1
|
de Barros MC, de Oliveira APS, dos Santos FG, Silva FAC, Menezes TM, Seabra GDM, Yoneda JS, Coelho LCBB, Macedo MLR, Napoleão TH, Lima TDA, Neves JL, Paiva PMG. Carbohydrate-Binding Mechanism of the Coagulant Lectin from Moringa oleifera Seeds (cMoL) Is Related to the Dimeric Protein Structure. Molecules 2024; 29:4615. [PMID: 39407546 PMCID: PMC11477877 DOI: 10.3390/molecules29194615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
This study characterized the binding mechanisms of the lectin cMoL (from Moringa oleifera seeds) to carbohydrates using spectroscopy and molecular dynamics (MD). The interaction with carbohydrates was studied by evaluating lectin fluorescence emission after titration with glucose or galactose (2.0-11 mM). The Stern-Volmer constant (Ksv), binding constant (Ka), Gibbs free energy (∆G), and Hill coefficient were calculated. After the urea-induced denaturation of cMoL, evaluations were performed using fluorescence spectroscopy, circular dichroism (CD), and hemagglutinating activity (HA) evaluations. The MD simulations were performed using the Amber 20 package. The decrease in Ksv revealed that cMoL interacts with carbohydrates via a static mechanism. The cMoL bound carbohydrates spontaneously (ΔG < 0) and presented a Ka on the order of 102, with high selectivity for glucose. Protein-ligand complexes were stabilized by hydrogen bonds and hydrophobic interactions. The Hill parameter (h~2) indicated that the binding occurs through the cMoL dimer. The loss of HA at urea concentrations at which the fluorescence and CD spectra indicated protein monomerization confirmed these results. The MD simulations revealed that glucose bound to the large cavity formed between the monomers. In conclusion, the biotechnological application of cMoL lectin requires specific methods or media to improve its dimeric protein structure.
Collapse
Affiliation(s)
- Matheus Cavalcanti de Barros
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.C.d.B.); (L.C.B.B.C.); (T.H.N.); (T.d.A.L.); (P.M.G.P.)
| | - Ana Patrícia Silva de Oliveira
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.C.d.B.); (L.C.B.B.C.); (T.H.N.); (T.d.A.L.); (P.M.G.P.)
| | - Franciane Gonçalves dos Santos
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (F.G.d.S.); (T.M.M.); (J.L.N.)
| | | | - Thais Meira Menezes
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (F.G.d.S.); (T.M.M.); (J.L.N.)
| | - Gustavo de Miranda Seabra
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainseville, FL 32611, USA;
| | - Juliana Sakamoto Yoneda
- Laboratório Nacional de Luz Síncrotron, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-100, SP, Brazil;
| | | | - Maria Lígia Rodrigues Macedo
- Departamento de Tecnologia de Alimentos e da Saúde, Faculdade de Ciências Farmacêuticas, Alimentos e 22 Nutrição, Universidade Federal do Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil;
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.C.d.B.); (L.C.B.B.C.); (T.H.N.); (T.d.A.L.); (P.M.G.P.)
| | - Thâmarah de Albuquerque Lima
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.C.d.B.); (L.C.B.B.C.); (T.H.N.); (T.d.A.L.); (P.M.G.P.)
| | - Jorge Luiz Neves
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (F.G.d.S.); (T.M.M.); (J.L.N.)
| | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.C.d.B.); (L.C.B.B.C.); (T.H.N.); (T.d.A.L.); (P.M.G.P.)
| |
Collapse
|
2
|
Bektas S, Kaptan E. Microbial lectins as a potential therapeutics for the prevention of certain human diseases. Life Sci 2024; 346:122643. [PMID: 38614308 DOI: 10.1016/j.lfs.2024.122643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Lectins are protein or glycoprotein molecules with a specific ability to bind to carbohydrates. From viruses to mammals, they are found in various organisms and exhibit remarkable diverse structures and functions. They are significant contributors to defense mechanisms against microbial attacks in plants. They are also involved in functions such as controlling lymphocyte migration, regulating glycoprotein biosynthesis, cell-cell recognition, and embryonic development in animals. In addition, lectins serve as invaluable molecular tools in various biological and medical disciplines due to their reversible binding ability and enable the monitoring of cell membrane changes in physiological and pathological contexts. Microbial lectins, often referred to as adhesins, play an important role in microbial colonization, pathogenicity, and interactions among microorganisms. Viral lectins are located in the bilayered viral membrane, whereas bacterial lectins are found intracellularly and on the bacterial cell surface. Microfungal lectins are typically intracellular and have various functions in host-parasite interaction, and in fungal growth and morphogenesis. Although microbial lectin studies are less extensive than those of plants and animals, they provide insights into the infection mechanisms and potential interventions. Glycan specificity, essential functions in infectious diseases, and applications in the diagnosis and treatment of viral and bacterial infections are critical aspects of microbial lectin research. In this review, we will discuss the application and therapeutic potential of viral, bacterial and microfungal lectins.
Collapse
Affiliation(s)
- Suna Bektas
- Institute of Graduate Studies in Sciences, Istanbul University, Istanbul 34116, Turkey.
| | - Engin Kaptan
- Istanbul University, Faculty of Science Department of Biology, 34134 Vezneciler, Istanbul, Turkey.
| |
Collapse
|
3
|
Saad MH, Sidkey NM, El-Fakharany EM. Characterization and optimization of exopolysaccharide extracted from a newly isolated halotolerant cyanobacterium, Acaryochloris Al-Azhar MNE ON864448.1 with antiviral activity. Microb Cell Fact 2024; 23:117. [PMID: 38644470 PMCID: PMC11034128 DOI: 10.1186/s12934-024-02383-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/01/2024] [Indexed: 04/23/2024] Open
Abstract
Several antiviral agents lost their efficacy due to their severe side effects and virus mutations. This study aimed to identify and optimize the conditions for exopolysaccharide (EPS) production from a newly isolated cyanobacterium, Acaryochloris Al-Azhar MNE ON864448.1, besides exploring its antiviral activity. The cyanobacterial EPS was purified through DEAE-52 cellulose column with a final yield of 83.75%. Different analysis instruments were applied for EPS identification, including Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), and gas chromatographic-mass spectrometry (GC-MS). Plackett-Burman's design demonstrated that working volume (X1), EDTA (X2), inoculum size (X3), CaCl2 (X4), and NaCl (X5) are the most important variables influencing EPS production. Central composite design (CCD) exhibited maximum EPS yield (9.27 mg/mL) at a working volume of 300 mL in a 1 L volumetric flask, EDTA 0.002 g/L, inoculum size 7%, CaCl2 0.046 g/L, and NaCl 20 g/L were applied. EPS showed potent antiviral activities at different stages of herpes simplex virus type-1 and 2 (HSV-1, HSV-2), adenovirus (ADV) and coxsackievirus (A16) infections. The highest half-maximal inhibitory concentration (IC50) (6.477 µg/mL) was recorded during HSV-1 internalization mechanism, while the lowest IC50 (0.005669 µg/mL) was recorded during coxsackievirus neutralization mechanism.
Collapse
Affiliation(s)
- Mabroka H Saad
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Alexandria, Egypt
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Nagwa M Sidkey
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Alexandria, Egypt.
- Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al Arab, Alexandria, Egypt.
| |
Collapse
|
4
|
Febriansah R, Hertiani T, Widada J, Taher M, Damayanti E, Mustofa M. Isolation of active compounds from Streptomyces sennicomposti GMY01 and cytotoxic activity on breast cancer cells line. Heliyon 2024; 10:e24195. [PMID: 38293453 PMCID: PMC10826645 DOI: 10.1016/j.heliyon.2024.e24195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
The occurrence of resistance to anticancer and the emergence of serious side effects due to chemotherapy is one of the main problems in cancer treatment, including breast cancer. The need for effective anticancer with a specific target is urgently required. Streptomyces are widely known as the potential producers of new anticancer molecules. Previously reported that the methanol extract of Streptomyces sennicomposti GMY01 isolated from Krakal Coast, Gunungkidul had very strong cytotoxic activity against MCF-7 and T47D breast cancer cells with IC50 values of 0.6 and 1.3 μg/mL, respectively. The following study aimed to isolate and identify active compounds of the S. sennicomposti GMY01 and evaluate its cytotoxic activity. The study was started by re-culturing and re-fermented optimization of S. sennicomposti GMY01 in a larger volume, then the bacteria were extracted using methanol following the bioassay-guided isolation of the extract obtained. The active compounds obtained were then structurally determined using UV/Vis spectroscopy, Fourier Transform-Infrared (FT-IR), Liquid Chromatography-Mass Spectroscopy (LC-MS), 1H NMR, and 13C NMR and analyzed for their cytotoxic activity using MTT assay on MCF-7 and normal Vero cells line. The results showed that the culture of the S. sennicomposti GMY01 using Starch Nitrate Broth (SNB) media yields the best results compared to other culture media. An active anticancer compound namely mannotriose was successfully isolated from the methanol extract with an IC50 value of 5.6 μg/mL and 687 μg/mL against the MCF-7 and Vero cells lines, respectively, indicating that this compound showed strong cytotoxic activity with high selectivity.
Collapse
Affiliation(s)
- Rifki Febriansah
- School of Pharmacy, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Yogyakarta, Indonesia
| | - Triana Hertiani
- Pharmacognosy and Phytochemistry Laboratory, Pharmaceutical Biology Department, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia 55281
| | - Jaka Widada
- Department of Agricultural Microbiology, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, Indonesia 55281
| | - Muhammad Taher
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Malaysia
| | - Ema Damayanti
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gunungkidul, Yogyakarta, Indonesia 55681
| | - Mustofa Mustofa
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia 55281
| |
Collapse
|
5
|
Hao C, Xu Z, Xu C, Yao R. Anti-herpes simplex virus activities and mechanisms of marine derived compounds. Front Cell Infect Microbiol 2024; 13:1302096. [PMID: 38259968 PMCID: PMC10800978 DOI: 10.3389/fcimb.2023.1302096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Herpes simplex virus (HSV) is the most widely prevalent herpes virus worldwide, and the herpetic encephalitis and genital herpes caused by HSV infection have caused serious harm to human health all over the world. Although many anti-HSV drugs such as nucleoside analogues have been ap-proved for clinical use during the past few decades, important issues, such as drug resistance, toxicity, and high cost of drugs, remain unresolved. Recently, the studies on the anti-HSV activities of marine natural products, such as marine polysaccharides, marine peptides and microbial secondary metabolites are attracting more and more attention all over the world. This review discusses the recent progress in research on the anti-HSV activities of these natural compounds obtained from marine organisms, relating to their structural features and the structure-activity relationships. In addition, the recent findings on the different anti-HSV mechanisms and molecular targets of marine compounds and their potential for therapeutic application will also be summarized in detail.
Collapse
Affiliation(s)
- Cui Hao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhongqiu Xu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Laboratory of Marine Drugs of Ministry of Education, Ocean University of China, Qingdao, China
| | - Can Xu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Laboratory of Marine Drugs of Ministry of Education, Ocean University of China, Qingdao, China
| | - Ruyong Yao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Graikini D, Soro AB, Sivagnanam SP, Tiwari BK, Sánchez L. Bioactivity of Fucoidan-Rich Extracts from Fucus vesiculosus against Rotavirus and Foodborne Pathogens. Mar Drugs 2023; 21:478. [PMID: 37755091 PMCID: PMC10532486 DOI: 10.3390/md21090478] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Marine algae are sources of bioactive components with defensive properties of great value against microbial infections. This study investigated the bioactivity of extracts from brown algae Fucus vesiculosus against rotavirus, the worldwide leading cause of acute gastroenteritis in infants and young children. Moreover, one of the extracts was tested against four foodborne bacteria: Campylobacter jejuni, Escherichia coli, Salmonella Typhimurium, and Listeria monocytogenes, and the non-pathogenic: E. coli K12. In vitro tests using MA104 cells revealed that both whole algae extracts and crude fucoidan precipitates neutralized rotavirus in a dose-responsive manner. The maximum neutralization activity was observed when the rotavirus was incubated with 100 μg mL-1 of the hydrochloric acid-obtained crude fucoidan (91.8%), although crude fucoidan extracted using citric acid also demonstrated high values (89.5%) at the same concentration. Furthermore, molecular weight fractionation of extracts decreased their antirotaviral activity and high molecular weight fractions exhibited higher activity compared to those of lower molecular weight. A seaweed extract with high antirotaviral activity was also found to inhibit the growth of C. jejuni, S. Typhimurium, and L. monocytogenes at a concentration of 0.2 mg mL-1. Overall, this study expands the current knowledge regarding the antimicrobial mechanisms of action of extracts from F. vesiculosus.
Collapse
Affiliation(s)
- Dimitra Graikini
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - Arturo B. Soro
- Foodborne Pathogens Unit, Department of Infectious Diseases in Humans, Sciensano, 1050 Brussels, Belgium;
- Teagasc Ashtown Food Research Centre, D15 DY05 Dublin, Ireland; (S.P.S.); (B.K.T.)
| | - Saravana P. Sivagnanam
- Teagasc Ashtown Food Research Centre, D15 DY05 Dublin, Ireland; (S.P.S.); (B.K.T.)
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12P928 Cork Ireland
| | - Brijesh K. Tiwari
- Teagasc Ashtown Food Research Centre, D15 DY05 Dublin, Ireland; (S.P.S.); (B.K.T.)
| | - Lourdes Sánchez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| |
Collapse
|
7
|
Perera RMTD, Herath KHINM, Sanjeewa KKA, Jayawardena TU. Recent Reports on Bioactive Compounds from Marine Cyanobacteria in Relation to Human Health Applications. Life (Basel) 2023; 13:1411. [PMID: 37374193 DOI: 10.3390/life13061411] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
The ocean is a valuable natural resource that contains numerous biologically active compounds with various bioactivities. The marine environment comprises unexplored sources that can be utilized to isolate novel compounds with bioactive properties. Marine cyanobacteria are an excellent source of bioactive compounds that have applications in human health, biofuel, cosmetics, and bioremediation. These cyanobacteria exhibit bioactive properties such as anti-inflammatory, anti-cancer, anti-bacterial, anti-parasitic, anti-diabetic, anti-viral, antioxidant, anti-aging, and anti-obesity effects, making them promising candidates for drug development. In recent decades, researchers have focused on isolating novel bioactive compounds from different marine cyanobacteria species for the development of therapeutics for various diseases that affect human health. This review provides an update on recent studies that explore the bioactive properties of marine cyanobacteria, with a particular focus on their potential use in human health applications.
Collapse
Affiliation(s)
- R M T D Perera
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana 10206, Sri Lanka
| | - K H I N M Herath
- Department of Bio-Systems Engineering, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makandura 60170, Sri Lanka
| | - K K Asanka Sanjeewa
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana 10206, Sri Lanka
| | - Thilina U Jayawardena
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| |
Collapse
|
8
|
Sharaf MH, Nagiub AM, Salem SS, Kalaba MH, El Fakharany EM, Abd El-Wahab H. A new strategy to integrate silver nanowires with waterborne coating to improve their antimicrobial and antiviral properties. PIGMENT & RESIN TECHNOLOGY 2023; 52:490-501. [DOI: 10.1108/prt-12-2021-0146] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Purpose
This study aims to focus on the preparation and characterization of the silver nanowire (AgNWs), as well as their application as antimicrobial and antivirus activities either with incorporation on the waterborne coating formulation or on their own.
Design/methodology/approach
Prepared AgNWs are characterized by different analytical instruments, such as ultraviolet-visible spectroscope, scanning electron microscope and X-ray diffraction spectrometer. All the paint formulation's physical and mechanical qualities were tested using American Society for Testing and Materials, a worldwide standard test procedure. The biological activities of the prepared AgNWs and the waterborne coating based on AgNWs were investigated. And, their effects on pathogenic bacteria, antioxidants, antiviral activity and cytotoxicity were also investigated.
Findings
The obtained results of the physical and mechanical characteristics of the paint formulation demonstrated the formulations' greatest performance, as well as giving good scrub resistance and film durability. In the antimicrobial activity, the paint did not have any activity against bacterial pathogen, whereas the AgNWs and AgNWs with paint have similar activity against bacterial pathogen with inhibition zone range from 10 to 14 mm. The development of antioxidant and cytotoxicity activity of the paint incorporated with AgNWs were also observed. The cytopathic effects of herpes simplex virus type 1 (HSV-1) were reduced in all three investigated modes of action when compared to the positive control group (HSV-1-infected cells), suggesting that these compounds have promising antiviral activity against a wide range of viruses, including DNA and RNA viruses.
Originality/value
The new waterborne coating based on nanoparticles has the potential to be promising in the manufacturing and development of paints, allowing them to function to prevent the spread of microbial infection, which is exactly what the world requires at this time.
Collapse
|
9
|
Singh U, Gandhi HA, Bhattacharya J, Tandon R, Tiwari GL, Tandon R. Cyanometabolites: molecules with immense antiviral potential. Arch Microbiol 2023; 205:164. [PMID: 37012452 PMCID: PMC10069739 DOI: 10.1007/s00203-023-03514-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
Cyanometabolites are active compounds derived from cyanobacteria that include small low molecular weight peptides, oligosaccharides, lectins, phenols, fatty acids, and alkaloids. Some of these compounds may pose a threat to human and environment. However, majority of them are known to have various health benefits with antiviral properties against pathogenic viruses including Human immunodeficiency virus (HIV), Ebola virus (EBOV), Herpes simplex virus (HSV), Influenza A virus (IAV) etc. Cyanometabolites classified as lectins include scytovirin (SVN), Oscillatoria agardhii agglutinin (OAAH), cyanovirin-N (CV-N), Microcystis viridis lectin (MVL), and microvirin (MVN) also possess a potent antiviral activity against viral diseases with unique properties to recognize different viral epitopes. Studies showed that a small linear peptide, microginin FR1, isolated from a water bloom of Microcystis species, inhibits angiotensin-converting enzyme (ACE), making it useful for the treatment of coronavirus disease 2019 (COVID-19). Our review provides an overview of the antiviral properties of cyanobacteria from the late 90s till now and emphasizes the significance of their metabolites in combating viral diseases, particularly severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has received limited attention in previous publications. The enormous medicinal potential of cyanobacteria is also emphasized in this review, which justifies their use as a dietary supplement to fend off pandemics in future.
Collapse
Affiliation(s)
- Uma Singh
- Department of Botany, University of Allahabad, Prayagraj, 211002, India
| | - Harsh A Gandhi
- Nanobiotechnology Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jaydeep Bhattacharya
- Nanobiotechnology Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - G L Tiwari
- Department of Botany, University of Allahabad, Prayagraj, 211002, India
| | - Richa Tandon
- Department of Botany, S. S. Khanna Girls Degree College, University of Allahabad, Prayagraj, 211003, India.
| |
Collapse
|
10
|
Novel Cytocompatible Chitosan Schiff Base Derivative as a Potent Antibacterial, Antidiabetic, and Anticancer Agent. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023. [DOI: 10.1007/s13369-022-07588-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
AbstractThis study intends to develop a novel bioactive chitosan Schiff base (CTS-SB) derivative via coupling of chitosan (CTS) with 4-((5, 5-dimethyl-3-oxocyclohex-1-en-1-yl) amino) benzene-sulfonamide. The alteration in the chemical structure of CTS-SB was verified using 1H NMR and FT-IR analysis, while the thermal and morphological properties were inspected by TGA and SEM characterization tools, respectively. Ion exchange capacity of the developed CTS-SB derivative recorded a maximal value of 12.1 meq/g compared to 10.1 meq/g for pristine CTS. In addition, antibacterial activity of CTS-SB derivative was greatly boosted against Escherichia coli (E coli) and Staphylococcus aureus (S. aureus) bacteria. Minimum inhibition concentration of CTS-SB derivative was perceived at 50 µg/mL, while the highest concentration (250 µg/mL) could inhibit the growth of S. aureus up to 91%. What’s more, enhanced antidiabetic activity by CTS-SB derivative, which displayed higher inhibitory values of α-amylase (57.9%) and α-glucosidase (63.9%), compared to those of pure CTS (49.8 and 53.4%), respectively Furthermore, cytotoxicity investigation on HepG-2 cell line revealed potential anticancer activity along with good safety margin against primary human skin fibroblasts (HSF cells) and decent cytocompatibility. Collectively, the gained results hypothesized that CTS-SB derivative could be effectively applied as a promising antibacterial, anticancer and antidiabetic agent for advanced biomedical applications.
Collapse
|
11
|
de Arruda MCS, da Silva MROB, Cavalcanti VLR, Brandao RMPC, de Araújo Viana Marques D, de Lima LRA, Porto ALF, Bezerra RP. Antitumor lectins from algae: A systematic review. ALGAL RES 2023. [DOI: 10.1016/j.algal.2022.102962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Naik S, Kumar S. Lectins from plant and algae act as anti-viral against HIV, influenza and coronaviruses. Mol Biol Rep 2022; 49:12239-12246. [PMID: 36138301 PMCID: PMC9510388 DOI: 10.1007/s11033-022-07854-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/11/2022] [Indexed: 10/26/2022]
Abstract
BACKGROUND Carbohydrate-lectin interactions are extremely specific as the lectin is capable of recognising monomeric and oligomeric sugars in a reversible manner. It has been known for a long time that lectins have antibacterial, antifungal, and insecticidal activities. Recently, it has been reported that many lectins can prevent the virus growth by interacting with the viral envelop surface glycoprotein. Spike protein, which is found on the surface of some enveloped viruses, is heavily mannosylated and will have strong affinity for mannose specific lectins. According to the findings, lectins have a high binding affinity for the glycans of the SARS-CoV-2 spike glycoprotein, which contains N-glycosylation sites. As a result, various lectins are being researched and developed as anti-viral agents. RESULTS According to our in silico studies, the amino acid residues Asn487, Tyr489, Gln493, Lys417, and Tyr505 of the receptor binding domain (RBD) of SARS-CoV-2 formed an interaction with the model lectin Lablab purpureus lectin. Similar interaction for SARS-CoV-2 spike protein was observed with Griffithsin lectin (algal source) as well. These observations demonstrate that lectins could be one of the potential molecules for neutralising coronavirus infection. CONCLUSION This review focuses on anti-viral lectins isolated and characterized from plants and algae (last 5 years) and showed anti-viral properties against HIV, Influenza, and coronaviruses.
Collapse
Affiliation(s)
- Sanjay Naik
- Centre for Bio-separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sanjit Kumar
- Centre for Bio-separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
13
|
Nostoc muscorum is a novel source of microalgal lectins with potent antiviral activity against herpes simplex type-1. Int J Biol Macromol 2022; 210:415-429. [PMID: 35504413 DOI: 10.1016/j.ijbiomac.2022.04.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 11/22/2022]
Abstract
In our survey for a new antiviral agent, two types of lectin were purified from Nostoc muscorum using both ion-exchange and affinity columns chromatography. Nostoc muscorum lectins (NMLs) are categorized based on their carbohydrate preference. Nostoc muscorum lectin-1(NML-1) exhibited a strict binding specificity for complex glycoproteins without linked carbohydrates, and the other displayed specificity for α- glycosides mannose polymers (NML-2) and was classified as a glycoprotein with 16.8% linked carbohydrates. NML-1 displayed a single band of 166 kDa on native-PAGE and two bands of 81 kDa and 85 kDa on SDS-PAGE, which confirmed the heterodimeric nature of this lectin. While NML-2 is a 50 kDa glycoprotein composed of 25 kDa subunits. Physical characterization of NML-1 displayed its stability at a higher temperature of 90 °C for 5 min and over a wide pH range (4-9), while MNL-2 displayed stability up to a temperature of 80 °C for 25 min and a pH range of 5-8. NML-1 didn't require metal ions for agglutination activity, while the activity of NML-2 was doubled by manganese ions. The antiviral activity of two lectins was assessed against herpes simplex type-1 (HSV-1) using a plaque assay which revealed that NML-1 inhibited HSV-1 infection at an early stage in contrast to NML-2 which exerted its antiviral effect at the late stage of infection. These results suggest that Nostoc muscorum is a unique lead for antiviral drug discovery as it is a novel source for antiviral lectins with different modes of action.
Collapse
|
14
|
Eliwa EM, Elgammal WE, Sharaf MH, Elsawy MM, Kalaba MH, El‐Fakharany EM, Owda ME, Abd El‐Wahab H. New Gd(I)/Cs(III) complexes of benzil‐based thiocarbohydrazone macrocyclic ligand: Chemical synthesis, characterization, and study their biological effectiveness as antibacterial, antioxidant, and antiviral additives for polyurethane surface coating. Appl Organomet Chem 2022; 36. [DOI: 10.1002/aoc.6689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/04/2022] [Indexed: 11/09/2023]
Abstract
AbstractGerms are transmitted in different ways and remain viable or infectious on metal, glass, wood, fabrics, and plastic surfaces for prolonged periods of time. Thus, sterilizing commonly handled everyday objects and public places with high contamination potential is a major global strategy to combat the spread of pathogenic microorganisms. Consequently, our response is development of durable surface‐active coating embedded with new Gd(I)/Cs(III) complexes that derived from condensation of thiocarbohydrazide and benzil precursors. Chemical structures of these complexes were elucidated by Fourier transform infrared (FTIR), electron impact ionization (EI‐MS), 1H nuclear magnetic resonance (NMR), elemental analysis, and scanning electron microscopy (SEM). Next, the well‐established complexes were physically mixed with wide‐range applicable polyurethane (PU) varnish as potential biocide agents. With laboratory scale, coating material was loaded into stainless steel and wood panels to evaluate the physical and mechanical properties. In comparison with the blank formulation, our additives enhanced the gloss levels of the developed PU from 75 to 80 gloss unit (GU), and the scratch hardness was increased to reach >2 kg. Meanwhile, all the coated films passed the flexibility bend test and showed none flaking in mechanical adhesion test. Consequently, Gd(I) and Cs(III) metal complexes did not show any undesirable side effects on PU coating performance. Concerning biological screening, macrocyclic Gd(I) and Cs(III) complexes as well as the reformulated PU varnish were assayed for their antibacterial, antioxidant, and antiviral activities. Antibacterial activity of the developed PU was slightly increased than the individual treatments of Gd(I)/Cs(III) complexes by 1–2 mm, although the blank PU showed no obvious activity against all the tested bacterial strains. Antiviral overall results indicated that the Gd(I) and Cs(III) complexes demonstrated higher activity than the developed PU samples against ADeno‐7, CV‐B4, and HSV‐1 viruses in all modes of action, and hence these coordinated compounds could be promising virucidal agents with good biocompatibility.
Collapse
Affiliation(s)
- Essam M. Eliwa
- Chemistry department, Faculty of Science (Boys) Al‐Azhar University Cairo Egypt
| | - Walid E. Elgammal
- Chemistry department, Faculty of Science (Boys) Al‐Azhar University Cairo Egypt
| | - Mohamed H. Sharaf
- Botany and Microbiology Department, Faculty of Science (Boys) Al‐Azhar University Cairo Egypt
| | - Maha M. Elsawy
- Chemistry Department, Faculty of Science (Girls) Al‐Azhar University Cairo Egypt
| | - Mohamed H. Kalaba
- Botany and Microbiology Department, Faculty of Science (Boys) Al‐Azhar University Cairo Egypt
| | - Esmail M. El‐Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute City of Scientific Research and Technological Applications (SRTA‐City) New Borg EL‐Arab Egypt
| | - Medhat E. Owda
- Chemistry department, Faculty of Science (Boys) Al‐Azhar University Cairo Egypt
| | - Hamada Abd El‐Wahab
- Chemistry department, Faculty of Science (Boys) Al‐Azhar University Cairo Egypt
| |
Collapse
|
15
|
El-Fakharany EM, Abu-Serie MM, Habashy NH, El-Deeb NM, Abu-Elreesh GM, Zaki S, Abd-EL-Haleem D. Inhibitory Effects of Bacterial Silk-like Biopolymer on Herpes Simplex Virus Type 1, Adenovirus Type 7 and Hepatitis C Virus Infection. J Funct Biomater 2022; 13:17. [PMID: 35225980 PMCID: PMC8883917 DOI: 10.3390/jfb13010017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 01/27/2023] Open
Abstract
Bacterial polymeric silk is produced by Bacillus sp. strain NE and is composed of two proteins, called fibroin and sericin, with several biomedical and biotechnological applications. In the current study and for the first time, the whole bacterial silk proteins were found capable of exerting antiviral effects against herpes simplex virus type-1 (HSV-1), adenovirus type 7 (AD7), and hepatitis C virus (HCV). The direct interaction between bacterial silk-like proteins and both HSV-1 and AD7 showed potent inhibitory activity against viral entry with IC50 values determined to be 4.1 and 46.4 μg/mL of protein, respectively. The adsorption inhibitory activity of the bacterial silk proteins showed a blocking activity against HSV-1 and AD7 with IC50 values determined to be 12.5 and 222.4 ± 1.0 μg/mL, respectively. However, the bacterial silk proteins exhibited an inhibitory effect on HSV-1 and AD7 replication inside infected cells with IC50 values of 9.8 and 109.3 μg/mL, respectively. All these results were confirmed by the ability of the bacterial silk proteins to inhibit viral polymerases of HSV-1 and AD7 with IC50 values of 164.1 and 11.8 μg/mL, respectively. Similarly, the inhibitory effect on HCV replication in peripheral blood monocytes (PBMCs) was determined to be 66.2% at concentrations of 100 μg/mL of the bacterial silk proteins. This antiviral activity against HCV was confirmed by the ability of the bacterial silk proteins to reduce the ROS generation inside the infected cells to be 50.6% instead of 87.9% inside untreated cells. The unique characteristics of the bacterial silk proteins such as production in large quantities via large-scale biofermenters, low costs of production, and sustainability of bacterial source offer insight into its use as a promising agent in fighting viral infection and combating viral outbreaks.
Collapse
Affiliation(s)
- Esmail M. El-Fakharany
- Proteins Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, Alexandria 21934, Egypt
| | - Marwa M. Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, Alexandria 21934, Egypt;
| | - Noha H. Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt;
| | - Nehal M. El-Deeb
- Biopharmacetical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt;
| | - Gadallah M. Abu-Elreesh
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, Alexandria 21934, Egypt; (G.M.A.-E.); (S.Z.); (D.A.-E.-H.)
| | - Sahar Zaki
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, Alexandria 21934, Egypt; (G.M.A.-E.); (S.Z.); (D.A.-E.-H.)
| | - Desouky Abd-EL-Haleem
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, Alexandria 21934, Egypt; (G.M.A.-E.); (S.Z.); (D.A.-E.-H.)
| |
Collapse
|
16
|
El-Maradny YA, El-Fakharany EM, Abu-Serie MM, Hashish MH, Selim HS. Lectins purified from medicinal and edible mushrooms: Insights into their antiviral activity against pathogenic viruses. Int J Biol Macromol 2021; 179:239-258. [PMID: 33676978 DOI: 10.1016/j.ijbiomac.2021.03.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
For thousands of years, fungi have been a valuable and promising source of therapeutic agents for treatment of various diseases. Mushroom is a macrofungus which has been cultivated worldwide for its nutritional value and medicinal applications. Several bioactive molecules were extracted from mushroom such as polysaccharides, lectins and terpenoids. Lectins are carbohydrate-binding proteins with non-immunologic origin. Lectins were classified according to their structure, origin and sugar specificity. This protein has different binding specificity with surface glycan moiety which determines its activity and therapeutic applications. A wide range of medicinal activities such as antitumor, antiviral, antimicrobial, immunomodulatory and antidiabetic were reported from sugar-binding proteins. However, glycan-binding protein from mushroom is not well explored as antiviral agent. The discovery of novel antiviral agents is a public health emergency to overcome the current pandemic and be ready for the upcoming viral pandemics. The mechanism of action of lectin against viruses targets numerous steps in viral life cycle such as viral attachment, entry and replication. This review described the history, classification, purification techniques, structure-function relationship and different therapeutic applications of mushroom lectin. In addition, we focus on the antiviral activity, purification and physicochemical characteristics of some mushroom lectins.
Collapse
Affiliation(s)
- Yousra A El-Maradny
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt; Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt.
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt
| | - Mona H Hashish
- Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Heba S Selim
- Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| |
Collapse
|
17
|
Saad MH, El-Fakharany EM, Salem MS, Sidkey NM. In vitro assessment of dual (antiviral and antitumor) activity of a novel lectin produced by the newly cyanobacterium isolate, Oscillatoria acuminate MHM-632 MK014210.1. J Biomol Struct Dyn 2020; 40:3560-3580. [PMID: 33200676 DOI: 10.1080/07391102.2020.1848632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A novel lectin was purified from newly cyanobacterium isolate, Oscillatoria acuminate MHM-632 MK014210.1 using affinity chromatography with a molecular weight of 120 kDa under native-PAGE and 30 kDa on reducing-PAGE, represented tetramer nature of this lectin. Oscillatorial lectin showed stability at 60 °C for 30 min, pH-dependent, with the highest activities over the pH range of 6-8, and required zinc ions to express its full activity. Oscillatorial lectin is a glycan-binding protein with a neutral carbohydrate content of 7.0% as evaluated by the phenol-sulfuric acid method. Polyols and α- glycosides polymer of mannose sugar or sugars alcohol were completely inhibited oscillatorial lectin with MIC of 0.195 mM, while β-glycosides sugars did not show any inhibition effect. The oscillatorial lectin has anti-proliferative activity against Huh-7 and MCF-7 cancer cells and inhibited their proliferation with EC50 values of 106.75 µg/ml and 254.14 µg/ml, respectively. Besides the anticancer effect, oscillatorial lectin also has potent antiviral activity against HSV-1 in a dose-dependent manner via virions neutralization and inhibition of viral replication with IC50 values of 90.95 ng/ml and 131.3 ng/ml, respectively. The unique carbohydrate affinity of oscillatorial lectin provides insight into its use as a promising candidate in many biotechnological applications, like fighting viral infection and combating cancer disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mabroka H Saad
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt.,Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Marwa S Salem
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Nagwa M Sidkey
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| |
Collapse
|
18
|
Saad MH, El-Fakharany EM, Salem MS, Sidkey NM. The use of cyanobacterial metabolites as natural medical and biotechnological tools: review article. J Biomol Struct Dyn 2020; 40:2828-2850. [PMID: 33164673 DOI: 10.1080/07391102.2020.1838948] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cyanobacteria are photosynthetic, Gram-negative bacteria that are considered one of the most morphologically diverse groups of prokaryotes with a chief role in the global nutrient cycle as they fixed gaseous carbon dioxide and nitrogen to organic materials. Cyanobacteria have significant adaptability to survive in harsh conditions due to they have different metabolic pathways with unique compounds, effective defensive mechanisms, and wide distribution in different habitats. Besides, they are successfully used to face different challenges in several fields, including industry, aquaculture, agriculture, food, dairy products, pollution control, bioenergy, and pharmaceutics. Analysis of 680 publications revealed that nearly 1630 cyanobacterial molecules belong to different families have a wide range of applications in several fields, including cosmetology, agriculture, pharmacology (immunosuppressant, anticancer, antibacterial, antiprotozoal, antifungal, anti-inflammatory, antimalarial, anticoagulant, anti-tuberculosis, antitumor, and antiviral activities) and food industry. In this review, we nearly mentioned 92 examples of cyanobacterial molecules that are considered the most relevant effects related to anti-inflammatory, antioxidant, antimicrobial, antiviral, and anticancer activities as well as their roles that can be used in various biotechnological fields. These cyanobacterial products might be promising candidates for fighting various diseases and can be used in managing viral and microbial infections.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mabroka H Saad
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technology Applications (SRTA-City), New Borg EL Arab, Alexandria, Egypt.,Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technology Applications (SRTA-City), New Borg EL Arab, Alexandria, Egypt
| | - Marwa S Salem
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Nagwa M Sidkey
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| |
Collapse
|