1
|
de Melo Teixeira L, da Silva Santos É, Dos Santos RS, Ramos AVG, Baldoqui DC, Bruschi ML, Gonçalves JE, Gonçalves RAC, de Oliveira AJB. Production of exopolysaccharide from Klebsiella oxytoca: Rheological, emulsifying, biotechnological properties, and bioremediation applications. Int J Biol Macromol 2024; 278:134400. [PMID: 39122076 DOI: 10.1016/j.ijbiomac.2024.134400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/18/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Bacteria can synthesize a broad spectrum of multifunctional polysaccharides including extracellular polysaccharides (EPS). Bacterial EPS can be utilized in the food, pharmaceutical, and biomedical areas owing to their physical and rheological properties in addition to generally presenting low toxicity. From an ecological viewpoint, EPS are biodegradable and environment compatible, offering several advantages over synthetic compounds. This study investigated the EPS produced by Klebsiella oxytoca (KO-EPS) by chemically characterizing and evaluating its properties. The monosaccharide components of the KO-EPS were determined by HPLC coupled with a refractive index detector and GC-MS. The KO-EPS was then analyzed by methylation analysis, FT-IR and NMR spectroscopy to give a potential primary structure. KO-EPS demonstrated the ability to stabilize hydrophilic emulsions with various hydrophobic compounds, including hydrocarbons and vegetable and mineral oils. In terms of iron chelation capacity, the KO-EPS could sequester 41.9 % and 34.1 % of the most common iron states, Fe2+ and Fe3+, respectively. Moreover, KO-EPS exhibited an improvement in the viscosity of aqueous dispersion, being proportional to the increase in its concentration and presenting a non-Newtonian pseudoplastic flow behavior. KO-EPS also did not present a cytotoxic effect indicating that the KO-EPS could have potential applications as a natural thickener, bioemulsifier, and bioremediation agent.
Collapse
Affiliation(s)
- Letícia de Melo Teixeira
- Graduate Program in Pharmaceutical Science, Department of Pharmacy, State University of Maringá, Av. Colombo 5790, Maringá 87.020-900, Brazil
| | - Éverton da Silva Santos
- Graduate Program in Pharmaceutical Science, Department of Pharmacy, State University of Maringá, Av. Colombo 5790, Maringá 87.020-900, Brazil
| | - Rafaela Said Dos Santos
- Graduate Program in Pharmaceutical Science, Department of Pharmacy, State University of Maringá, Av. Colombo 5790, Maringá 87.020-900, Brazil
| | | | - Débora Cristina Baldoqui
- Department of Chemistry, State University of Maringa, Av. Colombo 5790, Maringa 87.020-900, Brazil
| | - Marcos Luciano Bruschi
- Graduate Program in Pharmaceutical Science, Department of Pharmacy, State University of Maringá, Av. Colombo 5790, Maringá 87.020-900, Brazil
| | - José Eduardo Gonçalves
- Graduate Program in Clean Technologies and Cesumar Institute of Science, Technology and Innovation (ICETI), Cesumar University (Unicesumar), Av. Guedner 1610, Maringá 87050-390, Brazil
| | - Regina Aparecida Correia Gonçalves
- Graduate Program in Pharmaceutical Science, Department of Pharmacy, State University of Maringá, Av. Colombo 5790, Maringá 87.020-900, Brazil
| | - Arildo José Braz de Oliveira
- Graduate Program in Pharmaceutical Science, Department of Pharmacy, State University of Maringá, Av. Colombo 5790, Maringá 87.020-900, Brazil.
| |
Collapse
|
2
|
Ghareeb A, Fouda A, Kishk RM, El Kazzaz WM. Unlocking the therapeutic potential of bioactive exopolysaccharide produced by marine actinobacterium Streptomyces vinaceusdrappus AMG31: A novel approach to drug development. Int J Biol Macromol 2024; 276:133861. [PMID: 39029838 DOI: 10.1016/j.ijbiomac.2024.133861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/27/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
Acidic exopolysaccharide (EPS) was produced by a marine actinobacterium Streptomyces vinaceusdrappus strain AMG31 with the highest yield of 10.6 g/l. The synthesized EPS has an average molecular weight of 5.1 × 104 g/mol and contains arabinose, glucose, galacturonic acid (0.5:2:2 M ratio), with 39.77 % uronic acid residues and 18.8 % sulfate detected. EPS exhibited antioxidant activities with 93.8 % DPPH radical scavenging and 344.7 μg/mg total antioxidant capacity. It displayed anti-inflammatory effects by inhibiting 5-LOX and COX-2. Regarding the cytotoxic activity, the IC50 values are 301.6 ± 11.8, 260.8 ± 12.2, 29.4 ± 13.5, 351.3 ± 11.2, 254.1 ± 9.8, and 266.5 ± 10.4 μg/ml for PC-3, HEP-2, MCF-7, HCT-116, A-549, HepG-2 respectively, which indicate that the produced EPS does not have strong cytotoxic activities. Moreover, the EPS showed anti-Alzheimer activity via inhibition of the Butyrylcholinesterase enzyme, with the highest percentage of 84.5 % at 100 μg/ml. Interestingly, the EPS showed superior anti-obesity activity by inhibiting lipase enzyme with a rate of 95.3 % compared to orlistat as a positive control (96.8 %) at a concentration of 1000 μg/ml. Additionally, the produced EPS displayed the highest anti-diabetic properties by inhibiting α-amylase (IC50 31.49 μg/ml) and α-glucosidase (IC50 6.48 μg/ml), suggesting antidiabetic potential analogous to acarbose. EPS exhibited promising antibacterial and antibiofilm activity against a wide range of Gram-positive and Gram-negative pathogenic bacteria.
Collapse
Affiliation(s)
- Ahmed Ghareeb
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; School of Nuclear Science and Technology, University of South China, Heng Yang, China.
| | - Rania M Kishk
- Microbiology and Immunology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Waleed M El Kazzaz
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
3
|
Akhtar N, Wani AK, Sharma NR, Sanami S, Kaleem S, Machfud M, Purbiati T, Sugiono S, Djumali D, Retnaning Prahardini PE, Purwati RD, Supriadi K, Rahayu F. Microbial exopolysaccharides: Unveiling the pharmacological aspects for therapeutic advancements. Carbohydr Res 2024; 539:109118. [PMID: 38643705 DOI: 10.1016/j.carres.2024.109118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Microbial exopolysaccharides (EPSs) have emerged as a fascinating area of research in the field of pharmacology due to their diverse and potent biological activities. This review paper aims to provide a comprehensive overview of the pharmacological properties exhibited by EPSs, shedding light on their potential applications in various therapeutic areas. The review begins by introducing EPSs, exploring their various sources, significance in microbial growth and survival, and their applications across different industries. Subsequently, a thorough examination of the pharmaceutical properties of microbial EPSs unveils their antioxidant, immunomodulatory, antimicrobial, antidepressant, antidiabetic, antiviral, antihyperlipidemic, hepatoprotective, anti-inflammatory, and anticancer activities. Mechanistic insights into how different EPSs exert these therapeutic effects have also been discussed in this review. The review also provides comprehensive information about the monosaccharide composition, backbone, branches, glycosidic bonds, and molecular weight of pharmacologically active EPSs from various microbial sources. Furthermore, the factors that can affect the pharmacological activities of EPSs and approaches to improve the EPSs' pharmacological activity have also been discussed. In conclusion, this review illuminates the immense pharmaceutical promise of microbial EPS as versatile bioactive compounds with wide-ranging therapeutic applications. By elucidating their structural features, biological activities, and potential applications, this review aims to catalyze further research and development efforts in leveraging the pharmaceutical potential of microbial EPS for the advancement of human health and well-being, while also contributing to sustainable and environmentally friendly practices in the pharmaceutical industry.
Collapse
Affiliation(s)
- Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India.
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India
| | - Samira Sanami
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shaikh Kaleem
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India
| | - Moch Machfud
- Research Center for Estate Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Titiek Purbiati
- Research Center for Horticulture, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Sugiono Sugiono
- Research Center for Horticulture, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Djumali Djumali
- Research Center for Estate Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | | | - Rully Dyah Purwati
- Research Center for Estate Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Khojin Supriadi
- Research Center for Food Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Farida Rahayu
- Research Center for Genetic Engineering, National Research and Innovation Agency, Bogor, (16911), Indonesia
| |
Collapse
|
4
|
James N, Umesh M. Multifarious Potential of Biopolymer-Producing Bacillus subtilis NJ14 for Plant Growth Promotion and Stress Tolerance in Solanum lycopercicum L. and Cicer arietinum L: A Way Toward Sustainable Agriculture. Mol Biotechnol 2024; 66:1031-1050. [PMID: 38097901 DOI: 10.1007/s12033-023-01001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/20/2023] [Indexed: 05/12/2024]
Abstract
Diverse practices implementing biopolymer-producing bacteria have been examined in various domains lately. PHAs are among the major biopolymers whose relevance of PHA-producing bacteria in the field of crop improvement is one of the radical unexplored aspects in the field of agriculture. Prolonging shelf life is one serious issue hindering the establishment of biofertilizers. Studies support that PHA can help bacteria survive stressed conditions by providing energy. Therefore, PHA-producing bacteria with Plant Growth-Promoting ability can alter the existing problem of short shelf life in biofertilizers. In the present study, Bacillus subtilis NJ14 was isolated from the soil. It was explored to understand the ability of the strain to produce PHA and augment growth in Solanum lycopersicum and Cicer arietinum. NJ14 strain improved the root and shoot length of both plants significantly. The root and shoot length of S. lycopersicum was increased by 3.49 and 0.41 cm, respectively. Similarly, C. arietinum showed a 9.55 and 8.24 cm increase in root and shoot length, respectively. The strain also exhibited halotolerant activity (up to 10%), metal tolerance to lead (up to 1000 μg/mL) and mercury (up to 100 μg/mL), indicating that the NJ14 strain can be an ideal candidate for a potent biofertilizer.
Collapse
Affiliation(s)
- Nilina James
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru, Karnataka, 560029, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru, Karnataka, 560029, India.
| |
Collapse
|
5
|
Shen Y, Luo J, Di Cesare A, Guo N, Zou S, Yang Y. Performance evaluation for the inactivation of multidrug-resistant bacteria in wastewater effluent by different disinfection technologies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123427. [PMID: 38286262 DOI: 10.1016/j.envpol.2024.123427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 12/21/2023] [Accepted: 01/21/2024] [Indexed: 01/31/2024]
Abstract
The escalating presence of antibiotic-resistant bacteria (ARB) in aquatic ecosystems underscores the critical role of wastewater treatment plants (WWTPs) in mitigating antibiotic resistance. Disinfection is the final, pivotal step in WWTPs, and it is essential to control the dissemination of ARB before water discharge. This study utilized both phenotypic analysis and transcriptome (RNA-seq) approach to investigate the efficiency and mechanisms of disinfection using chlorination, ultraviolet (UV), and peracetic acid (PAA) on multidrug-resistant bacteria (MRB). Our results demonstrated that the use of 100 mg min L-1 of chlorine, 8.19 mJ cm-2 of UV irradiation or 50 min mg L-1 of PAA significantly reduced the abundance of MRB. Intriguingly, RNA-seq clarified distinct mechanisms of chlorination and UV disinfection. UV radiation triggered the SOS response to cope with DNA damage, induced the expression of multi-drug resistance genes by increasing the expression of efflux pump transporters. UV radiation also promoted the absorption of iron through chelation and transportation to participate in various cell life processes. Chlorination, on the other hand, significantly up-regulated osmotic response elements, including the synthesis of glycine betaine, iron-sulfur clusters, and related transporters. Both chlorination and UV significantly down-regulated key metabolic pathways (P < 0.05), inhibiting the process of amino acid synthesis and energy metabolism. Imbalance in energy homeostasis was the most important factor leading to cytotoxicity. These results provide useful insights into optimizing the wastewater disinfection process in order to prevent the dissemination of ARB in aquatic environment.
Collapse
Affiliation(s)
- Yijing Shen
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, 519082, China
| | - Jieling Luo
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China
| | - Andrea Di Cesare
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, 28922, Italy
| | - Nairong Guo
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, 519082, China
| | - Shichun Zou
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, 519082, China
| | - Ying Yang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, 519082, China.
| |
Collapse
|
6
|
Wang W, Wang X, Huang Y, Zhao Y, Fang X, Cong Y, Tang Z, Chen L, Zhong J, Li R, Guo Z, Zhang Y, Li S. Raman spectrum combined with deep learning for precise recognition of Carbapenem-resistant Enterobacteriaceae. Anal Bioanal Chem 2024:10.1007/s00216-024-05209-9. [PMID: 38383664 DOI: 10.1007/s00216-024-05209-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) is a major pathogen that poses a serious threat to human health. Unfortunately, currently, there are no effective measures to curb its rapid development. To address this, an in-depth study on the surface-enhanced Raman spectroscopy (SERS) of 22 strains of 7 categories of CRE using a gold silver composite SERS substrate was conducted. The residual networks with an attention mechanism to classify the SERS spectrum from three perspectives (pathogenic bacteria type, enzyme-producing subtype, and sensitive antibiotic type) were performed. The results show that the SERS spectrum measured by the composite SERS substrate was repeatable and consistent. The SERS spectrum of CRE showed varying degrees of species differences, and the strain difference in the SERS spectrum of CRE was closely related to the type of enzyme-producing subtype. The introduced attention mechanism improved the classification accuracy of the residual network (ResNet) model. The accuracy of CRE classification for different strains and enzyme-producing subtypes reached 94.0% and 96.13%, respectively. The accuracy of CRE classification by pathogen sensitive antibiotic combination reached 93.9%. This study is significant for guiding antibiotic use in CRE infection, as the sensitive antibiotic used in treatment can be predicted directly by measuring CRE spectra. Our study demonstrates the potential of combining SERS with deep learning algorithms to identify CRE without culture labels and classify its sensitive antibiotics. This approach provides a new idea for rapid and accurate clinical detection of CRE and has important significance for alleviating the rapid development of resistance to CRE.
Collapse
Affiliation(s)
- Wen Wang
- Dongguan Key Laboratory of Medical Electronics and Medical Imaging Equipment, Guangdong Medical University Dongguan First Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Xin Wang
- Dongguan Key Laboratory of Medical Electronics and Medical Imaging Equipment, Guangdong Medical University Dongguan First Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Ya Huang
- Donghua Hospital Laboratory Department, Dongguan, 523808, Guangdong, China
| | - Yi Zhao
- Dongguan Key Laboratory of Environmental Medicine, School of Basic Medicine, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Xianglin Fang
- Dongguan Key Laboratory of Medical Electronics and Medical Imaging Equipment, Guangdong Medical University Dongguan First Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Yanguang Cong
- Dongguan Key Laboratory of Medical Electronics and Medical Imaging Equipment, Guangdong Medical University Dongguan First Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Zhi Tang
- Dongguan Key Laboratory of Environmental Medicine, School of Basic Medicine, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Luzhu Chen
- Dongguan Key Laboratory of Medical Electronics and Medical Imaging Equipment, Guangdong Medical University Dongguan First Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Jingyi Zhong
- Dongguan Key Laboratory of Medical Electronics and Medical Imaging Equipment, Guangdong Medical University Dongguan First Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Ruoyi Li
- Dongguan Key Laboratory of Medical Electronics and Medical Imaging Equipment, Guangdong Medical University Dongguan First Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Zhusheng Guo
- Donghua Hospital Laboratory Department, Dongguan, 523808, Guangdong, China.
| | - Yanjiao Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Basic Medicine, Guangdong Medical University, Dongguan, 523808, Guangdong, China.
| | - Shaoxin Li
- Dongguan Key Laboratory of Medical Electronics and Medical Imaging Equipment, Guangdong Medical University Dongguan First Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, Guangdong, China.
| |
Collapse
|
7
|
Wang Y, Zhang X, Tian X, Wang Y, Xing X, Song S. Research progress on the functions, preparation and detection methods of l-fucose. Food Chem 2024; 433:137393. [PMID: 37672945 DOI: 10.1016/j.foodchem.2023.137393] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
l-fucose is a six-carbon sugar that has potential applications in many fields. It exerts antitumor effects and could relieve intestinal disease. It exhibits potential as an emulsifier in the food industry. It is also used as a functional food and in anti-aging skincare products. However, at present, it is not possible to prepare high-purity l-fucose on a large scale, and its preparation needs further development. This review summarizes the preparation methods of l-fucose including chemical synthesis, enzymatic synthesis, microbial fermentation, and separation and purification from algae. The detection methods of l-fucose are also introduced in detail, such as l-fucose-specific lectin, detection l-fucose dehydrogenase, cysteine-sulfuric acid method, high-performance liquid chromatography, gas chromatography, and biosensors. In this review, the properties and pharmacological effects of l-fucose; preparation methods, and the commonly used detection methods of l-fucose are reviewed to serve as a reference material.
Collapse
Affiliation(s)
- Yan Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Xiao Zhang
- Marine College, Shandong University, Weihai 264209, China
| | - Xiao Tian
- Marine College, Shandong University, Weihai 264209, China
| | - Yuan Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Xiang Xing
- Marine College, Shandong University, Weihai 264209, China; Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China.
| | - Shuliang Song
- Marine College, Shandong University, Weihai 264209, China; Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China.
| |
Collapse
|
8
|
Yue Y, Wang Y, Han Y, Zhang Y, Cao T, Huo G, Li B. Genome Analysis of Bifidobacterium Bifidum E3, Structural Characteristics, and Antioxidant Properties of Exopolysaccharides. Foods 2023; 12:2988. [PMID: 37627987 PMCID: PMC10453370 DOI: 10.3390/foods12162988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, the antioxidant properties of intact cells (IC), cell-free supernatant (CFS), and cell-free extracts (CFE) and whole genome sequencing of Bifidobacterium bifidum E3 (B. bifidum E3), as well as the structural characteristics and antioxidant properties of EPS-1, EPS-2, and EPS-3, were evaluated. The results revealed that intact cells (IC), cell-free supernatant (CFS), and cell-free extracts (CFE) had potent DPPH (1,1-Diphenyl-2-picrylhydrazyl radical), hydroxyl, and superoxide anion radical scavenging capacities, among which CFS was the best. At the genetic level, we identified a strong carbohydrate metabolism capacity, an EPS synthesis gene cluster, and five sugar nucleotides in B. bifidum E3. Therefore, we extracted cEPS from B. bifidum E3 and purified it to obtain EPS-1, EPS-2, and EPS-3. EPS-1, EPS-2, and EPS-3 were heteropolysaccharides with an average molecular weight of 4.15 × 104 Da, 3.67 × 104 Da, and 5.89 × 104 Da, respectively. The EPS-1 and EPS-2 are mainly comprised of mannose and glucose, and the EPS-3 is mainly comprised of rhamnose, mannose, and glucose. The typical characteristic absorption peaks of polysaccharides were shown in Fourier transform infrared spectroscopy (FT-IR spectroscopy). The microstructural study showed a rough surface structure for EPS-1, EPS-2, and EPS-3. Furthermore, EPS-1, EPS-2, and EPS-3 exhibited potent DPPH, hydroxyl, and superoxide anion radical scavenging capacities. Correlation analysis identified that antioxidant capacities may be influenced by various factors, especially molecular weight, chemical compositions, and monosaccharide compositions. In summary, the EPS that was produced by B. bifidum E3 may provide insights into health-promoting benefits in humans.
Collapse
Affiliation(s)
- Yingxue Yue
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China (T.C.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Yuqi Wang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Yu Han
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China (T.C.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China (T.C.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Ting Cao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China (T.C.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China (T.C.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China (T.C.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
9
|
Liya SM, Umesh M, Nag A, Chinnathambi A, Alharbi SA, Jhanani GK, Shanmugam S, Brindhadevi K. Optimized production of keratinolytic proteases from Bacillus tropicus LS27 and its application as a sustainable alternative for dehairing, destaining and metal recovery. ENVIRONMENTAL RESEARCH 2023; 221:115283. [PMID: 36639016 DOI: 10.1016/j.envres.2023.115283] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/02/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The present study describes the isolation and characterization of Bacillus tropicus LS27 capable of keratinolytic protease production from Russell Market, Shivajinagar, Bangalore, Karnataka, with its diverse application. The ability of this strain to hydrolyze chicken feathers and skim milk was used to assess its keratinolytic and proteolytic properties. The strain identification was done using biochemical and molecular characterization using the 16S rRNA sequencing method. Further a sequential and systematic optimization of the factors affecting the keratinase production was done by initially sorting out the most influential factors (NaCl concentration, pH, inoculum level and incubation period in this study) through one factor at a time approach followed by central composite design based response surface methodology to enhance the keratinase production. Under optimized levels of NaCl (0.55 g/L), pH (7.35), inoculum level (5%) and incubation period (84 h), the keratinase production was enhanced from 41.62 U/mL to 401.67 ± 9.23 U/mL (9.65 fold increase) that corresponds to a feather degradation of 32.67 ± 1.36% was achieved. With regard to the cost effectiveness of application studies, the crude enzyme extracted from the optimized medium was tested for its potential dehairing, destaining and metal recovery properties. Complete dehairing was achieved within 48 h of treatment with crude enzyme without any visible damage to the collagen layer of goat skin. In destaining studies, combination of crude enzyme and detergent solution [1 mL detergent solution (5 mg/mL) and 1 mL crude enzyme] was found to be most effective in removing blood stains from cotton cloth. Silver recovery from used X-ray films was achieved within 6 min of treatment with crude enzyme maintained at 40 °C.
Collapse
Affiliation(s)
- Stanly Merin Liya
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India.
| | - Anish Nag
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - G K Jhanani
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sabarathinam Shanmugam
- Chair of Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 56, 51014, Tartu, Estonia
| | - Kathirvel Brindhadevi
- University Centre for Research & Development, Department of Chemistry, Chandigarh University, Mohali, India.
| |
Collapse
|
10
|
Zepeda-Velazquez AP, Gómez-De-Anda FR, Aguilar-Mendoza LF, Castrejón-Jiménez NS, Hernández-González JC, Varela-Guerrero JA, de-la-Rosa-Arana JL, Vega-Sánchez V, Reyes-Rodríguez NE. Bullfrogs (Lithobates catesbeianus) as a Potential Source of Foodborne Disease. J Food Prot 2023; 86:100067. [PMID: 36948016 DOI: 10.1016/j.jfp.2023.100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 03/24/2023]
Abstract
In Mexico, bullfrogs (Lithobates catesbeianus) are produced as gourmet food. However, bullfrogs can be carriers of pathogens because the frogs' preferred living conditions occur in stagnant water. The present study aimed to identify bacteria that cause foodborne diseases or are associated with human diseases. For molecular identification, based on the sequential analysis by 16S rRNA or rpoD was conducted on all isolates obtained from bullfrog. A total of 91 bacterial isolates were obtained from bullfrogs; 14 genera and 23 species were identified, including Acinetobacter johnsonii 16.5%; Aeromonas media 14.3%; Aeromonas veronii 13.2%; Providencia rettgeri 7.7%; Citrobacter freundii 6.6%; Aeromonas caviae 4.4%; Aeromonas hydrophila and Elizabethkingia ursingii 3.3%; Pseudomonas stutzeri, Raoultella ornithinolytica, and Shewanella putrefaciens 2.2%; Acinetobacter guillouiae, Acinetobacter pseudolwoffii, Citrobacter portucalensis, Citrobacter werkmanii, Edwardsiella anguillarum, Klebsiella michiganensis, Kluyvera intermedia, Kocuria rosea, Myroides odoratimimus, Myroides odoratus, Proteus sp., and Proteus hauseri 1.1%. In this study, 49.4% of the isolates obtained cause foodborne disease, 19.8% are bacteria that play an important role in the spoilage of food, 5.5% of isolates have nosocomial significance, 13.2% of bacteria are considered to be pollutants of the ecosystem, and in the case of A. salmonicida and Edwardsiella anguillarum (12.1%) to have a negative impact on aquaculture. Acinetobacter pseudolwoffii and Citrobacter portucalensis have not been reported to cause disease. Lastly of these isolates, 97.8% (89/91) can cause disease by food consumption or by direct contact for immunocompromised persons. The presence of these bacteria in bullfrogs represents a significant problem for human health. There is evidence that these microorganisms are pathogenic and frogs may also be reservoirs.
Collapse
Affiliation(s)
- Andrea P Zepeda-Velazquez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo 43600, Mexico.
| | - Fabián-Ricardo Gómez-De-Anda
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo 43600, Mexico.
| | - Luis F Aguilar-Mendoza
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo 43600, Mexico
| | - Nayeli Shantal Castrejón-Jiménez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo 43600, Mexico.
| | - Juan Carlos Hernández-González
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo 43600, Mexico.
| | - Jorge A Varela-Guerrero
- Universidad Autónoma del Estado de México, Centro de Investigación y Estudios Avanzados en Salud Animal (CIESA), Facultad de Medicina Veterinaria y Zootecnia, km 15.5 Carretera Panamericana Toluca-Atlacomulco, Toluca, Estado de México, Mexico.
| | - Jorge-Luis de-la-Rosa-Arana
- Microbiología en Salud Humana, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Avenida 1 de mayo S/N, Campo Uno, Cuautitlán Izcalli, CP 54743 Estado de México, Mexico.
| | - Vicente Vega-Sánchez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo 43600, Mexico.
| | - Nydia E Reyes-Rodríguez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo 43600, Mexico.
| |
Collapse
|
11
|
Li ZT, Han SX, Pu JY, Wang YY, Jiang Y, Gao MJ, Zhan XB, Xu S. In Vitro Digestion and Fecal Fermentation of Low-Gluten Rice and Its Effect on the Gut Microbiota. Foods 2023; 12:855. [PMID: 36832930 PMCID: PMC9956666 DOI: 10.3390/foods12040855] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Low-gluten rice is part of a special diet for chronic kidney disease patients, but its digestive mechanism in the gastrointestinal tract is unclear. In this study, low-gluten rice (LGR), common rice (CR), and rice starch (RS) were used as experimental samples, and their digestion and bacterial fermentation were simulated using an in vitro gastrointestinal reactor to investigate the mechanism of the effect of LGR on human health. The starch digestibility of CR was higher than that of LGR, with statistically significant differences. LGR has growth-promoting and metabolic effects on Akkermansia muciniphila. Among the beneficial metabolites, the concentration of short-chain fatty acids (SCFAs) from LGR reached 104.85 mmol/L, an increase of 44.94% (versus RS) and 25.33% (versus CR). Moreover, the concentration of lactic acid reached 18.19 mmol/L, an increase of 60.55% (versus RS) and 25.28% (versus CR). Among the harmful metabolites, the concentration of branched-chain fatty acids (BCFAs) in LGR was 0.29 mmol/L and the concentration of ammonia was 2.60 mmol/L, which was 79.31% and 16.15% lower than CR, respectively. A significant increase in the concentration of the beneficial intestinal bacteria Bacteroides and Bifidobacterium occurred from LGR. The 16s rDNA sequencing showed that the abundance of the Bacteroidetes and Firmicutes increased and the abundance of the Proteobacteria and Fusobacteria decreased. Thus, LGR has positive effects on digestion and gut microbiota structure and metabolism in humans.
Collapse
Affiliation(s)
- Zhi-Tao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuang-Xin Han
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jia-Yang Pu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yu-Ying Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yun Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Min-Jie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiao-Bei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Song Xu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Liu Z, Pei F, Zhu J, Xue D, Liu Y, Liu D, Li H. Production, characterization and antioxidant activity of exopolysaccharide from Sporidiobolus pararoseus PFY-Z1. World J Microbiol Biotechnol 2022; 39:10. [PMID: 36369391 DOI: 10.1007/s11274-022-03453-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022]
Abstract
At present, the study on exopolysaccharid is mainly focused on lactic acid bacteria, and the research on exopolysaccharide produced by yeast, especially Sporidiobolus pararoseus, is relatively few. Therefore, the aim of this study was to explore the characterization and antioxidant activities of a novel neutral exopolysaccharide SPZ, which was isolated and purified from S. pararoseus PFY-Z1. The results showed that SPZ was mainly composed of mannose, followed by glucose, with a molecular weight was 24.98 kDa, had O-glycosidic bonds, no crystalline, and no triple helix structure. Based on fourier transform-infrared, high-performance liquid chromatography and nuclear magnetic resonance analyses, SPZ was identified to be a exopolysaccharide with some side chains, presence of α-, β-pyranose ring and nine sugar residues. Furthermore, the morphology features of SPZ have performed a relatively rough and uneven surface, covered with small pores and fissures. Moreover, SPZ had higher antioxidant activities and the maximum scavenging abilities of ⋅OH, NO2- and reducing power were 28.05 ± 0.73%, 92.76 ± 1.86% and 0.345 ± 0.024, respectively. Hence, SPZ could be used as a potential antioxidant application in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Zhenyan Liu
- Office of Academic Research, Qiqihar Medical University, Qiqihar, 161006, China
| | - Fangyi Pei
- Office of Academic Research, Qiqihar Medical University, Qiqihar, 161006, China.
| | - Jinfeng Zhu
- Office of Academic Research, Qiqihar Medical University, Qiqihar, 161006, China
| | - Di Xue
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China
| | - Yuchao Liu
- Office of Academic Research, Qiqihar Medical University, Qiqihar, 161006, China
| | - Deshui Liu
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China
| | - Hui Li
- Office of Academic Research, Qiqihar Medical University, Qiqihar, 161006, China
| |
Collapse
|
13
|
Soundararajan D, Natarajan L, Trilokesh C, Harish B, Ameen F, Amirul Islam M, Uppuluri KB, Anbazhagan V. Isolation of exopolysaccharide, galactan from marine Vibrio sp. BPM 19 to template the synthesis of antimicrobial platinum nanocomposite. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Lucena MDA, Ramos IFDS, Geronço MS, de Araújo R, da Silva Filho FL, da Silva LMLR, de Sousa RWR, Ferreira PMP, Osajima JA, Silva-Filho EC, Rizzo MDS, Ribeiro AB, da Costa MP. Biopolymer from Water Kefir as a Potential Clean-Label Ingredient for Health Applications: Evaluation of New Properties. Molecules 2022; 27:3895. [PMID: 35745016 PMCID: PMC9231297 DOI: 10.3390/molecules27123895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022] Open
Abstract
The present work aimed to characterize the exopolysaccharide obtained from water kefir grains (EPSwk), a symbiotic association of probiotic microorganisms. New findings of the technological, mechanical, and biological properties of the sample were studied. The EPSwk polymer presented an Mw of 6.35 × 105 Da. The biopolymer also showed microcrystalline structure and characteristic thermal stability with maximum thermal degradation at 250 °C. The analysis of the monosaccharides of the EPSwk by gas chromatography demonstrated that the material is composed of glucose units (98 mol%). Additionally, EPSwk exhibited excellent emulsifying properties, film-forming ability, a low photodegradation rate (3.8%), and good mucoadhesive properties (adhesion Fmax of 1.065 N). EPSwk presented cytocompatibility and antibacterial activity against Escherichia coli and Staphylococcus aureus. The results of this study expand the potential application of the exopolysaccharide from water kefir as a potential clean-label raw material for pharmaceutical, biomedical, and cosmetic applications.
Collapse
Affiliation(s)
- Monalisa de Alencar Lucena
- Materials Science and Engineering Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (M.d.A.L.); (I.F.d.S.R.); (M.S.G.); (R.d.A.); (J.A.O.); (E.C.S.-F.); (M.P.d.C.)
| | - Igor Frederico da Silveira Ramos
- Materials Science and Engineering Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (M.d.A.L.); (I.F.d.S.R.); (M.S.G.); (R.d.A.); (J.A.O.); (E.C.S.-F.); (M.P.d.C.)
| | - Maurycyo Silva Geronço
- Materials Science and Engineering Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (M.d.A.L.); (I.F.d.S.R.); (M.S.G.); (R.d.A.); (J.A.O.); (E.C.S.-F.); (M.P.d.C.)
| | - Ricardo de Araújo
- Materials Science and Engineering Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (M.d.A.L.); (I.F.d.S.R.); (M.S.G.); (R.d.A.); (J.A.O.); (E.C.S.-F.); (M.P.d.C.)
| | | | - Luís Manuel Lopes Rodrigues da Silva
- CPIRN-UDI/IPG—Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal;
| | - Rayran Walter Ramos de Sousa
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (R.W.R.d.S.); (P.M.P.F.)
- Pharmaceutical Sciences Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil;
| | - Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (R.W.R.d.S.); (P.M.P.F.)
- Pharmaceutical Sciences Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil;
| | - Josy Anteveli Osajima
- Materials Science and Engineering Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (M.d.A.L.); (I.F.d.S.R.); (M.S.G.); (R.d.A.); (J.A.O.); (E.C.S.-F.); (M.P.d.C.)
| | - Edson Cavalcanti Silva-Filho
- Materials Science and Engineering Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (M.d.A.L.); (I.F.d.S.R.); (M.S.G.); (R.d.A.); (J.A.O.); (E.C.S.-F.); (M.P.d.C.)
| | - Márcia dos Santos Rizzo
- Pharmaceutical Sciences Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil;
| | - Alessandra Braga Ribeiro
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Marcilia Pinheiro da Costa
- Materials Science and Engineering Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (M.d.A.L.); (I.F.d.S.R.); (M.S.G.); (R.d.A.); (J.A.O.); (E.C.S.-F.); (M.P.d.C.)
- College of Pharmacy, Federal University of Piauí, Teresina 64049-550, PI, Brazil;
- Pharmaceutical Sciences Graduate Program, Federal University of Piauí, Teresina 64049-550, PI, Brazil;
| |
Collapse
|
15
|
Derdak R, Sakoui S, Pop OL, Cristian Vodnar D, Addoum B, Elmakssoudi A, Errachidi F, Suharoschi R, Soukri A, El Khalfi B. Screening, optimization and characterization of exopolysaccharides produced by novel strains isolated from Moroccan raw donkey milk. Food Chem X 2022; 14:100305. [PMID: 35520389 PMCID: PMC9062669 DOI: 10.1016/j.fochx.2022.100305] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022] Open
Abstract
EPS producing bacteria was isolated and identified as Leuconostoc mesenteroides SL and Enterococcus viikkiensis N5. Optimization was carried out by Response Surface Methodology using Box Behnken Design. The GC–MS, FTIR, and NMR analysis showed that the EPS-SL and EPS-N5 are heteropolysaccharides connected by α-(1 → 6) and -(1 → 3) linkages. Both EPSs has high thermal stability. EPS exhibited appreciable antibacterial and antioxidant activity.
Two exopolysaccharides (EPS) producing strains, isolated from raw donkey milk were identified as Leuconostoc mesenteroides SL and Enterococcus viikkiensis N5 using 16S rDNA sequencing. The Box Benheken design exhibited the highest yield of EPS-SL (672.342 mg/L) produced by SL and of EPS-N5 (901 mg/L) produced by N5. The molecular weight was 1.68×104 for EPS-SL and 1.55×104 Da for EPS-N5. FTIR, NMR and GC–MS analysis showed that the EPS are heteropolysaccharides. The SEM image showed that the EPS-SL was smooth and represented a lotus leaf shape and EPS-N5 revealed a stiff-like, porous appearance and was more compact than EPS-SL. The TGA analyses showed high thermal stability and degradation temperature. Additionally, the two EPSs possessed antibacterial and antioxidant activity, and the EPS-SL had the stronger antioxidant activity. Consequently, these results suggest that the functional and biological properties of EPS-SL and EPS-N5 imply the potential application in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Reda Derdak
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco
| | - Souraya Sakoui
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco
| | - Oana Lelia Pop
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, Cluj-Napoca 400372, Romania
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3-5, Cluj-Napoca 400372, Romania
- Corresponding authors at: Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, Cluj-Napoca 400372, Romania (O.L. Pop, R. Suharoschi). Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco (B. El khalfi).
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, Cluj-Napoca 400372, Romania
- Food Biotechnology and Molecular Gastronomy, CDS7, Life Science Institute, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3-5, Cluj-Napoca 400372, Romania
| | - Boutaina Addoum
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco
| | - Abdelhakim Elmakssoudi
- Department of Chemistry, Laboratory of Organic Synthesis, Extraction, and Valorization, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco
| | - Faouzi Errachidi
- Laboratory of Functional Ecology and Engineering Environment, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University, Imouzzer Street, B.P. 2202, Fez, Morocco
| | - Ramona Suharoschi
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, Cluj-Napoca 400372, Romania
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3-5, Cluj-Napoca 400372, Romania
- Corresponding authors at: Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, Cluj-Napoca 400372, Romania (O.L. Pop, R. Suharoschi). Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco (B. El khalfi).
| | - Abdelaziz Soukri
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco
| | - Bouchra El Khalfi
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco
- Corresponding authors at: Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, Cluj-Napoca 400372, Romania (O.L. Pop, R. Suharoschi). Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco (B. El khalfi).
| |
Collapse
|
16
|
Structural Characterization of Exopolysaccharide Produced by Leuconostoccitreum B-2 Cultured in Molasses Medium and Its Application in Set Yogurt. Processes (Basel) 2022. [DOI: 10.3390/pr10050891] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sugarcane molasses is an agricultural by-product containing sucrose. In this study, the exopolysaccharide (M-EPS) produced by Leuconostoc citreum B-2 in molasses-based medium was characterized, optimized, and its application in set yogurt was investigated. The structure analysis, including gel permeation chromatography, Fourier transform infrared spectroscopy, and nuclear magnetic resonance, revealed that the M-EPS was a linear dextran composed of D-glucose units, which were linked by α-(1→6) glycosidic bonds with 19.3% α-(1→3) branches. The M-EPS showed a lower molecular weight than that produced from sucrose. The M-EPS was added into the set yogurt, and then the water holding capacity, pH, and microstructure of set yogurt were evaluated. Compared with the controls, the addition of M-EPS improved the water holding capacity and reduced the pH of set yogurt. Meanwhile, the structure of the three-dimensional network was also observed in the set yogurt containing M-EPS, indicating that M-EPS had a positive effect on the stability of set yogurt. The results provide a theoretical basis for the cost-effective utilization of sugarcane molasses.
Collapse
|
17
|
Lu T, Yang Y, Feng WJ, Jin QC, Wu ZG, Jin ZH. Effect of the compound bacterial agent on microbial community of the aerobic compost of food waste. Lett Appl Microbiol 2021; 74:32-43. [PMID: 34608649 DOI: 10.1111/lam.13579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/08/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022]
Abstract
In our study, we used 16SrRNA and ITS to investigate the microbial community composition and the effect of compound bacterial agent on the microbial community composition in the aerobic composting process of food waste (FW). At the bacterial level, the main phyla of Group A (compost naturally) were Proteobacteria and Firmicutes, and the main species were Pseudomonas_sp._GR7, Bacillus licheniformis and Pediococcus acidilactici. The main phyla of Group B (compost with compound bacterial agent) were Proteobacteria, Firmicutes and Streptophyta, and the main species were Klebsiella pneumoniae, Cronobacter sakazakii, Macrococcus caseolyticus, Enterococcus faecalis, Citrobacter freundii and Bacillus velezensis. It is worth noting that M. caseolyticus may be able to improve the effect of odour which is an important sensory index during aerobic composting. At the fungal level, the main phylum of both Groups A and B was Ascomycota, and the main species of Group A were Paecilomyces variotii, Byssochlamys spectabilis and Aspergillus fumigatus. The main species of Group B were Ogataea polymorpha and Millerozyma farinosa. Finally, the degradation rate of Group B was 81% that was about 15% higher than that of Group A, indicating that the compound bacterial agent could effectively improve the degradation rate and the composting process, while the low abundance of the compound bacterial agent in the composting process might be due to the small initial addition or the inhibition of other bacteria or fungi in the composting process.
Collapse
Affiliation(s)
- T Lu
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China.,College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Y Yang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
| | - W J Feng
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
| | - Q C Jin
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
| | - Z G Wu
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
| | - Z H Jin
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
| |
Collapse
|
18
|
Improvement of Biohydrogen and Usable Chemical Products from Glycerol by Co-Culture of Enterobacter spH1 and Citrobacter freundii H3 Using Different Supports as Surface Immobilization. FERMENTATION 2021. [DOI: 10.3390/fermentation7030154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Glycerol is a by-product of biodiesel production in a yield of about 10% (w/w). The present study aims to improve the dark fermentation of glycerol by surface immobilization of microorganisms on supports. Four different supports were used—maghemite (Fe2O3), activated carbon (AC), silica gel (SiO2), and alumina (γ-Al2O3)—on which a newly isolated co-culture of Enterobacter spH1 and Citrobacter freundii, H3, was immobilized. The effect of iron species on dark fermentation was also studied by impregnation on AC and SiO2. The fermentative metabolites were mainly ethanol, 1,3-propanediol, lactate, H2 and CO2. The production rate (Rmax,i) and product yield (Yi) were elucidated by modeling using the Gompertz equation for the batch dark fermentation kinetics (maximum product formation (Pmax,i): (i) For each of the supports, H2 production (mmol/L) and yield (mol H2/mol glycerol consumed) increased in the following order: FC < γ-Al2O3 < Fe2O3 < SiO2 < Fe/SiO2 < AC < Fe/AC. (ii) Ethanol production (mmol/L) increased in the following order: FC < Fe2O3 < γ-Al2O3 < SiO2 < Fe/SiO2 < Fe/AC < AC, and yield (mol EtOH/mol glycerol consumed) increased in the following order: FC < Fe2O3 < Fe/AC < Fe/SiO2 < SiO2 < AC < γ-Al2O3. (iii) 1,3-propanediol production (mmol/L) and yield (mol 1,3PDO/mol glycerol consumed) increased in the following order: γ-Al2O3 < SiO2 < Fe/SiO2 < AC < Fe2O3 < Fe/AC < FC. (iv) Lactate production(mmol/L) and yield (mol Lactate/mol glycerol consumed) increased in the following order: γ-Al2O3 < SiO2 < AC < Fe/SiO2 < Fe/AC < Fe2O3 < FC. The study shows that in all cases, glycerol conversion was higher when the support assisted culture was used. It is noted that glycerol conversion and H2 production were dependent on the specific surface area of the support. H2 production clearly increased with the Fe2O3, Al2O3, SiO2 and AC supports. H2 production on the iron-impregnated AC and SiO2 supports was higher than on the corresponding bare supports. These results indicate that the support enhances the productivity of H2, perhaps because of specific surface area attachment, biofilm formation of the microorganisms and activation of the hydrogenase enzyme by iron species.
Collapse
|
19
|
Gaglio R, Todaro M, Settanni L. Improvement of Raw Milk Cheese Hygiene through the Selection of Starter and Non-Starter Lactic Acid Bacteria: The Successful Case of PDO Pecorino Siciliano Cheese. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1834. [PMID: 33668630 PMCID: PMC7917940 DOI: 10.3390/ijerph18041834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
This review article focuses on the technological aspects and microbiological critical points of pressed-cooked cheeses processed from raw ewe's milk without the inoculation of starter cultures, in particular "Pecorino" cheese typology produced in Italy. After showing the composition of the biofilms adhering to the surface of the traditional dairy equipment (mainly wooden vat used to collect milk) and the microbiological characteristics of PDO Pecorino Siciliano cheese manufactured throughout Sicily, this cheese is taken as a case study to develop a strategy to improve its hygienic and safety characteristics. Basically, the natural lactic acid bacterial populations of fresh and ripened cheeses were characterized to select an autochthonous starter and non-starter cultures to stabilize the microbial community of PDO Pecorino Siciliano cheese. These bacteria were applied at a small scale level to prove their in situ efficacy, and finally introduced within the consortium for protection and promotion of this cheese to disseminate their performances to all dairy factories. The innovation in PDO Pecorino Siciliano cheese production was proven to be respectful of the traditional protocol, the final cheeses preserved their typicality, and the general cheese safety was improved. An overview of the future research prospects is also reported.
Collapse
Affiliation(s)
| | | | - Luca Settanni
- Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy; (R.G.); (M.T.)
| |
Collapse
|