1
|
Xia Q, Hu J, Jiao Z, Wang G, Sun J, Pang X, Ma Y, Huang Y, Liang X, Guo J, Peng C, Jin C, Jia X, Gui S. Exploring the mechanisms of Yang Wei Shu granule for the treatment of chronic atrophic gastritis using UPLC-QTOF-MS/MS, network pharmacology, and cell experimentation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119326. [PMID: 39798675 DOI: 10.1016/j.jep.2025.119326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/25/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic atrophic gastritis (CAG) is a global disease of the digestive system and is an important precancerous lesion in the development of gastric cancer. Yang Wei Shu granule (YWSG), which evolved from the formula "Warm Stomach Soup" of the Jin and Yuan Dynasties in China, is frequently used as a classic herbal compound in the treatment of CAG. However, the active ingredients and mechanisms by which it works are not clear. AIM OF THE STUDY To elucidate the chemical composition of YWSG and investigate the potential mechanisms of YWSG on CAG by composition analysis, network pharmacology and cellular experimental studies. MATERIALS AND METHODS The chemical and blood-entry constituents of YWSG were analyzed by ultra-high performance liquid chromatography-Quadrupole tandem time-of-flight mass spectrometry (UPLC-QTOF-MS/MS). Subsequently, potential targets of YWSG for CAG treatment were identified through utilization of publicly available online resources. The YWSG-component-target-pathway network and protein-protein interaction (PPI) network were constructed using Cytoscape software. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of potential targets was performed using the DAVID database. Finally, a cellular model of lipopolysaccharide (LPS)-activated RAW 264.7 macrophages was established and validated by in vitro experiments. RESULTS A total of 150 compounds in YWSG and 47 blood-entry constituents were identified by using UPLC-QTOF-MS/MS. Based on network pharmacology, a total of 132 target genes were identified as being involved in the therapeutic effect of YWSG on CAG. Network pharmacology and molecular docking results suggest that AKT1, PIK3CA, PTPN11, SRC and STAT3 may be potential targets of YWSG for the treatment of CAG. Cellular experiments showed that the YWSG-containing serum had no cytotoxic effect on RAW264.7 cells and could inhibit nitric oxide (NO) production and the expression of pro-inflammatory factors TNF-α, IL-6, and IL-1β. Additionally, it was observed to promote the expression of the anti-inflammatory factor IL-10 in LPS-stimulated RAW264.7 cells. The immunofluorescence results showed that YWSG treated CAG by inhibiting the PI3K-Akt pathway. CONCLUSIONS The application of UPLC-Q-TOF-MS/MS, network pharmacology and cellular experiments provided elucidation to understand the components and mechanisms of the therapeutic effects of YWSG on CAG, providing useful directions for further research.
Collapse
Affiliation(s)
- Qijun Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Jingjing Hu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Zhiyong Jiao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Guichun Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Jianwen Sun
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Xingyuan Pang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Yuhan Ma
- Hefei China Resources Shenlu Pharmaceutical Co. Ltd, Hefei, 230012, Anhui, China
| | - Yuzhe Huang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, Anhui, China
| | - Xiao Liang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Jian Guo
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, Anhui, China
| | - Chengjun Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, Anhui, China
| | - Cheng Jin
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, Anhui, China.
| | - Xiaoyi Jia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China; Anhui Engineering Research Center for Quality Improvement and Utilization of Genuine Chinese Medicinal Materials, Hefei, 230012, Anhui, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| |
Collapse
|
2
|
Eleroui M, Feki A, Kraiem M, Hamzaoui A, Boujhoud Z, Ibtissem Ben Amara, Kallel H. Physicochemical, structural, and biological properties of novel water-soluble polysaccharide derived from the Tunisian Hammada scoparia plant and its application on beef meat preservation. Heliyon 2024; 10:e39562. [PMID: 39506945 PMCID: PMC11538757 DOI: 10.1016/j.heliyon.2024.e39562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
This work aims to characterize a novel water-soluble polysaccharide from Hammada scoparia leaves named PSP. The Infrared (FT-IR) and nuclear magnetic resonance (NMR) spectra confirmed the presence of different polysaccharide functional bands. The High-Performance Liquid Chromatography (HPLC) analysis identified a heteropolysaccharide composed of two monosaccharides. A semi-crystalline structure of PSP was proved using the X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) analysis. The evaluation of the antioxidant activity revealed an interesting potential to prevent oxidative stress. Additionally, PSP showed interesting functional propreties such as good oil and water retention abilities, higher foaming stability, and higher emulsifying capacity and stability. However, the effect of PSP on the oxidation of lipids in the ground beef meat was established during nine days at 4 °C. Obtained data revealed a significant decrease in malondialdehyde levels, inhibition of metmyoglobin (MetMb) accumulation, and significant inhibition of microbial growth compared with the control sample during storage. Moreover, incorporating PSP in minced meat proved color pH and moisture stability. Overall, the findings in the present study confirmed that PSP could be considered a natural bioactive polymer for food applications.
Collapse
Affiliation(s)
- Malek Eleroui
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, PB 261, Sfax 30 0 0, Tunisia
| | - Amal Feki
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, PB 261, Sfax 30 0 0, Tunisia
| | - Marwa Kraiem
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, PB 261, Sfax 30 0 0, Tunisia
| | - Asma Hamzaoui
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, PB 261, Sfax 30 0 0, Tunisia
| | - Zakaria Boujhoud
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences of Settat, Settat, Morocco
| | - Ibtissem Ben Amara
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, PB 261, Sfax 30 0 0, Tunisia
- Cayenne General Hospital, Emergency Department, Cayenne, 97300, French Guiana
- Tropical Biome and Immunopathology CNRS UMR-9017, Inserm U 1019, Université de, Guyane, French Guiana
| | - Hatem Kallel
- Cayenne General Hospital, Emergency Department, Cayenne, 97300, French Guiana
- Tropical Biome and Immunopathology CNRS UMR-9017, Inserm U 1019, Université de, Guyane, French Guiana
- Intensive Care Unit, Cayenne General Hospital, French Guiana
| |
Collapse
|
3
|
Li C, Liu X, Li J, Lai J, Su J, Zhu B, Gao B, Li Y, Zhao M. Selenomethionine Inhibited HADV-Induced Apoptosis Mediated by ROS through the JAK-STAT3 Signaling Pathway. Nutrients 2024; 16:1966. [PMID: 38931321 PMCID: PMC11206631 DOI: 10.3390/nu16121966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/21/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Adenovirus (HAdV) can cause severe respiratory infections in children and immunocompromised patients. There is a lack of specific therapeutic drugs for HAdV infection, and the study of anti-adenoviral drugs has far-reaching clinical implications. Elemental selenium can play a specific role as an antioxidant in the human immune cycle by non-specifically binding to the amino acid methionine in body proteins. Methods: The antiviral mechanism of selenomethionine was explored by measuring cell membrane status, intracellular DNA status, cytokine secretion, mitochondrial membrane potential, and ROS production. Conclusions: Selenomethionine improved the regulation of ROS-mediated apoptosis by modulating the expression of Jak1/2, STAT3, and BCL-XL, which led to the inhibition of apoptosis. It is anticipated that selenomethionine will offer a new anti-adenoviral therapeutic alternative.
Collapse
Affiliation(s)
- Chuqing Li
- Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China; (C.L.); (X.L.); (J.L.); (J.L.); (J.S.); (B.Z.)
| | - Xia Liu
- Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China; (C.L.); (X.L.); (J.L.); (J.L.); (J.S.); (B.Z.)
| | - Jiali Li
- Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China; (C.L.); (X.L.); (J.L.); (J.L.); (J.S.); (B.Z.)
| | - Jia Lai
- Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China; (C.L.); (X.L.); (J.L.); (J.L.); (J.S.); (B.Z.)
| | - Jingyao Su
- Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China; (C.L.); (X.L.); (J.L.); (J.L.); (J.S.); (B.Z.)
| | - Bing Zhu
- Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China; (C.L.); (X.L.); (J.L.); (J.L.); (J.S.); (B.Z.)
| | - Buyun Gao
- School of Pharmacy, Fudan University, Shanghai 200437, China;
| | - Yinghua Li
- Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China; (C.L.); (X.L.); (J.L.); (J.L.); (J.S.); (B.Z.)
| | - Mingqi Zhao
- Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China; (C.L.); (X.L.); (J.L.); (J.L.); (J.S.); (B.Z.)
| |
Collapse
|
4
|
Liang W, Sun J, Bai G, Qiu D, Li Q, Dong P, Chen Y, Guo F. Codonopsis radix: a review of resource utilisation, postharvest processing, quality assessment, and its polysaccharide composition. Front Pharmacol 2024; 15:1366556. [PMID: 38746010 PMCID: PMC11091420 DOI: 10.3389/fphar.2024.1366556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/28/2024] [Indexed: 05/16/2024] Open
Abstract
Codonopsis radix is the dried root of C. pilosula (Franch.) Nannf., C. pilosula Nannf. var. modesta (Nannf.) L. T. Shen, or C. tangshen Oliv., constitutes a botanical medicine with a profound historical lineage. It encompasses an array of bioactive constituents, including polyacetylenes, phenylpropanoids, alkaloids, triterpenoids, and polysaccharides, conferring upon it substantial medicinal and edible values. Consequently, it has garnered widespread attention from numerous scholars. In recent years, driven by advancements in modern traditional Chinese medicine, considerable strides have been taken in exploring resources utilization, traditional processing, quality evaluation and polysaccharide research of Codonopsis radix. However, there is a lack of systematic and comprehensive reporting on these research results. This paper provides a summary of recent advances in Codonopsis research, identifies existing issues in Codonopsis studies, and offers insights into future research directions. The aim is to provide insights and literature support for forthcoming investigations into Codonopsis.
Collapse
Affiliation(s)
- Wei Liang
- State Key Laboratory of Arid Land Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiachen Sun
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Gang Bai
- State Key Laboratory of Arid Land Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Daiyu Qiu
- State Key Laboratory of Arid Land Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qian Li
- State Key Laboratory of Arid Land Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Pengbin Dong
- State Key Laboratory of Arid Land Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuan Chen
- State Key Laboratory of Arid Land Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fengxia Guo
- State Key Laboratory of Arid Land Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
5
|
Hmood AA, Feki A, Eleroui M, Kammoun I, Kallel R, Boudawara T, Hakim A, Hilali A, Hassouni AO, Suleiman AAJ, Amara IB. Biological activities and wound healing potential of a water-soluble polysaccharide isolated from Glycyrrhiza glabra in Wistar rat. BRAZ J BIOL 2024; 84:e265447. [DOI: 10.1590/1519-6984.265447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract The present study aimed to evaluate the in vitro antibacterial and antioxidant activities and the in vivo wound healing performance of a polysaccharide isolated from Glycyrrhiza glabra named PSG. It was structurally characterized by Fourier transformed infrared (FT-IR) spectroscopy, which confirmed the presence of different polysaccharides functional bands. The antioxidant capacity of PSG was determined in vitro and evaluated in vivo through the examination of wound healing capacity. Thirty two rats were randomly divided into four groups: group I was treated with physiological serum (negative control); group II was treated with “CYTOL CENTELLA®”; group III was treated with glycerol and group IV was treated with polysaccharide. The response to treatments was assessed by macroscopic, histologic, and biochemical parameters. Data revealed that our sample exhibited potential antioxidant activities and accelerated significantly the wound healing process, after ten days of treatment, proved by the higher wound appearance scores and a higher content of collagen confirmed by histological examination, when compared with control and “CYTOL CENTELLA®”. Overall, these findings proved that this polysaccharide isolated from Glycyrrhiza glabra could be considered as a natural bioactive polymer for therapeutic process in wound healing applications.
Collapse
Affiliation(s)
- A. A. Hmood
- Ministry of Health, Iraq; Université de Sfax, Tunisie
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Liu C, Zhang T, Zhao P, Liu S, Li X, Yuan Y. Purification and structural analysis of a novel polysaccharide from Rehmannia Radix Praeparata. Chem Biol Drug Des 2023; 102:514-522. [PMID: 37286527 DOI: 10.1111/cbdd.14261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 06/09/2023]
Abstract
In this paper, the purification, structure, and antioxidant activity of Rehmannia Radix Praeparata polysaccharide (RRPP) were studied. The RRPP was separated using DEAE-52 cellulose and Sephadex G-100. The RRPP consisted of xylose, glucose, rhamnose, galactose, and mannose in ratios of 10.64:5.58:3.52:1.39:1.0. No protein was detected in the RRPP fraction, and the molecular weight of RRPP was about 1.75 × 106 Da. The basic skeleton information was obtained using periodic acid oxidation-Smith degradation, and RRPP contained 1→, 1 → 2, 1 → 3, 1 → 4, 1 → 2,6, 1 → 4,6 or 1 → 6, 1 → 2,3, 1 → 2,3,4, and other glycosidic bonds. Fourier transform infrared spectroscopy also showed that RRPP has both α- and β-glycosidic bonds. The in vitro antioxidant activity test showed that RRPP could potentialize scavenging effect on ABTS+· and its scavenging rate was 91.3%.
Collapse
Affiliation(s)
- Chongying Liu
- School of Pharmacy, Key Laboratory of Traditional Chinese Medicine Basic and New Drug Research of Shaan Xi Province, Shaan Xi University of Chinese Medicine, Xi'an, China
| | - Tingting Zhang
- School of Pharmacy, Key Laboratory of Traditional Chinese Medicine Basic and New Drug Research of Shaan Xi Province, Shaan Xi University of Chinese Medicine, Xi'an, China
| | - Peng Zhao
- School of Pharmacy, Key Laboratory of Traditional Chinese Medicine Basic and New Drug Research of Shaan Xi Province, Shaan Xi University of Chinese Medicine, Xi'an, China
| | - Simei Liu
- School of Pharmacy, Key Laboratory of Traditional Chinese Medicine Basic and New Drug Research of Shaan Xi Province, Shaan Xi University of Chinese Medicine, Xi'an, China
| | - Xinyue Li
- School of Pharmacy, Key Laboratory of Traditional Chinese Medicine Basic and New Drug Research of Shaan Xi Province, Shaan Xi University of Chinese Medicine, Xi'an, China
| | - Yufang Yuan
- School of Pharmacy, Key Laboratory of Traditional Chinese Medicine Basic and New Drug Research of Shaan Xi Province, Shaan Xi University of Chinese Medicine, Xi'an, China
| |
Collapse
|
7
|
Deng S, Fang C, Zhuo R, Jiang Q, Song Y, Yang K, Zhang S, Hao J, Fang R. Maternal Supplementary Tapioca Polysaccharide Iron Improves the Growth Performance of Piglets by Regulating the Active Components of Colostrum and Cord Blood. Animals (Basel) 2023; 13:2492. [PMID: 37570300 PMCID: PMC10417719 DOI: 10.3390/ani13152492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The purpose of this study was to investigate the effect of maternal supplementation with TpFe (tapioca polysaccharide iron) on reproductive performance, colostrum composition, cord blood active components of sows, and growth performance of their nursing piglets. Sixty healthy Duroc × Landrace × Yorkshire sows were randomly assigned to three groups at day 85 of gestation. The experimental diets included a basal diet supplemented with 100 mg/kg FeSO4·H2O (CON group), the basal diet supplemented with 50 mg/kg TpFe (TpFe50 group), and the basal diet supplemented with 100 mg/kg TpFe (TpFe100 group), as calculated by Fe content. The experiment lasted from day 85 of gestation to the end of weaning (day 21 of lactation). Results showed that maternal supplementation with 100 mg/kg TpFe improved (p < 0.05) feed intake during lactation, live births, and birth weight of the litter (alive) and increased (p < 0.05) colostrum IgM (immunoglobulin m), IgA (immunoglobulin A), as well as the IgG levels, while it decreased (p < 0.05) the urea nitrogen and somatic cell count of sows. Moreover, sows in the TpFe100 group had higher (p < 0.05) serum iron levels and IgG. Additionally, maternal supplementation with 100 mg/kg TpFe increased (p < 0.05) iron level, total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-px), catalase (CAT), IgG, red blood cells (RBC), and hemoglobin (Hb) of cord blood, similar with the iron content, T-AOC, GSH-px, IgG, RBC, Hb, hematocrit (HCT), and mean corpuscular volume (MCV) of weaned piglet blood. The diarrhea and mortality rates among the nursing piglets were decreased (p < 0.05), while the average weight at day 21 of age was increased (p < 0.05) in the TpFe100 group. Serum PRL (prolactin) levels of sows exhibited a positive correlation (p < 0.05) with live births. Suckling piglet diarrhea was positively correlated with colostrum urea nitrogen level but negatively correlated with colostrum IgM, IgG, and cord blood Hb content (p < 0.05). The mortality of suckling piglets was negatively correlated with serum iron content and IgM in colostrum, GSH-px, and IgG in cord serum of sows (p < 0.05). The average weight of weaning piglets was positively (p < 0.05) related to colostrum IgM and IgG levels, as well as cord serum RBC counts of sows on day 21. In conclusion, maternal supplementation with TpFe can improve the active components of colostrum and umbilical cord blood and improve the growth performance of suckling piglets.
Collapse
Affiliation(s)
- Shengting Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (C.F.); (R.Z.); (Q.J.); (Y.S.); (K.Y.); (S.Z.); (J.H.)
- Hunan Engineering Research Center of Intelligent Animal Husbandry, Changsha 410128, China
| | - Chengkun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (C.F.); (R.Z.); (Q.J.); (Y.S.); (K.Y.); (S.Z.); (J.H.)
- Hunan Engineering Research Center of Intelligent Animal Husbandry, Changsha 410128, China
| | - Ruiwen Zhuo
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (C.F.); (R.Z.); (Q.J.); (Y.S.); (K.Y.); (S.Z.); (J.H.)
- Hunan Engineering Research Center of Intelligent Animal Husbandry, Changsha 410128, China
| | - Qian Jiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (C.F.); (R.Z.); (Q.J.); (Y.S.); (K.Y.); (S.Z.); (J.H.)
- Hunan Engineering Research Center of Intelligent Animal Husbandry, Changsha 410128, China
| | - Yating Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (C.F.); (R.Z.); (Q.J.); (Y.S.); (K.Y.); (S.Z.); (J.H.)
- Hunan Engineering Research Center of Intelligent Animal Husbandry, Changsha 410128, China
| | - Kaili Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (C.F.); (R.Z.); (Q.J.); (Y.S.); (K.Y.); (S.Z.); (J.H.)
- Hunan Engineering Research Center of Intelligent Animal Husbandry, Changsha 410128, China
| | - Sha Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (C.F.); (R.Z.); (Q.J.); (Y.S.); (K.Y.); (S.Z.); (J.H.)
- Hunan Engineering Research Center of Intelligent Animal Husbandry, Changsha 410128, China
| | - Juanyi Hao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (C.F.); (R.Z.); (Q.J.); (Y.S.); (K.Y.); (S.Z.); (J.H.)
- Hunan Engineering Research Center of Intelligent Animal Husbandry, Changsha 410128, China
| | - Rejun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (C.F.); (R.Z.); (Q.J.); (Y.S.); (K.Y.); (S.Z.); (J.H.)
- Hunan Engineering Research Center of Intelligent Animal Husbandry, Changsha 410128, China
| |
Collapse
|
8
|
Feng Y, Wassie T, Wu Y, Wu X. Advances on novel iron saccharide-iron (III) complexes as nutritional supplements. Crit Rev Food Sci Nutr 2023; 64:10239-10255. [PMID: 37366165 DOI: 10.1080/10408398.2023.2222175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Iron deficiency is prevalent worldwide, and iron supplementation is a promising strategy to address iron needs of the body. However, traditional oral supplements such as ferrous sulfate, ferrous succinate, and ferrous gluconate are absorbed in the form of ferrous ions, leading to lipid peroxidation and side effects due to other reasons. In recent years, saccharide-iron (III) complexes (SICs) as novel iron supplements have aroused attention for the high iron absorption rate and no gastrointestinal irritation at oral doses. In addition, research on the biological activities of SICs revealed that they also exhibited good abilities in treating anemia, eliminating free radicals, and regulating the immune response. This review focused on the preparation, structural characterization, and bioactivities of these new iron supplements, as promising candidates for the prevention and treatment of iron deficiency.
Collapse
Affiliation(s)
- Yingying Feng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Teketay Wassie
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
| | - Yuying Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
| |
Collapse
|
9
|
Xiu W, Wang X, Yu S, Na Z, Li C, Yang M, Ma Y. Structural Characterization, In Vitro Digestion Property, and Biological Activity of Sweet Corn Cob Polysaccharide Iron (III) Complexes. Molecules 2023; 28:molecules28072961. [PMID: 37049724 PMCID: PMC10096156 DOI: 10.3390/molecules28072961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
This study aimed to enhance the utilization value of sweet corn cob, an agricultural cereal byproduct. Sweet corn cob polysaccharide-ron (III) complexes were prepared at four different temperatures (40 °C, 50 °C, 60 °C, and 70 °C). It was demonstrated that the complexes prepared at different temperatures were successfully bound to iron (III), and there was no significant difference in chemical composition; and SCCP-Fe-C demonstrated the highest iron content. The structural characterization suggested that sweet corn cob polysaccharide (SCCP) formed stable β-FeOOH iron nuclei with −OH and −OOH. All the four complexes’ thermal stability was enhanced, especially in SCCP-Fe-C. In vitro iron (III) release experiments revealed that all four complexes were rapidly released and acted as iron (III) supplements. Moreover, in vitro antioxidant, α-glucosidase, and α-amylase inhibition studies revealed that the biological activities of all four complexes were enhanced compared with those of SCCP. SCCP-Fe-B and SCCP-Fe-C exhibited the highest in vitro antioxidant, α-glucosidase, and α-amylase inhibition abilities. This study will suggest using sweet corn cobs, a natural agricultural cereal byproduct, in functional foods. Furthermore, we proposed that the complexes prepared from agricultural byproducts can be used as a potential iron supplement.
Collapse
|
10
|
Zhang Y, Huang J, Sun M, Duan Y, Wang L, Yu N, Peng D, Chen W, Wang Y. Preparation, characterization, antioxidant and antianemia activities of Poria cocos polysaccharide iron (III) complex. Heliyon 2023; 9:e12819. [PMID: 36647359 PMCID: PMC9840143 DOI: 10.1016/j.heliyon.2023.e12819] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
As a new natural antioxidant with high safety and non-toxic side effects, polysaccharide can also be used as a critical macromolecular carrier to form a stable iron complex with Fe3+. Our previous study has extracted and purified the homogeneous polysaccharide (PCP1C) from Poria cocos. In this study, the PCP1C-iron (III) complex was synthesized by co-thermal synthesis with PCP1C and ferric trichloride. The chelating capacity, iron releasing capacity, and qualitative identification of complex were evaluated. The complex was characterized by scanning electron microscope-energy dispersive spectrometer (SEM-EDS) analysis, particle size distribution, and fourier transform infrared (FTIR) spectroscopy. The antioxidant and iron supplement effects of the complex were also studied in vitro and in the iron deficiency anemia (IDA) rat model. The results showed that the iron content in the PCP1C-iron (III) complex was 28.14% with no free iron, and the iron release rate was 95.3%. The structure analysis showed that the iron core of the PCP1C-iron (III) complex existed in the form of β-FeOOH and the surface of the complex become smooth and particle size increased, which indicated the high iron content of polysaccharide iron and slow release. Furthermore, we found that the PCP1C iron (III) complex had positive scavenging effect on DPPH, ABTS, MDA, and hydroxyl radical in vitro study and significantly increased the levels of red blood cell (RBC), Hemoglobin (Hb), and red blood cell specific volume (HCT) in IDA rat model. Therefore, our results suggested that the PCP1C-iron (III) complex is expected to develop into a new comprehensive iron supplement and antioxidant.
Collapse
Affiliation(s)
- Yue Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Jiajing Huang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mingjie Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yuting Duan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China,Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China,Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China,Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China,Corresponding author. School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
| | - Yanyan Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China,Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China,Corresponding author. School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
11
|
Yuan S, Dong PY, Ma HH, Liang SL, Li L, Zhang XF. Antioxidant and Biological Activities of the Lotus Root Polysaccharide-Iron (III) Complex. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207106. [PMID: 36296700 PMCID: PMC9611182 DOI: 10.3390/molecules27207106] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
Abstract
In this study, the synthesis parameters of the lotus root polysaccharide iron complex (LRPF) were determined and optimized by response surface methodology. Under the optimum preparation conditions, the pH of the solution was 9, the ratio of M (trisodium citrate): m (lotus root polysaccharide) was 0.45, the reaction time was 3 h. UV spectroscopy, thermogravimetry, FT-IR spectroscopy, X-ray diffraction, CD, and NMR were used for the characterization of the LRPF. LRPF has good stability and easily releases iron ions under artificial gastrointestinal conditions. LRPF exhibited antioxidant activity in vitro and can significantly improve the antioxidant activity in vivo. In addition, LRPF has a good effect in the treatment of iron deficiency anemia in model mice, impacts the gut microbiome, and reduces the iron deficiency-induced perniciousness by regulating steroid hormone biosynthesis. Therefore, LRPF can be used as a nutritional supplement to treat and prevent iron-deficiency anemia and improve human immunity.
Collapse
|
12
|
Jing Y, Zhang S, Li M, Zhang R, Zhang H, Zheng Y, Zhang D, Wu L. Structural characterization and biological activities of polysaccharide iron complex synthesized by plant polysaccharides: A review. Front Nutr 2022; 9:1013067. [PMID: 36245516 PMCID: PMC9561936 DOI: 10.3389/fnut.2022.1013067] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Iron deficiency anemia can lead to a variety of functional disorders, which is one of the highest incidence of nutrient deficiency diseases. The direct addition of iron to food will not only brings difficulties to the production of products, but also brings damages to human body. In recent years, international studies have shown that polysaccharide iron complex (PIC) not only has a variety of pharmacological activities of polysaccharide itself, but also has the function of supplementing iron, so it is a good iron supplement. With the advantages of good solubility, high iron content, low gastrointestinal irritation and high bioavailability, PIC is an effective iron supplement for iron deficiency anemia and has attracted more and more attention. In this paper, the different preparation methods, structural characterization, biological activities and clinical applications of PIC synthesized by natural polysaccharides from plant were reviewed, in order to provide theoretical basis for the development and application of PIC.
Collapse
Affiliation(s)
- Yongshuai Jing
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Shilin Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Mingsong Li
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Ruijuan Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Hao Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yuguang Zheng
- College of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Danshen Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Lanfang Wu
- College of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
- *Correspondence: Lanfang Wu
| |
Collapse
|
13
|
Li X, Jiang F, Liu M, Qu Y, Lan Z, Dai X, Huang C, Yue X, Zhao S, Pan X, Zhang C. Synthesis, Characterization, and Bioactivities of Polysaccharide Metal Complexes: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6922-6942. [PMID: 35639848 DOI: 10.1021/acs.jafc.2c01349] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Natural polysaccharides are critical to a wide range of fields (e.g., medicine, food production, and cosmetics) for their various remarkable physical properties and biological activities. However, the bioactivities of naturally acquired polysaccharides may be unsatisfactory and limit their further applications. It is generally known that the chemical structure exhibited by polysaccharides lays the material basis for their biological activities. Accordingly, possible structural modifications should be conducted on polysaccharides for their enhancement. Recently, polysaccharides complexed with metal ions (e.g., Fe, Zn, Mg, Cr, and Pt) have been reported to be possibly used to improve their bioactivities. Moreover, since the properties exhibited by metal ions are normally conserved, polysaccharides may be endowed with new applications. In this review, the synthesis methods, characterization methods, and bioactivities of polysaccharide metal complexes are summarized specifically. Then, the application prospects and limitations of these complexes are analyzed and discussed.
Collapse
Affiliation(s)
- Xuebo Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Fuchen Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Meiyan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Yan Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Zhiqiong Lan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Xiaolin Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Chi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Xuan Yue
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Shiyi Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Xiaoli Pan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| |
Collapse
|
14
|
ZHOU H, WANG Z, MA H, WANG S, XIE W, CHEN Y, XIE C, GUO A, WANG C, ZHENG M. Characterisation and antioxidant activity of polysaccharide iron (III) complex in Qingzhuan Dark Tea. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.119421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Hongfu ZHOU
- Hubei University of Science and Technology, China
| | - Ziyao WANG
- Hubei University of Science and Technology, China
| | - Huimin MA
- Hubei University of Science and Technology, China
| | - Shiyue WANG
- Hubei University of Science and Technology, China
| | - Wenjing XIE
- Hubei University of Science and Technology, China
| | - Yong CHEN
- Hubei University of Science and Technology, China
| | - Chen XIE
- Hubei University of Science and Technology, China
| | - Anran GUO
- Hubei University of Science and Technology, China
| | - Cai WANG
- Hubei University of Science and Technology, China
| | - Min ZHENG
- Hubei University of Science and Technology, China
| |
Collapse
|
15
|
Xu H, Hu Y, Hu Q, Liu J, Su A, Xie M, Ma G, Pei F, Mariga AM, Yang W. Isolation, characterization and HepG-2 inhibition of a novel proteoglycan from Flammulina velutipes. Int J Biol Macromol 2021; 189:11-17. [PMID: 34411611 DOI: 10.1016/j.ijbiomac.2021.08.086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 01/31/2023]
Abstract
Flammulina velutipes has anti-inflammatory, immunomodulatory, antioxidant and many bioactive properties with high contents of carbohydrate, proteins and fibers. In this study, a novel proteoglycan with polysaccharide complexes and protein chain, named PGD1-1, was isolated from F. velutipes. The structural characteristics of PGD1-1 were then determined, and its anti-proliferation and pro-apoptotic activities against HepG-2 cells were demonstrated in vitro. Results proved that the average molecular weight of PGD1-1 was 32.71 kDa, and the carbohydrate and protein contents were 93.35 and 2.33%, respectively. The protein moiety was bonded to a polysaccharide chain via O-glycosidic linkage. The monosaccharides consisted of d-glucose, D-galactose and D-xylose in a molar ratio of 21.90:2.84:1.00. PGD1-1 significantly inhibited the proliferation of HepG-2 cells by affecting cell lipid peroxidation and nitric oxide production. In addition, PGD1-1 promoted the apoptosis of HepG-2 cells, especially the early apoptosis. These findings proved that PGD1-1 was a novel potent ingredient against the proliferation of HepG-2, which will provide a theoretical basis for the development and utilization of the functional ingredients of the F. velutipes.
Collapse
Affiliation(s)
- Hui Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Ye Hu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Qiuhui Hu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Jianhui Liu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Anxiang Su
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Minhao Xie
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Gaoxing Ma
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Fei Pei
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Alfred Mugambi Mariga
- School of Agriculture and Food Science, Meru University of Science Technology, P.O. Box 972-60400, Meru, Kenya
| | - Wenjian Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
16
|
Zhou Y, Wang W, Tian K, Huang H, Jia M. Efficacy and safety of Biqi capsule in the treatment of knee osteoarthritis: A protocol of a randomized controlled trial. Medicine (Baltimore) 2021; 100:e25476. [PMID: 33879680 PMCID: PMC8078235 DOI: 10.1097/md.0000000000025476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Knee osteoarthritis (KOA) is a chronic and degenerative bone and joint disease, with KOA, cartilage degeneration, destruction and subchondral bone remodeling as the main pathological features. Its clinical symptoms are knee pain, swelling, limited activity, and long course of disease can cause joint deformities. At present, the early treatment of Western medicine is mainly the use of nonsteroidal drugs for anti-inflammation and removing pain, but because the efficacy of these drugs is unstable, the disease is easy to repeat after treatment, and the clinical effect is not good. Although Biqi capsule has advantages in the treatment of KOA, there is a lack of standard clinical studies to verify it, so the purpose of this randomized controlled study is to evaluate the efficacy and safety of Biqi capsule in the treatment of KOA. METHODS This is a prospective randomized controlled trial to study the efficacy and safety of Biqi capsule in the treatment of KOA. The patients were randomly divided into a treatment group and a control group according to 1:1. Among them, treatment group: Biqi capsule combined with diclofenac sodium sustained release tablets; Control group: Diclofenac sodium sustained-release tablets alone. Both groups were treated with standard treatment for 2 weeks and were followed up for 30 days to pay attention to the efficacy and safety indexes. Observation indicators included: the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Hospital for Special Surgery Knee Score (HSS), liver and kidney function, adverse reactions, and so on. SPSS 25.0 software is used for data analysis. DISCUSSION This study will evaluate the efficacy and safety of Biqi capsule in the treatment of KOA, and the results of this experiment will provide a clinical basis for Biqi capsule in the treatment of KOA. TRIAL REGISTRATION OSF Registration number: DOI 10.17605/OSF.IO/6HB9D.
Collapse
Affiliation(s)
| | - WenGang Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ke Tian
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | | | | |
Collapse
|
17
|
Luan F, Ji Y, Peng L, Liu Q, Cao H, Yang Y, He X, Zeng N. Extraction, purification, structural characteristics and biological properties of the polysaccharides from Codonopsis pilosula: A review. Carbohydr Polym 2021; 261:117863. [PMID: 33766352 DOI: 10.1016/j.carbpol.2021.117863] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
Codonopsis pilosula (Franch.) Nannf., as a well-known homology plant of medicine and food, has the function of replenishing the Qi, strengthening the spleen and tonifying the lung, nourishing the blood and engendering the liquid in traditional Chinese medicine. Accumulating evidence has demonstrated that the C. pilosula polysaccharides (CPPs) are one of the major and representative pharmacologically active macromolecules and present multiple biological activities both in vitro and in vivo methods, such as immunomodulatory, antitumor, antioxidant, neuroprotective, antiviral, anti-inflammatory, anti-fatigue, hypoglycemic, anti-hypoxia, renoprotective, gastroprotective, hepatoprotective, and prebiotic. The purpose of the present review is to provide comprehensively and systematically reorganized information in the extraction and purification, structure characterization, biological activities and the underlying mechanisms of action as well as toxicities of CPPs to support their therapeutic potentials and sanitarian functions. New valuable insights for the future researches regarding CPPs were also proposed in the fields of therapeutic agents and functional foods.
Collapse
Affiliation(s)
- Fei Luan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Yafei Ji
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Lixia Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Qi Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Haijuan Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Yan Yang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, 519041, PR China
| | - Xirui He
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, 519041, PR China.
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| |
Collapse
|
18
|
Zhang X, Zhang X, Gu S, Pan L, Sun H, Gong E, Zhu Z, Wen T, Daba GM, Elkhateeb WA. Structure analysis and antioxidant activity of polysaccharide-iron (III) from Cordyceps militaris mycelia. Int J Biol Macromol 2021; 178:170-179. [PMID: 33639188 DOI: 10.1016/j.ijbiomac.2021.02.163] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 01/17/2023]
Abstract
Iron-enriched Cordyceps militaris was obtained by adding FeSO4 solution to the mycelia for biotransformation. The polysaccharide-iron (III) was extracted by water extraction and alcohol precipitation. High performance liquid chromatography showed that the crude polysaccharide-iron (III) had three components. The second component was purified by Sephadex G-150 and named as CPS-iron-II. The average molecular weight of CPS-iron-II was 44.136 kDa. The content of iron was 2.73%. The monosaccharide composition analysis indicated that the CPS-iron-II was composed of rhamnose, arabinose, galactose, glucose, mannose, galacturonic acid with percentage ratio of 0.94:3.12:27.01:36.62:30.20:2.12. The results of methylation analysis revealed that the CPS-iron-II was made of →2)-β-D-Glcp-(1→, with →2, 4)-α-D-Glcp-(1→ highly branched. Congo-red test showed that CPS-iron-II can cause flocculation of Congo red solution. The anti-oxidative analysis showed that antioxidant activity of CPS-iron-II was almost equal to that of Vc. The manuscript provided a new way for the preparation of polysaccharide-iron(III) from Cordyceps militaris.
Collapse
Affiliation(s)
- Xiaoling Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiaojing Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shuangshuang Gu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lichao Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Huiqing Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Enlin Gong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhenyuan Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Tingchi Wen
- The Engineering Research Center of Southwest Bio-Pharmaceutical Resource Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, PR China
| | - Ghoson Mosbah Daba
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Division, National Research Centre, Dokki, Giza 12622, Egypt
| | - Waill Ahmed Elkhateeb
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Division, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|