1
|
Wankhede NL, Kale MB, Kyada A, M RM, Chaudhary K, Naidu KS, Rahangdale S, Shende PV, Taksande BG, Khalid M, Gulati M, Umekar MJ, Fareed M, Kopalli SR, Koppula S. Sleep deprivation-induced shifts in gut microbiota: Implications for neurological disorders. Neuroscience 2025; 565:99-116. [PMID: 39622383 DOI: 10.1016/j.neuroscience.2024.11.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Sleep deprivation is a prevalent issue in contemporary society, with significant ramifications for both physical and mental well-being. Emerging scientific evidence illuminates its intricate interplay with the gut-brain axis, a vital determinant of neurological function. Disruptions in sleep patterns disturb the delicate equilibrium of the gut microbiota, resulting in dysbiosis characterized by alterations in microbial composition and function. This dysbiosis contributes to the exacerbation of neurological disorders such as depression, anxiety, and cognitive decline through multifaceted mechanisms, including heightened neuroinflammation, disturbances in neurotransmitter signalling, and compromised integrity of the gut barrier. In response to these challenges, there is a burgeoning interest in therapeutic interventions aimed at restoring gut microbial balance and alleviating neurological symptoms precipitated by sleep deprivation. Probiotics, dietary modifications, and behavioural strategies represent promising avenues for modulating the gut microbiota and mitigating the adverse effects of sleep disturbances on neurological health. Moreover, the advent of personalized interventions guided by advanced omics technologies holds considerable potential for tailoring treatments to individualized needs and optimizing therapeutic outcomes. Interdisciplinary collaboration and concerted research efforts are imperative for elucidating the underlying mechanisms linking sleep, gut microbiota, and neurological function. Longitudinal studies, translational research endeavours, and advancements in technology are pivotal for unravelling the complex interplay between these intricate systems.
Collapse
Affiliation(s)
- Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmacy, Faculty of Health Sciences Marwadi University, Rajkot 360003, Gujarat, India
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Sandip Rahangdale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Prajwali V Shende
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| |
Collapse
|
2
|
Feng Y, Jin Q, Liu X, Lin T, Johnson A, Huang H. Advances in understanding dietary fiber: Classification, structural characterization, modification, and gut microbiome interactions. Compr Rev Food Sci Food Saf 2025; 24:e70092. [PMID: 39840651 PMCID: PMC11752078 DOI: 10.1111/1541-4337.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 01/23/2025]
Abstract
Gut microbiota and their metabolites profoundly impact host physiology. Targeted modulation of gut microbiota has been a long-term interest in the scientific community. Numerous studies have investigated the feasibility of utilizing dietary fibers (DFs) to modulate gut microbiota and promote the production of health-beneficial bacterial metabolites. However, the complexity of fiber structures, microbiota composition, and their dynamic interactions have hindered the precise prediction of the impact of DF on the gut microbiome. We address this issue with a new perspective, focusing on the inherent chemical and structural complexity of DFs and their interaction with gut microbiota. The chemical and structural complexity of fibers was thoroughly elaborated, encompassing the fibers' molecular composition, polymorphism, mesoscopic structures, porosity, and particle size. Advanced characterization techniques to investigate fiber structural properties were discussed. Additionally, we examined the interactions between DFs and gut microbiota. Finally, we summarized processing techniques to modify fiber structures for improving the fermentability of DF by gut microbiota. The structure of fibers, such as their crystallinity, porosity, degree of branching, and pore wettability, significantly impacts their interactions with gut microbiota. These structural differences also substantially affect fiber's fermentability and capability to modulate the composition of gut microbiota. Conventional approaches are not capable of investigating complex fiber properties and their influences on the gut microbiome; therefore, it is of the essence to involve advanced material characterization techniques and artificial intelligence to unveil more comprehensive information on this topic.
Collapse
Affiliation(s)
- Yiming Feng
- Department of Food Science and TechnologyVirginia TechBlacksburgVirginiaUSA
- Department of Biological Systems EngineeringVirginia TechBlacksburgVirginiaUSA
| | - Qing Jin
- Department of Food Science and TechnologyVirginia TechBlacksburgVirginiaUSA
- School of Food and AgricultureUniversity of MaineOronoMaineUSA
| | - Xuanbo Liu
- Department of Food Science and TechnologyVirginia TechBlacksburgVirginiaUSA
| | - Tiantian Lin
- Department of Food Science and TechnologyVirginia TechBlacksburgVirginiaUSA
| | - Andrea Johnson
- Department of Food Science and TechnologyVirginia TechBlacksburgVirginiaUSA
| | - Haibo Huang
- Department of Food Science and TechnologyVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
3
|
Zhang S, Nie S, Wu R, Chen X, Huang P. Extraction, purification, structural characterization, and bioactivities of Radix Aconiti Lateralis Preparata (Fuzi) polysaccharides: A review. Int J Biol Macromol 2024; 292:139285. [PMID: 39736284 DOI: 10.1016/j.ijbiomac.2024.139285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/21/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
Radix Aconiti Lateralis Preparata (Fuzi) polysaccharide (FZP) is a key bioactive macromolecule derived from the root of Aconitum carmichaeli Debx. FZP has a variety of biological activities, including immunomodulatory, anti-tumor, anti-depressant, organ-protective, hypoglycemic, anti-inflammatory, and other activities. The biological activities of polysaccharides are closely related to their structures, and different extraction and purification methods will yield different polysaccharide structures. In this review, we summarized the advancements in FZP research, including extraction techniques, biological activities, and mechanism to provide basic reference for developing and applying as therapeutic agents and functional foods. At the same time, the shortcomings of FZP research are discussed in depth, and the potential development prospects and future research direction are prospected.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Shanshan Nie
- Department of Cardiovascular Disease, The first Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Ruipeng Wu
- Department of Cardiovascular Disease, The first Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Xinju Chen
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China.
| | - Peng Huang
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
4
|
Jiang S, Qiao Y, Zhou X, Zhang D, Du Z, Zhang G. Dietary fiber intake moderates the impact of blood cadmium on depression: a nationally representative cross-sectional study. BMC Public Health 2024; 24:3559. [PMID: 39709347 DOI: 10.1186/s12889-024-21146-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Cadmium (Cd) is a very poisonous pollutant in the environment that has harmful implications on the neurological system. While high fiber intake is beneficial for mental health, it remains unknown whether the recommended basis for dietary fiber intake (DFI) (14 g/1000 kcal per day) can alleviate Cd-induced depression. METHODS The investigation employed data from the National Health and Nutrition Examination Survey (NHANES) conducted between the years 2005 and 2020. The research encompassed individuals who had information on blood Cd concentrations, two 24-hour dietary recalls, and depression diagnosis. We deployed weighted logistic regression analyses to estimate the association of exposure to Cd and DFI with depression risk. RESULTS The adjusted ORs (95% CI) for depression were 1.33 (95% CI: 1.08, 1.65) and 1.64 (95% CI: 1.38, 1.94) for the third and fourth quartiles of blood Cd concentrations, respectively (Ptrend < 0.001). Doubling DFI was connected with a 0.78-fold (95% CI: 0.71, 0.85) decrease in the risk of depression. Participants below recommended DFI levels had a greater depression risk with higher blood Cd concentrations: OR of 1.39 (95% CI: 1.11, 1.73) for the third and 1.67 (95% CI: 1.40, 1.98) for the fourth quartile. No significant association between Cd exposure and depression was perceived for participants meeting recommended DFI levels. CONCLUSIONS Higher blood Cd burden was associated with elevated depression risk, while recommended DFI could alleviate this effect. High-fiber dietary pattern may counteract the deleterious effect of environmental pollutants such as Cd on depression. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Shunli Jiang
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Engineering Research Center for "Preventive Treatment" Smart Health of Traditional Chinese Medicine, School of Basic Medical Science, Zhejiang Chinese Medical University, #548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China.
- Key Laboratory of Occupational Health and Environmental Medicine, Department of Public Health, Jining Medical University, Jining, Shandong, China.
| | - Yi Qiao
- Key Laboratory of Occupational Health and Environmental Medicine, Department of Public Health, Jining Medical University, Jining, Shandong, China
| | - Xinyong Zhou
- Luqiao Township Health Center, Weishan, Jining, Shandong, China
| | - Dashuai Zhang
- Luqiao Township Health Center, Weishan, Jining, Shandong, China
| | - Zhongyan Du
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Engineering Research Center for "Preventive Treatment" Smart Health of Traditional Chinese Medicine, School of Basic Medical Science, Zhejiang Chinese Medical University, #548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China.
| | - Guangji Zhang
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Engineering Research Center for "Preventive Treatment" Smart Health of Traditional Chinese Medicine, School of Basic Medical Science, Zhejiang Chinese Medical University, #548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
5
|
Xu X, Wei S, Lin M, Chen F, Zhang X, Zhu Y. The relationship between acrylamide and neurodegenerative diseases: gut microbiota as a new intermediate cue. Crit Rev Food Sci Nutr 2024:1-13. [PMID: 39668759 DOI: 10.1080/10408398.2024.2440602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Acrylamide (AA), a compound formed during the thermal processing of high-carbohydrate foods, has been implicated in the onset and progression of neurodegenerative diseases. An increasing number of reports support that gut microbiota plays a significant role in brain function and diseases, suggesting it may act as a mediator between AA exposure and the development of neurodegenerative diseases. Available studies have shown that AA intake affects the composition of the gut microbiota and the integrity of the intestinal barrier, both of which are often thought to be associated with the pathogenesis of neurodegenerative diseases, given the numerous evidences linking gut microbiota with the brain. Based on the current understanding, this paper discusses that AA induces the onset and progression of neurodegenerative diseases by disrupting the composition of the gut microbiota and the structure of the intestinal barrier. Furthermore, it explores the interaction between probiotics and AA exposure, as well as the potential for polysaccharides and polyphenols to improve the gut microenvironment, which provides novel perspectives on modulating the neurodegenerative diseases caused by AA exposure through diet.
Collapse
Affiliation(s)
- Xinrui Xu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, P. R. China
| | - Siyu Wei
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, P. R. China
| | - Mengyi Lin
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, P. R. China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, P. R. China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, P. R. China
| | - Yuchen Zhu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
6
|
Yang Y, Shi L, Zeng S, Chen C. Association Between Dietary Fiber and the Severity of Depression Symptoms. Behav Neurol 2024; 2024:5510304. [PMID: 39502832 PMCID: PMC11535533 DOI: 10.1155/2024/5510304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/20/2024] [Indexed: 11/08/2024] Open
Abstract
Aim: Our study is aimed at exploring the correlation between consumption of dietary fiber and the severity of depression symptoms. Methods: This study utilized data from the National Health and Nutrition Examination Survey spanning from 2007 to 2018, employing a cross-sectional design. The relationship between the severity of depression symptoms and intake of total cereals, vegetables, and fruits dietary fiber was assessed using both univariate and multivariate linear/logistic regression analyses. Stratified analyses were conducted based on hypertension, diabetes, dyslipidemia, cancer or malignancy, and cardiovascular disease. Results: This study included 28,852 participants who were classified into 21,696 with nondepression symptoms, 4614 with mild depression symptoms, 1583 with moderate depression symptoms, 684 with moderately severe depression symptoms, and 275 with severe depression symptoms. After adjusting all confounding factors, we observed a negative correlation between total dietary fiber and depression symptoms (beta = -0.004, 95% confidence intervals [CIs]: -0.006, -0.002). Taking nondepression symptoms as a reference, total dietary fiber was found to have an inverse association with moderate (OR = 0.976, 95% CI: 0.962-0.991), moderately severe (OR = 0.963, 95% CI: 0.938-0.990), and severe depression symptoms (OR = 0.960, 95% CI: 0.921-1.001; marginal significance), respectively. Conclusion: The intakes of total dietary fibers might be related to moderate/moderately severe/severe depression symptoms, and a negative association was shown between total dietary fiber intakes and the risk of depression symptoms.
Collapse
Affiliation(s)
- Yi Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory for Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Lubo Shi
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory for Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Shihan Zeng
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory for Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Chuyan Chen
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory for Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| |
Collapse
|
7
|
Muchimapura S, Thukham-mee W, Tong-un T, Sangartit W, Phuthong S. Effects of a Functional Cone Mushroom ( Termitomyces fuliginosus) Protein Snack Bar on Cognitive Function in Middle Age: A Randomized Double-Blind Placebo-Controlled Trial. Nutrients 2024; 16:3616. [PMID: 39519449 PMCID: PMC11548036 DOI: 10.3390/nu16213616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Due to the rising prevalence of cognitive impairment in the middle-aged and elderly population, combined with consumer demand for functional foods to improve health and well-being. Objective: This study aimed to formulate a functional cone mushroom (Termitomyces fuliginosus) (FCM) protein snack bar and evaluate its amino acid profile, phytochemical contents, biological activity and impact on cognitive function. Methods: A total of 26 middle-aged male and female participants were randomized and divided into placebo, FCM1 and FCM2 groups. Continuous consumption was performed for 6 weeks. Demographic data, body composition, cognitive function and memory were evaluated at baseline and at the end of the study period (6 weeks). Results: The event-related potential (ERP) analysis results showed a significant increase in N100 and P300 amplitude at the Fz location in participants who consumed the functional cone mushroom protein snack bar at a dose of 1 g compared to the placebo group (p = 0.015). Additionally, subjects who consumed the functional cone mushroom protein snack bar at a dose of 2 g showed a significantly increased P300 amplitude and percent accuracy of numeric working memory (p = 0.048) compared to those in the placebo group (p = 0.044). The possible underlying mechanism may involve AChE and MAO suppression activity alongside antioxidant activity. Conclusions: These data suggest that FCM can improve cognitive function and memory and may be considered for use in natural supplementation products with possible health benefits.
Collapse
Affiliation(s)
- Supaporn Muchimapura
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (W.T.-m.); (T.T.-u.); (W.S.)
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wipawee Thukham-mee
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (W.T.-m.); (T.T.-u.); (W.S.)
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Terdthai Tong-un
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (W.T.-m.); (T.T.-u.); (W.S.)
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Weerapon Sangartit
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (W.T.-m.); (T.T.-u.); (W.S.)
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sophida Phuthong
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (W.T.-m.); (T.T.-u.); (W.S.)
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
8
|
Yang X, Li H, Yang C, Ge J. Supplementation with stigma maydis polysaccharide attenuates autism-like behaviors and improves gut function in valproic acid-induced autism model male rats. Int J Dev Neurosci 2024; 84:567-580. [PMID: 38923604 DOI: 10.1002/jdn.10354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Stigma maydis polysaccharide (SMPS) has regulatory effect on the intestinal microflora and promotes gastrointestinal peristalsis. Children with autism spectrum disorder (ASD) often experience gastrointestinal problems and dysbiosis in their gut microbiota. Our previous study revealed that SMPS interventions had an impact on the gut microbiota of valproic acid (VPA)-induced autism model rats. However, the effects of SMPS on the behavior and gut function of autism model rats remain poorly understood. Therefore, we gave different doses of SMPS intervention in the early stage of autism model rats to observe their developmental conditions and behavior performances. Through histological evaluation and real-time polymerase chain reaction (PCR), integrity of the intestinal structure and the expression of tight junction-related gene Zo-1 and Occludin were detected. The results indicated that SMPS intervention improved the physical development, learning and memory impairment, and social performance of autism model rats. Meanwhile, SMPS promoted intestinal peristalsis and restored the integrity of the intestinal structure, reduced the number of inflammatory cells, and increased the expression of the Zo-1 and Occludin genes. Furthermore, the expression levels of neurotransmitters (substance P, enkephalin, vasoactive intestinal peptide, and 5-hydroxytryptamine) in the hippocampal tissues were altered after SMPS treatment. In conclusion, SMPS could ameliorate ASD-like phenotypes and gut problems in autism model rats. Collectively, these results provide new evidence for the relationship between the gut-brain axis and ASD and suggest a novel therapeutic target for ASD treatment.
Collapse
Affiliation(s)
- Xiaolei Yang
- Department of Preventive Medicine, School of Public Health, Qiqihar Medical University, Qiqihar, China
| | - Hongjie Li
- Department of Preventive Medicine, School of Public Health, Qiqihar Medical University, Qiqihar, China
| | - Chao Yang
- Department of Preventive Treatment, Qiqihar Hospital of Traditional Chinese Medicine, Qiqihar, China
| | - Jie Ge
- Department of Preventive Medicine, School of Public Health, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
9
|
Yuan M, Zhang Z, Liu T, Feng H, Liu Y, Chen K. The Role of Nondigestible Oligosaccharides in Alleviating Human Chronic Diseases by Regulating the Gut Microbiota: A Review. Foods 2024; 13:2157. [PMID: 38998662 PMCID: PMC11241040 DOI: 10.3390/foods13132157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024] Open
Abstract
The gut has been a focus of chronic disease research. The gut microbiota produces metabolites that act as signaling molecules and substrates, closely influencing host health. Nondigestible oligosaccharides (NDOs), as a common dietary fiber, play an important role in regulating the structure and function of the gut microbiota. Their mechanism of action is mainly attributed to providing a carbon source as specific probiotics, producing related metabolites, and regulating the gut microbial community. However, due to the selective utilization of oligosaccharides, some factors, such as the type and structure of oligosaccharides, have different impacts on the composition of microbial populations and the production of metabolites in the colon ecosystem. This review systematically describes the key factors influencing the selective utilization of oligosaccharides by microorganisms and elaborates how oligosaccharides affect the host's immune system, inflammation levels, and energy metabolism by regulating microbial diversity and metabolic function, which in turn affects the onset and progress of chronic diseases, especially diabetes, obesity, depression, intestinal inflammatory diseases, and constipation. In this review, we re-examine the interaction mechanisms between the gut microbiota and its associated metabolites and diseases, and we explore new strategies for promoting human health and combating chronic diseases through dietary interventions.
Collapse
Affiliation(s)
- Meiyu Yuan
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (M.Y.); (Z.Z.)
| | - Zhongwei Zhang
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (M.Y.); (Z.Z.)
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330019, China;
| | - Tongying Liu
- Jiangxi Maternel and Child Health Hospital, Nanchang 330108, China;
| | - Hua Feng
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330019, China;
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (M.Y.); (Z.Z.)
- Chongqing Research Institute of Nanchang University, Chongqing 402660, China
| | - Kai Chen
- Shangrao Innovation Institute of Agricultural Technology, College of Life Science, Shangrao Normal University, Shangrao 334001, China
| |
Collapse
|
10
|
Enye LA, Edem EE, Onyeogaziri LI, Yusuf A, Ikpade BO, Ikuelogbon DA, Kunlere OE, Adedokun MA. Tiger nut/coconut dietary intervention as antidotal nutritional remediation strategy against neurobehavioural deficits following organophosphate-induced gut-brain axis dysregulation in mice. Toxicol Rep 2024; 12:23-40. [PMID: 38193024 PMCID: PMC10772296 DOI: 10.1016/j.toxrep.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024] Open
Abstract
Organophosphate poisoning remains a global health crisis without efficacious treatments to prevent neurotoxicity. We examined whether antidotal tiger nut and coconut dietary intervention could ameliorate neurobehavioral deficits from organophosphate dichlorvos-induced gut-brain axis dysregulation in a mouse model. Mice were divided into groups given control diet, dichlorvos-contaminated diets, or dichlorvos plus nut-enriched diets. They were exposed to a DDVP-contaminated diet for 4 weeks before exposure to the treatment diets for another 8 weeks. This was followed by behavioural assessments for cognitive, motor, anxiety-, and depressive-like behaviours. Faecal samples (pre- and post-treatment), as well as blood, brain, and gut tissues, were collected for biochemical assessments following euthanasia. Dichlorvos-exposed mice displayed impairments in cognition, motor function, and mood along with disrupted inflammatory and antioxidant responses, neurotrophic factor levels, and acetylcholinesterase activity in brain and intestinal tissues. Weight loss and altered short-chain fatty acid levels additionally indicated gut dysfunction. However, intervention with tiger nut and/or coconut- enriched diet after dichlorvos exposure attenuated these neurobehavioral, and biochemical alterations. Our findings demonstrate organophosphate-induced communication disruptions between the gut and brain pathways that manifest in neuropsychiatric disturbances. Overall, incorporating fibre-rich nuts may represent an antidotal dietary strategy to reduce neurotoxicity and prevent brain disorders associated with organophosphate poisoning.
Collapse
Affiliation(s)
- Linus Anderson Enye
- Stress & Neuroimmunology Group, Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Edem Ekpenyong Edem
- Stress & Neuroimmunology Group, Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Lydia Ijeoma Onyeogaziri
- Stress & Neuroimmunology Group, Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Augustine Yusuf
- Stress & Neuroimmunology Group, Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Bliss Oluwafunmi Ikpade
- Stress & Neuroimmunology Group, Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | | | - Oladunni Eunice Kunlere
- Stress & Neuroimmunology Group, Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Mujeeb Adekunle Adedokun
- Stress & Neuroimmunology Group, Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
11
|
Mo Z, Zhan M, Yang X, Xie P, Xiao J, Cao Y, Xiao H, Song M. Fermented dietary fiber from soy sauce residue exerts antidiabetic effects through regulating the PI3K/AKT signaling pathway and gut microbiota-SCFAs-GPRs axis in type 2 diabetic mellitus mice. Int J Biol Macromol 2024; 270:132251. [PMID: 38729488 DOI: 10.1016/j.ijbiomac.2024.132251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
The gut plays a crucial role in the development and progression of metabolic disorders, particularly in relation to type 2 diabetes mellitus (T2DM). While a high intake of dietary fiber is inversely associated with the risk of T2DM, the specific effects of various dietary fibers on T2DM are not fully understood. This study investigated the anti-diabetic properties of fermented dietary fiber (FDF) derived from soy sauce residue in T2DM mice, demonstrating its ability to lower blood glucose levels and ameliorate insulin resistance. Our findings revealed that FDF could enhance hepatic glucose metabolism via the IRS-1/PI3K/AKT/mTOR pathway. Additionally, the anti-diabetic effect of FDF was correlated with alterations in gut microbiota composition in T2DM mice, promoting a healthier gut environment. Specifically, FDF increased the abundance of beneficial flora such as Dubosiella, Butyricimonas, Lachnospiraceae_NK4A136_group, Lactobacillus and Osillibacter, while reducing harmful bacteria including Bilophila, Parabacteroides and Enterorhabdus. Further analysis of microbial metabolites, including short-chain fatty acids (SCFAs) and bile acids (BAs), provided evidence of FDF's regulatory effects on cecal contents in T2DM mice. Importantly, FDF treatment significantly restored the G-protein-coupled receptors (GPRs) expression in the colon of T2DM mice. In conclusion, our study suggests that the anti-diabetic effects of FDF are associated with the regulation of both the liver-gut axis and the gut microbiota-SCFAs-GPRs axis.
Collapse
Affiliation(s)
- Zheqi Mo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Minmin Zhan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoshuang Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Peichun Xie
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
12
|
Liu T, Asif IM, Liu L, Zhang M, Li B, Wang L. Laminarin ameliorates iodoacetamide-induced functional dyspepsia via modulation of 5-HT 3 receptors and the gut microbiota. Int J Biol Macromol 2024; 268:131640. [PMID: 38636750 DOI: 10.1016/j.ijbiomac.2024.131640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Visceral and somatic hypersensitivity is a common cause of functional dyspepsia. Marine bioactive components have been revealed to possess numerous valuable abilities. However, as a kind of polysaccharide extracted from brown algae, the study focused on the biological properties of laminarin is still limited, especially in gastrointestinal disorders. In our study, indicators associated with visceral sensational function and gastrointestinal microecology were determined to investigate the modulatory effects of laminarin on functional dyspepsia induced by iodoacetamide. Mice with visceral hypersensitivity were orally administrated with laminarin (50 and 100 mg per kg bw) for fourteen days. The results indicated that laminarin partly alleviated the dysfunction by regulating corticosterone secretion, the expression of 5HT3 receptors at both protein and mRNA levels, and mechanical transduction through the PIEZO2-EPAC1 axis. Furthermore, laminarin administration moderated the imbalanced gut microbial profile, including modulating the abundance of Bacteroidetes and Firmicutes. Our findings revealed that laminarin may restore the overexpression of 5HT3 receptors, the abnormal mechanical transduction, and impaired gut microecology. In conclusion, we provide evidence to support the utilization of laminarin as the ingredient of complementary and alternative medicine of regulating visceral and somatic hypersensitivity.
Collapse
Affiliation(s)
- Tianxu Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology Huazhong Agricultural University, Ministry of Education, Wuhan, 430070, Hubei, China.
| | - Ismail Muhammad Asif
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology Huazhong Agricultural University, Ministry of Education, Wuhan, 430070, Hubei, China.
| | - Lichong Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology Huazhong Agricultural University, Ministry of Education, Wuhan, 430070, Hubei, China.
| | - Minghui Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology Huazhong Agricultural University, Ministry of Education, Wuhan, 430070, Hubei, China.
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology Huazhong Agricultural University, Ministry of Education, Wuhan, 430070, Hubei, China.
| | - Ling Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology Huazhong Agricultural University, Ministry of Education, Wuhan, 430070, Hubei, China.
| |
Collapse
|
13
|
Yang YH, Li CX, Zhang RB, Shen Y, Xu XJ, Yu QM. A review of the pharmacological action and mechanism of natural plant polysaccharides in depression. Front Pharmacol 2024; 15:1348019. [PMID: 38389919 PMCID: PMC10883385 DOI: 10.3389/fphar.2024.1348019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Depression is a prevalent mental disorder. However, clinical treatment options primarily based on chemical drugs have demonstrated varying degrees of adverse reactions and drug resistance, including somnolence, nausea, and cognitive impairment. Therefore, the development of novel antidepressant medications that effectively reduce suffering and side effects has become a prominent area of research. Polysaccharides are bioactive compounds extracted from natural plants that possess diverse pharmacological activities and medicinal values. It has been discovered that polysaccharides can effectively mitigate depression symptoms. This paper provides an overview of the pharmacological action and mechanisms, intervention approaches, and experimental models regarding the antidepressant effects of polysaccharides derived from various natural sources. Additionally, we summarize the roles and potential mechanisms through which these polysaccharides prevent depression by regulating neurotransmitters, HPA axis, neurotrophic factors, neuroinflammation, oxidative stress, tryptophan metabolism, and gut microbiota. Natural plant polysaccharides hold promise as adjunctive antidepressants for prevention, reduction, and treatment of depression by exerting their therapeutic effects through multiple pathways and targets. Therefore, this review aims to provide scientific evidence for developing polysaccharide resources as effective antidepressant drugs.
Collapse
Affiliation(s)
- Yu-He Yang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chen-Xue Li
- Harbin University of Commerce, Harbin, China
| | | | - Ying Shen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xue-Jiao Xu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qin-Ming Yu
- Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
14
|
Kong H, Xu T, Wang S, Zhang Z, Li M, Qu S, Li Q, Gao P, Cong Z. The molecular mechanism of polysaccharides in combating major depressive disorder: A comprehensive review. Int J Biol Macromol 2024; 259:129067. [PMID: 38163510 DOI: 10.1016/j.ijbiomac.2023.129067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/10/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Major depressive disorder (MDD) is a complex psychiatric condition with diverse etiological factors. Typical pathological features include decreased cerebral cortex, subcortical structures, and grey matter volumes, as well as monoamine transmitter dysregulation. Although medications exist to treat MDD, unmet needs persist due to limited efficacy, induced side effects, and relapse upon drug withdrawal. Polysaccharides offer promising new therapies for MDD, demonstrating antidepressant effects with minimal side effects and multiple targets. These include neurotransmitter, neurotrophin, neuroinflammation, hypothalamic-pituitary-adrenal axis, mitochondrial function, oxidative stress, and intestinal flora regulation. This review explores the latest advancements in understanding the pharmacological actions and mechanisms of polysaccharides in treating major depression. We discuss the impact of polysaccharides' diverse structures and properties on their pharmacological actions, aiming to inspire new research directions and facilitate the discovery of novel anti-depressive drugs.
Collapse
Affiliation(s)
- Hongwei Kong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tianren Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shengguang Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhiyuan Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Min Li
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Suyan Qu
- Tai 'an Taishan District People's Hospital, China
| | - Qinqing Li
- Shanxi University of Chinese Medicine, China
| | - Peng Gao
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Zhufeng Cong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Affiliated Cancer Hospital of Shandong First Medical University, China.
| |
Collapse
|
15
|
Li X, He C, Shen M, Wang M, Zhou J, Chen D, Zhang T, Pu Y. Effects of aqueous extracts and volatile oils prepared from Huaxiang Anshen decoction on p-chlorophenylalanine-induced insomnia mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117331. [PMID: 37858748 DOI: 10.1016/j.jep.2023.117331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Insomnia occurs frequently in modern society, and its common symptoms include difficulty in falling asleep and decreased sleep quality and time, memory, and attention. With the advantages of having few side-effects and reduced drug-dependence, a compound traditional Chinese medicine (TCM) prescription called Huaxiang Anshen Decoction (HAD) has been widely used in clinical practice in China mainly for primary insomnia treatment. Although the effects of volatile oils from TCM herbs have been increasingly reported, volatile oils in HAD are conventionally neglected because of its preparation process and clinical usage. Therefore, exploring the anti-insomnia effects of volatile oils from HAD is of great importance. AIM OF THE STUDY The sedative and hypnotic effects of the conventional aqueous extracts, the volatile oils from HAD, and their combinations were investigated. METHODS The main components in HAD volatile oils (HAD-Oils), were analyzed through gas chromatography-mass spectrometry (GC-MS). The HAD volatile oil inclusion complex (HAD-OIC) was prepared with β-cyclodextrin, and characterized. P-chlorophenylalanine (PCPA) was used to induce insomnia mice model and the test groups of HAD aqueous extract (HAD-AE), HAD-OIC and their combination (AE-OIC). An open field test was used in evaluating the mice's activities, and the levels of 5-hydroxytryptamine (5-HT) in mice sera, glutamate (Glu) in the hypothalamus, and γ-aminobutyric acid (γ-GABA) and dopamine (DA) in the brain tissues were assayed by enzyme-linked immunosorbent assay (ELISA). RESULTS A total 74 components in HAD-Oil were determined by GC/MS, and cyperenone (20.46%) and α-cyperone (10.39%) had the highest relative content. The characterization results of the physical phase showed that volatile oils were successfully encapsulated by β-cyclodextrin and HAD-OIC was produced. The average encapsulation rates of cyperenone and α-cyperone were 79.93% and 71.96%, respectively. The results of pharmacology study showed that all the test groups increased the body weight and decreased voluntary activity when compared with the model group (P < 0.05). The HAD-AE, HAD-OIC, and AE-OIC groups increased the levels of 5-HT in the sera and DA and Glu/γ-GABA in the brains, and AE-OIC groups showed better performance than the other test groups. CONCLUSIONS HAD-Oil exerts sedative and hypnotic effects, which are increased when it is used with HAD-AEs. This result provides a favorable experimental evidence that volatile oils should be retained for the further development of HAD.
Collapse
Affiliation(s)
- Xinye Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chao He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Min Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mingyun Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jingwen Zhou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dongying Chen
- Laboratory of Pharmaceutical Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yiqiong Pu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
16
|
Han Q, Liu R, Wang H, Zhang R, Liu H, Li J, Bao J. Gut Microbiota-Derived 5-Hydroxyindoleacetic Acid Alleviates Diarrhea in Piglets via the Aryl Hydrocarbon Receptor Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15132-15144. [PMID: 37797200 DOI: 10.1021/acs.jafc.3c04658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
With the improvement in sow prolificacy, formula feeding has been increasingly used in the pig industry. Diarrhea remains a serious health concern in formula-fed (FF) piglets. Fecal microbiota transplantation (FMT) is an efficacious strategy to reshape gut microbiota and the metabolic profile for treating diarrhea. This study aims to investigate whether FMT from breast-fed piglets could alleviate diarrhea in FF piglets. The piglets were randomly assigned to the control (CON) group, FF group, and FMT group. Our results showed that FF piglets exhibited a higher diarrhea incidence, damaged colonic morphology, and disrupted barrier function. In contrast, FMT treatment normalized the morphology and barrier function. FMT suppressed the JNK/MAPK pathway and production of proinflammatory cytokines. Additionally, FF piglets had a lower abundance of the beneficial bacterial genus Bifidobacterium compared to CON piglets. Following FMT administration, Bifidobacterium was restored. Meanwhile, 5-HIAA, a metabolite of tryptophan, and AHR-responsive CYP1A1 and CYP1B1 were upregulated. Importantly, integrated multiomics analysis revealed a strong positive correlation between Bifidobacterium and 5-HIAA. In vitro, 5-HIAA supplementation reversed the LPS-induced disruption of tight junctions and production of proinflammatory cytokines in IPEC-J2 cells. In conclusion, FMT reduced diarrhea incidence and improved growth performance. The alleviative effect of FMT on diarrhea was associated with Bifidobacterium and 5-HIAA.
Collapse
Affiliation(s)
- Qi Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
- College of Animal Science and Technology, Southwest University, Chongqing 400715, P. R. China
| | - Runze Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Haowen Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Honggui Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, P. R. China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, P. R. China
| |
Collapse
|
17
|
Chauhan J, Sharma RK. Synbiotic formulations with microbial biofilm, animal derived (casein, collagen, chitosan) and plant derived (starch, cellulose, alginate) prebiotic polymers: A review. Int J Biol Macromol 2023; 248:125873. [PMID: 37473897 DOI: 10.1016/j.ijbiomac.2023.125873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/29/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
The need for a broader range of probiotics, prebiotics, and synbiotics to improve the activity and functioning of gut microbiota has led to the development of new nutraceuticals formulations. These techniques majorly depend on the type of the concerned food, inclusive factors i.e. application of biotic components, probiotics, and synbiotics along with the type of encapsulation involved. For improvisation of the oral transfer mode of synbiotics delivery within the intestine along with viability, efficacy, and stability co-encapsulation is required. The present study explores encapsulation materials, probiotics and prebiotics in the form of synbiotics. The emphasis was given to the selection and usage of probiotic delivery matrix or prebiotic polymers, which primarily include animal derived (gelatine, casein, collagen, chitosan) and plant derived (starch, cellulose, pectin, alginate) materials. Beside this, the role of microbial polymers and biofilms (exopolysaccharides, extracellular polymeric substances) has also been discussed in the formation of probiotic functional foods. In this instance, the microbial biofilm is also used as suitable polymeric compound for encapsulation providing stability, viability, and efficacy. Thus, the review highlights the utilization of diverse prebiotic polymers in synbiotic formulations, along with microbial biofilms, which hold great potential for enhancing gut microbiota activity and improving overall health.
Collapse
Affiliation(s)
- Juhi Chauhan
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Rakesh Kumar Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India.
| |
Collapse
|
18
|
Liu X, Wu X, Wang S, Zhao Z, Jian C, Li M, Qin X. Microbiome and metabolome integrally reveal the anti-depression effects of Cistanche deserticola polysaccharides from the perspective of gut homeostasis. Int J Biol Macromol 2023; 245:125542. [PMID: 37355069 DOI: 10.1016/j.ijbiomac.2023.125542] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Polysaccharides are one of the active components of Cistanche deserticola (CD). Cistanche deserticola polysaccharides (CDPs) significantly regulate gut microbiota, immune activity, and neuroprotective functions. However, it merely scratches the surface that the anti-depression effects of CDPs. We aimed to demonstrate the anti-depression effects of CDPs and the underlying mechanisms from the perspectives of gut homeostasis by behavioral evaluations and applying integrally microbiome, metabolome, and molecular biology. CDPs showed significant effects on improving abnormal behaviors of depressed rats. Additionally, CDPs maintained Th17/Treg balance and modulated gut immunity of depressed rats. Comprehensive microbiome and metabolome analysis showed that CDPs significantly ameliorated abundances of beneficial bacteria, and increased the contents of SCFAs, consequently maintaining gut homeostasis. Besides, the anti-depression effects of CDPs involved in amino acid metabolism including BCAAs, glutamine, etc., maintaining metabolic balance. The current findings provide not only deep understanding of depression focusing on gut, but also evidence about the anti-depression effects of CDPs, broadening clinic applications of CDPs. Of note, the present study is of significance in a long run, in terms of providing novel strategies and protocols for revealing mechanisms of anti-depression drugs, and for the discovery of new antidepressants and functional foods from natural products.
Collapse
Affiliation(s)
- Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China.
| | - Xiaoling Wu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China
| | - Senyan Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China
| | - Ziyu Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China
| | - Chen Jian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China
| | - Mengyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China.
| |
Collapse
|
19
|
Chen Y, Liang H, Du H, Jesumani V, He W, Cheong KL, Li T, Hong T. Industry chain and challenges of microalgal food industry-a review. Crit Rev Food Sci Nutr 2022; 64:4789-4816. [PMID: 36377724 DOI: 10.1080/10408398.2022.2145455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Currently, the whole world is facing hunger due to the increase in the global population and the rising level of food consumption. Unfortunately, the impact of environmental, climate, and political issues on agriculture has resulted in limited global food resources. Thus, it is important to develop new food sources that are environmentally friendly and not subject to climate or space limitations. Microalgae represent a potential source of nutrients and bioactive components for a wide range of high-value products. Advances in cultivation and genetic engineering techniques provide prospective approaches to widen their application for food. However, there are currently problems in the microalgae food industry in terms of assessing nutritional value, selecting processes for microalgae culture, obtaining suitable commercial strains of microalgae, etc. Additionally, the limitations of real data of market opportunities for microalgae make it difficult to assess their actual potential and to develop a better industrial chain. This review addresses the current status of the microalgae food industry, the process of commercializing microalgae food and breeding methods. Current research progress in addressing the limitations of microalgae industrialization and future prospects for developing microalgae food products are discussed.
Collapse
Affiliation(s)
- Yuanhao Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
- STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, China
| | - Honghao Liang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
- STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, China
| | - Hong Du
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
- STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, China
| | - Valentina Jesumani
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
| | - Weiling He
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
- STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, China
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
| | - Tangcheng Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
- STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, China
| | - Ting Hong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
- STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, Guangdong, China
| |
Collapse
|
20
|
Dietary Polyphenols as Prospective Natural-Compound Depression Treatment from the Perspective of Intestinal Microbiota Regulation. Molecules 2022; 27:molecules27217637. [PMID: 36364464 PMCID: PMC9657699 DOI: 10.3390/molecules27217637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
The broad beneficial effects of dietary polyphenols on human health have been confirmed. Current studies have shown that dietary polyphenols are important for maintaining the homeostasis of the intestinal microenvironment. Moreover, the corresponding metabolites of dietary polyphenols can effectively regulate intestinal micro-ecology and promote human health. Although the pathogenesis of depression has not been fully studied, it has been demonstrated that dysfunction of the microbiota-gut-brain axis may be its main pathological basis. This review discusses the interaction between dietary polyphenols and intestinal microbiota to allow us to better assess the potential preventive effects of dietary polyphenols on depression by modulating the host gut microbiota.
Collapse
|
21
|
A comprehensive review on bioavailability, safety and antidepressant potential of natural bioactive components from tea. Food Res Int 2022; 158:111540. [DOI: 10.1016/j.foodres.2022.111540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/12/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022]
|
22
|
He Q, Si C, Sun Z, Chen Y, Zhang X. The Intervention of Prebiotics on Depression via the Gut-Brain Axis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123671. [PMID: 35744797 PMCID: PMC9230023 DOI: 10.3390/molecules27123671] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/20/2022] [Accepted: 06/05/2022] [Indexed: 12/12/2022]
Abstract
The imbalance of intestinal microbiota can cause the accumulation of endotoxin in the main circulation system of the human body, which has a great impact on human health. Increased work and life pressure have led to a rise in the number of people falling into depression, which has also reduced their quality of life. The gut–brain axis (GBA) is closely related to the pathological basis of depression, and intestinal microbiota can improve depressive symptoms through GBA. Previous studies have proven that prebiotics can modulate intestinal microbiota and thus participate in human health regulation. We reviewed the regulatory mechanism of intestinal microbiota on depression through GBA, and discussed the effects of prebiotics, including plant polysaccharides and polyphenols on the regulation of intestinal microbiota, providing new clues for the prevention and treatment of depression.
Collapse
Affiliation(s)
- Qinghui He
- Amway (China) R&D Centre Co., Ltd., Guangzhou 510730, China;
| | - Congcong Si
- Ningbo Tech-inno Health Industry Co., Ltd., Ningbo 315211, China; (C.S.); (Z.S.); (Y.C.)
| | - Zhenjiao Sun
- Ningbo Tech-inno Health Industry Co., Ltd., Ningbo 315211, China; (C.S.); (Z.S.); (Y.C.)
| | - Yuhui Chen
- Ningbo Tech-inno Health Industry Co., Ltd., Ningbo 315211, China; (C.S.); (Z.S.); (Y.C.)
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
- Correspondence:
| |
Collapse
|
23
|
Yu Q, Wang Z, Li Z, Liu X, Oteng Agyeman F, Wang X. Hierarchical Structure of Depression Knowledge Network and Co-word Analysis of Focus Areas. Front Psychol 2022; 13:920920. [PMID: 35664156 PMCID: PMC9160970 DOI: 10.3389/fpsyg.2022.920920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/29/2022] [Indexed: 12/02/2022] Open
Abstract
Contemporarily, depression has become a common psychiatric disorder that influences people's life quality and mental state. This study presents a systematic review analysis of depression based on a hierarchical structure approach. This research provides a rich theoretical foundation for understanding the hot spots, evolutionary trends, and future related research directions and offers further guidance for practice. This investigation contributes to knowledge by combining robust methodological software for analysis, including Citespace, Ucinet, and Pajek. This paper employed the bibliometric methodology to analyze 5,000 research articles concerning depression. This current research also employed the BibExcel software to bibliometrically measure the keywords of the selected articles and further conducted a co-word matrix analysis. Additionally, Pajek software was used to conduct a co-word network analysis to obtain a co-word network diagram of depression. Further, Ucinet software was utilized to calculate K-core values, degree centrality, and mediated centrality to better present the research hotspots, sort out the current status and reveal the research characteristics in the field of depression with valuable information and support for subsequent research. This research indicates that major depressive disorder, anxiety, and mental health had a high occurrence among adolescents and the aged. This present study provides policy recommendations for the government, non-governmental organizations and other philanthropic agencies to help furnish resources for treating and controlling depression orders.
Collapse
Affiliation(s)
- Qingyue Yu
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zihao Wang
- College of Medicine, Jiangsu University, Zhenjiang, China
| | - Zeyu Li
- Jingjiang College of Jiangsu University, Zhenjiang, China
| | - Xuejun Liu
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | | | - Xinxing Wang
- School of Management, Jiangsu University, Zhenjiang, China
| |
Collapse
|
24
|
Medicinal Plants and Their Impact on the Gut Microbiome in Mental Health: A Systematic Review. Nutrients 2022; 14:nu14102111. [PMID: 35631252 PMCID: PMC9144835 DOI: 10.3390/nu14102111] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Various neurocognitive and mental health-related conditions have been associated with the gut microbiome, implicating a microbiome–gut–brain axis (MGBA). The aim of this systematic review was to identify, categorize, and review clinical evidence supporting medicinal plants for the treatment of mental disorders and studies on their interactions with the gut microbiota. Methods: This review included medicinal plants for which clinical studies on depression, sleeping disorders, anxiety, or cognitive dysfunction as well as scientific evidence of interaction with the gut microbiome were available. The studies were reported using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Results: Eighty-five studies met the inclusion criteria and covered thirty mental health-related medicinal plants with data on interaction with the gut microbiome. Conclusion: Only a few studies have been specifically designed to assess how herbal preparations affect MGBA-related targets or pathways. However, many studies provide hints of a possible interaction with the MGBA, such as an increased abundance of health-beneficial microorganisms, anti-inflammatory effects, or MGBA-related pathway effects by gut microbial metabolites. Data for Panax ginseng, Schisandra chinensis, and Salvia rosmarinus indicate that the interaction of their constituents with the gut microbiota could mediate mental health benefits. Studies specifically assessing the effects on MGBA-related pathways are still required for most medicinal plants.
Collapse
|
25
|
Tang CF, Wang CY, Wang JH, Wang QN, Li SJ, Wang HO, Zhou F, Li JM. Short-Chain Fatty Acids Ameliorate Depressive-Like Behaviors of High Fructose-Fed Mice by Rescuing Hippocampal Neurogenesis Decline and Blood–Brain Barrier Damage. Nutrients 2022; 14:nu14091882. [PMID: 35565849 PMCID: PMC9105414 DOI: 10.3390/nu14091882] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
Excessive fructose intake is associated with the increased risk of mental illness, such as depression, but the underlying mechanisms are poorly understood. Our previous study found that high fructose diet (FruD)-fed mice exhibited neuroinflammation, hippocampal neurogenesis decline and blood–brain barrier (BBB) damage, accompanied by the reduction of gut microbiome-derived short-chain fatty acids (SCFAs). Here, we found that chronic stress aggravated these pathological changes and promoted the development of depressive-like behaviors in FruD mice. In detail, the decreased number of newborn neurons, mature neurons and neural stem cells (NSCs) in the hippocampus of FruD mice was worsened by chronic stress. Furthermore, chronic stress exacerbated the damage of BBB integrity with the decreased expression of zonula occludens-1 (ZO-1), claudin-5 and occludin in brain vasculature, overactivated microglia and increased neuroinflammation in FruD mice. These results suggest that high fructose intake combined with chronic stress leads to cumulative negative effects that promote the development of depressive-like behaviors in mice. Of note, SCFAs could rescue hippocampal neurogenesis decline, improve BBB damage and suppress microglia activation and neuroinflammation, thereby ameliorate depressive-like behaviors of FruD mice exposed to chronic stress. These results could be used to develop dietary interventions to prevent depression.
Collapse
Affiliation(s)
- Chuan-Feng Tang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; (C.-F.T.); (C.-Y.W.); (J.-H.W.); (Q.-N.W.)
| | - Cong-Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; (C.-F.T.); (C.-Y.W.); (J.-H.W.); (Q.-N.W.)
| | - Jun-Han Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; (C.-F.T.); (C.-Y.W.); (J.-H.W.); (Q.-N.W.)
| | - Qiao-Na Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; (C.-F.T.); (C.-Y.W.); (J.-H.W.); (Q.-N.W.)
| | - Shen-Jie Li
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China; (S.-J.L.); (H.-O.W.)
| | - Hai-Ou Wang
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China; (S.-J.L.); (H.-O.W.)
| | - Feng Zhou
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China; (S.-J.L.); (H.-O.W.)
- Correspondence: (F.Z.); (J.-M.L.)
| | - Jian-Mei Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; (C.-F.T.); (C.-Y.W.); (J.-H.W.); (Q.-N.W.)
- Correspondence: (F.Z.); (J.-M.L.)
| |
Collapse
|
26
|
Plant Polysaccharides Modulate Immune Function via the Gut Microbiome and May Have Potential in COVID-19 Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092773. [PMID: 35566123 PMCID: PMC9101721 DOI: 10.3390/molecules27092773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 11/24/2022]
Abstract
Plant polysaccharides can increase the number and variety of beneficial bacteria in the gut and produce a variety of active substances, including short-chain fatty acids (SCFAs). Gut microbes and their specific metabolites have the effects of promoting anti-inflammatory activity, enhancing the intestinal barrier, and activating and regulating immune cells, which are beneficial for improving immunity. A strong immune system reduces inflammation caused by external viruses and other pathogens. Coronavirus disease 2019 (COVID-19) is still spreading globally, and patients with COVID-19 often have intestinal disease and weakened immune systems. This article mainly evaluates how polysaccharides in plants can improve the immune system barrier by improving the intestinal microecological balance, which may have potential in the prevention and treatment of COVID-19.
Collapse
|
27
|
Tea Polyphenols Prevent and Intervene in COVID-19 through Intestinal Microbiota. Foods 2022; 11:foods11040506. [PMID: 35205982 PMCID: PMC8871045 DOI: 10.3390/foods11040506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/22/2022] [Accepted: 02/05/2022] [Indexed: 12/13/2022] Open
Abstract
Although all countries have taken corresponding measures, the coronavirus disease 2019 (COVID-19) is still ravaging the world. To consolidate the existing anti-epidemic results and further strengthen the prevention and control measures against the new coronavirus, we are now actively pioneering a novel research idea of regulating the intestinal microbiota through tea polyphenols for reference. Although studies have long revealed the regulatory effect of tea polyphenols on the intestinal microbiota to various gastrointestinal inflammations, little is known about the prevention and intervention of COVID-19. This review summarizes the possible mechanism of the influence of tea polyphenols on COVID-19 mediated by the intestinal microbiota. In this review, the latest studies of tea polyphenols exhibiting their own antibacterial and anti-inflammatory activities and protective effects on the intestinal mucosal barrier are combed through and summarized. Among them, (−)-epigallocatechin-3-gallate (EGCG), one of the main monomers of catechins, may be activated as nuclear factor erythroid 2 p45-related factor 2 (Nrf2). The agent inhibits the expression of ACE2 (a cellular receptor for SARS-CoV-2) and TMPRSS2 to inhibit SARS-CoV-2 infection, inhibiting the life cycle of SARS-CoV-2. Thus, preliminary reasoning and judgments have been made about the possible mechanism of the effect of tea polyphenols on the COVID-19 control and prevention mediated by the microbiota. These results may be of great significance to the future exploration of specialized research in this field.
Collapse
|
28
|
Sun Y, Ho CT, Zhang Y, Hong M, Zhang X. Plant polysaccharides utilized by gut microbiota: New players in ameliorating cognitive impairment. J Tradit Complement Med 2022; 13:128-134. [PMID: 36970456 PMCID: PMC10037067 DOI: 10.1016/j.jtcme.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/10/2021] [Accepted: 01/07/2022] [Indexed: 10/19/2022] Open
Abstract
Considerable evidence indicates the important role of gut microbiota in human health. Through the interaction with the host and diet, it secretes a myriad of metabolites to modulate biological processes essential for health. Cognitive impairment is a common feature of psychiatric and neurological disorders, which may seriously damage the quality of patients' life. Studies have found that cognitive impairment has a close relationship with gut microbiota, and plant polysaccharides intervention to maintain intestinal micro-ecological balance has a great impact on ameliorating cognitive impairment. This review introduced the interaction between gut microbiota and plant polysaccharides, and focused on signaling pathogenesis of gut microbiota in cognitive impairment. The effect of plant polysaccharides intervention on regulation of gut microbiota was also discussed, so as to provide a promising strategy for ameliorating cognitive impairment.
Collapse
|
29
|
Pano O, Martínez-Lapiscina EH, Sayón-Orea C, Martinez-Gonzalez MA, Martinez JA, Sanchez-Villegas A. Healthy diet, depression and quality of life: A narrative review of biological mechanisms and primary prevention opportunities. World J Psychiatry 2021; 11:997-1016. [PMID: 34888169 PMCID: PMC8613751 DOI: 10.5498/wjp.v11.i11.997] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/19/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
Unipolar depressive disorder (UDD) affects more than 264 million people worldwide and was projected well before the severe acute respiratory syndrome coronavirus 2 pandemic to be the leading cause of disability-adjusted life years lost in 2030. It is imperative for leading economies to implement preventive strategies targeted towards UDD, given consistent policies are currently lacking. Recently established similarities between the aetiological hypotheses of depression and cardiometabolic diseases are shifting paradigms within this field. It is believed that dietary practices could potentially reduce the incidence of depression; similar to their effects on metabolism. Thus, the aim of this review was to compile current evidence on healthy dietary patterns as suitable contributors towards primary prevention strategies against UDD. Most of the well-known biological mechanisms behind depression have been positively associated with healthful diets and dietary patterns to varying degrees. Interestingly, a common factor of UDD is the production and overall effects of inflammatory cytokines, such as interleukin-6, tumor necrosis factor-α, and C-reactive protein. These compounds have been associated with depressive symptoms, disturbances in neuroendocrine function, leaky gut, monoamine activity and brain function, while also being key factors in the development of cardiometabolic diseases. The Mediterranean diet (MD) in particular, is well supported by first-level evidence regarding its preventive qualities against metabolic and cardiovascular diseases and thus considered a model for healthy eating by various organizations. In one of the few clinical trials investigating these associations, the PREDIMED trial, individuals with diabetes assigned to a MD supplemented with mixed tree nuts experienced a 41% relative risk reduction for developing depression. Lastly, there is a need to include health related quality of life as an indicator of physical and mental well-being, considering its putative associations with depression and suicide risk. Going forward, focusing on clinical trials, using precise nutritional assessments, and identifying nutritional biomarkers which may be related to depression are needed to fully support the implementation of dietary recommendations in the field of psychiatry.
Collapse
Affiliation(s)
- Octavio Pano
- Preventive Medicine and Public Health, University of Navarre, Pamplona 31008, Spain
| | - Elena H Martínez-Lapiscina
- Department of Neurology Center of Neuroimmunology, Hospital Clinic of Barcelona, Institut d’Investigacions Biomèdiques August Pi Sunyer, Barcelona 08036, Spain
| | - Carmen Sayón-Orea
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona 31008, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona 31008, Spain
- Department of Public Health, Navarra Institute of Public Health and Epidemiology, Pamplona 31003, Spain
| | - Miguel Angel Martinez-Gonzalez
- Preventive Medicine and Public Health, University of Navarre, Pamplona 31008, Spain
- CIBER Pathophysiology of Obesity and Nutrition, Institute of Health Carlos III, Madrid 28049, Spain
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - Jose Alfredo Martinez
- IdiSNA, Navarra Institute for Health Research, Pamplona 31008, Spain
- CIBER Pathophysiology of Obesity and Nutrition, Institute of Health Carlos III, Madrid 28049, Spain
- Department of Food Sciences and Physiology, University of Navarre, Pamplona 31008, Spain
- Precision Nutrition and Cardiometabolic Health Program, IMDEA Food Institute, Madrid 28049, Spain
| | - Almudena Sanchez-Villegas
- CIBER Pathophysiology of Obesity and Nutrition, Institute of Health Carlos III, Madrid 28049, Spain
- Department of Clinical Sciences, University of Las Palmas Gran Canaria, Las Palmas Gran Canaria 35080, Spain
| |
Collapse
|
30
|
Zhang L, Zhang Z, Xu L, Zhang X. Maintaining the Balance of Intestinal Flora through the Diet: Effective Prevention of Illness. Foods 2021; 10:2312. [PMID: 34681359 PMCID: PMC8534928 DOI: 10.3390/foods10102312] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022] Open
Abstract
The human body is home to a complex community of dynamic equilibrium microbiota, including bacteria, fungi, parasites, and viruses. It is known that the gut microbiome plays a crucial role in regulating innate and adaptive immune responses, intestinal peristalsis, intestinal barrier homeostasis, nutrient uptake, and fat distribution. The complex relationship between the host and microbiome suggests that when this relationship is out of balance, the microbiome may contribute to disease development. The brain-gut-microbial axis is composed of many signal molecules, gastrointestinal mucosal cells, the vagus nerve, and blood-brain barrier, which plays an essential role in developing many diseases. The microbiome can influence the central nervous system function through the brain-gut axis; the central nervous system can also affect the composition and partial functions of the gut microbiome in the same way. Different dietary patterns, specific dietary components, and functional dietary factors can significantly affect intestinal flora's structure, composition, and function, thereby affecting human health. Based on the above, this paper reviewed the relationship between diet, intestinal flora, and human health, and the strategies to prevent mental illness through the dietary modification of intestinal microorganisms.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China; (L.Z.); (Z.Z.)
| | - Zhenying Zhang
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China; (L.Z.); (Z.Z.)
| | - Lei Xu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China;
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China;
| |
Collapse
|
31
|
Co-Encapsulated Synbiotics and Immobilized Probiotics in Human Health and Gut Microbiota Modulation. Foods 2021; 10:foods10061297. [PMID: 34200108 PMCID: PMC8230215 DOI: 10.3390/foods10061297] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
Growing interest in the development of innovative functional products as ideal carriers for synbiotics, e.g., nutrient bars, yogurt, chocolate, juice, ice cream, and cheese, to ensure the daily intake of probiotics and prebiotics, which are needed to maintain a healthy gut microbiota and overall well-being, is undeniable and inevitable. This review focuses on the modern approaches that are currently being developed to modulate the gut microbiota, with an emphasis on the health benefits mediated by co-encapsulated synbiotics and immobilized probiotics. The impact of processing, storage, and simulated gastrointestinal conditions on the viability and bioactivity of probiotics together with prebiotics such as omega-3 polyunsaturated fatty acids, phytochemicals, and dietary fibers using various delivery systems are considered. Despite the proven biological properties of synbiotics, research in this area needs to be focused on the proper selection of probiotic strains, their prebiotic counterparts, and delivery systems to avoid suppression of their synergistic or complementary effect on human health. Future directions should lead to the development of functional food products containing stable synbiotics tailored for different age groups or specifically designed to fulfill the needs of adjuvant therapy.
Collapse
|
32
|
Irfan J, Hussain MA, Haseeb MT, Ali A, Farid-Ul-Haq M, Tabassum T, Hussain SZ, Hussain I, Naeem-Ul-Hassan M. A pH-sensitive, stimuli-responsive, superabsorbent, smart hydrogel from psyllium ( Plantago ovata) for intelligent drug delivery. RSC Adv 2021; 11:19755-19767. [PMID: 35479196 PMCID: PMC9033674 DOI: 10.1039/d1ra02219a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
Herein, we report a polysaccharide-based hydrogel isolated from psyllium husk (a well-known dietary fiber) and evaluated for its swelling properties in deionized water (DW) at different physiological pH values, i.e., 1.2, 6.8 and 7.4. Swelling of psyllium hydrogel (PSH) in DW under the influence of temperature and at different concentrations of NaCl and KCl solutions was also examined. A pH-dependent swelling pattern of PSH was observed following the order DW > pH 7.4 > pH 6.8 > pH 1.2. Stimuli-responsive swelling and deswelling (on-off switching) behavior of PSH was observed in DW and ethanol, DW and normal saline, at pH 7.4 and pH 1.2 environments, respectively. Similar swelling behavior and on-off switching attribute of PSH-containing tablets indicated the unaltered nature of PSH even after compression. Scanning electron micrographs of swollen and then freeze-dried PSH via transverse and longitudinal cross-sections revealed hollow channels with an average pore size of 6 ± 2 μm. Furthermore, PSH concentration-dependent sustained release of theophylline from tablet formulation was witnessed for >15 h following the non-Fickian diffusion mechanism. Subacute toxicity studies revealed the non-toxic nature of PSH. Therefore, dietary fiber-based material, i.e., PSH could be a valuable pharmaceutical excipient for intelligent and targeted drug delivery.
Collapse
Affiliation(s)
- Jaffar Irfan
- Institute of Chemistry, University of Sargodha Sargodha 40100 Pakistan +923468614959
| | - Muhammad Ajaz Hussain
- Institute of Chemistry, University of Sargodha Sargodha 40100 Pakistan +923468614959
| | | | - Arshad Ali
- Institute of Chemistry, University of Sargodha Sargodha 40100 Pakistan +923468614959
| | - Muhammad Farid-Ul-Haq
- Institute of Chemistry, University of Sargodha Sargodha 40100 Pakistan +923468614959
| | - Tahira Tabassum
- Faculty of Medical and Health Sciences, Sargodha Medical College, University of Sargodha Sargodha 40100 Pakistan
| | - Syed Zajif Hussain
- Department of Chemistry and Chemical Engineering, Lahore University of Management Sciences Lahore Cantt. 54792 Pakistan
| | - Irshad Hussain
- Department of Chemistry and Chemical Engineering, Lahore University of Management Sciences Lahore Cantt. 54792 Pakistan
| | | |
Collapse
|
33
|
Association between Fruit and Vegetable Intakes and Mental Health in the Australian Diabetes Obesity and Lifestyle Cohort. Nutrients 2021; 13:nu13051447. [PMID: 33923358 PMCID: PMC8146262 DOI: 10.3390/nu13051447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
Increasing prevalence of mental health disorders within the Australian population is a serious public health issue. Adequate intake of fruits and vegetables (FV), dietary fibre (DF) and resistant starch (RS) is associated with better mental and physical health. Few longitudinal studies exist exploring the temporal relationship. Using a validated food frequency questionnaire, we examined baseline FV intakes of 5845 Australian adults from the AusDiab study and estimated food group-derived DF and RS using data from the literature. Perceived mental health was assessed at baseline and 5 year follow up using SF-36 mental component summary scores (MCS). We conducted baseline cross-sectional analysis and prospective analysis of baseline dietary intake with perceived mental health at 5 years. Higher baseline FV and FV-derived DF and RS intakes were associated with better 5 year MCS (p < 0.001). A higher FV intake (754 g/d vs. 251 g/d, Q4 vs. Q1) at baseline had 41% lower odds (OR = 0.59: 95% CI 0.46–0.75) of MCS below population average (<47) at 5 year follow up. Findings were similar for FV-derived DF and RS. An inverse association was observed with discretionary food-derived DF and RS. This demonstrates the association between higher intakes of FV and FV-derived DF and RS with better 5 year mental health outcomes. Further RCTs are necessary to understand mechanisms that underlie this association including elucidation of causal effects.
Collapse
|