, Urlić I, Rogina A. Preparation and Properties of Bimetallic Chitosan Spherical Microgels. Polymers (Basel) 2023; 15:polym15061480. [PMID: 36987262 PMCID: PMC10057022 DOI: 10.3390/polym15061480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
The aim of this work was to prepare bimetallic chitosan microgels with high sphericity and investigate the influences of metal-ion type and content on the size, morphology, swelling, degradation and biological properties of microgels. Amino and hydroxyl groups of chitosan (deacetylation degree, DD, of 83.2% and 96.9%) served as ligands in the Cu2+–Zn2+/chitosan complexes with various contents of cupric and zinc ions. The electrohydrodynamic atomization process was used to produce highly spherical microgels with a narrow size distribution and with surface morphology changing from wrinkled to smooth by increasing Cu2+ ions’ quantity in bimetallic systems for both used chitosans. The size of the bimetallic chitosan particles was estimated to be between 60 and 110 µm for both used chitosans, and FTIR spectroscopy indicated the formation of complexes through physical interactions between the chitosans’ functional groups and metal ions. The swelling capacity of bimetallic chitosan particles decreases as the DD and copper (II) ion content increase as a result of stronger complexation with respect to zinc (II) ions. Bimetallic chitosan microgels showed good stability during four weeks of enzymatic degradation, and bimetallic systems with smaller amounts of Cu2+ ions showed good cytocompatibility for both used chitosans.
Collapse
Affiliation(s)
- Andrea Lončarević
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, HR-10000 Zagreb, Croatia
- Correspondence: (A.L.); (A.R.)
| | - Karla Ostojić
- Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Inga Urlić
- Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Anamarija Rogina
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, HR-10000 Zagreb, Croatia
- Correspondence: (A.L.); (A.R.)
| |
Collapse
|
17
|
Wan Y, Liu H, Yan K, Li X, Lu Z, Wang D. An ionic/thermal-responsive agar/alginate wet-spun microfiber-shaped hydrogel combined with grooved/wrinkled surface patterns and multi-functions. Carbohydr Polym 2023; 304:120501. [PMID: 36641168 DOI: 10.1016/j.carbpol.2022.120501] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/02/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
A dual stimuli-responsive wet-spun microfiber-shaped hydrogel is prepared by injecting a hot blend of two stimuli biopolymers alginate (i.e., ionic-responsive) and agar (i.e., temperature-responsive) into a pre-cooling and metal cation containing coagulation bath. Experimental results indicate the fiber microstructure could be manipulated by the extrusion rate and cooling temperature, achieving an anisotropic shrinkage characteristic and novel grooved/wrinkled surface patterns. Importantly, the integration of metal cations (e.g., Ca2+and/or Zn2+) was confirmed to significantly improve the hydrogel mechanical properties (i.e., double networks) and enhanced blue fluorescent intensity as a typical metal-polymer complexation formed within the agar gel matrix. Moreover, the functionality-independent double networks enabled typical pH-shape memory and sustainable antibacterial properties have also been demonstrated. Therefore, combing the facile fabricating approach and multifunctionality, this study would advance the development of stimuli-responsive hydrogel microfiber for complex biomedical systems.
Collapse
Affiliation(s)
- Yekai Wan
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Haoran Liu
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Kun Yan
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China.
| | - Xiufang Li
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Zhentan Lu
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Dong Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
18
|
Yang Y, Feng G, Wang J, Zhang R, Zhong S, Wang J, Cui X. Injectable chitosan-based self-healing supramolecular hydrogels with temperature and pH dual-responsivenesses. Int J Biol Macromol 2023; 227:1038-1047. [PMID: 36460241 DOI: 10.1016/j.ijbiomac.2022.11.279] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
In this study, a supramolecular hydrogel was fabricated with orotic acid (OA) modified chitosan (OACS) and 2,6-diaminopurine (DAP). The obtained OACS-DAP supramolecular hydrogels have dual responsiveness to temperature and pH. Phase transition experiments indicate this is a temperature-dependent thermoreversible supramolecular hydrogel. Rheological experiments proved the formation of the supramolecular hydrogel and its thixotropic properties. FTIR spectra confirmed that hydrogen bonds and π-π interactions are the main driving forces for OACS and DAP to form hydrogels through intermolecular self-assembly. XRD pattern confirmed the amorphous morphology of OACS-DAP hydrogels. The hydrogel has excellent electrical conductivity with a conductivity of 9.48 μ S·cm-1. And can achieve the precise release of gastrointestinal drugs. OACS-DAP hydrogel is expected to have better applications in the field of gastrointestinal drug release.
Collapse
Affiliation(s)
- Yongyan Yang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Gangying Feng
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Jingfei Wang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Ruiting Zhang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, PR China
| | - Jia Wang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun 130012, PR China; Weihai Institute for Bionics-Jilin University, Weihai 264400, PR China.
| |
Collapse
|
19
|
Zhu H, Cheng X, Zhang J, Wu Q, Liu C, Shi J. Constructing a self-healing injectable SABA/Borax/PDA@AgNPs hydrogel for synergistic low-temperature photothermal antibacterial therapy. J Mater Chem B 2023; 11:618-630. [PMID: 36537180 DOI: 10.1039/d2tb02306g] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Infections caused by bacteria are one of the biggest challenges humans face around the world. Photothermal therapy (PTT) has been regarded as a promising strategy in combating pathogenic infection, however the high temperatures (55-65 °C) required during a single PTT process can induce injury to healthy tissues nearby. Combination therapy could overcome this problem by reducing the photothermal temperature. Here, we developed a self-healing and injectable hydrogel to realize low-temperature PTT (LT-PTT, ≤45 °C) for antisepsis with high-efficiency. The hybrid hydrogel is prepared by incorporating borax into a mixture of 3-aminophenylboronic acid grafted sodium alginate and nano-silver decorated polydopamine nanoparticles. Our results showed that the SABA/Borax/PDA@AgNPs hydrogel possesses satisfactory mechanical properties and self-healing capacity, and as a result, it can repair itself after being damaged mechanically, retaining its integrality and recovering its initial functionalities. Furthermore, through utilizing the photothermal property of polydopamine nanoparticles and broad-spectrum antibacterial activity of nano-silver, the hybrid hydrogel achieves excellent LT-PTT for sterilization both in vitro as well as in an in vivo mice skin wound model with no distinct injury to normal tissues. Overall, our prepared hydrogel is expected to be an excellent candidate for treating bacterial infections.
Collapse
Affiliation(s)
- Hao Zhu
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, P. R. China.
| | - Xuedan Cheng
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, P. R. China.
| | - Junqing Zhang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, P. R. China.
| | - Qiang Wu
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, 475004, P. R. China
| | - Chaoqun Liu
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, P. R. China. .,School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, 475004, P. R. China
| | - Jiahua Shi
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, P. R. China.
| |
Collapse
|
20
|
Zhou X, Zhou Q, Chen Q, Ma Y, Wang Z, Luo L, Ding Q, Li H, Tang S. Carboxymethyl Chitosan/Tannic Acid Hydrogel with Antibacterial, Hemostasis, and Antioxidant Properties Promoting Skin Wound Repair. ACS Biomater Sci Eng 2023; 9:437-448. [PMID: 36508691 DOI: 10.1021/acsbiomaterials.2c00997] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Local causes of slow wound healing include infection and wound hemorrhage. Using sodium bicarbonate as a neutralizer, a variety of carboxymethyl chitosan-tannic acid (CMC-TA) composite hydrogels solidify through hydrogen bonding in this study. The best-performing hydrogel was synthesized by altering the concentration of TA and exhibited remarkable mechanical properties and biocompatibility. Following in vitro characterization tests, the CMC-TA hydrogel exhibited remarkable antibacterial and antioxidant properties, as well as quick hemostasis capabilities. In the in vivo wound healing study, the results showed that the CMC-TA hydrogel could relieve inflammation and promote the recovery of skin incision, re-epithelialization, and collagen deposition. Overall, this multifunctional hydrogel could be an ideal wound dressing for the clinical therapy of full-thickness wounds.
Collapse
Affiliation(s)
- Xujie Zhou
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Qing Zhou
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Qiang Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Yahao Ma
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Zhenfang Wang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Lei Luo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Qiang Ding
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Hang Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Shunqing Tang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| |
Collapse
|
21
|
Intelligent films of marine polysaccharides and purple cauliflower extract for food packaging and spoilage monitoring. Carbohydr Polym 2023; 299:120133. [PMID: 36876771 DOI: 10.1016/j.carbpol.2022.120133] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022]
Abstract
In this study, metalloanthocyanin-inspired, biodegradable packaging films were developed by incorporating purple cauliflower extracted (PCE) anthocyanins into alginate (AL)/carboxymethyl chitosan (CCS) hybrid polymer matrices based on complexation of metal ions with these marine polysaccharides and anthocyanins. PCE anthocyanins-incorporated AL/CCS films were further modified with fucoidan (FD) because this sulfated polysaccharide can form strong interactions with anthocyanins. Metals-involved complexation (Ca2+ and Zn2+-crosslinked films) improved the mechanical strength and water vapor permeability but reduced the swelling degree of the films. Zn2+-cross-linked films exhibited significantly higher antibacterial activity than did pristine (non-crosslinked) and Ca2+-cross-linked films. The metal ion/polysaccharide-involved complexation with anthocyanin reduced the release rate of anthocyanins, increased the storage stability and antioxidant capability, and improved the sensitivity of the colorimetric response of the indicator films for monitoring the freshness of shrimp. The anthocyanin-metal-polysaccharide complex film showed great potential as active and intelligent packaging of food products.
Collapse
|
22
|
Abrishamkar A, Nilghaz A, Saadatmand M, Naeimirad M, deMello AJ. Microfluidic-assisted fiber production: Potentials, limitations, and prospects. BIOMICROFLUIDICS 2022; 16:061504. [PMID: 36406340 PMCID: PMC9674390 DOI: 10.1063/5.0129108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/21/2022] [Accepted: 11/02/2022] [Indexed: 05/24/2023]
Abstract
Besides the conventional fiber production methods, microfluidics has emerged as a promising approach for the engineered spinning of fibrous materials and offers excellent potential for fiber manufacturing in a controlled and straightforward manner. This method facilitates low-speed prototype synthesis of fibers for diverse applications while providing superior control over reaction conditions, efficient use of precursor solutions, reagent mixing, and process parameters. This article reviews recent advances in microfluidic technology for the fabrication of fibrous materials with different morphologies and a variety of properties aimed at various applications. First, the basic principles, as well as the latest developments and achievements of microfluidic-based techniques for fiber production, are introduced. Specifically, microfluidic platforms made of glass, polymers, and/or metals, including but not limited to microfluidic chips, capillary-based devices, and three-dimensional printed devices are summarized. Then, fiber production from various materials, such as alginate, gelatin, silk, collagen, and chitosan, using different microfluidic platforms with a broad range of cross-linking agents and mechanisms is described. Therefore, microfluidic spun fibers with diverse diameters ranging from submicrometer scales to hundreds of micrometers and structures, such as cylindrical, hollow, grooved, flat, core-shell, heterogeneous, helical, and peapod-like morphologies, with tunable sizes and mechanical properties are discussed in detail. Subsequently, the practical applications of microfluidic spun fibers are highlighted in sensors for biomedical or optical purposes, scaffolds for culture or encapsulation of cells in tissue engineering, and drug delivery. Finally, different limitations and challenges of the current microfluidic technologies, as well as the future perspectives and concluding remarks, are presented.
Collapse
Affiliation(s)
| | - Azadeh Nilghaz
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Maryam Saadatmand
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, 11155-9465 Tehran, Iran
| | - Mohammadreza Naeimirad
- Department of Materials and Textile Engineering, Faculty of Engineering, Razi University, 67144-14971 Kermanshah, Iran
| | - Andrew J. deMello
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg1, 8049 Zurich, Switzerland
| |
Collapse
|
23
|
Yao H, Wu M, Lin L, Wu Z, Bae M, Park S, Wang S, Zhang W, Gao J, Wang D, Piao Y. Design strategies for adhesive hydrogels with natural antibacterial agents as wound dressings: Status and trends. Mater Today Bio 2022; 16:100429. [PMID: 36164504 PMCID: PMC9508611 DOI: 10.1016/j.mtbio.2022.100429] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022]
Abstract
The wound healing process is usually susceptible to different bacterial infections due to the complex physiological environment, which significantly impairs wound healing. The topical application of antibiotics is not desirable for wound healing because the excessive use of antibiotics might cause bacteria to develop resistance and even the production of super bacteria, posing significant harm to human well-being. Wound dressings based on adhesive, biocompatible, and multi-functional hydrogels with natural antibacterial agents have been widely recognized as effective wound treatments. Hydrogels, which are three-dimensional (3D) polymer networks cross-linked through physical interactions or covalent bonds, are promising for topical antibacterial applications because of their excellent adhesion, antibacterial properties, and biocompatibility. To further improve the healing performance of hydrogels, various modification methods have been developed with superior biocompatibility, antibacterial activity, mechanical properties, and wound repair capabilities. This review summarizes hundreds of typical studies on various ingredients, preparation methods, antibacterial mechanisms, and internal antibacterial factors to understand adhesive hydrogels with natural antibacterial agents for wound dressings. Additionally, we provide prospects for adhesive and antibacterial hydrogels in biomedical applications and clinical research.
Collapse
Affiliation(s)
- Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Ming Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Liwei Lin
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Zhonglian Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Minjun Bae
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sumin Park
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Shuli Wang
- Fujian Engineering Research Center for Solid-State Lighting, Department of Electronic Science, School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Wang Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Dongan Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, 999077, PR China
| | - Yuanzhe Piao
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.,Advanced Institutes of Convergence Technology, Suwon-si, Gyeonggi-do, 443-270, Republic of Korea
| |
Collapse
|
24
|
Xia Y, Wang D, Liu D, Su J, Jin Y, Wang D, Han B, Jiang Z, Liu B. Corrigendum: Applications of chitosan and its derivatives in skin and soft tissue diseases. Front Bioeng Biotechnol 2022; 10:1082945. [PMID: 36507275 PMCID: PMC9732665 DOI: 10.3389/fbioe.2022.1082945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
[This corrects the article DOI: 10.3389/fbioe.2022.894667.].
Collapse
Affiliation(s)
- Yidan Xia
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Da Liu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Jiayang Su
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ye Jin
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Duo Wang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Beibei Han
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China,*Correspondence: Ziping Jiang, ; Bin Liu,
| | - Bin Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China,*Correspondence: Ziping Jiang, ; Bin Liu,
| |
Collapse
|
25
|
Wang Y, Ma Y, Jiang Z, Hu H, Wang S, Chi J, Qiao J, Zhang W, Wang Z, Liu W, Han B. Multifunctional effects of wound dressing based on chitosan-coordinated argentum with resistant bacterial penetration. Carbohydr Polym 2022; 288:119329. [PMID: 35450618 DOI: 10.1016/j.carbpol.2022.119329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/21/2022] [Accepted: 03/06/2022] [Indexed: 11/30/2022]
Abstract
Third-degree scald, causing serious tissue destruction with continuous pain, easily leads to microbial infections and delayed wound healing. Therefore, a multifunctional treatment is attractive for seriously damaged tissue. Herein, carboxymethyl chitosan-coordinated argentum (Ag-CMC) was synthesized via a complexation method, and then the Ag+ release, antibacterial activity, biocompatibility, pain relief and wound healing properties of Ag-CMC were investigated in vitro and in vivo. The results revealed that Ag+ had interacted with carboxymethyl chitosan, containing approximately 1.2% of silver. The Ag-CMC (50-200 μg/mL) with Ag+ sustained release exhibited significant antibacterial activity against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans, drug-resistant E. coli, PA, MRSA and good biocompatibility with L929 cells. Furthermore, antibacterial and wound healing experiments demonstrated that Ag-CMC achieved an effective contraction rate of 90% after 28 days by accelerating re-epithelialization, regulating inflammation response, relieving pain and infections. Therefore, Ag-CMC is a safe multifunctional treatment for wound healing and infections.
Collapse
Affiliation(s)
- Yanting Wang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Yanhui Ma
- Department of Laboratory Medicine, Qingdao Central Hospital, Second Affiliated Hospital of Qingdao University, Qingdao 266042, PR China
| | - Zhiwen Jiang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, PR China
| | - Huiwen Hu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Shuo Wang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Jinhua Chi
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Jing Qiao
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Wei Zhang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Zheng Wang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, PR China; Department of Reproductive Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Wanshun Liu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Baoqin Han
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, PR China.
| |
Collapse
|
26
|
Xia Y, Wang D, Liu D, Su J, Jin Y, Wang D, Han B, Jiang Z, Liu B. Applications of Chitosan and its Derivatives in Skin and Soft Tissue Diseases. Front Bioeng Biotechnol 2022; 10:894667. [PMID: 35586556 PMCID: PMC9108203 DOI: 10.3389/fbioe.2022.894667] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022] Open
Abstract
Chitosan and its derivatives are bioactive molecules that have recently been used in various fields, especially in the medical field. The antibacterial, antitumor, and immunomodulatory properties of chitosan have been extensively studied. Chitosan can be used as a drug-delivery carrier in the form of hydrogels, sponges, microspheres, nanoparticles, and thin films to treat diseases, especially those of the skin and soft tissue such as injuries and lesions of the skin, muscles, blood vessels, and nerves. Chitosan can prevent and also treat soft tissue diseases by exerting diverse biological effects such as antibacterial, antitumor, antioxidant, and tissue regeneration effects. Owing to its antitumor properties, chitosan can be used as a targeted therapy to treat soft tissue tumors. Moreover, owing to its antibacterial and antioxidant properties, chitosan can be used in the prevention and treatment of soft tissue infections. Chitosan can stop the bleeding of open wounds by promoting platelet agglutination. It can also promote the regeneration of soft tissues such as the skin, muscles, and nerves. Drug-delivery carriers containing chitosan can be used as wound dressings to promote wound healing. This review summarizes the structure and biological characteristics of chitosan and its derivatives. The recent breakthroughs and future trends of chitosan and its derivatives in therapeutic effects and drug delivery functions including anti-infection, promotion of wound healing, tissue regeneration and anticancer on soft tissue diseases are elaborated.
Collapse
Affiliation(s)
- Yidan Xia
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Da Liu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Jiayang Su
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ye Jin
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Duo Wang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Beibei Han
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China,*Correspondence: Ziping Jiang, ; Bin Liu,
| | - Bin Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China,*Correspondence: Ziping Jiang, ; Bin Liu,
| |
Collapse
|
27
|
Arafa EG, Sabaa MW, Mohamed RR, Elzanaty AM, Abdel-Gawad OF. Preparation of biodegradable sodium alginate/carboxymethylchitosan hydrogels for the slow-release of urea fertilizer and their antimicrobial activity. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
28
|
Hu T, Chan C, Lin M, Bu H, Liu B, Jiang G. COCu: A Robust Self-Regenerative Hydrogel with Applicability as Both Hydrated Gel Dressing and Dry Suture for Seamless Tissue Fixation and Repair. Adv Healthc Mater 2022; 11:e2102074. [PMID: 34913606 DOI: 10.1002/adhm.202102074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/25/2021] [Indexed: 01/13/2023]
Abstract
Self-regenerative hydrogels have recently been developed, and represent a special type of self-healing hydrogels with the ability to restore a dehydrated hydrogel with physical damage. In this study, a self-regenerative hydrogel (COCu) based on two chitosan polymers assembled by slow-released Cu2+ is developed. The COCu hydrogel displays an excellent regeneration ability after being dehydrated and fractured. By simple hydration at room temperature, the fragments of the dehydrated gel fuse into one seamless whole, thereby preserving the mechanical properties and functionalities of the original hydrogel. The regeneration process can be conducted repeatedly after different methods of dehydration (natural volatilization, heat drying, lyophilization) and various modes of deconstruction (flakes, powder, lumpy sponge, etc.). Furthermore, the COCu hydrogel provides ultra-stretchability, and it can be stretched into thin (0.01-0.1 mm) filaments, which, when dried (dtCOCu), can be used as suture lines. Moreover, when used as a dry suture, it regenerates into the hydrogel in the presence of the tissue fluid, forming an excellent sealant to immobilize tissues and seamlessly seal wounds. The fast self-regeneration allows for its facile application as both a hydrated gel dressing and dry suture, and offers customized strategies for fixing and repair of different wounds in soft tissues.
Collapse
Affiliation(s)
- Tian Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education College of Materials and Energy South China Agricultural University Guangzhou 510642 China
| | - Chuncheung Chan
- Department of Spine Surgery The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou 510630 China
| | - Min‐Zhao Lin
- Key Laboratory for Biobased Materials and Energy of Ministry of Education College of Materials and Energy South China Agricultural University Guangzhou 510642 China
| | - Huaitian Bu
- Department of Materials and Nanotechnology SINTEF Industry Forskningsveien 1 Oslo 0373 Norway
| | - Bin Liu
- Department of Spine Surgery The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou 510630 China
| | - Gang‐Biao Jiang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education College of Materials and Energy South China Agricultural University Guangzhou 510642 China
| |
Collapse
|
29
|
Novel Chitosan Derivatives and Their Multifaceted Biological Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chitosan is a rather attractive material, especially because of its bio-origins as well as generation from exoskeletal waste. As the mantle has been effectively transferred from chitin to chitosan, so has it been extrapolated to in-house synthesized novel chitosan derivatives. This review comprehensively lists the available novel chitosan derivatives (ChDs) and summarizes their biological applications. The fact that chitosan derivatives do comprise multifaceted biological applications is attested by the voluminous reports on their varied contributions. However, this review points out to the fact that there has been selective focus on bio functions such as antifungal, antioxidant, antibacterial, whereas other biomedical applications and antiviral applications remain relatively less explored. With their current functionality record, there is definitely no doubt that the plethora of synthesized ChDs will have a profound impact on the unexplored biological aspects. This review points out this lacuna as room for future exploration.
Collapse
|
30
|
Gao Y, Qiu Z, Liu L, Li M, Xu B, Yu D, Qi D, Wu J. Multifunctional fibrous wound dressings for refractory wound healing. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yujie Gao
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
| | - Zhiye Qiu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
| | - Lei Liu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
| | - Mengmeng Li
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
| | - Bingjie Xu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
| | - Dan Yu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Dongming Qi
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
- Zhejiang Provincial Engineering Research Center for Green and Low‐carbon Dyeing & Finishing Zhejiang Sci‐Tech University Hangzhou China
| | - Jindan Wu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
- Zhejiang Provincial Engineering Research Center for Green and Low‐carbon Dyeing & Finishing Zhejiang Sci‐Tech University Hangzhou China
| |
Collapse
|
31
|
Wang X, Li S, Yu H, Lv J, Fan M, Wang X, Wang X, Liang Y, Mao L, Zhao Z. The Biocompatibility of Multi-Source Stem Cells and Gelatin-Carboxymethyl Chitosan-Sodium Alginate Hybrid Biomaterials. Tissue Eng Regen Med 2022; 19:491-503. [PMID: 35119649 PMCID: PMC9130400 DOI: 10.1007/s13770-021-00429-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nowadays, biological tissue engineering is a growing field of research. Biocompatibility is a key indicator for measuring tissue engineering biomaterials, which is of great significance for the replacement and repair of damaged tissues. METHODS In this study, using gelatin, carboxymethyl chitosan, and sodium alginate, a tissue engineering material scaffold that can carry cells was successfully prepared. The material was characterized by Fourier transforms infrared spectroscopy. In addition, the prepared scaffolds have physicochemical properties, such as swelling ratio, biodegradability. we observed the biocompatibility of the hydrogel to different adult stem cells (BMSCs and ADSCs) in vivo and in vitro. Adult stem cells were planted on gelatin-carboxymethyl chitosan-sodium alginate (Gel/SA/CMCS) hydrogels for 7 days in vitro, and the survival of stem cells in vitro was observed by live/died staining. Gel/SA/CMCS hydrogels loaded with stem cells were subcutaneously transplanted into nude mice for 14 days of in vivo culture observation. The survival of adult stem cells was observed by staining for stem cell surface markers (CD29, CD90) and Ki67. RESULTS The scaffolds had a microporous structure with an appropriate pore size (about 80 μm). Live/died staining showed that adult stem cells could stably survive in Gel/SA/CMCS hydrogels for at least 7 days. After 14 days of culture in nude mice, Ki67 staining showed that the stem cells supported by Gel/SA/CMCS hydrogel still had high proliferation activity. CONCLUSION Gel/SA/CMCSs hydrogel has a stable interpenetrating porous structure, suitable swelling performance and degradation rate, can promote and support the survival of adult stem cells in vivo and in vitro, and has good biocompatibility. Therefore, Gel/SA/CMCS hydrogel is a strong candidate for biological tissue engineering materials.
Collapse
Affiliation(s)
- Xinzhe Wang
- Clinical Medical College, Jining Medical University, Jining, 272067 Shandong China
| | - Siqi Li
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, 272067 Shandong China
| | - Honglian Yu
- Department of Biochemistry, Jining Medical University, Jining, Shandong 272067 People’s Republic of China ,Collaborative Innovation Center, Jining Medical University, Jining, Shandong 272067 People’s Republic of China
| | - Jianzhi Lv
- Clinical Medical College, Jining Medical University, Jining, 272067 Shandong China
| | - Minglun Fan
- Clinical Medical College, Jining Medical University, Jining, 272067 Shandong China
| | - Ximing Wang
- Clinical Medical College, Jining Medical University, Jining, 272067 Shandong China
| | - Xin Wang
- Clinical Medical College, Jining Medical University, Jining, 272067 Shandong China
| | - Yanting Liang
- Basic Medicine College, Jining Medical University, Jining, Shandong 272067 People’s Republic of China
| | - Lingna Mao
- Basic Medicine College, Jining Medical University, Jining, Shandong 272067 People’s Republic of China
| | - Zhankui Zhao
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272100 People’s Republic of China
| |
Collapse
|
32
|
Tang S, Yang T, Zhao Z, Zhu T, Zhang Q, Hou W, Yuan WZ. Nonconventional luminophores: characteristics, advancements and perspectives. Chem Soc Rev 2021; 50:12616-12655. [PMID: 34610056 DOI: 10.1039/d0cs01087a] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nonconventional luminophores devoid of remarkable conjugates have attracted considerable attention due to their unique luminescence behaviors, updated luminescence mechanism of organics and promising applications in optoelectronic, biological and medical fields. Unlike classic luminogens consisting of molecular segments with greatly extended electron delocalization, these unorthodox luminophores generally possess nonconjugated structures based on subgroups such as ether (-O-), hydroxyl (-OH), halogens, carbonyl (CO), carboxyl (-COOH), cyano (CN), thioether (-S-), sulfoxide (SO), sulfone (OSO), phosphate, and aliphatic amine, as well as their grouped functionalities like amide, imide, anhydride and ureido. They can exhibit intriguing intrinsic luminescence, generally featuring concentration-enhanced emission, aggregation-induced emission, excitation-dependent luminescence and prevailing phosphorescence. Herein, we review the recent progress in exploring these nonconventional luminophores and discuss the current challenges and future perspectives. Notably, different mechanisms are reviewed and the clustering-triggered emission (CTE) mechanism is highlighted, which emphasizes the clustering of the above mentioned electron rich moieties and consequent electron delocalization along with conformation rigidification. The CTE mechanism seems widely applicable for diversified natural, synthetic and supramolecular systems.
Collapse
Affiliation(s)
- Saixing Tang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Tianjia Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Zihao Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Tianwen Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Qiang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Wubeiwen Hou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Wang Zhang Yuan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| |
Collapse
|
33
|
Rao KM, Sudhakar K, Suneetha M, Won SY, Han SS. Fungal-derived carboxymethyl chitosan blended with polyvinyl alcohol as membranes for wound dressings. Int J Biol Macromol 2021; 190:792-800. [PMID: 34520780 DOI: 10.1016/j.ijbiomac.2021.09.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/24/2022]
Abstract
Multifunctional blend membranes composed of poly (vinyl alcohol) (PVA) and fungal mushroom-derived carboxymethyl chitosan (F-CMCS) were produced using a simple solution casting technique for wound dressing applications. The structural interactions between PVA and F-CMCS were confirmed by Fourier infrared spectroscopy. The crystallinity of the membranes was examined by X-ray diffraction. Field emission scanning electron microscopy confirmed the homogeneity and coarser texture with a porous-like network in the internal structure of the membranes. The hydrophilicity, swelling, and degradation of the fabricated membranes were examined according to the F-CMCS content. The PVA/F-CMCS membrane displayed potential antibacterial activity against Escherichia coli (gram-negative) and Staphylococcus (gram-positive) bacteria. An in vitro cell study of skin fibroblasts and keratinocytes on the PVA/F-CMCS membranes confirmed the biocompatibility. The hemolysis assay demonstrated the hemocompatibility of the developed membranes. The antibacterial, biocompatibility, and good hemolysis in the PVA membrane were influenced by the F-CMCS composition ratio up to 40%. The all-inclusive properties of the PVA/F-CMCS membranes highlight its potential use in wound dressing applications.
Collapse
Affiliation(s)
- Kummara Madhusudana Rao
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Kuncham Sudhakar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Maduru Suneetha
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - So Yeon Won
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
34
|
Yan K, Xu F, Yang C, Wei W, Chen Y, Li X, Lu Z, Wang D. Interpenetrating polysaccharide-based hydrogel: A dynamically responsive versatile medium for precisely controlled synthesis of nanometals. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112211. [PMID: 34225863 DOI: 10.1016/j.msec.2021.112211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/07/2021] [Accepted: 05/23/2021] [Indexed: 02/08/2023]
Abstract
Herein, we reported an interpenetrating polysaccharide-based hydrogel in which carboxymethyl chitosan (CMC) chains were physically dispersed throughout the thermoplastic elastomer gel network has been developed as a versatile platform for precisely controlled synthesis of nanometals. Results indicated the interpenetrated CMC chains could serve as multifunctional fillers for metal ions adsorption and stabilization while the thermally reconfigurable agarose (Agar) gel medium provides three-dimensional semi-solid framework for entrapping and recollecting of the fabricated nanometals. Specifically, the CMC chains were found to strongly coordinate with silver ions as a dynamically responsive metal-biopolymer complex within the bulk gel network as confirmed by the enhanced mechanical properties and regulated shape memory performances. Moreover, by varying CMC concentrations and coupling with a layer-stacking approach, multiple biochemical gradients could be facilely generated for in-situ synthesis of silver nanoparticles, achieving a narrow size of ~7 nm, confined sphere-shape and high concentrations. The monodispersed nanometals are confirmed to be highly active (e.g., considerable catalytic performance), and which could be easily recycled from the bulk gel system via a heating treatment. Thus, this work would provide a generic methodology for the multifunctional metallogel assembly and great possibility for controllable and largescale synthesis of noble nanometals toward biomedical applications.
Collapse
Affiliation(s)
- Kun Yan
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Feiyang Xu
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Chenguang Yang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Wei Wei
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Yuanli Chen
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Xiufang Li
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Zhentan Lu
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Dong Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
35
|
TMPyP-bound guanosine-borate supramolecular hydrogel as smart hemoperfusion device with real-time visualized/electrochemical bi-modal monitoring for selective blood lead elimination. Biosens Bioelectron 2021; 184:113230. [PMID: 33872980 DOI: 10.1016/j.bios.2021.113230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 11/21/2022]
Abstract
Blood lead poisoning is a universal and severe health problem that greatly threatens human health in various industries. Elimination of blood lead relying on chelating agents and combination with hemoperfusion adsorbents has achieved considerable progress, but it is still suffering from the compromised selectivity of adsorbents as well as in absence of real time monitoring during treatment. Herein, we proposed a selective blood lead adsorbent integrated with real-time visualized/electrochemical bi-modal monitoring based on TMPyP-bound guanosine-borate (GB) supramolecular hydrogel as potential smart hemoperfusion device. The GB hydrogel possessed stability in physiological environment, self-healing ability resistant to fluid shear, blood compatibility, selective adsorption of lead ions superior to conventional adsorbents, anti-fouling performance to blood components and renewability. Benefiting from binding with TMPyP and the intrinsic conductivity, GB hydrogel was endowed with the ability to qualitatively diagnose the presence of blood lead via simple color change and quantitatively reflect the amount of adsorbed lead from blood accurately through electrochemical technique. This work puts forward an integrated treatment/monitoring hemoperfusion device with high selectivity, simple fabrication and low-cost, providing a paradigm for next generation design of intelligent, monitorable theranostic hemopurification system, which is also an extensible platform for the other research fields such as environmental monitoring and remediation.
Collapse
|
36
|
Li H, Hao MX, Kang HR, Chu LQ. Facile production of three-dimensional chitosan fiber embedded with zinc oxide as recoverable photocatalyst for organic dye degradation. Int J Biol Macromol 2021; 181:150-159. [PMID: 33775755 DOI: 10.1016/j.ijbiomac.2021.03.157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/28/2022]
Abstract
Herein we report on a facile and green strategy for continuous production of chitosan-zinc oxide fibers and then compare their photodegradation performance against three organic dyes (i.e., methylene blue (MB), methyl orange (MO) and Rhodamine B, respectively) under different lights. Chitosan-zinc hydrogel fibers (CS/Zn) with different zinc loadings are obtained by direct mixing of chitosan and zinc acetate solutions using a double-syringe injection device. The as-prepared CS/Zn fibers are then immersed into glutaraldehyde (GA) and sodium hydroxide solutions, respectively, and dried at T = 50 °C. The resultant CS/ZnO/GA fibers of ca. 617 μm in diameter are characterized using X-ray diffraction (XRD), thermogravimetric analysis and field emission scanning electron microscope (FE-SEM). XRD and FE-SEM data confirm that the CS/ZnO/GA fibers consist of a large amount of hexagonal wurtzite ZnO nanorods up to 550 nm in length, and exhibit three-dimensional interconnected macroporous architecture. Photodegradation results clearly show that the CS/ZnO/GA fibers are effective for the removal of organic dyes upon UV irradiation and can be easily recovered and reused for at least 6 consecutive cycles. Unlike most reported CS/ZnO nanocomposites, the current CS/ZnO/GA fiber shows a higher adsorption of cationic MB rather than anionic MO, the mechanism of which is proposed.
Collapse
Affiliation(s)
- Heng Li
- College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, Tianjin University of Science and Technology, No.29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Ming-Xiao Hao
- College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, Tianjin University of Science and Technology, No.29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Hui-Ran Kang
- College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, Tianjin University of Science and Technology, No.29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Li-Qiang Chu
- College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, Tianjin University of Science and Technology, No.29, 13th Avenue, TEDA, Tianjin 300457, China.
| |
Collapse
|
37
|
Zhang M, Yang M, Woo MW, Li Y, Han W, Dang X. High-mechanical strength carboxymethyl chitosan-based hydrogel film for antibacterial wound dressing. Carbohydr Polym 2021; 256:117590. [DOI: 10.1016/j.carbpol.2020.117590] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
|
38
|
Ågren MS, Chafranska L, Eriksen JO, Forman JL, Bjerrum MJ, Schjerling P, Larsen HF, Cottarelli E, Jorgensen LN, Gjerdrum LMR. Spatial expression of metallothionein, matrix metalloproteinase-1 and Ki-67 in human epidermal wounds treated with zinc and determined by quantitative immunohistochemistry: A randomised double-blind trial. Eur J Cell Biol 2020; 100:151147. [PMID: 33485703 DOI: 10.1016/j.ejcb.2020.151147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 01/13/2023] Open
Abstract
Reepithelialisation is fundamental to wound healing, but our current understanding largely relies on cellular and animal studies. The aim of the present randomised double-blind three-arm controlled trial was to correlate genuine epidermal wound healing with key proteins and topical zinc treatment in humans. Sixty wounds were produced using deroofed suction blisters in 30 healthy volunteers and randomised to topical zinc sulphate (n = 20), placebo (n = 20), or control (n = 20) treatment for 4 days. All wounds with perilesional skin were processed for automatic immunostaining of paraffin tissue sections with monoclonal antibodies against Ki-67, metallothionein (MT) and matrix metalloproteinase (MMP)-1. Protein expression was quantified by automated digital image analysis. Epidermal Ki-67 and MT labelling indices were increased in keratinocytes in the neoepidermis (∼1.1 mm) and at the wound edge (0.5 mm) compared to normal skin. Increased MMP-1 immunostaining was restricted to the neoepidermis. MT was robustly upregulated in the upper dermis of the wounds. Zinc treatment enhanced MMP-1 expression beneath the neoepidermis via paracrine mechanisms and MT under the neoepidermis and in the nonepithelialised wound bed via direct actions of zinc as indicated by the induction of MT2A mRNA but not MMP-1 mRNA in cultured normal human dermal fibroblasts by zinc sulphate. The present human study demonstrates that quantitative immunohistochemistry can identify proteins involved in reepithelialisation and actions of external compounds. Increased dermal MT expression may contribute to the anti-inflammatory activities of zinc and increased MMP-1 levels to promote keratinocyte migration.
Collapse
Affiliation(s)
- Magnus S Ågren
- Department of Dermatology and Copenhagen Wound Healing Center, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; Digestive Disease Center, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Lana Chafranska
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Jens Ole Eriksen
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Julie Lyng Forman
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Morten J Bjerrum
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen and Department of Biomedical Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Heidi F Larsen
- Digestive Disease Center, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Elena Cottarelli
- Digestive Disease Center, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Pharmaceutical Science, University of Pavia, Pavia, Italy
| | - Lars N Jorgensen
- Digestive Disease Center, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lise Mette Rahbek Gjerdrum
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| |
Collapse
|
39
|
Wang S, Chi J, Jiang Z, Hu H, Yang C, Liu W, Han B. A self-healing and injectable hydrogel based on water-soluble chitosan and hyaluronic acid for vitreous substitute. Carbohydr Polym 2020; 256:117519. [PMID: 33483040 DOI: 10.1016/j.carbpol.2020.117519] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Vitreous, an essential dioptric medium for the human eyes, must be filled with artificial materials once damaged. Carboxymethyl chitosan (CMCTS) is one of the most important water-soluble chitosan derivatives with improved biocompatibility and biodegradability. In this study, oxidized hyaluronic acid (OHA) was prepared as crosslinking reagent. CMCTS and OHA were used to develop a biocompatible, self-repairing and in-situ injectable hydrogel for vitreous substitutes. Results showed the hydrogel with controllable swelling properties, high transparency, acceptable cytocompatibility on mouse fibroblast L929 and histocompatibility in vivo. Furthermore, hydrogel was injected in-situ into the vitreous cavity after vitrectomy on New Zealand Rabbits, no significant and persistent adverse effects were observed during the 90-day follow-up period. In addition, the hydrogel maintained intraocular pressure of the operated eyes and the inherent position of the retina. Collectively, this injectable, biodegradable, nontoxic hydrogel possessed enormous potential to become a vitreous substitute material.
Collapse
Affiliation(s)
- Shuo Wang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Jinhua Chi
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Zhiwen Jiang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China
| | - Huiwen Hu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Chaozhong Yang
- School of Medicine, Heze Medical College, Heze, 274046, PR China
| | - Wanshun Liu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Baoqin Han
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China.
| |
Collapse
|
40
|
He Y, Zhao W, Dong Z, Ji Y, Li M, Hao Y, Zhang D, Yuan C, Deng J, Zhao P, Zhou Q. A biodegradable antibacterial alginate/carboxymethyl chitosan/Kangfuxin sponges for promoting blood coagulation and full-thickness wound healing. Int J Biol Macromol 2020; 167:182-192. [PMID: 33259842 DOI: 10.1016/j.ijbiomac.2020.11.168] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/03/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022]
Abstract
Conventional wound-dressing materials with structural and functional deficiencies are not effective in promoting wound healing. The development of multifunctional wound dressings is emerging as a promising strategy to accelerate blood coagulation, inhibit bacterial infection, and trigger full-thickness wound into a regenerative process. Herein, multifunctional composite sponges were developed by incorporation of traditional Chinese medicine Kangfuxin (KFX) into alginate (AG)/carboxymethyl chitosan (CMC) via green crosslinking, electrostatic interaction, and freeze-drying methods. It is demonstrated that the AG/CMC/KFX (ACK) sponges exhibit a highly interconnected and porous structure, suitable water vapor transmittance, excellent elastic properties, antibacterial behavior, cytocompatibility, and rapid hemostasis. Further, in a rat full-thickness wounds model, the ACK sponge containing 10% KFX (ACK-10) significantly facilitates wound closure compared to the AC group and ACK sponge containing 5% and 15% KFX. Thus, the multifunctional ACK-10 composite sponge has great promise for the application of full-thickness wound healing.
Collapse
Affiliation(s)
- Yun He
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Wenwen Zhao
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Zuoxiang Dong
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Yanjing Ji
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Min Li
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Yuanping Hao
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Demeng Zhang
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co. Ltd., Qingdao 266400, China
| | - Changqing Yuan
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Jing Deng
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Peng Zhao
- School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Qihui Zhou
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China.
| |
Collapse
|
41
|
Mi Y, Zhang J, Chen Y, Sun X, Tan W, Li Q, Guo Z. New synthetic chitosan derivatives bearing benzenoid/heterocyclic moieties with enhanced antioxidant and antifungal activities. Carbohydr Polym 2020; 249:116847. [PMID: 32933686 DOI: 10.1016/j.carbpol.2020.116847] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022]
Abstract
In this paper, several novel chitosan derivatives bearing benzenoid / heterocyclic moieties were synthesized via introducing aminobenzene and heterocyclic compounds onto carboxymethyl chitosan. The specific structures of chitosan derivatives were confirmed by FTIR, 1H NMR, and elemental analysis. Meanwhile, the antioxidant efficiencies of chitosan derivatives were assayed in vitro. In particular, all chitosan derivatives showed significant improvement in superoxide-radical scavenging activity and DPPH radical scavenging activity. Their antifungal activities against two plant pathogenic fungi (Colletotrichum lagenarium and Phomopsis asparagi) were estimated in vitro by hyphal measurement, and all products exhibited excellent antifungal activity. Besides, the cytotoxicity of them was also measured by CCK-8 in vitro on L929 cells, and all samples showed low cytotoxicity. The good biocompatibility and enhanced biological activity of new synthetic chitosan derivatives might be obvious advantages, while applied in wide range of applications as antifungal agents or antioxidants in food, medicine, cosmetics, and other fields.
Collapse
Affiliation(s)
- Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Chen
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueqi Sun
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
42
|
Stoica AE, Chircov C, Grumezescu AM. Hydrogel Dressings for the Treatment of Burn Wounds: An Up-To-Date Overview. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2853. [PMID: 32630503 PMCID: PMC7345019 DOI: 10.3390/ma13122853] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Globally, the fourth most prevalent devastating form of trauma are burn injuries. Ideal burn wound dressings are fundamental to facilitate the wound healing process and decrease pain in lower time intervals. Conventional dry dressing treatments, such as those using absorbent gauze and/or absorbent cotton, possess limited therapeutic effects and require repeated dressing changes, which further aggravate patients' suffering. Contrariwise, hydrogels represent a promising alternative to improve healing by assuring a moisture balance at the burn site. Most studies consider hydrogels as ideal candidate materials for the synthesis of wound dressings because they exhibit a three-dimensional (3D) structure, which mimics the natural extracellular matrix (ECM) of skin in regard to the high-water amount, which assures a moist environment to the wound. There is a wide variety of polymers that have been used, either alone or blended, for the fabrication of hydrogels designed for biomedical applications focusing on treating burn injuries. The aim of this paper is to provide an up-to-date overview of hydrogels applied in burn wound dressings.
Collapse
Affiliation(s)
| | | | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.E.S.); (C.C.)
| |
Collapse
|