1
|
Zou CY, Han C, Xing F, Jiang YL, Xiong M, Li-Ling J, Xie HQ. Smart design in biopolymer-based hemostatic sponges: From hemostasis to multiple functions. Bioact Mater 2025; 45:459-478. [PMID: 39697242 PMCID: PMC11653154 DOI: 10.1016/j.bioactmat.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
Uncontrolled hemorrhage remains the leading cause of death in clinical and emergency care, posing a major threat to human life. To achieve effective bleeding control, many hemostatic materials have emerged. Among them, nature-derived biopolymers occupy an important position due to the excellent inherent biocompatibility, biodegradability and bioactivity. Additionally, sponges have been widely used in clinical and daily life because of their rapid blood absorption. Therefore, we provide the overview focusing on the latest advances and smart designs of biopolymer-based hemostatic sponge. Starting from the component, the applications of polysaccharide and polypeptide in hemostasis are systematically introduced, and the unique bioactivities such as antibacterial, antioxidant and immunomodulation are also concerned. From the perspective of sponge structure, different preparation processes can obtain unique physical properties and structures, which will affect the material properties such as hemostasis, antibacterial and tissue repair. Notably, as development frontier, the multi-functions of hemostatic materials is summarized, mainly including enhanced coagulation, antibacterial, avoiding tumor recurrence, promoting tissue repair, and hemorrhage monitoring. Finally, the challenges facing the development of biopolymer-based hemostatic sponges are emphasized, and future directions for in vivo biosafety, emerging materials, multiple application scenarios and translational research are proposed.
Collapse
Affiliation(s)
- Chen-Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Frontier Medical Center, Tianfu Jincheng Laboratory, 610212, Chengdu, Sichuan, PR China
| | - Chen Han
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Frontier Medical Center, Tianfu Jincheng Laboratory, 610212, Chengdu, Sichuan, PR China
| | - Fei Xing
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Department of Pediatric Surgery, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
| | - Yan-Lin Jiang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Frontier Medical Center, Tianfu Jincheng Laboratory, 610212, Chengdu, Sichuan, PR China
| | - Ming Xiong
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
| | - Jesse Li-Ling
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Department of Medical Genetics, West China Second Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Frontier Medical Center, Tianfu Jincheng Laboratory, 610212, Chengdu, Sichuan, PR China
| |
Collapse
|
2
|
Dong X, Shi L, Ma S, Chen X, Cao S, Li W, Zhao Z, Chen C, Deng H. Chitin/Chitosan Nanofibers Toward a Sustainable Future: From Hierarchical Structural Regulation to Functionalization Applications. NANO LETTERS 2024; 24:12014-12026. [PMID: 39255018 DOI: 10.1021/acs.nanolett.4c02632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Owing to its multiple fascinating properties of renewability, biodegradability, biocompatibility, and antibacterial activity, chitin is expected to become a green cornerstone of next-generation functional materials. Chitin nanofibers, as building blocks, form multiscale hierarchical structures spanning nano- and macrolevels in living organisms, which pave the way for sophisticated functions. Therefore, from a biomimetic perspective, exploiting chitin nanofibers for use in multifunctional, high-performance materials is a promising approach. Here, we first summarize the latest advances in the multiscale hierarchical structure assembly mode of chitin and its derivative nanofibers, including top-down exfoliation and bottom-up synthesis. Subsequently, we emphasize the environmental impacts of these methods, which are crucial for whether chitin nanofibers can truly contribute to a more eco-friendly era. Furthermore, the latest progress of chitin nanofibers in environmental and medical applications is also discussed. Finally, the potential challenges and tailored solutions of chitin nanofibers are further proposed, covering raw material, structure, function, manufacturing, policies, etc.
Collapse
Affiliation(s)
- Xiangyang Dong
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, Hubei 430079, China
| | - Lei Shi
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, Hubei 430079, China
| | - Shuai Ma
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xinyi Chen
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, Hubei 430079, China
| | - Shiyi Cao
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Li
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, Hubei 430079, China
| | - Ze Zhao
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, Hubei 430079, China
| | - Chaoji Chen
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, Hubei 430079, China
| | - Hongbing Deng
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, Hubei 430079, China
| |
Collapse
|
3
|
Tithy LH, Rahman A, Wong SY, Li X, Arafat MT. Chitosan/starch based unoxidized tannic acid modified microparticles for rapid hemostasis with broad spectrum antibacterial activity. Carbohydr Polym 2024; 336:122111. [PMID: 38670748 DOI: 10.1016/j.carbpol.2024.122111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
The development of a rapid hemostat through a facile method with co-existing antibacterial activity and minimum erythrocyte lysis property stands as a major requirement in the field of hemostasis. Herein, a series of novel microparticle hemostats were synthesized using chitosan, different hydrothermally-treated starches, and cross-linked with tannic acid (TA) simultaneously in an unoxidized environment via ionotropic gelation method. Hemostats' comparative functional properties, such as adjustable antibacterial and erythrocyte compatibility upon various starch additions were evaluated. The in vivo hemostatic study revealed that the developed hemostats for mouse liver laceration and rat tail amputation had clotting times (13 s and 38 s, respectively) and blood loss (51 mg and 62 mg, respectively) similar to those of Celox™. The erythrocyte adhesion test suggested that erythrocyte distortion can be lowered by modifying the antibacterial hemostats with different starches. The broad-spectrum antibacterial efficacy of the hemostats remained intact against S. aureus (>90 %), E. coli (>80 %), and P. mirabilis bacteria upon starch modification. They also demonstrated high hemocompatibility (<3 % hemolysis ratio), moderate cell viability (>81 %), in vivo biodegradation, and angiogenesis indicating adequate biocompatibility and wound healing. The developed hemostats hold significant promise to be employed as rapid hemostatic agents for preventing major bleeding and bacterial infection in emergencies.
Collapse
Affiliation(s)
- Lamiya Hassan Tithy
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - Abdur Rahman
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - Siew Yee Wong
- Institute of sustainability for chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Xu Li
- Institute of sustainability for chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore; Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - M Tarik Arafat
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh.
| |
Collapse
|
4
|
Lin X, Long H, Zhong Z, Ye Q, Duan B. Biodegradable chitin nanofiber-alginate dialdehyde hydrogel: An injectable, self-healing scaffold for anti-tumor drug delivery. Int J Biol Macromol 2024; 270:132187. [PMID: 38723827 DOI: 10.1016/j.ijbiomac.2024.132187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Injectable hydrogels fabricated from natural polymers have attracted increasing attentions for their potential in biomedical application owing to the biocompatibility and biodegradability. A new class of natural polymer based self-healing hydrogel is constructed through dynamic covalent bonds. The injectable self-healing hydrogels are fabricated by introducing alginate aldehyde to form Schiff base bonds with the chitin nanofibers. These hydrogels demonstrate excellent self-healing properties, injectability, and pH-responsive sol-gel transition behaviors. As a result, they can serve as carriers to allow an effective encapsulation of doxorubicin (DOX) for drug delivery. Furthermore, these hydrogels exhibit excellent biocompatibility and degradability in vitro and in vivo. The sustained release of DOX from the hydrogels effectively suppresses tumor growth in animal models without causing significant systemic toxicity, suggesting their potential application in anti-tumor therapies.
Collapse
Affiliation(s)
- Xinghuan Lin
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Haitao Long
- National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, 430071 China
| | - Zibiao Zhong
- National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, 430071 China.
| | - Qifa Ye
- National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, 430071 China.
| | - Bo Duan
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| |
Collapse
|
5
|
Fang Y, Guo W, Ni P, Liu H. Recent research advances in polysaccharide-based hemostatic materials: A review. Int J Biol Macromol 2024; 271:132559. [PMID: 38821802 DOI: 10.1016/j.ijbiomac.2024.132559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024]
Abstract
Massive bleeding resulting from civil and martial accidents can often lead to shock or even death, highlighting the critical need for the development of rapid and efficient hemostatic materials. While various types of hemostatic materials are currently utilized in clinical practice, they often come with limitations such as poor biocompatibility, toxicity, and biodegradability. Polysaccharides, such as alginate (AG), chitosan (CS), cellulose, starch, hyaluronic acid (HA), and dextran, have exhibit excellent biocompatibility and in vivo biodegradability. Their degradation products are non-toxic to surrounding tissues and can be absorbed by the body. As a result, polysaccharides have been extensively utilized in the development of hemostatic materials and have gained significant attention in the field of in vivo hemostasis. This review offers an overview of the different forms, hemostatic mechanisms, and specific applications of polysaccharides. Additionally, it discusses the future opportunities and challenges associated with polysaccharide-based hemostats.
Collapse
Affiliation(s)
- Yan Fang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Wei Guo
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Peng Ni
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China.
| | - Haiqing Liu
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| |
Collapse
|
6
|
Guo J, Zhao Y, Peng G, Ye T, Zhu X, Li R, Shen J, Du L, Wang S, Meng Z, Gan H, Gu R, Sun W, Dou G, Liu S, Sun Y. Development of bovine serum albumin-modified Fe 3O 4 embedded in porous α-ketoglutaric acid/chitosan (BSA/Fe 3O 4@KA/CS): A magnetically targeted hemostatic dressing for deep and irregular wounds. Int J Biol Macromol 2024; 272:132923. [PMID: 38848835 DOI: 10.1016/j.ijbiomac.2024.132923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/06/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Severe bleeding from deep and irregular wounds poses a significant challenge in prehospital and surgical settings. To address this issue, we developed a novel chitosan-based hemostatic dressing with a magnetic targeting mechanism using Fe3O4, termed bovine serum albumin-modified Fe3O4 embedded in porous α-ketoglutaric acid/chitosan (BSA/Fe3O4@KA/CS). This dressing enhances hemostasis by magnetically guiding the agent to the wound site. In vitro, the hemostatic efficacy of BSA/Fe3O4@KA/CS is comparable to that of commercial chitosan (Celox™) and is not diminished by the modification. In vivo, BSA/Fe3O4@KA/CS demonstrated superior hemostatic performance and reduced blood loss compared to Celox™. The hemostatic mechanism of BSA/Fe3O4@KA/CS includes the concentration of solid blood components through water absorption, adherence to blood cells, and activation of the endogenous coagulation pathway. Magnetic field targeting is crucial in directing the dressing to deep hemorrhagic sites. Additionally, safety assessments have confirmed the biocompatibility and biodegradability of BSA/Fe3O4@KA/CS. In conclusion, we introduce a novel approach to modify chitosan using magnetic guidance for effective hemostasis, positioning BSA/Fe3O4@KA/CS as a promising candidate for managing various wounds.
Collapse
Affiliation(s)
- Jinnan Guo
- Beijing Institute of Radiation Medicine, Taiping Road, No.27 Courtyard, Haidian District, Beijing 100850, China; School of Pharmacy, Henan University, Jinming Campus, Longting District, Kaifeng 475004, China
| | - Yuanyuan Zhao
- Beijing Institute of Radiation Medicine, Taiping Road, No.27 Courtyard, Haidian District, Beijing 100850, China; School of Pharmacy, Anhui Medical University, Hefei 230000, China
| | - Guanqun Peng
- Beijing Institute of Radiation Medicine, Taiping Road, No.27 Courtyard, Haidian District, Beijing 100850, China; School of Life Science, Hebei University, 180 Wusi East Road, Baoding 071002, China
| | - Tong Ye
- Beijing Institute of Radiation Medicine, Taiping Road, No.27 Courtyard, Haidian District, Beijing 100850, China
| | - Xiaohui Zhu
- Beijing Institute of Radiation Medicine, Taiping Road, No.27 Courtyard, Haidian District, Beijing 100850, China
| | - Runtian Li
- Beijing Institute of Radiation Medicine, Taiping Road, No.27 Courtyard, Haidian District, Beijing 100850, China
| | - Jintao Shen
- Beijing Institute of Radiation Medicine, Taiping Road, No.27 Courtyard, Haidian District, Beijing 100850, China
| | - Lina Du
- Beijing Institute of Radiation Medicine, Taiping Road, No.27 Courtyard, Haidian District, Beijing 100850, China
| | - Shanshan Wang
- Beijing Institute of Radiation Medicine, Taiping Road, No.27 Courtyard, Haidian District, Beijing 100850, China
| | - Zhiyun Meng
- Beijing Institute of Radiation Medicine, Taiping Road, No.27 Courtyard, Haidian District, Beijing 100850, China
| | - Hui Gan
- Beijing Institute of Radiation Medicine, Taiping Road, No.27 Courtyard, Haidian District, Beijing 100850, China
| | - Ruolan Gu
- Beijing Institute of Radiation Medicine, Taiping Road, No.27 Courtyard, Haidian District, Beijing 100850, China
| | - Wenzhong Sun
- Beijing Institute of Radiation Medicine, Taiping Road, No.27 Courtyard, Haidian District, Beijing 100850, China
| | - Guifang Dou
- Beijing Institute of Radiation Medicine, Taiping Road, No.27 Courtyard, Haidian District, Beijing 100850, China; School of Pharmacy, Henan University, Jinming Campus, Longting District, Kaifeng 475004, China.
| | - Shuchen Liu
- Beijing Institute of Radiation Medicine, Taiping Road, No.27 Courtyard, Haidian District, Beijing 100850, China; School of Pharmacy, Anhui Medical University, Hefei 230000, China; School of Life Science, Hebei University, 180 Wusi East Road, Baoding 071002, China.
| | - Yunbo Sun
- Beijing Institute of Radiation Medicine, Taiping Road, No.27 Courtyard, Haidian District, Beijing 100850, China; School of Pharmacy, Anhui Medical University, Hefei 230000, China; School of Life Science, Hebei University, 180 Wusi East Road, Baoding 071002, China.
| |
Collapse
|
7
|
Ren Z, Li M, Wang F, Qiao J, Kaya MGA, Tang K. Antibacterial chitosan-based composite sponge with synergistic hemostatic effect for massive haemorrhage. Int J Biol Macromol 2023; 252:126344. [PMID: 37586621 DOI: 10.1016/j.ijbiomac.2023.126344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 08/02/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Uncontrollable acute bleeding and wound infection pose significant challenges in emergency treatment and surgical operations. Therefore, the research and development of highly efficient antibacterial hemostatic agents are of great importance in reducing the mortality rate among patients with massive hemorrhage. In this study, we utilized hydrophobically modified chitosan (HM-CS) and gallic acid chitosan (GA-CS) to create a composite sponge (HM/GA-CS) that exhibits complementary advantages. The composite sponge combines the alkyl chain and polyphenol structure, allowing it to adsorb blood cells and plasma proteins simultaneously. This synergistic effect was confirmed through various tests, including blood cell adhesion, plasma protein barrier behavior, and in vitro hemostatic testing. Furthermore, experiments conducted on a rat liver injury model demonstrated that the composite sponge achieved rapid coagulation within 52 s, resulting in significantly lower bleeding volume compared with traditional gauze. In addition, the incorporation of GA-CS into HM-CS enhanced the antibacterial properties of the composite sponge. The antibacterial rate of the composite sponge against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) reached 100 % and 98.2 %, respectively. To evaluate its biocompatibility, the composite sponge underwent blood compatibility and cell activity tests, confirming its suitability. The HM/GA-CS sponge holds promising applications in managing cases of massive hemorrhage.
Collapse
Affiliation(s)
- Zhitao Ren
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Mengya Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Fang Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Jialu Qiao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Mǎdǎlina Georgiana Albu Kaya
- Collagen Department, INCDTP-Leather and Footwear Research Institute, 93 Ion Minulescu, Bucharest 031215, Romania
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
8
|
Liu S, Yu Q, Guo R, Chen K, Xia J, Guo Z, He L, Wu Q, Liu L, Li Y, Zhang B, Lu L, Sheng X, Zhu J, Zhao L, Qi H, Liu K, Yin L. A Biodegradable, Adhesive, and Stretchable Hydrogel and Potential Applications for Allergic Rhinitis and Epistaxis. Adv Healthc Mater 2023; 12:e2302059. [PMID: 37610041 DOI: 10.1002/adhm.202302059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Indexed: 08/24/2023]
Abstract
Bioadhesive hydrogels have attracted considerable attention as innovative materials in medical interventions and human-machine interface engineering. Despite significant advances in their application, it remains critical to develop adhesive hydrogels that meet the requirements for biocompatibility, biodegradability, long-term strong adhesion, and efficient drug delivery vehicles in moist conditions. A biocompatible, biodegradable, soft, and stretchable hydrogel made from a combination of a biopolymer (unmodified natural gelatin) and stretchable biodegradable poly(ethylene glycol) diacrylate is proposed to achieve durable and tough adhesion and explore its use for convenient and effective intranasal hemostasis and drug administration. Desirable hemostasis efficacy and enhanced therapeutic outcomes for allergic rhinitis are accomplished. Biodegradation enables the spontaneous removal of materials without causing secondary damage and minimizes medical waste. Preliminary trials on human subjects provide an essential foundation for practical applications. This work elucidates material strategies for biodegradable adhesive hydrogels, which are critical to achieving robust material interfaces and advanced drug delivery platforms for novel clinical treatments.
Collapse
Affiliation(s)
- Shengnan Liu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Qianru Yu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Rui Guo
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Kuntao Chen
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Jiao Xia
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhenhu Guo
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Lu He
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Qian Wu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Lan Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yunxuan Li
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Bozhen Zhang
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Lin Lu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Jiahua Zhu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lingyun Zhao
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Hui Qi
- Laboratory of Musculoskeletal Regenerative Medicine, Beijing Institute of Traumatology and Orthopaedics, Beijing, 100035, China
| | - Ke Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- Beijing Clinical Research Institute, Beijing, 100050, China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
9
|
Nepal A, Tran HD, Nguyen NT, Ta HT. Advances in haemostatic sponges: Characteristics and the underlying mechanisms for rapid haemostasis. Bioact Mater 2023; 27:231-256. [PMID: 37122895 PMCID: PMC10130630 DOI: 10.1016/j.bioactmat.2023.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 05/02/2023] Open
Abstract
In traumatized patients, the primary cause of mortality is uncontrollable continuous bleeding and unexpected intraoperative bleeding which is likely to increase the risk of complications and surgical failure. High expansion sponges are effective clinical practice for the treatment of wound bleeding (irregular/deep/narrow) that are caused by capillaries, veins and even arterioles as they possess a high liquid absorption ratio so can absorb blood platelets easily in comparison with traditional haemostasis treatments, which involve compression, ligation, or electrical coagulation etc. When in contact with blood, haemostatic sponges can cause platelet adhesion, aggregation, and thrombosis, preventing blood from flowing out from wounds, triggering the release of coagulation factors, causing the blood to form a stable polymerized fibre protein, forming blood clots, and achieving the goal of wound bleeding control. Haemostatic sponges are found in a variety of shapes and sizes. The aim of this review is to facilitate an overview of recent research around haemostatic sponge materials, products, and technology. This paper reviews the synthesis, properties, and characteristics of haemostatic sponges, together with the haemostasis mechanisms of haemostatic sponges (composite materials), such as chitosan, cellulose, gelatin, starch, graphene oxide, hyaluronic acid, alginate, polyethylene glycol, silk fibroin, synthetic polymers silver nanoparticles, zinc oxide nanoparticles, mesoporous silica nanoparticles, and silica nanoparticles. Also, this paper reviews commercial sponges and their properties. In addition to this, we discuss various in-vitro/in-vivo approaches for the evaluation of the effect of sponges on haemostasis.
Collapse
Affiliation(s)
- Akriti Nepal
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Huong D.N. Tran
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Nam-Trung Nguyen
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Hang Thu Ta
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, 4072, Australia
- Bioscience Discipline, School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
- Corresponding author. Bioscience Department, School of Environment and Science, Griffith University, Nathan Campus, Brisbane, QLD, 4111, Australia..
| |
Collapse
|
10
|
Zhang X, Liu K, Qin M, Lan W, Wang L, Liang Z, Li X, Wei Y, Hu Y, Zhao L, Lian X, Huang D. Abundant tannic acid modified gelatin/sodium alginate biocomposite hydrogels with high toughness, antifreezing, antioxidant and antibacterial properties. Carbohydr Polym 2023; 309:120702. [PMID: 36906367 DOI: 10.1016/j.carbpol.2023.120702] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/04/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
The acidity of high tannic acid (TA) content solution can destroy the structure of protein, such as gelatin (G). This causes a big challenge to introduce abundant TA into the G-based hydrogels. Here, the G-based hydrogel system with abundant TA as hydrogen bonds provider was constructed by a "protective film" strategy. The protective film around the composite hydrogel was first formed by the chelation of sodium alginate (SA) and Ca2+. Subsequently, abundant TA and Ca2+ were successively introduced into the hydrogel system by immersing method. This strategy effectively protected the structure of the designed hydrogel. After treatment with 0.3 w/v TA and 0.06 w/v Ca2+ solutions, the tensile modulus, elongation at break and toughness of G/SA hydrogel increased about 4-, 2-, and 6-fold, respectively. Besides, G/SA-TA/Ca2+ hydrogels exhibited good water retention, anti-freezing, antioxidant, antibacterial properties and low hemolysis ratio. Cell experiments showed that G/SA-TA/Ca2+ hydrogels possessed good biocompatibility and could promote cell migration. Therefore, G/SA-TA/Ca2+ hydrogels are expected to be used in the field of biomedical engineering. The strategy proposed in this work also provides a new idea for improving the properties of other protein-based hydrogels.
Collapse
Affiliation(s)
- Xiumei Zhang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China
| | - Kejun Liu
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Miao Qin
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China
| | - Weiwei Lan
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China
| | - Longfei Wang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China
| | - Ziwei Liang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China
| | - Xiaochun Li
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China
| | - Yinchun Hu
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China
| | - Liqin Zhao
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China
| | - Xiaojie Lian
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China.
| |
Collapse
|
11
|
Andrabi SM, Kumar A. A kaolin/calcium incorporated shape memory and antimicrobial chitosan-dextran based cryogel as an efficient haemostatic dressing for uncontrolled hemorrhagic wounds. BIOMATERIALS ADVANCES 2023; 150:213424. [PMID: 37068405 DOI: 10.1016/j.bioadv.2023.213424] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023]
Abstract
Increased mortalities associated with uncontrolled and excessive bleeding is still of paramount concern in the clinics, caregivers and military medics. Herein, we designed a shape memory cryogel based on chitosan (C) and functionalized-dextran (D), incorporated with Kaolin (K) and calcium (Ca2+) as haemostatic agents. The developed cryogel (CDKCa) exhibits a uniform interconnected porous architecture with profound fluid absorption ability, rapid blood clotting, stable clot formation and good antibacterial activity. The CDKCa elucidates significantly less clotting time (~30 s; in-vitro) and increased aggregation and activation of platelets/red blood cells in comparison to the control groups and commercial dressings (Axiostat and QuikClot). The developed CDKCa also significantly reduced the aPTT and PT values by ~58 % and 31 % respectively, leading to the activation of intrinsic and extrinsic coagulation cascades. The CDKCa cryogel displays enhanced mechanical stability, flexibility and a good shape memory, a property quintessential to cease uncontrolled bleeding in irregular and non-compressible wounds. Further, the Kaolin and Ca2+ incorporated shape memory CDKCa cryogel demonstrates a rapid blood coagulation and stable clot formation in different compressible and non-compressible rat liver and femur hemorrhagic models. In summary, the endorsed results of CDKCa suggest that the design, fabrication and excellent clotting ability may attribute to high haemostatic efficiency of CDKCa dressing and have a great potential to prevent uncontrollable hemorrhages.
Collapse
Affiliation(s)
- Syed Muntazir Andrabi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Center for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Centre of Excellence, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India.
| |
Collapse
|
12
|
Xie H, Shi G, Wang R, Chen Q, Yu A, Lu A. Euryale ferox stem-inspired anisotropic quaternized cellulose/xanthan-based antibacterial sponge with high absorbency and compressibility for noncompressible hemorrhage. Int J Biol Macromol 2023; 237:124166. [PMID: 36965567 DOI: 10.1016/j.ijbiomac.2023.124166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/01/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
Uncontrollable hemorrhage from deep noncompressible wounds remains an intractable challenge. Herein, inspired by the euryale ferox stem which is capable of transporting water and nutrient substances efficiently along longitudinally aligned channels, an anisotropic sponge with rapidly liquid absorption capacity, excellent mechanical compressibility and antibacterial property based on quaternized cellulose (QC), xanthan gum (XG) and reduced graphene oxide (rGO), was constructed. The euryale ferox stem-like structure and multiple interactions, involving hydrogen bonding, electrostatic interaction and chemical crosslinking, endowed the sponge with excellent fatigue resistance, elasticity and efficient liquid absorption capacity. In vivo rat liver injury, tail amputation and liver noncompressible hemorrhage model experiments confirmed that the sponge exhibited superior hemostatic performance than commercial gelatin sponge, attributing to the positive charge, efficient absorption capacity and rough surface of the sponge, which synergistically promoting the aggregation and activation of red blood cells and platelets as well as formation of fibrin network, leading to accelerated blood coagulation process. Besides, the sponge showed favorable cytocompatibility, hemocompatibility and antibacterial property. Overall, the bioinspired sponge had fantastic potential for controlling deep noncompressible hemorrhage and providing a new idea for designing hemostatic materials.
Collapse
Affiliation(s)
- Hongxia Xie
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430072, PR China
| | - Ge Shi
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Ruizi Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Qianqian Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430072, PR China
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China.
| | - Ang Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430072, PR China.
| |
Collapse
|
13
|
Guo W, Zhao B, Shafiq M, Yu X, Shen Y, Cui J, Chen Y, Cai P, Yuan Z, EL-Newehy M, EL-Hamshary H, Morsi Y, Sun B, Pan J, Mo X. On the development of modular polyurethane-based bioelastomers for rapid hemostasis and wound healing. Regen Biomater 2023; 10:rbad019. [PMID: 36969314 PMCID: PMC10038391 DOI: 10.1093/rb/rbad019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/24/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
Massive hemorrhage may be detrimental to the patients, which necessitates the advent of new materials with high hemostatic efficiency and good biocompatibility. The objective of this research was to screen for the effect of the different types of bio-elastomers as hemostatic dressings. 3D loose nanofiber sponges were prepared; PU-TA/Gel showed promising potential. Polyurethane (PU) was synthesized and electrospun to afford porous sponges, which were crosslinked with glutaraldehyde (GA). FTIR and 1H-NMR evidenced the successful synthesis of PU. The prepared PU-TA/Gel sponge had the highest porosity and water absorption ratio. Besides, PU-TA/Gel sponges exhibited cytocompatibility, negligible hemolysis and the shortest clotting time. PU-TA/Gel sponge rapidly induced stable blood clots with shorter hemostasis time and less bleeding volume in a liver injury model in rats. Intriguingly, PU-TA/Gel sponges also induced good skin regeneration in a full-thickness excisional defect model as revealed by the histological analysis. These results showed that the PU-TA/Gel-based sponges may offer an alternative platform for hemostasis and wound healing.
Collapse
Affiliation(s)
- Wanxin Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201620, P.R. China
| | - Binan Zhao
- Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Putuo, Shanghai 200065, China
| | - Muhammad Shafiq
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, Fukuoka 819-0395, Japan
| | - Xiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201620, P.R. China
| | - Yihong Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201620, P.R. China
| | - Jie Cui
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201620, P.R. China
| | - Yujie Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201620, P.R. China
| | - Pengfei Cai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201620, P.R. China
| | - Zhengchao Yuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201620, P.R. China
| | - Mohamed EL-Newehy
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hany EL-Hamshary
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yosry Morsi
- Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Boroondara, VIC 3122, Australia
| | - Binbin Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201620, P.R. China
| | - Jianfeng Pan
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Jingan, Shanghai 200072, China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201620, P.R. China
| |
Collapse
|
14
|
Sun Y, Miao T, Wang Y, Wang X, Lin J, Zhao N, Hu Y, Xu FJ. A natural polyphenol-functionalized chitosan/gelatin sponge for accelerating hemostasis and infected wound healing. Biomater Sci 2023; 11:2405-2418. [PMID: 36799455 DOI: 10.1039/d2bm02049a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Natural polymers have been particularly appealing for constructing hemostatic materials/devices, but it is still desirable to develop new natural polymer-based biomaterials with balanced hemostatic and wound-healing performance. In this work, a natural polyphenol-functionalized chitosan/gelatin sponge (PCGS) was prepared by the lyophilization of a chitosan/gelatin mixture solution (under a self-foaming condition to prepare the CGS) and subsequent chemical cross-linking with procyanidin (PC). Compared with the original CGS, PCGS exhibited an enhanced liquid-absorption ability, reduced surface charges, and similar/low hemolysis rate. Benefiting from such a liquid-absorption ability (∼4000% for whole blood and normal saline) and moderate surface charges, PCGS exhibited high in vitro hemostatic property and promising hemostatic performance in an in vivo femoral-artery-injury model. In addition, PCGS possessed higher antioxidant property and slightly decreased antibacterial ability than CGS, owing to the incorporation of PC. The feasibility of PCGS for treating infected wounds was further confirmed in an in vivo infected-tooth-extraction model, as the typical complication of intractable tooth-extraction bleeding. The present work demonstrated a facile approach for developing multifunctional hemostatic materials through the flexible management of natural polymers and polyphenols.
Collapse
Affiliation(s)
- Yujie Sun
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Tengfei Miao
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China. .,College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yu Wang
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China. .,College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiaochen Wang
- Shandong Center for Food and Drug Evaluation & Inspection, Jinan 250014, China
| | - Jie Lin
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China. .,College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Nana Zhao
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China. .,College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yang Hu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China. .,College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Fu-Jian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China. .,College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
15
|
Fabrication and Characterization of Electrospun Poly(Caprolactone)/Tannic Acid Scaffold as an Antibacterial Wound Dressing. Polymers (Basel) 2023; 15:polym15030593. [PMID: 36771894 PMCID: PMC9921954 DOI: 10.3390/polym15030593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Antibacterial wound dressings are promising materials to treat infected skin wounds, which greatly affect the wound-healing process. In this study, tannic acid (TA), a natural antibacterial agent, was successfully loaded by electrospinning into poly(caprolactone) (PCL) fibers in a high concentration. It is suggested that the addition of TA was beneficial for producing uniform and continuous PCL nanofibers. Hydrogen bonds existed between the PCL and TA molecules based on the analysis of FTIR spectra and DSC results. The interactions and continuous network improved the mechanical properties of the scaffolds. Meanwhile, increasing the amount of TA also enhanced the hydrophilicity and water absorption capacity of the scaffold, both of which are beneficial for accelerating wound healing. Moreover, a burst release of the TA in the initial stage and a controlled, steady release behavior over time contributed to the highly antibacterial properties of the PCL/TA scaffolds. The fabrication of the composite scaffold supplies a facile, efficient, and controllable approach to address the issue of antibacterial treatment in wound dressing.
Collapse
|
16
|
Xie H, Chen B, Lin H, Li R, Shen L, Yu G, Yang L. Efficient oil-water emulsion treatment via novel composite membranes fabricated by CaCO 3-based biomineralization and TA-Ti(IV) coating strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159183. [PMID: 36202361 DOI: 10.1016/j.scitotenv.2022.159183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Continuous increasing discharge of industrial oily wastewater and frequent occurrence of oil spill accidents have taken heavy tolls on global environment and human health. Organic-inorganic modifications can fabricate superhydrophilic/submerged superoleophobic membranes for efficient oil-water separation/treatment though they still suffer from complex operation, non-environmental friendliness, expensive cost or uneven distribution. Herein, a new strategy regarding tannic acid (TA)-Ti(IV) coating and CaCO3-based biomineralization through simple inkjet printing processes was proposed to modify polyvinylidene fluoride (PVDF) membrane, endowing the membrane with high hydrophilicity (water contact angle (WCA) decreased from 86.01° to 14.94°) and underwater superoleophobicity (underwater contact angle (UOCA) > 155°). The optimized TA-Ti(IV)-CaCO3 modified membrane possessed perfect water permeation to various oil/water emulsions (e.g., 355.7 L·m-2·h-1 for gasoline emulsion) under gravity with superior separation efficiency (>98.8 %), leading the way in oil/water emulsion separation performance of PVDF membranes modified with polyphenolic surfaces to our knowledge. Moreover, the modified membrane displayed rather high flux recovery after eight cycles of filtration while maintaining the original excellent separation efficiency. The modification process proposed in this study is almost independent of the nature of the substrate, and meets the demand for simple, inexpensive, rapid preparation of highly hydrophilic antifouling membranes, showing abroad application prospect for oil-water emulsion separation/treatment.
Collapse
Affiliation(s)
- Hongli Xie
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Binghong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Genying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Lining Yang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
17
|
A high-protein retained PES hemodialysis membrane with tannic acid as a multifunctional modifier. Colloids Surf B Biointerfaces 2022; 220:112921. [DOI: 10.1016/j.colsurfb.2022.112921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022]
|
18
|
Lu X, Li X, Yu J, Ding B. Nanofibrous hemostatic materials: Structural design, fabrication methods, and hemostatic mechanisms. Acta Biomater 2022; 154:49-62. [PMID: 36265792 DOI: 10.1016/j.actbio.2022.10.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/16/2022] [Accepted: 10/12/2022] [Indexed: 12/14/2022]
Abstract
Development of rapid and effective hemostatic materials has always been the focus of research in the healthcare field. Nanofibrous materials which recapitulate the delicate nano-topography feature of fibrin fibers produced during natural hemostatic process, offer large length-to-diameter ratio and surface area, tunable porous structure, and precise control in architecture, showing great potential for staunching bleeding. Here we present a comprehensive review of advances in nanofibrous hemostatic materials, focusing on the following three important parts: structural design, fabrication methods, and hemostatic mechanisms. This review begins with an introduction to the physiological hemostatic mechanism and current commercial hemostatic agents. Then, it focuses on recent progress in electrospun nanofibrous hemostatic materials in terms of composition and structure control, surface modification, and in-situ deposition. The article emphasizes the development of three-dimensional (3D) electrospun nanofibrous materials and their emerging evolution for improving hemostatic function. Next, it discusses the fabrication of self-assembling peptide or protein-mimetic peptide nanofibers, co-assembling supramolecular nanofibers, as well as other nanofibrous hemostatic agents. Further, the article highlights the external and intracavitary hemostatic management based on various nanofiber aggregates. In the end, this review concludes with the current challenges and future perspectives of nanofibrous hemostatic materials. STATEMENT OF SIGNIFICANCE: This article reviews recent advances in nanofibrous hemostatic materials including fabrication methods, composition and structural control, performance improvement, and hemostatic mechanisms. A variety of methods including electrospinning, self-assembly, grinding and refining, template synthesis, and chemical vapor deposition, have been developed to prepare nanofibrous materials. These methods provide robustness in control of the nanofiber architecture in the forms of hydrogels, two-dimensional (2D) membranes, 3D sponges, or composites, showing promising potential in the external and intracavitary hemostasis and wound healing applications. This review will be of great interest to the broad readers in the field of hemostatic materials and multifunctional biomaterials.
Collapse
Affiliation(s)
- Xuyan Lu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xiaoran Li
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
19
|
Silk Fibroin/Tannin/ZnO Nanocomposite Hydrogel with Hemostatic Activities. Gels 2022; 8:gels8100650. [PMID: 36286151 PMCID: PMC9601499 DOI: 10.3390/gels8100650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
The inevitable bleeding and infections caused by disasters and accidents are the main causes of death owing to extrinsic trauma. Hemostatic agents are often used to quickly suppress bleeding and infection, and they can solve this problem in a short time. Silk fibroin (SF) has poor processibility in water, owing to incomplete solubility therein. In this study, aiming to overcome this disadvantage, a modified silk fibroin (SF-BGE), easily soluble in water, was prepared by introducing butyl glycidyl ether (BGE) into its side chain. Subsequently, a small amount of tannic acid (TA) was introduced to prepare an SF-BGE /TA solution, and ZnO nanoparticles (NPs) were added to the solution to form the coordination bonds between the ZnO and TA, leading to an SF-based nanocomposite hydrogel. A structural characterization of the SF-BGE, SF-BGE/TA, SF-BGE/TA/ZnO, and the coordination bonds between ZnO/TA was observed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and the phase change was observed by rheological measurements. The pore formation of the SF-BGE/TA/ZnO hydrogel and dispersibility of ZnO were verified through energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM). The cytocompatible and hemostatic performances of the SF-BGE/TA/ZnO NPs composite hydrogels were evaluated, and the hydrogels showed superior hemostatic and cytocompatible activities. Therefore, the SF-based nanocomposite hydrogel is considered as a promising material for hemostasis.
Collapse
|
20
|
Lu B, Hu E, Xie R, Yu K, Lu F, Bao R, Wang C, Lan G, Dai F. Microcluster colloidosomes for hemostat delivery into complex wounds: A platform inspired by the attack action of torpedoes. Bioact Mater 2022; 16:372-387. [PMID: 35415282 PMCID: PMC8965855 DOI: 10.1016/j.bioactmat.2022.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/08/2021] [Accepted: 01/02/2022] [Indexed: 12/11/2022] Open
Abstract
Complex yet lethal wounds with uncontrollable bleeding hinder conventional hemostats from clotting blood at the source or deep sites of injury vasculature, thereby causing massive blood loss and significantly increased mortality. Inspired by the attack action of torpedoes, we synthesized microcluster (MC) colloidosomes equipped with magnetic-mediated navigation and "blast" systems to deliver hemostats into the cavity of vase-type wounds. CaCO3/Fe2O3 (CF) microparticles functionalized with Arg-Gly-Asp (RGD) modified polyelectrolyte multilayers were co-assembled with oppositely charged zwitterionic carbon dots (CDs) to form MC colloidosomes, which were loaded with thrombin and protonated tranexamic acid (TXA-NH3 +). The composite microparticles moved against blood flow under magnetic mediation and simultaneously disassembled for the burst release of thrombin stimulated by TXA-NH3 +. The CO2 bubbles generated during disassembly produced a "blast" that propelled thrombin into the wound cavity. Severe bleeding in a vase-type hemorrhage model in the rabbit liver was rapidly controlled within ∼60 s. Furthermore, in vivo subcutaneous muscle and liver implantation models demonstrated excellent biodegradability of MC colloidosomes. This study is the first to propose a novel strategy based on the principle of torpedoes for transporting hemostats into vase-type wounds to achieve rapid hemostasis, creating a new paradigm for combating trauma treatment.
Collapse
Affiliation(s)
- Bitao Lu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Enling Hu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Ruiqi Xie
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Kun Yu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Fei Lu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Rong Bao
- The Ninth People's Hospital of Chongqing No. 69 Jialing Village, BeiBei District, Chongqing, 400715, China
| | - Chenhui Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing, 401331, China
| | - Guangqian Lan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
- Corresponding author. State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China.
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
- Corresponding author. State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
21
|
Mechanically strong all-chitin filaments: Wet-spinning of β-chitin nanofibers in aqueous NaOH. Int J Biol Macromol 2022; 222:3243-3249. [DOI: 10.1016/j.ijbiomac.2022.10.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
22
|
Chitin-glucan composite sponge hemostat with rapid shape-memory from Pleurotus eryngii for puncture wound. Carbohydr Polym 2022; 291:119553. [DOI: 10.1016/j.carbpol.2022.119553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022]
|
23
|
Eissa RA, Saafan HA, Ali AE, Ibrahim KM, Eissa NG, Hamad MA, Pang C, Guo H, Gao H, Elsabahy M, Wooley KL. Design of nanoconstructs that exhibit enhanced hemostatic efficiency and bioabsorbability. NANOSCALE 2022; 14:10738-10749. [PMID: 35866631 DOI: 10.1039/d2nr02043b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hemorrhage is a prime cause of death in civilian and military traumatic injuries, whereby a significant proportion of death and complications occur prior to paramedic arrival and hospital resuscitation. Hence, it is crucial to develop hemostatic materials that are able to be applied by simple processes and allow control over bleeding by inducing rapid hemostasis, non-invasively, until subjects receive necessary medical care. This tutorial review discusses recent advances in synthesis and fabrication of degradable hemostatic nanomaterials and nanocomposites. Control of assembly and fine-tuning of composition of absorbable (i.e., degradable) hemostatic supramolecular structures and nanoconstructs have afforded the development of smart devices and scaffolds capable of efficiently controlling bleeding while degrading over time, thereby reducing surgical operation times and hospitalization duration. The nanoconstructs that are highlighted have demonstrated hemostatic efficiency pre-clinically in animal models, while also sharing characteristics of degradability, bioabsorbability and presence of nano-assemblies within their compositions.
Collapse
Affiliation(s)
- Rana A Eissa
- School of Biotechnology and Science Academy, Badr University in Cairo, Badr City, Cairo 11829, Egypt.
| | - Hesham A Saafan
- School of Biotechnology and Science Academy, Badr University in Cairo, Badr City, Cairo 11829, Egypt.
| | - Aliaa E Ali
- Department of Chemistry, University of Turku, Vatselankatu 2, 20014 Turku, Finland
| | - Kamilia M Ibrahim
- Department of Pharmacology, Faculty of Pharmacy, Ain Shams University, Cairo 11561, Egypt
| | - Noura G Eissa
- School of Biotechnology and Science Academy, Badr University in Cairo, Badr City, Cairo 11829, Egypt.
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mostafa A Hamad
- Department of Surgery, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Ching Pang
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Texas A&M University, College Station, Texas 77842, USA.
| | - Hongming Guo
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Texas A&M University, College Station, Texas 77842, USA.
| | - Hui Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.
| | - Mahmoud Elsabahy
- School of Biotechnology and Science Academy, Badr University in Cairo, Badr City, Cairo 11829, Egypt.
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Texas A&M University, College Station, Texas 77842, USA.
- Misr University for Science and Technology, 6th of October City, Cairo 12566, Egypt
| | - Karen L Wooley
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Texas A&M University, College Station, Texas 77842, USA.
| |
Collapse
|
24
|
Bai L, Liu L, Esquivel M, Tardy BL, Huan S, Niu X, Liu S, Yang G, Fan Y, Rojas OJ. Nanochitin: Chemistry, Structure, Assembly, and Applications. Chem Rev 2022; 122:11604-11674. [PMID: 35653785 PMCID: PMC9284562 DOI: 10.1021/acs.chemrev.2c00125] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chitin, a fascinating biopolymer found in living organisms, fulfills current demands of availability, sustainability, biocompatibility, biodegradability, functionality, and renewability. A feature of chitin is its ability to structure into hierarchical assemblies, spanning the nano- and macroscales, imparting toughness and resistance (chemical, biological, among others) to multicomponent materials as well as adding adaptability, tunability, and versatility. Retaining the inherent structural characteristics of chitin and its colloidal features in dispersed media has been central to its use, considering it as a building block for the construction of emerging materials. Top-down chitin designs have been reported and differentiate from the traditional molecular-level, bottom-up synthesis and assembly for material development. Such topics are the focus of this Review, which also covers the origins and biological characteristics of chitin and their influence on the morphological and physical-chemical properties. We discuss recent achievements in the isolation, deconstruction, and fractionation of chitin nanostructures of varying axial aspects (nanofibrils and nanorods) along with methods for their modification and assembly into functional materials. We highlight the role of nanochitin in its native architecture and as a component of materials subjected to multiscale interactions, leading to highly dynamic and functional structures. We introduce the most recent advances in the applications of nanochitin-derived materials and industrialization efforts, following green manufacturing principles. Finally, we offer a critical perspective about the adoption of nanochitin in the context of advanced, sustainable materials.
Collapse
Affiliation(s)
- Long Bai
- Key
Laboratory of Bio-based Material Science & Technology (Ministry
of Education), Northeast Forestry University, Harbin 150040, P.R. China
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Liang Liu
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Key Lab of Biomass-Based Green Fuel and Chemicals,
College of Chemical Engineering, Nanjing
Forestry University, 159 Longpan Road, Nanjing 210037, P.R. China
| | - Marianelly Esquivel
- Polymer
Research Laboratory, Department of Chemistry, National University of Costa Rica, Heredia 3000, Costa Rica
| | - Blaise L. Tardy
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
- Department
of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Siqi Huan
- Key
Laboratory of Bio-based Material Science & Technology (Ministry
of Education), Northeast Forestry University, Harbin 150040, P.R. China
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Xun Niu
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Shouxin Liu
- Key
Laboratory of Bio-based Material Science & Technology (Ministry
of Education), Northeast Forestry University, Harbin 150040, P.R. China
| | - Guihua Yang
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of
Sciences, Jinan 250353, China
| | - Yimin Fan
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Key Lab of Biomass-Based Green Fuel and Chemicals,
College of Chemical Engineering, Nanjing
Forestry University, 159 Longpan Road, Nanjing 210037, P.R. China
| | - Orlando J. Rojas
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|
25
|
Optimization of Chitin Nanofiber Preparation by Ball Milling as Filler for Composite Resin. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6070197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chitin nanofiber is a nanomaterial produced by pulverizing chitin, the main component of crab shells. Since it has excellent mechanical properties, it is expected to be used as a reinforcing material to strengthen materials. Chitin was mechanically ground in water using a ball mill to prepare nanofibers. The ball size, total ball weight, and milling time were varied, and the resulting water dispersion and the cast film were analyzed to optimize the conditions for efficient preparation. The length and width of the nanofibers were also measured by SEM and AFM observations. The size of the balls affected the level of grinding and the intensity of impact energy on the chitin. The most efficient crushing was achieved when the diameter was 1 mm. The total ball weight directly affects the milling frequency, and milling proceeds as the total weight increases. However, if too many balls occupy the container, the grinding efficiency decreases. Therefore, a total ball weight of 300 g was optimal. Regarding the milling time, the chitin becomes finer depending on the increase of that time. However, after a specific time, the shape did not change much. Therefore, a milling time of approximately 150 min was appropriate.
Collapse
|
26
|
Kang K, Liu Y, Song X, Xu L, Zhang W, Jiao Y, Zhao Y. Hemostatic Performance of ɑ-Chitin/gelatin Composite Sponges with Directional Pore Structure. Macromol Biosci 2022; 22:e2200020. [PMID: 35488361 DOI: 10.1002/mabi.202200020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/19/2022] [Indexed: 11/07/2022]
Abstract
Biomedical materials with effective hemostatic properties are in great demand in clinical and battlefield application for severe hemorrhage control. In this study, nearly amorphous chitin is obtained by treating α-chitin with superfine grinding, and the solubility of chitin in hexafluoro-2-propanol (HFIP) is significantly increased. Chitin and gelatin mixtures are prepared by adding different amount of gelatin to the 8mg ml-1 chitin solution. In the presence water (non-solvent), the mixtures are gelled as HFIP is replaced by water, and chitin/gelatin composite sponges with directional pore structure are prepared by directional freeze drying of the hydrogel. The structure, porosity, liquid absorbing capacity, biodegradability, and hemostatic properties of the sponges with different ratios of gelatin are investigated. The results show that the sponge with the mass ratio of chitin/gelatin of 1:1 is potential hemostatic material with high absorbing capacity, hemocompatibility, and the best hemostatic performance. The in vivo study demonstrates that hemostatic time of the composite sponge (73 s) is much shorter than of that of gauze (193 s), chitin sponge (132s) as well as gelatin sponge (116 s) in rat femoral artery injury model. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kai Kang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.,School of Materials science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yunen Liu
- Shenyang Medical College, No.146 Huanghe North Street, Shenyang, 110034, China
| | - Xiaoqiang Song
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.,School of Materials science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lei Xu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Wenchang Zhang
- Jihua Laboratory, No.28 Island Ring South Road, Guicheng Street, Foshan, Guangdong, 528200, China
| | - Yilai Jiao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yan Zhao
- Jihua Laboratory, No.28 Island Ring South Road, Guicheng Street, Foshan, Guangdong, 528200, China
| |
Collapse
|
27
|
Yang X, Yang J, Ye Z, Zhang G, Nie W, Cheng H, Peng M, Zhang K, Liu J, Zhang Z, Shi J. Physiologically Inspired Mucin Coated Escherichia coli Nissle 1917 Enhances Biotherapy by Regulating the Pathological Microenvironment to Improve Intestinal Colonization. ACS NANO 2022; 16:4041-4058. [PMID: 35230097 DOI: 10.1021/acsnano.1c09681] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The delivery of probiotics to the microbiota is a promising method to prevent and treat diseases. However, oral probiotics will suffer from gastrointestinal insults, especially the pathological microenvironment of inflammatory diseases such as reactive oxygen species (ROS) and the exhausted mucus layer, which can limit their survival and colonization in the intestinal tract. Inspired by the fact that probiotics colonized and grew in the mucus layer under physiological conditions, we developed a strategy for a super probiotic (EcN@TA-Ca2+@Mucin) coated with tannic acid and mucin via layer-by-layer technology. We demonstrated that mucin endows probiotics with superior resistance to the harsh environment of the gastrointestinal tract and with strong adhesiveness to the intestine through its interaction with mucus, which enhanced colonization and growth of probiotics in the mucus layer without removing the coating. Moreover, EcN@TA-Ca2+@Mucin can distinctly down-regulate inflammation with ROS scavenging and reduce the side effects of bacterial translocation in inflammatory bowel diseases, increasing the abundance and diversity of the gut microflora. We envision that it is a powerful platform to improve the colonization of probiotics by regulating the pathological microenvironment, which is expected to provide an important perspective for applying the intestinal colonization of probiotics to treat a variety of diseases.
Collapse
Affiliation(s)
- Xinyuan Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
| | - Jiali Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
| | - Zihan Ye
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Guizhen Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
| | - Weimin Nie
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
| | - Hui Cheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
| | - Mengyun Peng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, PR China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, PR China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, PR China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450001, PR China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, PR China
| |
Collapse
|
28
|
Abstract
Uncontrolled bleeding is a major problem in trauma and emergency medicine. While materials for trauma applications would certainly find utility in traditional surgical settings, the unique environment of emergency medicine introduces additional design considerations, including the need for materials that are easily deployed in austere environments. Ideally, these materials would be available off the shelf, could be easily transported, and would be able to be stored at room temperature for some amount of time. Both natural and synthetic materials have been explored for the development of hemostatic materials. This review article provides an overview of classes of materials used for topical hemostats and newer developments in the area of injectable hemostats for use in emergency medicine. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Aryssa Simpson
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA; .,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Anita Shukla
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, Rhode Island, USA
| | - Ashley C Brown
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA; .,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
29
|
A New Calcium(II)-Based Substitute for Enrofloxacin with Improved Medicinal Potential. Pharmaceutics 2022; 14:pharmaceutics14020249. [PMID: 35213984 PMCID: PMC8878047 DOI: 10.3390/pharmaceutics14020249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/23/2021] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
Enrofloxacin (EFX) reacting with Ca(II) afforded a new complex, [Ca(EFX)2(H2O)4] (EFX-Ca), which was structurally characterized both in solid and solution chemistry. E. coli and S. typhi were tested to be the most sensitive strains for EFX-Ca. The LD50 value of EFX-Ca in mice was 7736 mg/kg, implying the coordination of EFX to Ca(II) effectively reduced its acute toxicity. EFX-Ca also decreased the plasma-binding rate and enhanced the drug distribution in rats along with longer elimination half-life. EFX-Ca also showed similar low in vivo acute toxicity and higher anti-inflammation induced by H2O2 or CuSO4 in zebrafish, with reactive oxygen species (ROS)-related elimination. The therapeutic effects of EFX-Ca on two types (AA and 817) of E. coli-infected broilers were also better than those of EFX, with cure rates of 78% and 88%, respectively. EFX-Ca showed promise as a bio-safe metal-based veterinary drug with good efficacy and lower toxicity.
Collapse
|
30
|
Yu H, Wan Y, Zhang G, Huang X, Lin L, Zhou C, Jiao Y, Li H. Blood compatibility evaluations of two-dimensional Ti 3C 2T xnanosheets. Biomed Mater 2021; 17. [PMID: 34937009 DOI: 10.1088/1748-605x/ac45ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/22/2021] [Indexed: 11/11/2022]
Abstract
Two-dimensional (2D) nanomaterial Ti3C2Tx is a novel biomaterial used for medical apparatus. For its application, biosafety serves as a prerequisite for their use in vivo. So far, no research has systematically reported how Ti3C2Tx interacts with various components in the blood. In this work, we evaluated the hemocompatibility of Ti3C2Tx nanosheets which we prepared by HF etching. Effects of the concentration and size of Ti3C2Tx on the morphology and hemolysis rate of human red blood cells (RBCs), the structure and conformation of plasma proteins, the complement activation, as well as in vitro blood coagulation were studied. In general, Ti3C2Tx takes on good blood compatibility, but in the case of high concentration (>30 μg/mL) and "Small size" (about 100 nm), it led to the rupture of RBCs membrane and a higher rate of hemolysis. Meanwhile, platelets and complement were inclined to be activated with the increased concentration, accompanying the changed configuration of plasma proteins dependent on concentration. Surprisingly, the presence of Ti3C2Tx did not significantly disrupt the coagulation. In vitro cell culture, the results prove that when the Ti3C2Tx concentration is as high as 60μg/mL and still has good biological safety. By establishing a fuzzy mathematical model, it was proved that the hemocompatibility of Ti3C2Tx is more concentration-dependent than size-dependent, and the hemolysis rate is the most sensitive to the size and concentration of the Ti3C2Tx. These findings provide insight into the potential use of Ti3C2Tx as biofriendly nanocontainers for biomaterials in vivo.
Collapse
Affiliation(s)
- Hongbo Yu
- Jinan University, Jinan University, Guangzhou, 510632, CHINA
| | - Yi Wan
- Department of Materials Science and Engineering, Jinan University, Jinan University, Guangzhou, 510632, CHINA
| | - Guiyin Zhang
- Department of Materials Science and Engineering, Jinan University, Jinan University, Guangzhou, 510632, CHINA
| | - Xiuhong Huang
- Department of Materials Science and Engineering, Jinan University, Jinan University, Guangzhou, 510632, CHINA
| | - Lichen Lin
- Department of Materials Science and Engineering, Jinan University, Jinan University, Guangzhou, 510632, CHINA
| | - Changren Zhou
- Jinan University, Guangzhou 510632, PR China, Guangzhou, Guangdong, 510632, CHINA
| | - Yanpeng Jiao
- Department of Materials Science and Engineering, Jinan University, Guangzhou, Guangzhou, Guangdong, 510632, CHINA
| | - Hong Li
- Department of Materials Science and Engineering, Jinan University, Jinan University, Guangzhou, 510632, CHINA
| |
Collapse
|
31
|
Wu K, Wu X, Guo J, Jiao Y, Zhou C. Facile Polyphenol-Europium Assembly Enabled Functional Poly(l-Lactic Acid) Nanofiber Mats with Enhanced Antioxidation and Angiogenesis for Accelerated Wound Healing. Adv Healthc Mater 2021; 10:e2100793. [PMID: 34346184 DOI: 10.1002/adhm.202100793] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Burns, trauma, surgery and chronic diabetic ulcers are the most common reasons causing skin wounds in clinic. Thus, developing a functional wound dressing has been an imperative issue. Herein, functional wound dressing (poly(l-lactic acid) PLLA-((tanic acid (TA)/europium (Eu))n ) is fabricated through a facile polyphenol-europium ion assembly to ameliorate wound microenvironment via scavenging excessive reactive oxygen species (ROS) and promoting angiogenesis. The physicochemical characterization indicates that the multicycle assembled TA/Eu is uniformly deposited on PLLA-(TA/Eu)n nanofiber mats surface. In vitro 2,2-diphenyl-1-picrylhydrazyl (DPPH) antioxidant tests display good antioxidant ability by scavenging more than 75% ROS, and significantly increasing the antioxidant enzyme levels in vivo. Cytocompatibility experiments illustrate that PLLA-(TA/Eu)n nanofiber mats can promote the adhesion and proliferation of human umbilical vein endothelial cells (HUVECs) and L929 cells. Meanwhile, real-time quantitative polymerase chain reaction (PCR) (RT-qPCR) and western blot assays illustrate that it can stimulate proangiogenesis by elevating the expression of angiogenesis-related genes and proteins. In vivo Sprague-Dawley (SD) rats experiments indicate that PLLA-(TA/Eu)n nanofiber mats can significantly promote wound healing by improving both angiogenesis and antioxidant activity. Taken together, the functional PLLA-(TA/Eu)n nanofiber mats can offer significant promise as wound dressing for accelerated wound healing.
Collapse
Affiliation(s)
- Keke Wu
- Department of Materials Science and Engineering Jinan University Guangzhou 510632 China
- Department of Histology and Embryology School of Basic Medical Sciences Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases The Third Affiliated Hospital of Southern Medical University Southern Medical University Guangzhou 510515 China
| | - Xiaoxian Wu
- Instrumental Analysis and Research Center South China Agricultural University Guangzhou 510642 China
| | - Jinshan Guo
- Department of Histology and Embryology School of Basic Medical Sciences Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases The Third Affiliated Hospital of Southern Medical University Southern Medical University Guangzhou 510515 China
| | - Yanpeng Jiao
- Department of Materials Science and Engineering Jinan University Guangzhou 510632 China
| | - Changren Zhou
- Department of Materials Science and Engineering Jinan University Guangzhou 510632 China
| |
Collapse
|
32
|
ŞAHİNER M, SAGBAS SUNER S. Quercetin particles with lower inhibitory activity for α-glycosidase and negligible effects on blood clotting. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.825868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
33
|
Polyphenols: A Promising Avenue in Therapeutic Solutions for Wound Care. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031230] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In chronic wounds, the regeneration process is compromised, which brings complexity to the therapeutic approaches that need to be adopted, while representing an enormous loss in the patients’ quality of life with consequent economical costs. Chronic wounds are highly prone to infection, which can ultimately lead to septicemia and morbidity. Classic therapies are increasing antibiotic resistance, which is becoming a critical problem beyond complex wounds. Therefore, it is essential to study new antimicrobial polymeric systems and compounds that can be effective alternatives to reduce infection, even at lower concentrations. The biological potential of polyphenols allows them to be an efficient alternative to commercial antibiotics, responding to the need to find new options for chronic wound care. Nonetheless, phenolic compounds may have some drawbacks when targeting wound applications, such as low stability and consequent decreased biological performance at the wound site. To overcome these limitations, polymeric-based systems have been developed as carriers of polyphenols for wound healing, improving its stability, controlling the release kinetics, and therefore increasing the performance and effectiveness. This review aims to highlight possible smart and bio-based wound dressings, providing an overview of the biological potential of polyphenolic agents as natural antimicrobial agents and strategies to stabilize and deliver them in the treatment of complex wounds. Polymer-based particulate systems are highlighted here due to their impact as carriers to increase polyphenols bioavailability at the wound site in different types of formulations.
Collapse
|