1
|
Sohrabi R, Miri AH, Rad-Malekshahi M, Saadatpour F, Pourjabbar B, Keshel SH, Arefian E, Balalaei S, Masoumi A, Khalili F, Haririan I, Akrami M, Shahriari MH. Development of silk fibroin/collagen film containing GI-20 peptide-loaded PLGA nanoparticles against corneal herpes simplex virus-1. Int J Pharm 2025; 669:125022. [PMID: 39674383 DOI: 10.1016/j.ijpharm.2024.125022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/16/2024]
Abstract
Herpes simplex virus-1 (HSV-1) is the primary cause of infectious blindness. Despite impressive therapeutic outcomes of conventional treatments, HSV-1 drug resistance can be easily developed. Thus, more constructive strategies should be implemented. Led by this inspiration, this work describes the potential utility of a biodegradable silk fibroin/collagen (SF/Col) film combined with GI-20-loaded poly lactic-co-glycolic acid (PLGA) nanoparticle to provide efficient and sustained delivery platform for synthetic GI-20 peptide against HSV-1. A non-irritant film containing 90 % SF and 10 % Col incorporated with mentioned nanodrug showed some optimum physicochemical properties including loading efficiency (74.15 % ± 1.12), tensile strength (3.16 ± 0.67 MPa), water uptake ability (∼73 %), cytocompatibility (viable up to 35 µg/mL of GI-20), and sustained release paradigm (∼90 % within 14 days). Also, GI-20 peptide at concentration of 35 µg/mL could prophylactically attenuate viral titration by 5 log10 units. In addition, the corneal uptake was improved without vascular irritation. In accordance with in vitro results, no hallmarks of keratitis and significant neovascularization along with ignorable inflammatory responses were obtained. Taken together, these results could guarantee the potential of mentioned multifunctional biomaterial in the healing of infected corneal tissue.
Collapse
Affiliation(s)
- Razieh Sohrabi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Miri
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Saadatpour
- Molecular Virology Lab, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Balalaei
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, Tehran, Iran
| | - Ahmad Masoumi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Fereshte Khalili
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Akrami
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hassan Shahriari
- Department of Biotechnology Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Yang M, Cheng Q, Zhou G, Wei T, Zhong S, Lu L, Yan C, Wang Y, Fang M, Yang M, Ping W. Electrospinning Aligned SF/Magnetic Nanoparticles-Blend Nanofiber Scaffolds for Inducing Skeletal Myoblast Alignment and Differentiation. ACS APPLIED BIO MATERIALS 2024; 7:7710-7718. [PMID: 39446025 DOI: 10.1021/acsabm.4c01198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
In the realm of skeletal muscle tissue engineering, anisotropic materials that emulate natural tissues show substantial promise. Electrospun scaffolds, mimicking the fibrillar structure of the extracellular matrix, are commonly employed but often fall short in achieving optimal alignment and mechanical strength. Silk fibroin has emerged as a versatile material in tissue engineering, valued for its biocompatibility, mechanical robustness, and biodegradability. However, conventional electrospinning methods of SF result in randomly oriented fibers, limiting their efficacy. In this work, we developed a straightforward method to fabricate directional tissue scaffolds using silk fibroin. By integrating a magnetic field collecting device and incorporating Fe3O4 nanoparticles into the spinning solution, we successfully produced well-aligned silk nanofiber scaffolds. These aligned fibers not only improved scaffold orientation and mechanical properties but also exhibited magnetic responsiveness. The aligned SF scaffolds effectively guided the adhesion, proliferation, and differentiation of mesenchymal stem cells along the fiber direction. Cultured on these scaffolds, myoblast C2C12 cells demonstrated oriented growth, highlighting the potential of aligned SF fibers in advancing skeletal muscle engineering for biomedical applications.
Collapse
Affiliation(s)
- Mei Yang
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Qichao Cheng
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Guanshan Zhou
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Tiancheng Wei
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Suting Zhong
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Leihao Lu
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Chi Yan
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Yecheng Wang
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Mingzheng Fang
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Mingying Yang
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Weidong Ping
- Department of Plastic Surgery, Zhejiang Hospital, 12 Lingyin Road, Xihu District, Hangzhou 310013, P. R. China
| |
Collapse
|
3
|
Mikaeeli Kangarshahi B, Naghib SM, Rabiee N. 3D printing and computer-aided design techniques for drug delivery scaffolds in tissue engineering. Expert Opin Drug Deliv 2024; 21:1615-1636. [PMID: 39323396 DOI: 10.1080/17425247.2024.2409913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION The challenge in tissue engineering lies in replicating the intricate structure of the native extracellular matrix. Recent advancements in AM, notably 3D printing, offer unprecedented capabilities to tailor scaffolds precisely, controlling properties like structure and bioactivity. CAD tools complement this by facilitating design using patient-specific data. AREA’S COVERED This review introduces additive manufacturing (AM) and computer-aided design (CAD) as pivotal tools in advancing tissue engineering, particularly cartilage regeneration. This article explores various materials utilized in AM, focusing on polymers and hydrogels for their advantageous properties in tissue engineering applications. Integrating bioactive molecules, including growth factors, into scaffolds to promote tissue regeneration is discussed alongside strategies involving different cell sources, such as stem cells, to enhance tissue development within scaffold matrices. EXPERT OPINION Applications of AM and CAD in addressing specific challenges like osteochondral defects and osteoarthritis in cartilage tissue engineering are highlighted. This review consolidates current research findings, offering expert insights into the evolving landscape of AM and CAD technologies in advancing tissue engineering, particularly in cartilage regeneration.
Collapse
Affiliation(s)
- Babak Mikaeeli Kangarshahi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, India
| |
Collapse
|
4
|
Pajoum Z, Aliabadi HAM, Mohammadi A, Sadat Z, Kashtiaray A, Bani MS, Shahiri M, Mahdavi M, Eivazzadeh-Keihan R, Maleki A, Heravi MM. Hyperthermia and biological investigation of a novel magnetic nanobiocomposite based on acacia gum-silk fibroin hydrogel embedded with poly vinyl alcohol. Heliyon 2024; 10:e39073. [PMID: 39498073 PMCID: PMC11532226 DOI: 10.1016/j.heliyon.2024.e39073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
The design and synthesis of biocompatible nanostructures for biomedical applications are considered vital challenges. Herein, a nanobiocomposite based on acacia hydrogel, natural silk fibroin protein, and synthetic protein fibers of polyvinyl alcohol was fabricated and magnetized with iron oxide nanoparticles (Fe3O4 MNPs). The structural properties of the hybrid nanobiocomposite were investigated by essential analyses such as Fourier Transform Infrared Spectrometer (FTIR), Field emission scanning electron microscopy (FE-SEM), and X-ray powder diffraction)XRD(analyses, Thermogravimetric and Differential thermogravimetric analysis (TGA-DTG), Vibrating-sample magnetometry (VSM), and Energy Dispersive X-Ray Analysis (EDX). The biological activities and functional properties of the prepared magnetic nanobiocomposite were studied. Results proved that this nanobiocomposite is non-toxic to the healthy HEK293T cell line. In addition, the synthesized nanobiocomposite showed an approximately 22 % reduction in cell viability of BT549 cells after 72 h. All results confirmed the anti-cancer properties of nanobiocomposite against breast cancer cell lines. Therefore, the prepared nanobiocomposite is an excellent material that can use for in-vivo application. Finally, the hyperthermia application was evaluated for this nanobiocomposite. The SAR was measured 93.08 (W/g) at 100 kHz.
Collapse
Affiliation(s)
- Zeinab Pajoum
- Department of Chemistry, School of Physics and Chemistry, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran
| | | | - Adibeh Mohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Zahra Sadat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Milad Salimi Bani
- Department of Optics and Photonics, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Mohammadali Shahiri
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Majid M. Heravi
- Department of Chemistry, School of Physics and Chemistry, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran
| |
Collapse
|
5
|
Tanisood S, Baimark Y, Srihanam P. Preparation and Characterization of Cellulose/Silk Fibroin Composite Microparticles for Drug-Controlled Release Applications. Polymers (Basel) 2024; 16:3020. [PMID: 39518231 PMCID: PMC11548630 DOI: 10.3390/polym16213020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Microparticles derived from biomaterials are becoming increasingly popular for application in drug delivery systems. In this study, the water-in-oil (W/O) emulsification-diffusion method was used to create cellulose (C), silk fibroin (SF), and C/SF composite microparticles. We then observed the morphology of all obtained microparticles using scanning electron microscopy (SEM), evaluated their functional groups using attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), and conducted thermogravimetric analysis using a thermogravimetric analyzer (TGA). SEM micrographs indicated that the native SF microparticles have the highest spherical shape with smooth surfaces. With blue dextran, the C microparticle was smaller than the native microparticle, while the drug-loaded SF microparticles were larger than the native microparticle. The morphological surfaces of the C/SF composite microparticles were varied in shape and surface depending on the C/SF ratio used. The spherical shape of the C/SF composite microparticle increased as the SF content increased. Furthermore, the size of the drug-loaded C/SF composite microparticles increased when the SF content gradually increased. The significant functional groups in the C and SF structures were identified based on the ATR-FTIR data, and a suggestion was made regarding the interaction between the functional groups of each polymer. When compared to both native polymers, the C/SF composite microparticles exhibit improved thermal stability. XRD patterns indicated that all prepared particles have crystalline structures and are directly affected by the released profile. The C/SF composite microparticle at a 1:3 ratio had the lowest drug release content, whereas the hydrophilicity of the C microparticle affected the highest drug release content. As a result, one crucial factor affecting the medication released from the microparticle is its structure stability. According to the obtained results, C, SF, and C/SF composite microparticles show promise as delivery systems for drugs with controlled release.
Collapse
Affiliation(s)
| | | | - Prasong Srihanam
- Biodegradable Polymers Research Unit, Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand; (S.T.); (Y.B.)
| |
Collapse
|
6
|
Naser SS, Gupta A, Choudhury A, Yadav A, Sinha A, Kirti A, Singh D, Kujawska M, Kaushik NK, Ghosh A, De S, Verma SK. Biophysical translational paradigm of polymeric nanoparticle: Embarked advancement to brain tumor therapy. Biomed Pharmacother 2024; 179:117372. [PMID: 39208668 DOI: 10.1016/j.biopha.2024.117372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Polymeric nanoparticles have emerged as promising contenders for addressing the intricate challenges encountered in brain tumor therapy due to their distinctive attributes, including adjustable size, biocompatibility, and controlled drug release kinetics. This review comprehensively delves into the latest developments in synthesizing, characterizing, and applying polymeric nanoparticles explicitly tailored for brain tumor therapy. Various synthesis methodologies, such as emulsion polymerization, nanoprecipitation, and template-assisted fabrication, are scrutinized within the context of brain tumor targeting, elucidating their advantages and limitations concerning traversing the blood-brain barrier. Furthermore, strategies pertaining to surface modification and functionalization are expounded upon to augment the stability, biocompatibility, and targeting prowess of polymeric nanoparticles amidst the intricate milieu of the brain microenvironment. Characterization techniques encompassing dynamic light scattering, transmission electron microscopy, and spectroscopic methods are scrutinized to evaluate the physicochemical attributes of polymeric nanoparticles engineered for brain tumor therapy. Moreover, a comprehensive exploration of the manifold applications of polymeric nanoparticles encompassing drug delivery, gene therapy, imaging, and combination therapies for brain tumours is undertaken. Special emphasis is placed on the encapsulation of diverse therapeutics within polymeric nanoparticles, thereby shielding them from degradation and enabling precise targeting within the brain. Additionally, recent advancements in stimuli-responsive and multifunctional polymeric nanoparticles are probed for their potential in personalized medicine and theranostics tailored for brain tumours. In essence, this review furnishes an all-encompassing overview of the recent strides made in tailoring polymeric nanoparticles for brain tumor therapy, illuminating their synthesis, characterization, and multifaceted application.
Collapse
Affiliation(s)
- Shaikh Sheeran Naser
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Abha Gupta
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Anu Yadav
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Apoorv Kirti
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Deobrat Singh
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden
| | | | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, South Korea.
| | - Aishee Ghosh
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden.
| | - Sriparna De
- Department of Allied Health Sciences, Brainware University, 398, Ramkrishnapur Road, Kolkata 700125, India.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India.
| |
Collapse
|
7
|
Ershad-Langroudi A, Babazadeh N, Alizadegan F, Mehdi Mousaei S, Moradi G. Polymers for implantable devices. J IND ENG CHEM 2024; 137:61-86. [DOI: 10.1016/j.jiec.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Jiang Q, Liu M. Recent Progress in Artificial Neurons for Neuromodulation. J Funct Biomater 2024; 15:214. [PMID: 39194652 DOI: 10.3390/jfb15080214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Driven by the rapid advancement and practical implementation of biomaterials, fabrication technologies, and artificial intelligence, artificial neuron devices and systems have emerged as a promising technology for interpreting and transmitting neurological signals. These systems are equipped with multi-modal bio-integrable sensing capabilities, and can facilitate the benefits of neurological monitoring and modulation through accurate physiological recognition. In this article, we provide an overview of recent progress in artificial neuron technology, with a particular focus on the high-tech applications made possible by innovations in material engineering, new designs and technologies, and potential application areas. As a rapidly expanding field, these advancements have a promising potential to revolutionize personalized healthcare, human enhancement, and a wide range of other applications, making artificial neuron devices the future of brain-machine interfaces.
Collapse
Affiliation(s)
- Qinkai Jiang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Mengwei Liu
- School of Communication and Electronic Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
9
|
Zhang Q, Yan K, Zheng X, Liu Q, Han Y, Liu Z. Research progress of photo-crosslink hydrogels in ophthalmology: A comprehensive review focus on the applications. Mater Today Bio 2024; 26:101082. [PMID: 38774449 PMCID: PMC11107262 DOI: 10.1016/j.mtbio.2024.101082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
Hydrogel presents a three-dimensional polymer network with high water content. Over the past decade, hydrogel has developed from static material to intelligent material with controllable response. Various stimuli are involved in the formation of hydrogel network, among which photo-stimulation has attracted wide attention due to the advantages of controllable conditions, which has a good application prospect in the treatment of ophthalmic diseases. This paper reviews the application of photo-crosslink hydrogels in ophthalmology, focusing on the types of photo-crosslink hydrogels and their applications in ophthalmology, including drug delivery, tissue engineering and 3D printing. In addition, the limitations and future prospects of photo-crosslink hydrogels are also provided.
Collapse
Affiliation(s)
- Qinghe Zhang
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Ke Yan
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Xiaoqin Zheng
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Qiuping Liu
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Yi Han
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Zuguo Liu
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen Fujian 361005, China
| |
Collapse
|
10
|
Saha I, Halder J, Rajwar TK, Mahanty R, Pradhan D, Dash P, Das C, Rai VK, Kar B, Ghosh G, Rath G. Novel Drug Delivery Approaches for the Localized Treatment of Cervical Cancer. AAPS PharmSciTech 2024; 25:85. [PMID: 38605158 DOI: 10.1208/s12249-024-02801-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Cervical cancer (CC) is the fourth leading cancer type in females globally. Being an ailment of the birth canal, primitive treatment strategies, including surgery, radiation, or laser therapy, bring along the risk of infertility, neonate mortality, premature parturition, etc. Systemic chemotherapy led to systemic toxicity. Therefore, delivering a smaller cargo of therapeutics to the local site is more beneficial in terms of efficacy as well as safety. Due to the regeneration of cervicovaginal mucus, conventional dosage forms come with the limitations of leaking, the requirement of repeated administration, and compromised vaginal retention. Therefore, these days novel strategies are being investigated with the ability to combat the limitations of conventional formulations. Novel carriers can be engineered to manipulate bioadhesive properties and sustained release patterns can be obtained thus leading to the maintenance of actives at therapeutic level locally for a longer period. Other than the purpose of CC treatment, these delivery systems also have been designed as postoperative care where a certain dose of antitumor agent will be maintained in the cervix postsurgical removal of the tumor. Herein, the most explored localized delivery systems for the treatment of CC, namely, nanofibers, nanoparticles, in situ gel, liposome, and hydrogel, have been discussed in detail. These carriers have exceptional properties that have been further modified with the aid of a wide range of polymers in order to serve the required purpose of therapeutic effect, safety, and stability. Further, the safety of these delivery systems toward vital organs has also been discussed.
Collapse
Affiliation(s)
- Ivy Saha
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Jitu Halder
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Tushar Kanti Rajwar
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Ritu Mahanty
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Deepak Pradhan
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Priyanka Dash
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Chandan Das
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Vineet Kumar Rai
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Biswakanth Kar
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Goutam Ghosh
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India.
| |
Collapse
|
11
|
Škrbić J, Spasojević L, Sharipova A, Aidarova S, Babayev A, Sarsembekova R, Popović L, Bučko S, Milinković Budinčić J, Fraj J, Petrović L, Katona J. Investigation of Silk Fibroin/Poly(Acrylic Acid) Interactions in Aqueous Solution. Polymers (Basel) 2024; 16:936. [PMID: 38611194 PMCID: PMC11013473 DOI: 10.3390/polym16070936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Silk fibroin (SF) is a protein with many outstanding properties (superior biocompatibility, mechanical strength, etc.) and is often used in many advanced applications (epidermal sensors, tissue engineering, etc.). The properties of SF-based biomaterials may additionally be tuned by SF interactions with other (bio)polymers. Being a weak amphoteric polyelectrolyte, SF may form polyelectrolyte complexes (PECs) with other polyelectrolytes of opposite charge, such as poly(acrylic acid) (PAA). PAA is a widely used, biocompatible, synthetic polyanion. Here, we investigate PEC formation between SF and PAA of two different molecular weights (MWs), low and high, using various techniques (turbidimetry, zeta potential measurements, capillary viscometry, and tensiometry). The colloidal properties of SF isolated from Bombyx mori and of PAAs (MW, overlap concentration, the influence of pH on zeta potential, adsorption at air/water interface) were determined to identify conditions for the SF-PAA electrostatic interaction. It was shown that SF-PAA PEC formation takes place at different SF:PAA ratios, at pH 3, for both high and low MW PAA. SF-PAA PEC's properties (phase separation, charge, and surface activity) are influenced by the SF:PAA mass ratio and/or the MW of PAA. The findings on the interactions contribute to the future development of SP-PAA PEC-based films and bioadhesives with tailored properties.
Collapse
Affiliation(s)
- Jelena Škrbić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (L.S.); (L.P.); (J.M.B.); (J.F.); (L.P.); (J.K.)
| | - Ljiljana Spasojević
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (L.S.); (L.P.); (J.M.B.); (J.F.); (L.P.); (J.K.)
| | - Altynay Sharipova
- Mining and Metallurgical Institute, Satbayev University, Satbayev str. 22a, 050013 Almaty, Kazakhstan;
| | - Saule Aidarova
- Petroleum Engineering Institute “One Belt, One Road”, Kazakh–British Technical University, Tole bi str. 59, 050000 Almaty, Kazakhstan; (S.A.); (A.B.); (R.S.)
| | - Alpamys Babayev
- Petroleum Engineering Institute “One Belt, One Road”, Kazakh–British Technical University, Tole bi str. 59, 050000 Almaty, Kazakhstan; (S.A.); (A.B.); (R.S.)
| | - Raziya Sarsembekova
- Petroleum Engineering Institute “One Belt, One Road”, Kazakh–British Technical University, Tole bi str. 59, 050000 Almaty, Kazakhstan; (S.A.); (A.B.); (R.S.)
| | - Ljiljana Popović
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (L.S.); (L.P.); (J.M.B.); (J.F.); (L.P.); (J.K.)
| | - Sandra Bučko
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (L.S.); (L.P.); (J.M.B.); (J.F.); (L.P.); (J.K.)
| | - Jelena Milinković Budinčić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (L.S.); (L.P.); (J.M.B.); (J.F.); (L.P.); (J.K.)
| | - Jadranka Fraj
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (L.S.); (L.P.); (J.M.B.); (J.F.); (L.P.); (J.K.)
| | - Lidija Petrović
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (L.S.); (L.P.); (J.M.B.); (J.F.); (L.P.); (J.K.)
| | - Jaroslav Katona
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (L.S.); (L.P.); (J.M.B.); (J.F.); (L.P.); (J.K.)
| |
Collapse
|
12
|
De Giorgio G, Matera B, Vurro D, Manfredi E, Galstyan V, Tarabella G, Ghezzi B, D'Angelo P. Silk Fibroin Materials: Biomedical Applications and Perspectives. Bioengineering (Basel) 2024; 11:167. [PMID: 38391652 PMCID: PMC10886036 DOI: 10.3390/bioengineering11020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/13/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
The golden rule in tissue engineering is the creation of a synthetic device that simulates the native tissue, thus leading to the proper restoration of its anatomical and functional integrity, avoiding the limitations related to approaches based on autografts and allografts. The emergence of synthetic biocompatible materials has led to the production of innovative scaffolds that, if combined with cells and/or bioactive molecules, can improve tissue regeneration. In the last decade, silk fibroin (SF) has gained attention as a promising biomaterial in regenerative medicine due to its enhanced bio/cytocompatibility, chemical stability, and mechanical properties. Moreover, the possibility to produce advanced medical tools such as films, fibers, hydrogels, 3D porous scaffolds, non-woven scaffolds, particles or composite materials from a raw aqueous solution emphasizes the versatility of SF. Such devices are capable of meeting the most diverse tissue needs; hence, they represent an innovative clinical solution for the treatment of bone/cartilage, the cardiovascular system, neural, skin, and pancreatic tissue regeneration, as well as for many other biomedical applications. The present narrative review encompasses topics such as (i) the most interesting features of SF-based biomaterials, bare SF's biological nature and structural features, and comprehending the related chemo-physical properties and techniques used to produce the desired formulations of SF; (ii) the different applications of SF-based biomaterials and their related composite structures, discussing their biocompatibility and effectiveness in the medical field. Particularly, applications in regenerative medicine are also analyzed herein to highlight the different therapeutic strategies applied to various body sectors.
Collapse
Affiliation(s)
- Giuseppe De Giorgio
- IMEM-CNR, Institute of Materials for Electronics and Magnetism-National Research Council, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Biagio Matera
- Center of Dental Medicine, Department of Medicine and Surgery, University of Parma, Via Gramsci 14/A, 43126 Parma, Italy
| | - Davide Vurro
- IMEM-CNR, Institute of Materials for Electronics and Magnetism-National Research Council, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Edoardo Manfredi
- Center of Dental Medicine, Department of Medicine and Surgery, University of Parma, Via Gramsci 14/A, 43126 Parma, Italy
| | - Vardan Galstyan
- IMEM-CNR, Institute of Materials for Electronics and Magnetism-National Research Council, Parco Area delle Scienze 37/A, 43124 Parma, Italy
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via Vivarelli 10, 41125 Modena, Italy
| | - Giuseppe Tarabella
- IMEM-CNR, Institute of Materials for Electronics and Magnetism-National Research Council, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Benedetta Ghezzi
- IMEM-CNR, Institute of Materials for Electronics and Magnetism-National Research Council, Parco Area delle Scienze 37/A, 43124 Parma, Italy
- Center of Dental Medicine, Department of Medicine and Surgery, University of Parma, Via Gramsci 14/A, 43126 Parma, Italy
| | - Pasquale D'Angelo
- IMEM-CNR, Institute of Materials for Electronics and Magnetism-National Research Council, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| |
Collapse
|
13
|
Sun L, Sun B, Chen L, Ge Q, Chen K. Identification of genes associated with the silk gland size using multi-omics in silkworm (Bombyx mori). INSECT MOLECULAR BIOLOGY 2024; 33:1-16. [PMID: 37676698 DOI: 10.1111/imb.12870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
Silk gland size in silkworms (Bombyx mori) affects silk output. However, the molecular mechanisms by which genes regulate silk gland size remain unclear. In this study, silk glands from three pure silkworm strains (A798, A306 and XH) with different silk gland weight phenotypes were compared using transcriptomics and proteomics to identify differentially expressed genes (DEGs) and proteins (DEPs). When comparing A798 to A306 and A798 to XH, 830 and 469 DEGs were up-regulated, respectively. These genes were related to the gene ontology terms, metabolic process, transport activity and biosynthesis process. In addition, 372 and 302 up-regulated differentially expressed proteins were detected in A798 to A306 and A798 to XH, respectively, related to the gene ontology terms, ribosome and protein export, ribosome and polypeptide biosynthesis processes. Moreover, combined transcriptomics, proteomics and weighted correlation network analyses showed that five genes (BGIBMGA002524, BGIBMGA002629, BGIBMGA005659, BGIBMGA005711 and BGIBMGA010889) were significantly associated with the silk gland weight. Reverse Transcription-quantitative real-time Polymerase Chain Reaction (RT-qPCR) and Enzyme linked immunosorbent assay (ELISA) were used to verify the mRNA and protein expression of five genes in the silk glands and tissues of 18 silkworm strains. The results showed that four genes have higher expression levels in heavier silk glands. These genes are associated with glycogen metabolism, fatty acid synthesis and branched chain amino acid metabolism, thus potentially promoting growth and silk protein synthesis. These findings provide valuable insights into the molecular mechanisms underlying the relationship between silk gland weight and silk yield in silkworms.
Collapse
Affiliation(s)
- Lindan Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Binbin Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Liang Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qi Ge
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
14
|
Duan L, Li L, Zhao Z, Wang X, Zheng Z, Li F, Li G. Antistricture Ureteral Stents with a Braided Composite Structure and Surface Modification with Antistenosis Drugs. ACS Biomater Sci Eng 2024; 10:607-619. [PMID: 38047884 DOI: 10.1021/acsbiomaterials.3c00781] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The present work describes the development of a drug-loaded ureteral stent with antistricture function based on a trilayer design in which the middle layer was braided from biodegradable poly(p-dioxanone) (PDO) monofilament. Antistenosis drugs rapamycin and paclitaxel were loaded into a silk fibroin (SF) solution and coated on the inner and outer layers of the braided PDO stent. The cumulative release of rapamycin and paclitaxel was sustained over 30 days, with a total release above 80%. The drug-loaded ureteral stents inhibited the proliferation of fibroblasts and smooth muscle cells in vitro. Subcutaneous implantation in rats showed that the drug-loaded ureteral stents were biocompatible with durable mechanical properties in vivo, revealing the inhibition of an excessive growth of fibroblasts and excessive deposition of collagen fibers. In conclusion, the dual-drug-loaded biodegradable ureteral stents show the possibility for treatment of ureteral strictures and avoid the occurrence of complications such as inflammation and restricture.
Collapse
Affiliation(s)
- Lirong Duan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Jiangsu Advanced Textile Engineering Technology Center, Nantong 226007, China
| | - Lu Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Jiangsu Advanced Textile Engineering Technology Center, Nantong 226007, China
| | - Zeyu Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, 11 Yukchoi Rd., Hung Hom, Kowloon 10087, Hong Kong, P. R. China
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Feng Li
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Jiangsu Advanced Textile Engineering Technology Center, Nantong 226007, China
| |
Collapse
|
15
|
Hao J, Lv A, Li X, Li Y. A Convergent fabrication of silk fibroin nanoparticles on quercetin loaded metal-organic frameworks for promising nanocarrier of myocardial infraction. Heliyon 2023; 9:e20746. [PMID: 37867876 PMCID: PMC10587493 DOI: 10.1016/j.heliyon.2023.e20746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
The biomacromolecule silk fibroin (SF) may be constructed to promote biomimetic nucleation and nanostructures of inorganic nanomaterials, offering it a promising candidate for use in various biomimetic applications. We combined SF-NPs and ZIF-8-NPs to fabricate new drug vehicles that effectively release the drug. SF nanoparticles (SF-NPs) were assembled into quercetin (QCT), a myocardial drug added to fabricate QSF-NPs. By acting as a template for the ZIF-8 nucleation onto the surface, the QSF-NPs fabricated core-shell-structured nanocomposites (named QSF@Z-NCs) with ZIF-8 as the core-shell and the QSF-NPs. The biocompatibility analysis using the MTT assay revealed that the developed QCT, SF-NPs, and QSF@Z-NCs are not harmful to cardiac myoblast (H9C2) cells. The in vivo model demonstrated that H9C2 cells encouraged cardiomyocyte fibre regeneration in myocardial infarction rats. We fabricated a brand-new technique using H9C2 cells and QSF@Z-NCs that might encourage the healing processes in myocardial ischemia cells. This study's results demonstrate that it successfully treats myocardial injury.
Collapse
Affiliation(s)
- Junjun Hao
- Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an-710061, China
| | - Ankang Lv
- Department of Gerontology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing-400010, China
| | - Xingsheng Li
- Department of Gerontology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing-400010, China
| | - Yongyong Li
- Department of Gerontology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing-400010, China
| |
Collapse
|
16
|
Ding Z, Cheng W, Liu L, Xu G, Lu Q, Kaplan DL. Nanosized Silk-Magnesium Complexes for Tissue Regeneration. Adv Healthc Mater 2023; 12:e2300887. [PMID: 37317936 DOI: 10.1002/adhm.202300887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/12/2023] [Indexed: 06/16/2023]
Abstract
Metal ions provide multifunctional signals for cell and tissue functions, including regeneration. Inspired by metal-organic frameworks (MOFs), nanosized silk protein aggregates with a high negative charge density are used to form stable silk-magnesium ion complexes. Magnesium ions (Mg ions) are added directly to silk nanoparticle solutions, inducing gelation through the formation of silk-Mg coordination complexes. The Mg ions are released slowly from the nanoparticles through diffusion, with sustained release via tuning the degradation or dissolution of the nanosized silk aggregates. Studies in vitro reveal a dose-dependent influence of Mg ions on angiogenic and anti-inflammatory functions. Silk-Mg ion complexes in the form of hydrogels also stimulate tissue regeneration with a reduced formation of scar tissue in vivo, suggesting potential utility in tissue regeneration.
Collapse
Affiliation(s)
- Zhaozhao Ding
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou, 215123, P. R. China
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Weinan Cheng
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, 200233, P. R. China
- Department of Orthopedics, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, P. R. China
| | - Lutong Liu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Gang Xu
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Lianyungang, 222061, P. R. China
| | - Qiang Lu
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou, 215123, P. R. China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
17
|
Li X, Ren Y, Xue Y, Zhang Y, Liu Y. Nanofibrous scaffolds for the healing of the fibrocartilaginous enthesis: advances and prospects. NANOSCALE HORIZONS 2023; 8:1313-1332. [PMID: 37614124 DOI: 10.1039/d3nh00212h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
With the current developmental advancements in nanotechnology, nanofibrous scaffolds are being widely used. The healing of fibrocartilaginous enthesis is a slow and complex process, and while existing treatments have a certain effect on promoting their healing, these are associated with some limitations. The nanofibrous scaffold has the advantages of easy preparation, wide source of raw materials, easy adjustment, easy modification, can mimic the natural structure and morphology of the fibrocartilaginous enthesis, and has good biocompatibility, which can compensate for existing treatments and be combined with them to promote the repair of fibrocartilaginous enthesis. The nanofibrous scaffold can promote the healing of fibrocartilaginous enthesis by controlling the morphology and ensuring controlled drug release. Hence, the use of nanofibrous scaffold with stimulative response features in the musculoskeletal system has led us to imagine its potential application in fibrocartilaginous enthesis. Therefore, the healing of fibrocartilaginous enthesis based on a nanofibrous scaffold may be a novel therapeutic approach.
Collapse
Affiliation(s)
- Xin Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yan Ren
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.
| | - Yueguang Xue
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.
| | - Yiming Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.
| |
Collapse
|
18
|
Watcharajittanont N, Tabrizian M, Ekarattanawong S, Meesane J. Bone-mimicking scaffold based on silk fibroin incorporated with hydroxyapatite and titanium oxide as enhanced osteo-conductive material for bone tissue formation: fabrication, characterization, properties, and in vitrotesting. Biomed Mater 2023; 18:065007. [PMID: 37647902 DOI: 10.1088/1748-605x/acf542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Bone-mimicking scaffolds based on silk fibroin (SF) mixed with hydroxyapatite nanoparticles (HA NPs) and titanium oxide (TiO2) nanoparticles were created as materials for bone formation. Six scaffold groups were fabricated: S1 (SF), S2 (Silk + (HA: TiO2; 100: 0)), S3 (Silk, (HA: TiO2; 70: 30)), S4 (Silk + (HA NPs: TiO2; 50: 50)), S5 (Silk + (HA: TiO2; 30: 70)), and S6 (Silk + (HA NPs: TiO2; 0:100)). Scaffolds were characterized for molecular formation, structure, and morphology by Fourier transform infrared spectroscopy, element analysis, and X-ray diffraction. They were tested for physical swelling and compressive modulus. Scaffolds were cultured with MC3T3 and testedin vitroto evaluate their biological performance. The results showed that scaffolds with HA and TiO2demonstrated molecular interaction via amide I and phosphate groups. These scaffolds had smaller pore sizes than those without HA and TiO2. They showed more swelling and higher compressive modulus than the scaffolds without HA and TiO2. They exhibited better biological performance: cell adhesion, viability, proliferation, alkaline phosphatase activity, and calcium content than the scaffolds without HA and TiO2. Their porous walls acted as templates for cell aggregation and supported synthesis of calcium secreted from cells. S3 were the most suitable scaffolds. With their enhanced osteo-conductive function, they are promising for bone augmentation for oral and maxillofacial surgery.
Collapse
Affiliation(s)
| | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Canada
| | - Sophapun Ekarattanawong
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - Jirut Meesane
- Institute of Biomedical Engineering, Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
19
|
Wani SUD, Ali M, Mehdi S, Masoodi MH, Zargar MI, Shakeel F. A review on chitosan and alginate-based microcapsules: Mechanism and applications in drug delivery systems. Int J Biol Macromol 2023; 248:125875. [PMID: 37473899 DOI: 10.1016/j.ijbiomac.2023.125875] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
Natural polymers, like chitosan and alginate have potential of appearance, as well as the changes and handling necessary to make it acceptable vehicle for the controlled release of medicines and biomolecules. Microcapsules are characterized as micrometer-sized particulate that can be employed to store chemicals within them. In the present review, we have discussed various advantages, components of microcapsules, release mechanisms, preparation methods, and their applications in drug delivery systems. The preparation methods exhibited strong encapsulation effectiveness and may be used in a wide range of pharmaceutical and biomedical applications. The major advantages of using the microencapsulation technique are, sustained and controlled delivery of drugs, drug targeting, improvement of shelf life, stabilization, immobilization of enzymes and microorganisms. As new biomaterials are developed for the body, they are better suited to the development of pharmaceutical systems than traditional pharmaceuticals because they are more reliable, biocompatible, biodegradable, and nontoxic. Furthermore, the designed microcapsules had been capable of shielding the essential components from hostile environments. More advanced techniques could be developed in the future to facilitate the formulation and applications of microcapsules and working with the pharmaceutical and medical industries.
Collapse
Affiliation(s)
- Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar 190006, India.
| | - Mohammad Ali
- Department of Pharmacy Practice, East Point College of Pharmacy, Bangalore 560027, India
| | - Seema Mehdi
- Department of Pharmacology, JSSCollege of Pharmacy, Mysuru 570015, India
| | - Mubashir Hussain Masoodi
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar 190006, India
| | - Mohammed Iqbal Zargar
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar 190006, India
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
20
|
Hogan KJ, Perez MR, Mikos AG. Extracellular matrix component-derived nanoparticles for drug delivery and tissue engineering. J Control Release 2023; 360:888-912. [PMID: 37482344 DOI: 10.1016/j.jconrel.2023.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/16/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The extracellular matrix (ECM) consists of a complex combination of proteins, proteoglycans, and other biomolecules. ECM-based materials have been demonstrated to have high biocompatibility and bioactivity, which may be harnessed for drug delivery and tissue engineering applications. Herein, nanoparticles incorporating ECM-based materials and their applications in drug delivery and tissue engineering are reviewed. Proteins such as gelatin, collagen, and fibrin as well as glycosaminoglycans including hyaluronic acid, chondroitin sulfate, and heparin have been employed for cancer therapeutic delivery, gene delivery, and wound healing and regenerative medicine. Strategies for modifying and functionalizing these materials with synthetic and natural polymers or to enable stimuli-responsive degradation and drug release have increased the efficacy of these materials and nano-systems. The incorporation and modification of ECM-based materials may be used to drive drug targeting and increase tissue-specific cell differentiation more effectively.
Collapse
Affiliation(s)
- Katie J Hogan
- Department of Bioengineering, Rice University, Houston, TX, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Marissa R Perez
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
21
|
Liu S, Gao X, Yin Y, Wang J, Dong K, Shi D, Wu X, Guo C. Silk fibroin peptide self-assembled nanofibers delivered naringenin to alleviate cisplatin-induced acute kidney injury by inhibiting mtDNA-cGAS-STING pathway. Food Chem Toxicol 2023; 177:113844. [PMID: 37244599 DOI: 10.1016/j.fct.2023.113844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
Silk fibroin (SF) has excellent biocompatibility and biodegradability as a biomaterial. The purity and molecular weight distribution of silk fibroin peptide (SFP) make it more suitable for medical application. In this study, SFP nanofibers (molecular weight ∼30kD) were prepared through CaCl2/H2O/C2H5OH solution decomposition and dialysis, and adsorbed naringenin (NGN) to obtain SFP/NGN NFs. In vitro results showed that SFP/NGN NFs increased the antioxidant activity of NGN and protected HK-2 cells from cisplatin-induced damage. In vivo results also showed that SFP/NGN NFs protected mice from cisplatin-induced acute kidney injury (AKI). The mechanism results showed that cisplatin induced mitochondrial damage, as well as increased mitophagy and mtDNA release, which activated the cGAS-STING pathway and induced the expression of inflammatory factors such as IL-6 and TNF-α. Interestingly, SFP/NGN NFs further activated mitophagy and inhibited mtDNA release and cGAS-STING pathway. Demonstrated that mitophagy-mtDNA-cGAS-STING signal axis was involved in the kidney protection mechanism of SFP/NGN NFs. In conclusion, our study confirmed that SFP/NGN NFs are candidates for protection of cisplatin-induced AKI, which is worthy of further study.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xintao Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yulan Yin
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jing Wang
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou, 014030, China
| | - Kehong Dong
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266273, Shandong, China
| | - Xiaochen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266273, Shandong, China; CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
22
|
Arif ZU, Khalid MY, Noroozi R, Hossain M, Shi HH, Tariq A, Ramakrishna S, Umer R. Additive manufacturing of sustainable biomaterials for biomedical applications. Asian J Pharm Sci 2023; 18:100812. [PMID: 37274921 PMCID: PMC10238852 DOI: 10.1016/j.ajps.2023.100812] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/26/2023] [Accepted: 03/30/2023] [Indexed: 06/07/2023] Open
Abstract
Biopolymers are promising environmentally benign materials applicable in multifarious applications. They are especially favorable in implantable biomedical devices thanks to their excellent unique properties, including bioactivity, renewability, bioresorbability, biocompatibility, biodegradability and hydrophilicity. Additive manufacturing (AM) is a flexible and intricate manufacturing technology, which is widely used to fabricate biopolymer-based customized products and structures for advanced healthcare systems. Three-dimensional (3D) printing of these sustainable materials is applied in functional clinical settings including wound dressing, drug delivery systems, medical implants and tissue engineering. The present review highlights recent advancements in different types of biopolymers, such as proteins and polysaccharides, which are employed to develop different biomedical products by using extrusion, vat polymerization, laser and inkjet 3D printing techniques in addition to normal bioprinting and four-dimensional (4D) bioprinting techniques. This review also incorporates the influence of nanoparticles on the biological and mechanical performances of 3D-printed tissue scaffolds. This work also addresses current challenges as well as future developments of environmentally friendly polymeric materials manufactured through the AM techniques. Ideally, there is a need for more focused research on the adequate blending of these biodegradable biopolymers for achieving useful results in targeted biomedical areas. We envision that biopolymer-based 3D-printed composites have the potential to revolutionize the biomedical sector in the near future.
Collapse
Affiliation(s)
- Zia Ullah Arif
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus 51041, Pakistan
| | - Muhammad Yasir Khalid
- Department of Aerospace Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Reza Noroozi
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Mokarram Hossain
- Zienkiewicz Centre for Computational Engineering (ZCCE), Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
| | - HaoTian Harvey Shi
- Department of Mechanical & Materials Engineering, Western University, Ontario N6A 3K7, Canada
| | - Ali Tariq
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus 51041, Pakistan
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, 119260, Singapore
| | - Rehan Umer
- Department of Aerospace Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
23
|
Cheng S, Li J. Self-assembled porphyrin-based photosensitizer nanomicelles for enhanced photodynamic therapy. Biochem Biophys Res Commun 2023; 652:55-60. [PMID: 36809705 DOI: 10.1016/j.bbrc.2023.02.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/25/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
Preparation of a supermacromolecular photosensitizer that can stay in the tumor site and exhibits high photoconversion efficiency is useful for improving the efficacy of tumor photodynamic therapy (PDT). In this paper, we prepared tetratroxaminobenzene porphyrin (TAPP) loaded biodegradable silk nanospheres (NSs) and characterized their morphology, optical properties and the singlet oxygen-generating capacity. On this basis, the effect of in vitro photodynamic killing efficacy by as-prepared nanometer micelles was evaluated and the tumor retention ability and tumor killing effect of the nanometer micelles were verified by the co-culture of photosensitizer micelle and tumor cells. The results show that tumor cells were killed well under 660 nm laser irradiation even at a lower concentration of as-prepared TAPP NSs. In addition, due to the excellent safety of as-prepared nanomicelle, they exhibit great potential applications in improved tumor PDT.
Collapse
Affiliation(s)
- Shanxia Cheng
- Hospital of Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Jianfen Li
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| |
Collapse
|
24
|
Biomimetic AgNPs@antimicrobial peptide/silk fibroin coating for infection-trigger antibacterial capability and enhanced osseointegration. Bioact Mater 2023; 20:64-80. [PMID: 35633877 PMCID: PMC9127278 DOI: 10.1016/j.bioactmat.2022.05.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 11/24/2022] Open
Abstract
Endowing implant surfaces with combined antibacterial and osteogenic properties by drug-loaded coatings has made great strides, but how to achieve the combined excellence of infection-triggered bactericidal and in vivo-proven osteogenic activities without causing bacterial resistance still remains a formidable challenge. Herein, antimicrobial peptides (AMPs) with osteogenic fragments were designed and complexed on the surface of silver nanoparticle (AgNP) through hydrogen bonding, and the collagen structure-bionic silk fibroin (SF) was applied to carry AgNPs@ AMPs to achieve infection-triggered antibacterial and osteointegration. As verified by TEM, AMPs contributed to the dispersion and size-regulation of AgNPs, with a particle size of about 20 nm, and a clear protein corona structure was observed on the particle surface. The release curve of silver ion displayed that the SF-based coating owned sensitive pH-responsive properties. In the antibacterial test against S.aureus for up to 21 days, the antibacterial rate had always remained above 99%. Meanwhile, the underlying mechanism was revealed, originating from the destruction of the bacterial cell membranes and ROS generation. The SF-based coating was conducive to the adhesion, diffusion, and proliferation of bone marrow stem cells (BMSCs) on the surface, and promoted the expression of osteogenic genes and collagen secretion. The in vivo implantation results showed that compared with the untreated Ti implants, SF-based coating enhanced osseointegration at week 4 and 8. Overall, the AgNPs@AMPs-loaded SF-based coating presented the ability to synergistically inhibit bacteria and promote osseointegration, possessing tremendous potential application prospects in bone defects and related-infection treatments. AMPs and AgNPs were complexed through hydrogen bonds to form a protein crowns structure. Silk fibroin matrix was able to maintain the activity of AMPs over 21 d and endow with the infection-trigger release. The functional coating achieved synergistic antibacterial properties by damaging membrane structure and generating ROS. The coating displayed acceptable osteogenic properties in vitro and observably promoted osteointegration in vivo.
Collapse
|
25
|
Chen K, Li Y, Li Y, Pan W, Tan G. Silk Fibroin Combined with Electrospinning as a Promising Strategy for Tissue Regeneration. Macromol Biosci 2023; 23:e2200380. [PMID: 36409150 DOI: 10.1002/mabi.202200380] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/14/2022] [Indexed: 11/23/2022]
Abstract
The development of tissue engineering scaffolds is of great significance for the repair and regeneration of damaged tissues and organs. Silk fibroin (SF) is a natural protein polymer with good biocompatibility, biodegradability, excellent physical and mechanical properties and processability, making it an ideal universal tissue engineering scaffold material. Nanofibers prepared by electrospinning have attracted extensive attention in the field of tissue engineering due to their excellent mechanical properties, high specific surface area, and similar morphology as to extracellular matrix (ECM). The combination of silk fibroin and electrospinning is a promising strategy for the preparation of tissue engineering scaffolds. In this review, the research progress of electrospun silk fibroin nanofibers in the regeneration of skin, vascular, bone, neural, tendons, cardiac, periodontal, ocular and other tissues is discussed in detail.
Collapse
Affiliation(s)
- Kai Chen
- Hainan Provincial Key Laboratory of R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Yonghui Li
- Hainan Provincial Key Laboratory of R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Youbin Li
- Hainan Provincial Key Laboratory of R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Guoxin Tan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmacy, Hainan University, Haikou, 570228, P. R. China
| |
Collapse
|
26
|
Shabbirahmed AM, Sekar R, Gomez LA, Sekhar MR, Hiruthyaswamy SP, Basavegowda N, Somu P. Recent Developments of Silk-Based Scaffolds for Tissue Engineering and Regenerative Medicine Applications: A Special Focus on the Advancement of 3D Printing. Biomimetics (Basel) 2023; 8:16. [PMID: 36648802 PMCID: PMC9844467 DOI: 10.3390/biomimetics8010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Regenerative medicine has received potential attention around the globe, with improving cell performances, one of the necessary ideas for the advancements of regenerative medicine. It is crucial to enhance cell performances in the physiological system for drug release studies because the variation in cell environments between in vitro and in vivo develops a loop in drug estimation. On the other hand, tissue engineering is a potential path to integrate cells with scaffold biomaterials and produce growth factors to regenerate organs. Scaffold biomaterials are a prototype for tissue production and perform vital functions in tissue engineering. Silk fibroin is a natural fibrous polymer with significant usage in regenerative medicine because of the growing interest in leftovers for silk biomaterials in tissue engineering. Among various natural biopolymer-based biomaterials, silk fibroin-based biomaterials have attracted significant attention due to their outstanding mechanical properties, biocompatibility, hemocompatibility, and biodegradability for regenerative medicine and scaffold applications. This review article focused on highlighting the recent advancements of 3D printing in silk fibroin scaffold technologies for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Asma Musfira Shabbirahmed
- Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, Tamil Nadu, India
| | - Rajkumar Sekar
- Department of Chemistry, Karpaga Vinayaga College of Engineering and Technology, GST Road, Chinna Kolambakkam, Chengalpattu 603308, Tamil Nadu, India
| | - Levin Anbu Gomez
- Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, Tamil Nadu, India
| | - Medidi Raja Sekhar
- Department of Chemistry, College of Natural Sciences, Kebri Dehar University, Korahe Zone, Somali Region, Kebri Dehar 3060, Ethiopia
| | | | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Prathap Somu
- Department of Bioengineering, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (Deemed to be University), Chennai 600124, Tamil Nadu, India
| |
Collapse
|
27
|
Promising Role of Silk-Based Biomaterials for Ocular-Based Drug Delivery and Tissue Engineering. Polymers (Basel) 2022; 14:polym14245475. [PMID: 36559842 PMCID: PMC9788421 DOI: 10.3390/polym14245475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 11/14/2022] [Accepted: 12/08/2022] [Indexed: 12/16/2022] Open
Abstract
Silk is a wonderful biopolymer that has a long history of medical applications. Surgical cords and medically authorised human analogues made of silk have a long history of use in management. We describe the use of silk in the treatment of eye diseases in this review by looking at the usage of silk fibroin for eye-related drug delivery applications and medication transfer to the eyes. During this ancient art endeavour, a reduced engineering project that employed silk as a platform for medicine delivery or a cell-filled matrix helped reignite interest. With considerable attention, this study explores the present usage of silk in ocular-based drug delivery. This paper also examines emerging developments with the use of silk as a biopolymer for the treatment of eye ailments. As treatment options for glaucoma, diabetic retinopathy, retinitis pigmentosa, and other retinal diseases and degenerations are developed, the trans-scleral route of drug delivery holds great promise for the selective, sustained-release delivery of these novel therapeutic compounds. We should expect a swarm of silk-inspired materials to enter clinical testing and use on the surface as the secrets of silk are unveiled. This article finishes with a discussion on potential silk power, which adds to better ideas and enhanced ocular medicine delivery.
Collapse
|
28
|
5-Fluorouracil-Immobilized Hyaluronic Acid Hydrogel Arrays on an Electrospun Bilayer Membrane as a Drug Patch. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120742. [PMID: 36550948 PMCID: PMC9774285 DOI: 10.3390/bioengineering9120742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
The hyaluronic acid (HA) hydrogel array was employed for immobilization of 5-fluorouracil (5-FU), and the electrospun bilayer (hydrophilic: polyurethane/pluronic F-127 and hydrophobic: polyurethane) membrane was used to support the HA hydrogel array as a patch. To visualize the drug propagating phenomenon into tissues, we experimentally investigated how FITC-BSA diffused into the tissue by applying hydrogel patches to porcine tissue samples. The diffusive phenomenon basically depends on the FITC-BSA diffusion coefficient in the hydrogel, and the degree of diffusion of FITC-BSA may be affected by the concentration of HA hydrogel, which demonstrates that the high density of HA hydrogel inhibits the diffusive FITC-BSA migration toward the low concentration region. YD-10B cells were employed to investigate the release of 5-FU from the HA array on the bilayer membrane. In the control group, YD-10B cell viability was over 98% after 3 days. However, in the 5-FU-immobilized HA hydrogel array, most of the YD-10B cells were not attached to the bilayer membrane used as a scaffold. These results suggest that 5-FU was locally released and initiated the death of the YD-10B cells. Our results show that 5-FU immobilized on HA arrays significantly reduces YD-10B cell adhesion and proliferation, affecting cells even early in the cell culture. Our results suggest that when 5-FU is immobilized in the HA hydrogel array on the bilayer membrane as a drug patch, it is possible to control the drug concentration, to release it continuously, and that the patch can be applied locally to the targeted tumor site and administer the drug in a time-stable manner. Therefore, the developed bilayer membrane-based HA hydrogel array patch can be considered for sustained release of the drug in biomedical applications.
Collapse
|
29
|
Wani SUD, Zargar MI, Masoodi MH, Alshehri S, Alam P, Ghoneim MM, Alshlowi A, Shivakumar HG, Ali M, Shakeel F. Silk Fibroin as an Efficient Biomaterial for Drug Delivery, Gene Therapy, and Wound Healing. Int J Mol Sci 2022; 23:ijms232214421. [PMID: 36430901 PMCID: PMC9692988 DOI: 10.3390/ijms232214421] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Silk fibroin (SF), an organic material obtained from the cocoons of a silkworm Bombyx mori, is used in several applications and has a proven track record in biomedicine owing to its superior compatibility with the human body, superb mechanical characteristics, and its controllable propensity to decay. Due to its robust biocompatibility, less immunogenic, non-toxic, non-carcinogenic, and biodegradable properties, it has been widely used in biological and biomedical fields, including wound healing. The key strategies for building diverse SF-based drug delivery systems are discussed in this review, as well as the most recent ways for developing functionalized SF for controlled or redirected medicines, gene therapy, and wound healing. Understanding the features of SF and the various ways to manipulate its physicochemical and mechanical properties enables the development of more effective drug delivery devices. Drugs are encapsulated in SF-based drug delivery systems to extend their shelf life and control their release, allowing them to travel further across the bloodstream and thus extend their range of operation. Furthermore, due to their tunable properties, SF-based drug delivery systems open up new possibilities for drug delivery, gene therapy, and wound healing.
Collapse
Affiliation(s)
- Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Jammu and Kashmir, Srinagar 190006, India
| | - Mohammed Iqbal Zargar
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Jammu and Kashmir, Srinagar 190006, India
| | - Mubashir Hussain Masoodi
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Jammu and Kashmir, Srinagar 190006, India
| | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
- Correspondence: (S.A.); (F.S.)
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Areej Alshlowi
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - H. G. Shivakumar
- Department of Pharmaceutics, College of Pharmacy, JSS Academy of Technical Education, Noida 201301, India
| | - Mohammad Ali
- Department of Pharmacy Practice, East Point College of Pharmacy, Bangalore 560049, India
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: (S.A.); (F.S.)
| |
Collapse
|
30
|
Composite silk fibroin hydrogel scaffolds for cartilage tissue regeneration. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
A convergent synthetic platform of photocurable silk fibroin-polyvinylpyrrolidone hydrogels for local anaesthesia examination. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Biganeh H, Kabiri M, Zeynalpourfattahi Y, Costa Brancalhão RM, Karimi M, Shams Ardekani MR, Rahimi R. Bombyx mori cocoon as a promising pharmacological agent: A review of ethnopharmacology, chemistry, and biological activities. Heliyon 2022; 8:e10496. [PMID: 36105465 PMCID: PMC9465338 DOI: 10.1016/j.heliyon.2022.e10496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/30/2022] [Accepted: 08/25/2022] [Indexed: 11/02/2022] Open
Abstract
Silk cocoon, naturally produced by silkworms scientifically named Bombyx mori L. (Lepidoptera, Bombycidae), is one of the well-known medicinal agents with several therapeutic activities. The present study aims to review the various aspects of the silk cocoon, including chemical composition, traditional uses, biological and biotechnological activities, and toxicological issues, to provide a scientific source for scholars. For this purpose, Electronic databases including PubMed, Scopus, Google Scholar, Web of Science, and traditional literature, were searched up to December 2021. According to the historical data, silk farming is acknowledged as one of the most ancient agricultural findings. The silk is generally composed of 75–83% fibroin, 17–25% sericin, and 1–5% non-sericin components, including secondary metabolites, wax, pigments, carbohydrates, and other impurities. Flavonoids, especially quercetin and kaempferol, alkaloids, coumarin derivatives, and phenolic acids, are among the secondary metabolites isolated from the silk cocoon. In recent years the biological properties of the silk cocoon, especially its major proteins, namely fibroin and sericin, have drawn special attention. Scientific literature has investigated several pharmacological effects of the silk cocoon and its ingredients, including cardioprotective, antioxidant, anticancer, antidiabetic, antihyperlipidemia, gastroprotective, as well as ameliorated skin health activities. In addition, it has been extensively taken into consideration in drug delivery and tissue engineering study fields. Furthermore, its toxicity is in acceptable range.
Collapse
|
33
|
Anjum S, Rahman F, Pandey P, Arya DK, Alam M, Rajinikanth PS, Ao Q. Electrospun Biomimetic Nanofibrous Scaffolds: A Promising Prospect for Bone Tissue Engineering and Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23169206. [PMID: 36012473 PMCID: PMC9408902 DOI: 10.3390/ijms23169206] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Skeletal-related disorders such as arthritis, bone cancer, osteosarcoma, and osteoarthritis are among the most common reasons for mortality in humans at present. Nanostructured scaffolds have been discovered to be more efficient for bone regeneration than macro/micro-sized scaffolds because they sufficiently permit cell adhesion, proliferation, and chemical transformation. Nanofibrous scaffolds mimicking artificial extracellular matrices provide a natural environment for tissue regeneration owing to their large surface area, high porosity, and appreciable drug loading capacity. Here, we review recent progress and possible future prospective electrospun nanofibrous scaffolds for bone tissue engineering. Electrospun nanofibrous scaffolds have demonstrated promising potential in bone tissue regeneration using a variety of nanomaterials. This review focused on the crucial role of electrospun nanofibrous scaffolds in biological applications, including drug/growth factor delivery to bone tissue regeneration. Natural and synthetic polymeric nanofibrous scaffolds are extensively inspected to regenerate bone tissue. We focused mainly on the significant impact of nanofibrous composite scaffolds on cell adhesion and function, and different composites of organic/inorganic nanoparticles with nanofiber scaffolds. This analysis provides an overview of nanofibrous scaffold-based bone regeneration strategies; however, the same concepts can be applied to other organ and tissue regeneration tactics.
Collapse
Affiliation(s)
- Shabnam Anjum
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| | - Farheen Rahman
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Mahmood Alam
- Department of Clinical Medicine, China Medical University, Shenyang 110122, China
| | - Paruvathanahalli Siddalingam Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
- Correspondence: (P.S.R.); (Q.A.)
| | - Qiang Ao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Correspondence: (P.S.R.); (Q.A.)
| |
Collapse
|
34
|
Ramakrishnan R, Chouhan D, Vijayakumar Sreelatha H, Arumugam S, Mandal BB, Krishnan LK. Silk Fibroin-Based Bioengineered Scaffold for Enabling Hemostasis and Skin Regeneration of Critical-Size Full-Thickness Heat-Induced Burn Wounds. ACS Biomater Sci Eng 2022; 8:3856-3870. [PMID: 35969223 DOI: 10.1021/acsbiomaterials.2c00328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Millions of people around the globe are affected by full-thickness skin injuries. A delay in the healing of such injuries can lead to the formation of chronic wounds, posing several clinical and economic challenges. Current strategies for wound care aim for skin regeneration and not merely skin repair or faster wound closure. The present study aimed to develop a bioactive wound-healing matrix comprising natural biomaterial silk fibroin (SF), clinical-grade human fibrin (FIB), and human hyaluronic acid (HA), resulting in SFFIBHA for regeneration of full-thickness burn wounds. A porous, hemostatic, self-adhesive, moisture-retentive, and biomimetic scaffold that promotes healing was the expected outcome. The study validated a terminal sterilization method, suggesting the stability and translational potential of the novel scaffold. Also, the study demonstrated the regenerative abilities of scaffolds using in vitro cell culture experiments and in vivo full-thickness burn wounds of critical size (4 cm × 4 cm) in a rabbit model. Under in vitro conditions, the scaffold enhanced primary dermal fibroblast adhesion and cell proliferation with regulated extracellular matrix (ECM) synthesis. In vivo, the scaffolds promoted healing with mature epithelium coverage involving intact basal cells, superficial keratinocytes, multilayers of keratohyalin, dermal regeneration with angiogenesis, and deposition of remodeled ECM in 28 days. The relative gene expression of the IL6 marker indicated transitions from inflammation to proliferation stage. In addition, we observed skin appendages and rete peg development in the SFFIBHA-treated wound tissues. Although wound closure was observed, neither negative (untreated/sham) nor positive (commercially available product; NeuSkin) control wounds developed skin appendages/rete pegs or native skin architecture. After 56 days, healing with organized ECM production enabled the recovery of mechanical properties of skin with higher tissue maturity in SFFIBHA-treated wounds. Thus, in a single application, the SFFIBHA scaffold proved to be an efficient biomimetic matrix that can guide burn wound regeneration. The developed matrix is a suture-less, hemostatic, off-the-shelf product for potential wound regenerative applications.
Collapse
Affiliation(s)
- Rashmi Ramakrishnan
- Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Poojappura, Thiruvananthapuram 695012, Kerala, India
| | - Dimple Chouhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781039, Assam, India
| | - Harikrishnan Vijayakumar Sreelatha
- Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Poojappura, Thiruvananthapuram 695012, Kerala, India
| | - Sabareeswaran Arumugam
- Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Poojappura, Thiruvananthapuram 695012, Kerala, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781039, Assam, India.,Centre for Nanotechnology, Indian Institute of Technology Guwahati (IITG), Guwahati 781039, Assam, India.,School of Health Sciences & Technology, Indian Institute of Technology Guwahati (IITG), Guwahati 781039, Assam, India
| | - Lissy K Krishnan
- Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Poojappura, Thiruvananthapuram 695012, Kerala, India.,Department of Research & Innovation, DM Wayanad Institute of Medical Sciences (DM WIMS), Meppadi, Wayanad 673577, Kerala, India
| |
Collapse
|
35
|
Li C, Xu X, Gao J, Zhang X, Chen Y, Li R, Shen J. 3D printed scaffold for repairing bone defects in apical periodontitis. BMC Oral Health 2022; 22:327. [PMID: 35941678 PMCID: PMC9358902 DOI: 10.1186/s12903-022-02362-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives To investigate the feasibility of the 3D printed scaffold for periapical bone defects. Methods In this study, antimicrobial peptide KSL-W-loaded PLGA sustainable-release microspheres (KSL-W@PLGA) were firstly prepared followed by assessing the drug release behavior and bacteriostatic ability against Enterococcus faecalis and Porphyromonas gingivalis. After that, we demonstrated that KSL-W@PLGA/collagen (COL)/silk fibroin (SF)/nano-hydroxyapatite (nHA) (COL/SF/nHA) scaffold via 3D-printing technique exhibited significantly good biocompatibility and osteoconductive property. The scaffold was characterized as to pore size, porosity, water absorption expansion rate and mechanical properties. Moreover, MC3T3-E1 cells were seeded into sterile scaffold materials and investigated by CCK-8, SEM and HE staining. In the animal experiment section, we constructed bone defect models of the mandible and evaluated its effect on bone formation. The Japanese white rabbits were killed at 1 and 2 months after surgery, the cone beam computerized tomography (CBCT) and micro-CT scanning, as well as HE and Masson staining analysis were performed on the samples of the operation area, respectively. Data analysis was done using ANOVA and LSD tests. (α = 0.05). Results We observed that the KSL-W@PLGA sustainable-release microspheres prepared in the experiment were uniform in morphology and could gradually release the antimicrobial peptide (KSL-W), which had a long-term antibacterial effect for at least up to 10 days. HE staining and SEM showed that the scaffold had good biocompatibility, which was conducive to the adhesion and proliferation of MC3T3-E1 cells. The porosity and water absorption of the scaffold were (81.96 ± 1.83)% and (458.29 ± 29.79)%, respectively. Histological and radiographic studies showed that the bone healing efficacy of the scaffold was satisfactory. Conclusions The KSL-W@PLGA/COL/SF/nHA scaffold possessed good biocompatibility and bone repairing ability, and had potential applications in repairing infected bone defects. Clinical significance The 3D printed scaffold not only has an antibacterial effect, but can also promote bone tissue formation, which provides an alternative therapy option in apical periodontitis. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-022-02362-4.
Collapse
Affiliation(s)
- Cong Li
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, No.75, Dagu Road, Heping District, Tianjin, 300041, China
| | - Xiaoyin Xu
- The Affiliated Stomatological Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Jing Gao
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, No.75, Dagu Road, Heping District, Tianjin, 300041, China
| | - Xiaoyan Zhang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, No.75, Dagu Road, Heping District, Tianjin, 300041, China
| | - Yao Chen
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, No.75, Dagu Road, Heping District, Tianjin, 300041, China
| | - Ruixin Li
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, No.75, Dagu Road, Heping District, Tianjin, 300041, China.
| | - Jing Shen
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, No.75, Dagu Road, Heping District, Tianjin, 300041, China.
| |
Collapse
|
36
|
Recent advances in 3D-printed polylactide and polycaprolactone-based biomaterials for tissue engineering applications. Int J Biol Macromol 2022; 218:930-968. [PMID: 35896130 DOI: 10.1016/j.ijbiomac.2022.07.140] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 01/10/2023]
Abstract
The three-dimensional printing (3DP) also known as the additive manufacturing (AM), a novel and futuristic technology that facilitates the printing of multiscale, biomimetic, intricate cytoarchitecture, function-structure hierarchy, multi-cellular tissues in the complicated micro-environment, patient-specific scaffolds, and medical devices. There is an increasing demand for developing 3D-printed products that can be utilized for organ transplantations due to the organ shortage. Nowadays, the 3DP has gained considerable interest in the tissue engineering (TE) field. Polylactide (PLA) and polycaprolactone (PCL) are exemplary biomaterials with excellent physicochemical properties and biocompatibility, which have drawn notable attraction in tissue regeneration. Herein, the recent advancements in the PLA and PCL biodegradable polymer-based composites as well as their reinforcement with hydrogels and bio-ceramics scaffolds manufactured through 3DP are systematically summarized and the applications of bone, cardiac, neural, vascularized and skin tissue regeneration are thoroughly elucidated. The interaction between implanted biodegradable polymers, in-vivo and in-vitro testing models for possible evaluation of degradation and biological properties are also illustrated. The final section of this review incorporates the current challenges and future opportunities in the 3DP of PCL- and PLA-based composites that will prove helpful for biomedical engineers to fulfill the demands of the clinical field.
Collapse
|
37
|
Ning C, Gao C, Li P, Fu L, Chen W, Liao Z, Xu Z, Yuan Z, Guo W, Sui X, Liu S, Guo Q. Dual‐Phase Aligned Composite Scaffolds Loaded with Tendon‐Derived Stem Cells for Achilles Tendon Repair. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chao Ning
- Chinese PLA Medical School No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Cangjian Gao
- Chinese PLA Medical School No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Pinxue Li
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Liwei Fu
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Wei Chen
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Zhiyao Liao
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Zizheng Xu
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Zhiguo Yuan
- Department of Bone and Joint Surgery Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai 200030 P. R. China
| | - Weimin Guo
- Department of Orthopaedic Surgery Guangdong Provincial Key Laboratory of Orthopedics and Traumatology First Affiliated Hospital Sun Yat‐sen University No. 58 Zhongshan Second Road, Yuexiu District Guangzhou Guangdong 510080 P. R. China
| | - Xiang Sui
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Shuyun Liu
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Quanyi Guo
- Chinese PLA Medical School No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| |
Collapse
|
38
|
In vitro biological activities of the flexible and virus nanoparticle-decorated silk fibroin-based films. Int J Biol Macromol 2022; 216:437-445. [PMID: 35809668 DOI: 10.1016/j.ijbiomac.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/26/2022] [Accepted: 07/02/2022] [Indexed: 11/21/2022]
Abstract
Flexible films were prepared from silk fibroin (SF) and gelatin (GA) with a presence of glycerol (Gly), followed by water vapor annealing to achieve water-insoluble matrices. The blended SF/GA/Gly films were chemically conjugated with tobacco mosaic virus (TMV), either native (TMV-wt) or genetically modified with Arg-Gly-Asp (RGD) sequences (TMV-rgd), to improve cellular responses. The attachment and proliferation of L929 cells on TMV-decorated films were improved, possibly due to enhanced surface roughness. The cellular responses were pronounced with TMV-rgd, due to the proper decoration of RGD, which is an integrin recognition motif supporting cell binding. However, the biological results were inconclusive for human primary cells because of an innate slow growth kinetic of the cells. Additionally, the cells on SF/GA/Gly films were greater populated in S and G2/M phase, and the cell cycle arrest was notably increased in the TMV-conjugated group. Our findings revealed that the films modified with TMV were cytocompatible and the cellular responses were significantly enhanced when conjugated with its RGD mutants. The biological analysis on the cellular mechanisms in response to TMV is further required to ensure the safety concern of the biomaterials toward clinical translation.
Collapse
|
39
|
Ma Y, Zeng W, Ba Y, Luo Q, Ou Y, Liu R, Ma J, Tang Y, Hu J, Wang H, Tang X, Mu Y, Li Q, Chen Y, Ran Y, Xiang Z, Xu H. A single-cell transcriptomic atlas characterizes the silk-producing organ in the silkworm. Nat Commun 2022; 13:3316. [PMID: 35680954 PMCID: PMC9184679 DOI: 10.1038/s41467-022-31003-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/30/2022] [Indexed: 01/07/2023] Open
Abstract
The silk gland of the domesticated silkworm Bombyx mori, is a remarkable organ that produces vast amounts of silk with exceptional properties. Little is known about which silk gland cells execute silk protein synthesis and its precise spatiotemporal control. Here, we use single-cell RNA sequencing to build a comprehensive cell atlas of the silkworm silk gland, consisting of 14,972 high-quality cells representing 10 distinct cell types, in three early developmental stages. We annotate all 10 cell types and determine their distributions in each region of the silk gland. Additionally, we decode the developmental trajectory and gene expression status of silk gland cells. Finally, we discover marker genes involved in the regulation of silk gland development and silk protein synthesis. Altogether, this work reveals the heterogeneity of silkworm silk gland cells and their gene expression dynamics, affording a deeper understanding of silk-producing organs at the single-cell level.
Collapse
Affiliation(s)
- Yan Ma
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Wenhui Zeng
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yongbing Ba
- Shanghai OE Biotech. Co., Ltd., Shanghai, 201212, China
| | - Qin Luo
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yao Ou
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Rongpeng Liu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Jingwen Ma
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yiyun Tang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Jie Hu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Haomiao Wang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Xuan Tang
- Shanghai OE Biotech. Co., Ltd., Shanghai, 201212, China
| | - Yuanyuan Mu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Qingjun Li
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yuqin Chen
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yiting Ran
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Hanfu Xu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
40
|
Shurshina AS, Galina AR, Kulish EI. Features of the Use of Polyelectrolytes to Prolong the Action of Medicinal Substances. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793122020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Cu(II)-functionalized silk fibroin films for the catalytic generation of nitric oxide. Biointerphases 2022; 17:031001. [PMID: 35501192 DOI: 10.1116/6.0001690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In situ release of nitric oxide (NO) has been suggested to be a potential functionalization strategy for blood-contacting implants. In this study, the NO generation capability catalyzed by the copper ion-incorporated silk fibroin (SF) films in the presence of S-nitroso-N-acetyl-dl-penicillamine (SNAP) is demonstrated. Cu(II) is effectively bound to the surface of the SF film based on metal-protein coordination. The x-ray photoelectron spectroscopy results indicate that copper ions may exist on the surface of the SF film in the form of Cu(II)/Cu(I) coexistence. The degradation behavior showed that the bound copper ions on the surface of the SF films can maintain a slow release in phosphate-buffered saline (PBS) or collagenase IA solution for 7 days. There was no significant difference in the release of copper ions between PBS degradation and enzyme degradation. The loading of copper ions significantly improved the release of NO from SNAP through catalysis. Based on the biological effects of copper ions and the ability to catalyze the release of NO from S-nitrosothiols, copper ion loading provides an option for the construction of bioactive SF biomaterials.
Collapse
|
42
|
Low JT, Yusoff NISM, Othman N, Wong T, Wahit MU. Silk fibroin‐based films in food packaging applications: A review. Compr Rev Food Sci Food Saf 2022; 21:2253-2273. [DOI: 10.1111/1541-4337.12939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Jia Tee Low
- School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Johor Bahru Johor 81310 Malaysia
| | | | - Norhayani Othman
- School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Johor Bahru Johor 81310 Malaysia
| | - Tuck‐Whye Wong
- Advanced Membrane Technology Research Centre (AMTEC) Universiti Teknologi Malaysia Johor Bahru Johor 81310 Malaysia
| | - Mat Uzir Wahit
- School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Johor Bahru Johor 81310 Malaysia
- Centre for Advanced Composite Materials (CACM) Universiti Teknologi Malaysia Johor Bahru Johor 81310 Malaysia
| |
Collapse
|
43
|
Wang X, Liu P, Wu Q, Zheng Z, Xie M, Chen G, Yu J, Wang X, Li G, Kaplan D. Sustainable Antibacterial and Anti-Inflammatory Silk Suture with Surface Modification of Combined-Therapy Drugs for Surgical Site Infection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11177-11191. [PMID: 35192338 DOI: 10.1021/acsami.2c00106] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Silk sutures with antibacterial and anti-inflammatory functions were developed for sustained dual-drug delivery to prevent surgical site infections (SSIs). The silk sutures were prepared with core-shell structures braided from degummed silk filaments and then coated with a silk fibroin (SF) layer loaded with berberine (BB) and artemisinin (ART). Both the rapid release of drugs to prevent initial biofilm formation and the following sustained release to maintain effective concentrations for more than 42 days were demonstrated. In vitro assays using human fibroblasts (Hs 865.Sk) demonstrated cell proliferation on the materials, and hemolysis was 2.4 ± 0.8%, lower than that required by ISO 10993-4 standard. The sutures inhibited platelet adhesion and promoted collagen deposition and blood vessel formation. In vivo assessments using Sprague-Dawley (SD) rats indicated that the coating reduced the expression of pro-inflammatory cytokines interleukin-10 (IL-10) and tumor necrosis factor-α (TNF-α), shortening the inflammatory period and promoting angiogenesis. The results demonstrated that these new sutures exhibited stable structures, favorable biocompatibility, and sustainable antibacterial and anti-inflammatory functions with potential for surgical applications.
Collapse
Affiliation(s)
- Xuchen Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Peixin Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Orthopedic Institute, Soochow University, Suzhou 215006, China
| | - Qinting Wu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Maobin Xie
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Guoqiang Chen
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Jia Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Orthopedic Institute, Soochow University, Suzhou 215006, China
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - David Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
44
|
Tu P, Pan Y, Wu C, Yang G, Zhou X, Sun J, Wang L, Liu M, Wang Z, Liang Z, Guo Y, Ma Y. Cartilage Repair Using Clematis Triterpenoid Saponin Delivery Microcarrier, Cultured in a Microgravity Bioreactor Prior to Application in Rabbit Model. ACS Biomater Sci Eng 2022; 8:753-764. [PMID: 35084832 DOI: 10.1021/acsbiomaterials.1c01101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cartilage tissue engineering provides a promising method for the repair of articular cartilage defects, requiring appropriate biological scaffolds and necessary growth factors to enhance the efficiency of cartilage regeneration. Here, a silk fibroin (SF) microcarrier and a clematis triterpenoid saponin delivery SF (CTS-SF) microcarrier were prepared by the high-voltage electrostatic differentiation and lyophilization method, and chondrocytes were carried under the simulated microgravity condition by a rotating cell culture system. SF and CTS-SF microspheres were relatively uniform in size and had a porous structure with good swelling and cytocompatibility. Further, CTS-SF microcarriers could sustainably release CTSs in the monitored 10 days. Compared with the monolayer culture, chondrocytes under the microgravity condition maintained a better chondrogenic phenotype and showed better proliferation ability after culture on microcarriers. Moreover, the sustained release of CTS from CTS-SF microcarriers upregulated transforming growth factor-β, Smad2, and Smad3 signals, contributing to promote chondrogenesis. Hence, the biophysical effects of microgravity and bioactivities of CTS-ST were used for chondrocyte expansion and phenotype maintenance in vitro. With prolonged expansion, SF- and CTS-SF-based microcarrier-cell composites were directly implanted in vivo to repair rabbit articular defects. Gross evaluations, histopathological examinations, and biochemical analysis indicated that SF- and CTS-SF-based composites exhibited cartilage-like tissue repair compared with the nontreated group. Further, CTS-SF-based composites displayed superior hyaline cartilage-like repair that integrated with the surrounding cartilage better and higher cartilage extracellular matrix content. In conclusion, these results provide an alternative preparation method for drug-delivered SF microcarrier and a culture method for maintaining the chondrogenic phenotype of seed cells based on the microgravity environment. CTS showed its bioactive function, and the application of CTS-SF microcarriers can help repair and regenerate cartilage defects.
Collapse
Affiliation(s)
- Pengcheng Tu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Yalan Pan
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China.,Nursing Institute of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China
| | - Chengjie Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Guanglu Yang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Xin Zhou
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Jie Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Lining Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Mengmin Liu
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China.,School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Zhifang Wang
- Zhangjiagang Affiliated Hospital of Nanjing University of Chinese Medicine, Suzhou 215600, P.R. China
| | - Zhongqing Liang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Yang Guo
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Yong Ma
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China.,School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| |
Collapse
|
45
|
Shao C, Chi J, Shang L, Fan Q, Ye F. Droplet microfluidics-based biomedical microcarriers. Acta Biomater 2022; 138:21-33. [PMID: 34718181 DOI: 10.1016/j.actbio.2021.10.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022]
Abstract
Droplet microfluidic technology provides a new platform for controllable generation of microdroplets and droplet-derived materials. In particular, because of the ability in high-throughput production and accurate control of the size, structure, and function of these materials, droplet microfluidics presents unique advantages in the preparation of functional microcarriers, i.e., microsized liquid containers or solid particles that serve as substrates of biomolecules or cells. These microcarriers could be extensively applied in the areas of cell culture, tissue engineering, and drug delivery. In this review, we focus on the fabrication of microcarriers from droplet microfluidics, and discuss their applications in the biomedical field. We start with the basic principle of droplet microfluidics, including droplet generation regimes and its control methods. We then introduce the fabrication of biomedical microcarriers based on single, double, and multiple emulsion droplets, and emphasize the various applications of microcarriers in biomedical field, especially in 3D cell culture, drug development and biomedical detection. Finally, we conclude this review by discussing the limitations and challenges of droplet microfluidics in preparing microcarriers. STATEMENT OF SIGNIFICANCE: Because of its precise control and high throughput, droplet microfluidics has been employed to generate functional microcarriers, which have been widely used in the areas of drug development, tissue engineering, and regenerative medicine. This review is significant because it emphasizes recent progress in research on droplet microfluidics in the preparation and application of biomedical microcarriers. In addition, this review suggests research directions for the future development of biomedical microcarriers based on droplet microfluidics by presenting existing shortcomings and challenges.
Collapse
|
46
|
Hydrothermal Synthesis of Biphasic Calcium Phosphate from Cuttlebone Assisted by the Biosurfactant L-rhamnose Monohydrate for Biomedical Materials. CHEMENGINEERING 2021. [DOI: 10.3390/chemengineering5040088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The motivation of this research work is to develop novel medical material from cuttlebone (calcium source) by L-rhamnose monohydrate (biosurfactant) for aged people. The process can be synthesized biphasic calcium phosphate which is eco-friendly to environment. One of the most important aspects for this work is to use cuttlebone as a naturally occurring calcium source from a local beach in Thailand. It usually contains 90% calcium carbonate. The objective of this research work is to synthesize the biphasic calcium phosphate by hydrothermal reaction. Critical micelle concentrations (CMCs) of 10, 20, 100, 500 and 1000 of L-rhamnose monohydrate were used to control particle size and shape. XRD revealed a mixture of β-tricalcium phosphate and hydroxyapatite powder. SEM reported that the size of particles can be effectively controlled by the addition of L-rhamnose monohydrate, and with the addition of surfactant, size uniformity was achieved. The cytotoxicity test was reported to be in the range of 70–75%. It was remarkable to note that biphasic calcium phosphate synthesized from cuttlebone with the aid of L-rhamnose monohydrate will be considered an excellent candidate as a scaffold material.
Collapse
|
47
|
Yu X, Shen G, Shang Q, Zhang Z, Zhao W, Zhang P, Liang D, Ren H, Jiang X. A Naringin-loaded gelatin-microsphere/nano-hydroxyapatite/silk fibroin composite scaffold promoted healing of critical-size vertebral defects in ovariectomised rat. Int J Biol Macromol 2021; 193:510-518. [PMID: 34710477 DOI: 10.1016/j.ijbiomac.2021.10.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 01/08/2023]
Abstract
In this study, we investigated the effect of three-dimensional of naringin/gelatin microspheres/nano-hydroxyapatite/silk fibroin (NG/GMs/nHA/SF) scaffolds on repair of a critical-size bone defect of lumbar 6 in osteoporotic rats. In this work, a cell-free scaffold for bone-tissue engineering based on a silk fibroin (SF)/nano-hydroxyapatite (nHA) scaffold was developed. The scaffold was fabricated by lyophilization. Naringin (NG) was loaded into gelatin microspheres (GMs), which were encapsulated in the nHA/SF scaffolds. The materials were characterized using x ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and thermogravimetric analysis. Moreover, the biomechanics, degradation, and drug-release profile of the scaffold were also evaluated. In vitro, the effect of the scaffold on the adhesion, proliferation, and osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs) was evaluated. In vivo, at 3 months after ovariectomy, a critical-size lumbar defect was indued in the rats to evaluate scaffold therapeutic potential. A 3-mm defect in L6 developed in 60 SD rats, which were randomly divided into SF scaffold, nHA/SF scaffold, NG/nHA/SF scaffold, NG/GMs/nHA/SF scaffold, and blank groups (n = 12 each). At 4, 8, 12, and 16 weeks postoperatively, osteogenesis was evaluated by X-ray, micro-computed tomography, hematoxylin-eosin staining, and fast green staining, and by analysis of BMP-2, Runx2, and Ocn protein levels at 16 weeks. In our results, NG/GM/nHA/SF scaffolds exhibited good biocompatibility, biomechanical strength, and promoted BMSC adhesion, proliferation, and calcium nodule formation in vitro. Moreover, NG/GMs/nHA/SF scaffolds showed greater osteogenic differentiation potential than the other scaffolds in vitro. In vivo, gradual new bone formation was observed, and bone defects recovered by 16 weeks in the experimental group. In the blank group, limited bone formation was observed, and the bone defect was obvious. In conclusion, NG/GMs/nHA/SF scaffolds promoted repair of a lumbar 6 defect in osteoporotic rats. Therefore, the NG/GMs/nHA/SF biocomposite scaffold has potential as a bone-defect-filling biomaterial for bone regeneration.
Collapse
Affiliation(s)
- Xiang Yu
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gengyang Shen
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Shang
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhida Zhang
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhua Zhao
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Zhang
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Ren
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China..
| |
Collapse
|
48
|
Enzymatically Crosslinked In Situ Synthesized Silk/Gelatin/Calcium Phosphate Hydrogels for Drug Delivery. MATERIALS 2021; 14:ma14237191. [PMID: 34885345 PMCID: PMC8658330 DOI: 10.3390/ma14237191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022]
Abstract
Our research focuses on combining the valuable properties of silk fibroin (SF) and calcium phosphate (CaP). SF is a natural protein with an easily modifiable structure; CaP is a mineral found in the human body. Most of the new age biocomposites lack interaction between organic/inorganic phase, thus SF/CaP composite could not only mimic the natural bone, but could also be used to make drug delivery systems as well, which can ensure both healing and regeneration. CaP was synthesized in situ in SF at different pH values, and then crosslinked with gelatin (G), horseradish peroxide (HRP), and hydrogen peroxide (H2O2). In addition, dexamethasone phosphate (DEX) was incorporated in the hydrogel and drug delivery kinetics was studied. Hydrogel made at pH 10.0 was found to have the highest gel fraction 110.24%, swelling degree 956.32%, and sustained drug delivery for 72 h. The highest cell viability was observed for the hydrogel, which contained brushite (pH 6)-512.43%.
Collapse
|
49
|
Agustini D, Caetano FR, Quero RF, Fracassi da Silva JA, Bergamini MF, Marcolino-Junior LH, de Jesus DP. Microfluidic devices based on textile threads for analytical applications: state of the art and prospects. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4830-4857. [PMID: 34647544 DOI: 10.1039/d1ay01337h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microfluidic devices based on textile threads have interesting advantages when compared to systems made with traditional materials, such as polymers and inorganic substrates (especially silicon and glass). One of these significant advantages is the device fabrication process, made more cheap and simple, with little or no microfabrication apparatus. This review describes the fundamentals, applications, challenges, and prospects of microfluidic devices fabricated with textile threads. A wide range of applications is discussed, integrated with several analysis methods, such as electrochemical, colorimetric, electrophoretic, chromatographic, and fluorescence. Additionally, the integration of these devices with different substrates (e.g., 3D printed components or fabrics), other devices (e.g., smartphones), and microelectronics is described. These combinations have allowed the construction of fully portable devices and consequently the development of point-of-care and wearable analytical systems.
Collapse
Affiliation(s)
- Deonir Agustini
- Laboratory of Electrochemical Sensors (LABSENSE), Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | - Fábio Roberto Caetano
- Laboratory of Electrochemical Sensors (LABSENSE), Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | - Reverson Fernandes Quero
- Institute of Chemistry, State University of Campinas (Unicamp), Campinas, SP, 13083-861, Brazil.
| | - José Alberto Fracassi da Silva
- Institute of Chemistry, State University of Campinas (Unicamp), Campinas, SP, 13083-861, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Bioanalítica (INCTBio), Campinas, SP, Brazil
| | - Márcio Fernando Bergamini
- Laboratory of Electrochemical Sensors (LABSENSE), Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | | | - Dosil Pereira de Jesus
- Institute of Chemistry, State University of Campinas (Unicamp), Campinas, SP, 13083-861, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Bioanalítica (INCTBio), Campinas, SP, Brazil
| |
Collapse
|
50
|
Li S, Shi X, Xu B, Zhen P, Li S. [Progress in the application of silk fibroin in tissue engineered drug delivery system]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:1192-1199. [PMID: 34523288 DOI: 10.7507/1002-1892.202103066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective The properties and characteristics of different types of silk fibroin (SF) drug-loaded sustained-release carriers and their effects on the drug release behavior were reviewed, and the existing problems and development prospects of SF drug-loaded sustained-release carriers in tissue engineering drug delivery system were discussed. Methods The literatures about drug-loaded SF sustained-release carriers in recent years were extensively consulted, and the types of sustained-release carriers, characteristics of drug release, range of applications, advantages and disadvantages, and solutions were summarized and analyzed. Results At present, the SF drug-loaded sustained-release carriers are mainly divided into SF microparticles, SF scaffolds, SF membranes, SF hydrogels, SF nanofibers, SF sponges, and so on. These types of SF drug-loaded sustained-release carriers have their own advantages and problems, of which the most prominent problem is the burst release of drugs at the initial stage. While, the initial burst release of drugs can be effectively solved by improving the preparation process and adjusting the material ratio. Different types of drug-loaded sustained-release carriers can be prepared by combining different materials to achieve different application scopes and drug release behaviors under different conditions. Conclusion SF is a good drug-loaded carrier for tissue engineering, the burst release of drugs at the initial stage can be solved by improving the preparation process and changing the material structure; through the combination of the advantages of various types of SF drug-loaded sustained-release carriers, it is expected to prepare SF drug-loaded sustained-release carriers that meet different clinical needs.
Collapse
Affiliation(s)
- Shengtang Li
- The Second Clinical Medical College of Lanzhou University, Lanzhou Gansu, 730000, P.R.China.,Department of Orthopaedics, the 940 Hospital of PLA Joint Logistics Support Force, Lanzhou Gansu, 730050, P.R.China
| | - Xuewen Shi
- Department of Orthopaedics, the 940 Hospital of PLA Joint Logistics Support Force, Lanzhou Gansu, 730050, P.R.China
| | - Bo Xu
- The Second Clinical Medical College of Lanzhou University, Lanzhou Gansu, 730000, P.R.China.,Department of Orthopaedics, the 940 Hospital of PLA Joint Logistics Support Force, Lanzhou Gansu, 730050, P.R.China
| | - Ping Zhen
- Department of Orthopaedics, the 940 Hospital of PLA Joint Logistics Support Force, Lanzhou Gansu, 730050, P.R.China
| | - Songkai Li
- Department of Orthopaedics, the 940 Hospital of PLA Joint Logistics Support Force, Lanzhou Gansu, 730050, P.R.China
| |
Collapse
|