1
|
Guo L, Li T, Zhang B, Yan K, Meng J, Chang M, Hou L. Family Identification and Functional Study of Copper Transporter Genes in Pleurotus ostreatus. Int J Mol Sci 2024; 25:12154. [PMID: 39596220 PMCID: PMC11594920 DOI: 10.3390/ijms252212154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
The copper transport (COPT/Ctr) family plays an important role in maintaining metal homeostasis in organisms, and many species rely on Ctrs to achieve transmembrane transport via copper (Cu) uptake. At present, the Ctr family is widely studied in plants. However, there are few reports on the use of Ctrs in edible mushrooms. In this study, the Pleurotus ostreatus CCMSSC00389 strain was used as the research object, and the addition of exogenous copper ions (Cu2+) increased the temperature tolerance of mycelia, maintained the integrity of cell membranes, and increased mycelial density. In addition, four PoCtr genes were further identified and subjected to bioinformatics analysis. Further research revealed that there were differences in the expression patterns of the PoCtr genes under different temperature stresses. In addition, the biological function of PoCtr4 was further explored by constructing transformed strains. The results showed that OE-PoCtr4 enhanced the tolerance of mycelia to heat stress and H2O2. After applying heat stress (40 °C), OE-PoCtr4 promoted the recovery of mycelia. Under mild stress (32 °C), OE-PoCtr4 promoted mycelial growth, maintained cell membrane integrity, and reduced the degree of cell membrane damage caused by heat stress. It is speculated that OE-PoCtr4 may maintain the integrity of the cell membrane and enhance the heat resistance of mycelia by regulating the homeostasis of Cu2+.
Collapse
Affiliation(s)
- Lifeng Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (L.G.); (T.L.); (B.Z.); (K.Y.); (J.M.)
| | - Tonglou Li
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (L.G.); (T.L.); (B.Z.); (K.Y.); (J.M.)
| | - Baosheng Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (L.G.); (T.L.); (B.Z.); (K.Y.); (J.M.)
| | - Kexing Yan
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (L.G.); (T.L.); (B.Z.); (K.Y.); (J.M.)
- Shanxi Research Center for Engineering Technology of Edible Fungi, Jinzhong 030801, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (L.G.); (T.L.); (B.Z.); (K.Y.); (J.M.)
- Shanxi Research Center for Engineering Technology of Edible Fungi, Jinzhong 030801, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (L.G.); (T.L.); (B.Z.); (K.Y.); (J.M.)
- Shanxi Research Center for Engineering Technology of Edible Fungi, Jinzhong 030801, China
| | - Ludan Hou
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (L.G.); (T.L.); (B.Z.); (K.Y.); (J.M.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| |
Collapse
|
2
|
Rachappanavar V, Gupta SK, Jayaprakash GK, Abbas M. Silicon mediated heavy metal stress amelioration in fruit crops. Heliyon 2024; 10:e37425. [PMID: 39315184 PMCID: PMC11417240 DOI: 10.1016/j.heliyon.2024.e37425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Fruit crops are essential for human nutrition and health, yet high level of heavy metal levels in soils can degrade fruit quality. These metals accumulate in plant roots and tissues due to factors like excessive fertilizer and pesticide use, poor waste management, and unscientific agricultural practices. Such accumulation can adversely affect plant growth, physiology, and yield. Consuming fruits contaminated with toxic metals poses significant health risks, including nervous system disorders and cancer. Various strategies, such as organic manuring, biomaterials, and modified cultivation practices have been widely researched to reduce heavy metal accumulation. Recently, silicon (Si) application has emerged as a promising and cost-effective solution for addressing biological and environmental challenges in food crops. Si, which can be applied to the soil, through foliar application or a combination of both, helps reduce toxic metal concentrations in soil and plants. Despite its potential, there is currently no comprehensive review that details Si's role in mitigating heavy metal stress in fruit crops. This review aims to explore the potential of Si in reducing heavy metal-induced damage in fruit crops while enhancing growth by alleviating heavy metal toxicity.
Collapse
Affiliation(s)
- Vinaykumar Rachappanavar
- MS Swaminathan School of Agriculture, Shoolini University of Biotechnlogy and Management, Solan, Himachal Pradesh, 173230, India
| | - Satish K. Gupta
- MS Swaminathan School of Agriculture, Shoolini University of Biotechnlogy and Management, Solan, Himachal Pradesh, 173230, India
| | | | - Mohamed Abbas
- Electrical Engineering Department, King Khalid University, Abha, 61421, Saudi Arabia
| |
Collapse
|
3
|
El-Sappah AH, Zhu Y, Huang Q, Chen B, Soaud SA, Abd Elhamid MA, Yan K, Li J, El-Tarabily KA. Plants' molecular behavior to heavy metals: from criticality to toxicity. FRONTIERS IN PLANT SCIENCE 2024; 15:1423625. [PMID: 39280950 PMCID: PMC11392792 DOI: 10.3389/fpls.2024.1423625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/22/2024] [Indexed: 09/18/2024]
Abstract
The contamination of soil and water with high levels of heavy metals (HMs) has emerged as a significant obstacle to agricultural productivity and overall crop quality. Certain HMs, although serving as essential micronutrients, are required in smaller quantities for plant growth. However, when present in higher concentrations, they become very toxic. Several studies have shown that to balance out the harmful effects of HMs, complex systems are needed at the molecular, physiological, biochemical, cellular, tissue, and whole plant levels. This could lead to more crops being grown. Our review focused on HMs' resources, occurrences, and agricultural implications. This review will also look at how plants react to HMs and how they affect seed performance as well as the benefits that HMs provide for plants. Furthermore, the review examines HMs' transport genes in plants and their molecular, biochemical, and metabolic responses to HMs. We have also examined the obstacles and potential for HMs in plants and their management strategies.
Collapse
Affiliation(s)
- Ahmed H El-Sappah
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Yumin Zhu
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Qiulan Huang
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Bo Chen
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Salma A Soaud
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Kuan Yan
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Jia Li
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
4
|
Lei C, Dang Z, Zhu M, Zhang M, Wang H, Chen Y, Zhang H. Identification of the ERF gene family of Mangifera indica and the defense response of MiERF4 to Xanthomonas campestris pv. mangiferaeindicae. Gene 2024; 912:148382. [PMID: 38493974 DOI: 10.1016/j.gene.2024.148382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
An important regulatory role for ethylene-responsive transcription factors (ERFs) is in plant growth and development, stress response, and hormone signaling. However, AP2/ERF family genes in mango have not been systematically studied. In this study, a total of 113 AP2/ERF family genes were identified from the mango genome and phylogenetically classified into five subfamilies: AP2 (28 genes), DREB (42 genes), ERF (33 genes), RAV (6 genes), and Soloist (4 genes). Of these, the ERF family, in conjunction with Arabidopsis and rice, forms a phylogenetic tree divided into seven groups, five of which have MiERF members. Analysis of gene structure and cis-elements showed that each MiERF gene contains only one AP2 structural domain, and that MiERF genes contain a large number of cis-elements associated with hormone signaling and stress response. Collinearity tests revealed a high degree of homology between MiERFs and CsERFs. Tissue-specific and stress-responsive expression profiling revealed that MiERF genes are primarily involved in the regulation of reproductive growth and are differentially and positively expressed in response to external hormones and pathogenic bacteria. Physiological results from a gain-of-function analysis of MiERF4 transiently overexpressed in tobacco and mango showed that transient expression of MiERF4 resulted in decreased colony count and callose deposition, as well as varying degrees of response to hormonal signals such as ETH, JA, and SA. Thus, MiERF4 may be involved in the JA/ETH signaling pathway to enhance plant defense against pathogenic bacteria. This study provides a basis for further research on the function and regulation of MiERF genes and lays a foundation for the selection of disease-resistant genes in mango.
Collapse
Affiliation(s)
- Chen Lei
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zhiguo Dang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Min Zhu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Mengting Zhang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Huiliang Wang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yeyuan Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China.
| | - He Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
5
|
Hussain Q, Ye T, Li S, Nkoh JN, Zhou Q, Shang C. Genome-Wide Identification and Expression Analysis of the Copper Transporter ( COPT/ Ctr) Gene Family in Kandelia obovata, a Typical Mangrove Plant. Int J Mol Sci 2023; 24:15579. [PMID: 37958561 PMCID: PMC10648262 DOI: 10.3390/ijms242115579] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The copper transporter (COPT/Ctr) gene family plays a critical part in maintaining the balance of the metal, and many diverse species depend on COPT to move copper (Cu) across the cell membrane. In Arabidopsis thaliana, Oryza sativa, Medicago sativa, Zea mays, Populus trichocarpa, Vitis vinifera, and Solanum lycopersicum, a genome-wide study of the COPT protein family was performed. To understand the major roles of the COPT gene family in Kandelia obovata (Ko), a genome-wide study identified four COPT genes in the Kandelia obovata genome for the first time. The domain and 3D structural variation, phylogenetic tree, chromosomal distributions, gene structure, motif analysis, subcellular localization, cis-regulatory elements, synteny and duplication analysis, and expression profiles in leaves and Cu were all investigated in this research. Structural and sequence investigations show that most KoCOPTs have three transmembrane domains (TMDs). According to phylogenetic research, these KoCOPTs might be divided into two subgroups, just like Populus trichocarpa. KoCOPT gene segmental duplications and positive selection pressure were discovered by universal analysis. According to gene structure and motif analysis, most KoCOPT genes showed consistent exon-intron and motif organization within the same group. In addition, we found five hormones and four stress- and seven light-responsive cis-elements in the KoCOPTs promoters. The expression studies revealed that all four genes changed their expression levels in response to copper (CuCl2) treatments. In summary, our study offers a thorough overview of the Kandelia obovata COPT gene family's expression pattern and functional diversity, making it easier to characterize each KoCOPT gene's function in the future.
Collapse
Affiliation(s)
- Quaid Hussain
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Q.H.); (T.Y.); (S.L.); (J.N.N.); (Q.Z.)
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ting Ye
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Q.H.); (T.Y.); (S.L.); (J.N.N.); (Q.Z.)
| | - Sihui Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Q.H.); (T.Y.); (S.L.); (J.N.N.); (Q.Z.)
| | - Jackson Nkoh Nkoh
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Q.H.); (T.Y.); (S.L.); (J.N.N.); (Q.Z.)
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qiao Zhou
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Q.H.); (T.Y.); (S.L.); (J.N.N.); (Q.Z.)
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chenjing Shang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Q.H.); (T.Y.); (S.L.); (J.N.N.); (Q.Z.)
| |
Collapse
|
6
|
González-Guerrero M, Navarro-Gómez C, Rosa-Núñez E, Echávarri-Erasun C, Imperial J, Escudero V. Forging a symbiosis: transition metal delivery in symbiotic nitrogen fixation. THE NEW PHYTOLOGIST 2023; 239:2113-2125. [PMID: 37340839 DOI: 10.1111/nph.19098] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
Symbiotic nitrogen fixation carried out by the interaction between legumes and rhizobia is the main source of nitrogen in natural ecosystems and in sustainable agriculture. For the symbiosis to be viable, nutrient exchange between the partners is essential. Transition metals are among the nutrients delivered to the nitrogen-fixing bacteria within the legume root nodule cells. These elements are used as cofactors for many of the enzymes controlling nodule development and function, including nitrogenase, the only known enzyme able to convert N2 into NH3 . In this review, we discuss the current knowledge on how iron, zinc, copper, and molybdenum reach the nodules, how they are delivered to nodule cells, and how they are transferred to nitrogen-fixing bacteria within.
Collapse
Affiliation(s)
- Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Cristina Navarro-Gómez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - Elena Rosa-Núñez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - Carlos Echávarri-Erasun
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| |
Collapse
|
7
|
Romero P, Lafuente MT. Molecular Responses of Red Ripe Tomato Fruit to Copper Deficiency Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2062. [PMID: 37653979 PMCID: PMC10220619 DOI: 10.3390/plants12102062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 09/02/2023]
Abstract
Fruit nutritional value, plant growth, and yield can be compromised by deficient copper (Cu) bioavailability, which often appears in arable lands. This condition causes low Cu content and modifications in the ripening-associated processes in tomato fruit. This research studies the transcriptomic changes that occur in red ripe tomato fruit grown under suboptimal Cu conditions to shed light on the molecular mechanisms underlying this stress. Comparative RNA-sequencing and functional analyses revealed that Cu deficiency during cultivation activates signals for metal ion transport, cellular redox homeostasis, pyridoxal phosphate binding, and amino acid metabolism while repressing the response to phosphate starvation in harvested fruit. Transcriptomic analyses highlighted a number of novel Cu stress-responsive genes of unknown function and indicated that Cu homeostasis regulation in tomato fruit may involve additional components than those described in model plants. It also studied the regulation of high-affinity Cu transporters and a number of well-known Cu stress-responsive genes during tomato fruit ripening depending on Cu availability, which allowed potential candidates to be targeted for biotechnological improvements in reproductive tissues. We provide the first study characterizing the molecular responses of fruit to Cu deficiency stress for any fruit crop.
Collapse
Affiliation(s)
- Paco Romero
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), Avenida Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain;
| | | |
Collapse
|
8
|
Ajeesh Krishna TP, Maharajan T, Antony Ceasar S. Significance and genetic control of membrane transporters to improve phytoremediation and biofortification processes. Mol Biol Rep 2023:10.1007/s11033-023-08521-2. [PMID: 37212961 DOI: 10.1007/s11033-023-08521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Humans frequently consume plant-based foods in their daily life. Contamination of agricultural soils by heavy metals (HMs) is a major food and nutritional security issue. The crop plants grown in HM-contaminated agricultural soil may accumulate more HMs in their edible part, further transferring into the food chain. Consumption of HM-rich crops can cause severe health issues in humans. On the other hand, the low content of the essential HM in the edible part of the crop also causes health problems. Therefore, researchers must try to reduce the non-essential HM in the edible part of the crop plants and improve the essential HMs. Phytoremediation and biofortification are the two strategies for resolving this problem. The genetic component helps to improve the efficiency of phytoremediation and biofortification processes in plants. They help eliminate HMs from soil and improve essential HM content in crop plants. The membrane transporter genes (genetic components) are critical in these two strategies. Therefore, engineering membrane transporter genes may help reduce the non-essential HM content in the edible part of crop plants. Targeted gene editing by genome editing tools like CRISPR could help plants achieve efficient phytoremediation and biofortification. This article covers gene editing's scope, application, and implication to improve the phytoremediation and biofortification processes in non-crop and crop plants.
Collapse
Affiliation(s)
- T P Ajeesh Krishna
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kochi, Kerala, 683104, India
| | - Theivanayagam Maharajan
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kochi, Kerala, 683104, India
| | - S Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kochi, Kerala, 683104, India.
| |
Collapse
|
9
|
Zheng S, Qi J, Fu T, Chen Y, Qiu X. Novel mechanisms of cadmium tolerance and Cd-induced fungal stress in wheat: Transcriptomic and metagenomic insights. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114842. [PMID: 37027945 DOI: 10.1016/j.ecoenv.2023.114842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Although several studies on the effects of cadmium (Cd) on wheat have been reported, the gene expression profiles of different wheat tissues in response to gradient concentrations of Cd, and whether soil microorganisms are involved in the damage to wheat remain to be discovered. To gain further insight into the molecular mechanisms of Cd-resistance in wheat, we sowed bread wheat (Triticum aestivum) in artificially Cd-contaminated soil and investigated the transcriptomic response of the wheat roots, stems, and leaves to gradient concentrations of Cd, as well as the alteration of the soil microbiome. Results indicated that the root bioaccumulation factors increased with Cd when concentrations were < 10 mg/kg, but at even higher concentrations, the bioaccumulation factors decreased, which is consistent with the overexpression of metal transporters and other genes related to Cd tolerance. In the Cd-contaminated soil, the abundance of fungal pathogens increased, and the antimicrobial response in wheat root was observed. Most of the differentially expressed genes (DEGs) of wheat changed significantly when the Cd concentration increased above 10 mg/kg, and the transcriptional response is much greater in roots than in stems and leaves. The DEGs are mainly involved in Cd transport and chelation, antioxidative stress, antimicrobial responses, and growth regulation. COPT3 and ZnT1 were identified for the first time as the major transporters responding to Cd in wheat. Overexpression of the nicotianamine synthase and pectinesterase genes suggested that nicotianamine and pectin are the key chelators in Cd detoxification. endochitinase, chitinase, and snakin2 were involved in the anti-fungal stress caused by Cd-induced cell damage. Several phytohormone-related DEGs are involved in the root's growth and repair. Overall, this study presents the novel Cd tolerance mechanisms in wheat and the changes in soil fungal pathogens that increase plant damage.
Collapse
Affiliation(s)
- Senlin Zheng
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Joyce Qi
- Mulgrave School, West Vancouver, V7S 3H9, Canada
| | - Tengwei Fu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yijing Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | | |
Collapse
|
10
|
Bai S, Han X, Feng D. Shoot-root signal circuit: Phytoremediation of heavy metal contaminated soil. FRONTIERS IN PLANT SCIENCE 2023; 14:1139744. [PMID: 36890896 PMCID: PMC9987563 DOI: 10.3389/fpls.2023.1139744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
High concentrations of heavy metals in the environment will cause serious harm to ecosystems and human health. It is urgent to develop effective methods to control soil heavy metal pollution. Phytoremediation has advantages and potential for soil heavy metal pollution control. However, the current hyperaccumulators have the disadvantages of poor environmental adaptability, single enrichment species and small biomass. Based on the concept of modularity, synthetic biology makes it possible to design a wide range of organisms. In this paper, a comprehensive strategy of "microbial biosensor detection - phytoremediation - heavy metal recovery" for soil heavy metal pollution control was proposed, and the required steps were modified by using synthetic biology methods. This paper summarizes the new experimental methods that promote the discovery of synthetic biological elements and the construction of circuits, and combs the methods of producing transgenic plants to facilitate the transformation of constructed synthetic biological vectors. Finally, the problems that should be paid more attention to in the remediation of soil heavy metal pollution based on synthetic biology were discussed.
Collapse
Affiliation(s)
- Shiyan Bai
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Dan Feng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Wei N, Zhai Q, Li H, Zheng S, Zhang J, Liu W. Genome-Wide Identification of ERF Transcription Factor Family and Functional Analysis of the Drought Stress-Responsive Genes in Melilotus albus. Int J Mol Sci 2022; 23:ijms231912023. [PMID: 36233332 PMCID: PMC9570465 DOI: 10.3390/ijms231912023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
As an important forage legume with high values in feed and medicine, Melilotus albus has been widely cultivated. The AP2/ERF transcription factor has been shown to play an important regulatory role in plant drought resistance, but it has not been reported in the legume forage crop M. albus. To digger the genes of M. albus in response to drought stress, we identified and analyzed the ERF gene family of M. albus at the genome-wide level. A total of 100 MaERF genes containing a single AP2 domain sequence were identified in this study, named MaERF001 to MaERF100, and bioinformatics analysis was performed. Collinearity analysis indicated that segmental duplication may play a key role in the expansion of the M. albus ERF gene family. Cis-acting element predictions suggest that MaERF genes are involved in various hormonal responses and abiotic stresses. The expression patterns indicated that MaERFs responded to drought stress to varying degrees. Furthermore, four up-regulated ERFs (MaERF008, MaERF037, MaERF054 and MaERF058) under drought stress were overexpressed in yeast and indicated their biological functions to confer the tolerance to drought. This work will advance the understanding of the molecular mechanisms underlying the drought response in M. albus. Further study of the promising potential candidate genes identified in this study will provide a valuable resource as the next step in functional genomics studies and improve the possibility of improving drought tolerance in M. albus by transgenic approaches.
Collapse
|
12
|
Chen L, Beiyuan J, Hu W, Zhang Z, Duan C, Cui Q, Zhu X, He H, Huang X, Fang L. Phytoremediation of potentially toxic elements (PTEs) contaminated soils using alfalfa (Medicago sativa L.): A comprehensive review. CHEMOSPHERE 2022; 293:133577. [PMID: 35016965 DOI: 10.1016/j.chemosphere.2022.133577] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Soil contamination with potentially toxic elements (PTEs) is an increasing environmental problem, posing serious threats to the living organisms. Phytoremediation is a sustainable and highly accepted technology for remediation of PTE-contaminated soils. Alfalfa has been widely adopted for the phytoremediation of PTE-contaminated soils due to its large biomass productivity, high PTE tolerance, and strong capacity to take up PTEs. However, there are still no literature reviews systematically summarized the potential of alfalfa in the phytoremediation. Therefore, we review the available literatures that present its PTE uptake, phytotoxicity, tolerance mechanisms, and aided techniques improving the phytoremediation efficiency. In this review, alfalfa shows high amounts of PTEs accumulation, especially in their root tissue. Meanwhile, the inner mechanisms of PTE tolerance and accumulation in alfalfa are discussed including: (i) the activation of antioxidant enzyme system, (ii) subcellular localization, (iii) production of glutathione, phytochelatins, and proline, and (iv) regulation of gene expression. Indeed, excessive PTE can overcome the defense system, which causes oxidative damage in alfalfa plants, thereby inhibiting growth and physiological processes and weakening the ability of PTE uptake. Till now, several approaches have been developed to improve the tolerance and/or accumulation of PTE in alfalfa plants as follows: (i) selection of PTE tolerant cultivars, (ii) applying plant growth regulators, (iii) addition of chelating agents, fertilizer, and biochar materials, and (iv) inoculation of soil microbes. Finally, we indicate that the selection of PTE-tolerant cultivars along with inoculation of soil microbes may be an efficient and eco-friendly strategy of the soil PTE phytoremediation.
Collapse
Affiliation(s)
- Li Chen
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China
| | - Weifang Hu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China
| | - Zhiqing Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Chenjiao Duan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Xiaozhen Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Xuguang Huang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| | - Linchuan Fang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
| |
Collapse
|
13
|
Guan M, Zhang W, Xu P, Zhao Q, Chen M, Cao Z. Mapping and functional analysis of high-copper accumulation mutant oshc1 in rice. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128063. [PMID: 34920221 DOI: 10.1016/j.jhazmat.2021.128063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/26/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Copper (Cu) is an essential but potentially toxic element in rice. Little is known about the mechanism of rice grain Cu accumulation. In this study, we identified a high copper accumulation in grain 1 (oshc1) mutant from the wild type indica rice cultivar 9311 (WT) mutant bank. Compared with those in WT, more Cu was shown to accumulate in the shoots of seedlings and the above-ground tissues except nodes although less total Cu content in oshc1. Further analysis showed that the mutant had an accelerated Cu transport ratio from roots to shoots and higher Cu concentration in xylem sap than WT. This phenomenon in oshc1 was controlled by a single recessive gene, which was identified as BGIOSGA007732, and named OsHMA4. The eight base frame-shift from 1021 to 1028 bp in the coding sequence of OsHMA4 led to a modification after the 341st amino acid and resulted in premature translation termination of OsHMA4 at the 377th amino acid. This may change the function of OsHMA4. Furthermore, the up-regulated OsCOPT7 and OsATX1 and down-regulated OsHMA4 probably decrease Cu compartmentalization in roots of oshc1. In summary, the frame-shift in OsHMA4 changes the function of OsHMA4 and the expression of genes relative to Cu transport in the mutant, which leads to more Cu transport upward and higher Cu accumulation in the rice grains. Moreover, oshc1 was more tolerance to Cu-shortage than WT, while more sensitive to Cu excess exposure than WT. However, RNA-Seq analysis shown that changes in transcription levels of genes in oshc1 involving in molecular function of ions binding and biological processes of cell wall organization and defense response to bio-stress. Which indicates that oshc1 is advantage to Cu limited condition than WT. This work reveals the mechanism of high Cu accumulation in the grains of oshc1 and provides a material to breed new cultivars with optimum levels of Cu in brown rice by crossing with other dominant varieties, which can be planted in different soils to ensure the yield and quality of rice.
Collapse
Affiliation(s)
- MeiYan Guan
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou 310006, China.
| | - WanYue Zhang
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou 310006, China.
| | - Ping Xu
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou 310006, China.
| | - Qian Zhao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310006, China.
| | - MingXue Chen
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou 310006, China.
| | - ZhenZhen Cao
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
14
|
Romero P, Gabrielli A, Sampedro R, Perea-García A, Puig S, Lafuente MT. Identification and molecular characterization of the high-affinity copper transporters family in Solanum lycopersicum. Int J Biol Macromol 2021; 192:600-610. [PMID: 34655579 DOI: 10.1016/j.ijbiomac.2021.10.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/27/2021] [Accepted: 10/03/2021] [Indexed: 11/17/2022]
Abstract
Copper (Cu) plays a key role as cofactor in the plant proteins participating in essential cellular processes, such as electron transport and free radical scavenging. Despite high-affinity Cu transporters (COPTs) being key participants in Cu homeostasis maintenance, very little is known about COPTs in tomato (Solanum lycopersicum) even though it is the most consumed fruit worldwide and this crop is susceptible to suboptimal Cu conditions. In this study, a six-member family of COPT (SlCOPT1-6) was identified and characterized. SlCOPTs have a conserved architecture consisting of three transmembrane domains and β-strains. However, the presence of essential methionine residues, a methionine-enriched amino-terminal region, an Mx3Mx12Gx3G Cu-binding motif and a cysteine rich carboxy-terminal region, all required for their functionality, is more variable among members. Accordingly, functional complementation assays in yeast indicate that SlCOPT1 and SlCOPT2 are able to transport Cu inside the cell, while SlCOPT3 and SlCOPT5 are only partially functional. In addition, protein interaction network analyses reveal the connection between SlCOPTs and Cu PIB-type ATPases, other metal transporters, and proteins related to the peroxisome. Gene expression analyses uncover organ-dependency, fruit vasculature tissue specialization and ripening-dependent gene expression profiles, as well as different response to Cu deficiency or toxicity in an organ-dependent manner.
Collapse
Affiliation(s)
- Paco Romero
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Alessandro Gabrielli
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Raúl Sampedro
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Ana Perea-García
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Sergi Puig
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| | - María Teresa Lafuente
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|