1
|
Blesstina SRK, Mathavan T, Joel T, Benial AMF. Enhanced ionic conductivity of proton-conducting flaxseed gum based biopolymer electrolyte for energy storage. Int J Biol Macromol 2024; 282:137515. [PMID: 39532165 DOI: 10.1016/j.ijbiomac.2024.137515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/27/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
This work presents a facile and systematic way to prepare low resistive proton conducting biopolymer electrolyte (BPE) membranes from flaxseed gum (FG) via the solution casting technique. Ammonium fluoride (NH4F) ionic salt has been added to the FG matrix and optimized the ionic conductivity of the BPE membrane. The structural and morphological investigations were done to comprehend the ion association phenomenon. The enhancement of amorphousity on doping is affirmed by x-ray diffraction (XRD). The complex formation and interactions between FG and proton (H+) have been characterized through fourier transform infrared (FTIR) spectroscopy. The flexibility of the prepared BPE membranes at low glass transition temperature Tg was confirmed by differential scanning calorimetry (DSC) thermal analysis. Electrochemical impedance spectroscopy (EIS) shows maximum ionic conductivity of 4.0 × 10-3 S/cm at FGAF7 composition. The obtained surface topographic images from atomic force microscopy (AFM) confirms that the predominantly uneven amorphous surface with high rms roughness has transformed to a homogenous even surface on the addition of dopant. The TNM findings demonstrated that the ions were the predominant charge carriers. The linear sweep voltammetry (LSV) and cyclic voltammetry (CV) investigations were employed to confirm the electrochemical stability of the BPE membrane. An electrical double layer capacitor (EDLC) has been fabricated using the optimized utmost conducting BPE membrane as an electrolyte and characterized using cyclic voltammetry (CV). These outcomes indicates that the present electrolyte shows promising performance for application in energy storage devices.
Collapse
Affiliation(s)
- S Rehila Karolin Blesstina
- PG & Research Department of Physics, N.M.S.S Vellaichamy Nadar College (Affiliated to Madurai Kamaraj University), Madurai 19, India.
| | - T Mathavan
- PG & Research Department of Physics, N.M.S.S Vellaichamy Nadar College (Affiliated to Madurai Kamaraj University), Madurai 19, India.
| | - T Joel
- PG & Research Department of Physics, N.M.S.S Vellaichamy Nadar College (Affiliated to Madurai Kamaraj University), Madurai 19, India.
| | - A Milton Franklin Benial
- PG & Research Department of Physics, N.M.S.S Vellaichamy Nadar College (Affiliated to Madurai Kamaraj University), Madurai 19, India.
| |
Collapse
|
2
|
Chand M, Chopra R, Talwar B, Homroy S, Singh PK, Dhiman A, Payyunni AW. Unveiling the potential of linseed mucilage, its health benefits, and applications in food packaging. Front Nutr 2024; 11:1334247. [PMID: 38385008 PMCID: PMC10879465 DOI: 10.3389/fnut.2024.1334247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/04/2024] [Indexed: 02/23/2024] Open
Abstract
Industrial waste products derived from the oil industry often contain valuable substances and elements with great potential. These by-products can be used for various purposes, including as nutrients, bioactive compounds, fuels, and polymers. Linseed mucilage (LM) is one such example of a beneficial by-product obtained from linseed. It possesses favorable chemical and functional properties, depending on its method of extraction. Different pretreatments, such as enzymatic extraction, microwave-assisted extraction, pulse electric field, and ultrasound-assisted extraction, have been explored by various researchers to enhance both the yield and quality of mucilage. Furthermore, LM has exhibited therapeutic effects in the treatment of obesity, diabetes, constipation, hyperlipidemia, cancer, and other lifestyle diseases. Additionally, it demonstrates favorable functional characteristics that make it suitable to be used in bioplastic production. These properties preserve food quality, prolong shelf life, and confer antimicrobial activity. It also has the potential to be used as a packaging material, especially considering the increasing demand for sustainable and biodegradable alternatives to plastics because of their detrimental impact on environmental health. This review primarily focuses on different extraction techniques used for linseed mucilage, its mechanism of action in terms of health benefits, and potential applications in food packaging.
Collapse
Affiliation(s)
- Monika Chand
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Rajni Chopra
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Binanshu Talwar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Snigdha Homroy
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Priyanka Kumari Singh
- Department of Food and Nutrition and Food Technology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Aishwarya Dhiman
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Abdul Wahid Payyunni
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| |
Collapse
|
3
|
Yue XJ, Xu PW, Zhu Y, Hou SB, Luo XC, Zhao B. Effect of hydrochloric acid and citric acid with ultrasound processing on characteristics of superfine-ground pectic polysaccharides from okra (Abelmoschus esculentus L.) peel. Int J Biol Macromol 2024; 259:129076. [PMID: 38161025 DOI: 10.1016/j.ijbiomac.2023.129076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
The structural properties and biological activities of okra pectic polysaccharides (OPs) were impacted by various extraction methods. Based on commonly grinding (40, 100 meshes) and superfine grinding okra powders, two extraction solvents (hydrochloric acid, HA; citric acid, CA) were used firstly. Next, the extraction yield, physical and chemical properties, molecular structure and functional properties of OPs were analyzed by non-ultrasonic treatment and ultrasound-assisted superfine grinding method. The outcomes demonstrated that the extraction yield of OPs rose as the particle size of the powder decreased. HA-OPs had higher molecular weight (Mw), apparent viscosity and emulsification ability than CA-OPs. CA-OPs had higher esterification degree (DE), solubility and total sugar content, and higher amounts of rhamnogalacturonan-I (RG-I) segments. Compared with OPs without ultrasound-assisted extraction, ultrasound-assisted superfine grinding extraction exhibited higher sugar content, antioxidant capacity, emulsification ability, lower Mw, DE and apparent viscosity. Finally, the correlation between structure and function of OPs was further quantified. The antioxidant capacity was positively correlated with RG-I content, and negatively correlated with DE and Mw. The emulsification ability was mainly positively correlated with the GlcA of OPs. This study provides a theoretical basis for the development of OPs foods with clear structure-function relationship, which would be instructive for the application of OPs in food and cosmetics.
Collapse
Affiliation(s)
- Xiao-Jie Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Peng-Wei Xu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuan Zhu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shou-Bu Hou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiao-Chuan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Bing Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
4
|
Kumari P, Ahina KM, Kannan K, Sreekumar S, Lakra R, Sivagnanam UT, Kiran MS. In vivosoft tissue regenerative potential of flax seed mucilage self-assembled collagen aerogels. Biomed Mater 2024; 19:025023. [PMID: 38232378 DOI: 10.1088/1748-605x/ad1f79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
The present study demonstrates thein vivosoft tissue regenerative potential of flax seed mucilage (FSM) reinforced collagen aerogels in Wistar rats. The physiochemical, mechanical, and thermal properties were significantly improved upon the incorporation of flax mucilage into collagen when compared to the native collagen scaffold. In addition, the functional group of flax mucilage notably contributed to a better anti-oxidative potential than the control collagen. The flax mucilage-reinforced collagen at 4 mg ml-1concentration showed a 2-fold increase in porosity compared to native collagen. The tensile strength of native collagen, 2 mg ml-1, and 4 mg ml-1FSM reinforced collagen was 5.22 MPa, 9.76 MPa, and 11.16 MPa, respectively, which indicated that 2 mg ml-1and 4 mg ml-1FSM showed an 87% and 113% percentage increase respectively in tensile strength compared to the native collagen control. FSM-reinforced biomatrix showed 97% wound closure on day 15 post-wounding, indicating faster healing than controls, where complete healing occurred only on day 21. The mechanical properties of skin treated with FSM-reinforced collagen scaffold post-healing were considerably better than native collagen. The histological and immunohistochemistry analysis also showed complete restoration of wounded tissue like intact normal skin. The findings paved the way for the development of collagen-polysaccharide mucilage wound dressing materials and their further application in skin tissue engineering.
Collapse
Affiliation(s)
- Punam Kumari
- Biological Material Laboratory, Council of Scientific and Industrial Research- CentralLeather Research Institute, Chennai, Tamil Nadu 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kannoth Madappurakkal Ahina
- Biological Material Laboratory, Council of Scientific and Industrial Research- CentralLeather Research Institute, Chennai, Tamil Nadu 600020, India
| | - Kiruba Kannan
- Biological Material Laboratory, Council of Scientific and Industrial Research- CentralLeather Research Institute, Chennai, Tamil Nadu 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sreelekshmi Sreekumar
- Biological Material Laboratory, Council of Scientific and Industrial Research- CentralLeather Research Institute, Chennai, Tamil Nadu 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rachita Lakra
- Biological Material Laboratory, Council of Scientific and Industrial Research- CentralLeather Research Institute, Chennai, Tamil Nadu 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Uma Tiruchirapalli Sivagnanam
- Biological Material Laboratory, Council of Scientific and Industrial Research- CentralLeather Research Institute, Chennai, Tamil Nadu 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manikantan Syamala Kiran
- Biological Material Laboratory, Council of Scientific and Industrial Research- CentralLeather Research Institute, Chennai, Tamil Nadu 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Hellebois T, Addiego F, Gaiani C, Shaplov AS, Soukoulis C. Unravelling the functionality of anionic and non-ionic plant seed gums on milk protein cryogels conveying Lacticaseibacillus rhamnosus GG. Carbohydr Polym 2024; 323:121376. [PMID: 37940272 DOI: 10.1016/j.carbpol.2023.121376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 11/10/2023]
Abstract
Cryogels offer a promising macroporous platform that can be employed as either a functional ingredient in food composites or a colloidal template for incorporating bioactives, including probiotic living cells. The aim of the present work is to explore the functionality of two plant seed polysaccharides, flaxseed gum (FG) and alfalfa galactomannan (AAG), in individual and combined (1:1 ratio) milk protein-based cryogels, namely sodium caseinate (NaCas) and whey protein isolate (WPI). These cryogels were created by freeze-drying hydrogels formed via L.rhamnosus GG - a human gut-relevant probiotic strain - fermentation. Our findings showed that including gum in the composition limited volume contraction during lyophilisation, reduced macropore size and thickened cryogel skeleton vessels. Furthermore, gum-containing cryogels displayed improved thermal stability and slower water disintegration rates. The AAG-stabilised cryogels specifically showed a notable reduction in monolayer water content compared to FG. From a mechanistic viewpoint, AAG influenced the physicochemical and microstructural properties of the cryogels, most probably via its self-association during cryogenic processing, promoting the development of intertwined protein-gum networks. FG, on the other hand, enhanced these properties through electrostatic complexation with proteins. Cryogels made from protein-polysaccharide blends exhibited promising techno-functional properties for enhancing and diversifying food product innovation.
Collapse
Affiliation(s)
- Thierry Hellebois
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette L-4362, Luxembourg; Université de Lorraine, LIBio, F-54000 Nancy, France
| | - Frédéric Addiego
- Materials Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Claire Gaiani
- Université de Lorraine, LIBio, F-54000 Nancy, France
| | - Alexander S Shaplov
- Materials Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Christos Soukoulis
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette L-4362, Luxembourg.
| |
Collapse
|
6
|
Hamedi S, Mahmoodi-Barmesi M, Kermanian H, Ramezani O, Razmpour Z. Investigation of physicochemical and biological properties of bacterial cellulose & zein-reinforced edible nanocomposites based on flaxseed mucilage containing Origanum vulgare L. essential oil. Int J Biol Macromol 2024; 254:127733. [PMID: 37918591 DOI: 10.1016/j.ijbiomac.2023.127733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
In the present study, the effect of zein and different amounts of bacterial cellulose (BC; 1, 2 and 3 wt%) on the physical, mechanical and barrier properties of flaxseed mucilage/carboxymethyl cellulose (FM/CMC) composite was investigated. The appearance of the absorption band at 1320cm-1 in the ATR-FTIR spectra of nanocomposites indicated the successful introduction of zein into their structure. The characteristic peak at 2θ of 9° belonging to zein disappeared in XRD patterns of the prepared composites suggesting the successful coating of zein via hydrogen bonding interactions. SEM images proved the formation of semi-spherical zein microparticles in the FM/CMC matrix. TGA plots ascertained the addition of zein and nanocellulose caused a significant increase in the thermal stability of FM/CMC film, although zein showed a greater effect. The presence of zein and nanocellulose increased the mechanical strength of nanocomposites. The WVP of FM/CMC decreased after the incorporation of zein and nanocellulose, which created a tortuous path for the diffusion of water molecules. The zein particles exhibited a greater influence on improving the mechanical and barrier properties compared to nanocellulose. FM/CMC-Z film exhibited the highest mechanical strength (49.07 ± 5.89 MPa) and the lowest WVP (1.179 ± 0.076). The composites containing oregano essential oil (EO) showed higher than 60 % antibacterial properties. The bactericidal efficiency of FM/CMC/Z-EO and FM/CMC/Z-EO/BC1 nanocomposites decreased about 10% compared to FM/CMC/EO and FM/CMC-Z/BC1. This evidenced the successful encapsulation of EO molecules in zein particles. According to the in vitro release study, entrapment of EO into zein particles could delay the release and provide the extended antimicrobial effect.
Collapse
Affiliation(s)
- Sepideh Hamedi
- Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran, Iran
| | | | - Hossein Kermanian
- Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran, Iran.
| | - Omid Ramezani
- Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran, Iran
| | - Zahra Razmpour
- Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
7
|
Radinekiyan F, Eivazzadeh-Keihan R, Naimi-Jamal MR, Aliabadi HAM, Bani MS, Shojaei S, Maleki A. Design and fabrication of a magnetic nanobiocomposite based on flaxseed mucilage hydrogel and silk fibroin for biomedical and in-vitro hyperthermia applications. Sci Rep 2023; 13:20845. [PMID: 38012184 PMCID: PMC10681992 DOI: 10.1038/s41598-023-46445-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023] Open
Abstract
In this research work, a magnetic nanobiocomposite is designed and presented based on the extraction of flaxseed mucilage hydrogel, silk fibroin (SF), and Fe3O4 magnetic nanoparticles (Fe3O4 MNPs). The physiochemical features of magnetic flaxseed mucilage hydrogel/SF nanobiocomposite are evaluated by FT-IR, EDX, FE-SEM, TEM, XRD, VSM, and TG technical analyses. In addition to chemical characterization, given its natural-based composition, the in-vitro cytotoxicity and hemolysis assays are studied and the results are considerable. Following the use of highest concentration of magnetic flaxseed mucilage hydrogel/SF nanobiocomposite (1.75 mg/mL) and the cell viability percentage of two different cell lines including normal HEK293T cells (95.73%, 96.19%) and breast cancer BT549 cells (87.32%, 86.9%) in 2 and 3 days, it can be inferred that this magnetic nanobiocomposite is biocompatible with HEK293T cells and can inhibit the growth of BT549 cell lines. Besides, observing less than 5% of hemolytic effect can confirm its hemocompatibility. Furthermore, the high specific absorption rate value (107.8 W/g) at 200 kHz is generated by a determined concentration of this nanobiocomposite (1 mg/mL). According to these biological assays, this magnetic responsive cytocompatible composite can be contemplated as a high-potent substrate for further biomedical applications like magnetic hyperthermia treatment and tissue engineering.
Collapse
Affiliation(s)
- Fateme Radinekiyan
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran.
| | | | - Milad Salimi Bani
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Shirin Shojaei
- Medical School of Pharmacy, Nanotechnology Department, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
8
|
Sharma M, Bains A, Sridhar K, Chawla P, Sharma M. Process optimization for spray dried Aegle marmelos fruit nanomucilage: Characterization, functional properties, and in vitro antibiofilm activity against food pathogenic microorganisms. Int J Biol Macromol 2023; 249:126050. [PMID: 37517760 DOI: 10.1016/j.ijbiomac.2023.126050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Recently, mucilage extraction from plant sources has been remarkably explored due to its potential applications. Several underutilized fruits such as Aegle marmelos are the potential source of mucilage that can be utilized for agri-food-pharma applications. Therefore, in this study, we explored vital functional and antimicrobial properties of Aegle marmelos nanomucilage. Spray drying conditions such as inlet temperature, feed flow, and atomization speed were optimized to assess the influence on yield and moisture content using response surface methodology. In addition, during the optimized spray drying conditions, the maximum mucilage yield was 16.23 % (w/w). The particle size (178.4 ± 5.06 nm) at the nanoscale, polydispersity index (0.432), and zeta potential (-16.4 ± 1.14 mV) confirmed the stability of the nanomucilage. Moreover, the spray-dried nanomucilage powder exhibited high thermal stability (55.70 J) and excellent industrially important techno-functional properties with water-holding capacity (8.01 ± 0.04 g/g), oil-holding capacity (3.43 ± 0.7 g/g), emulsifying capacity (91.50 ± 0.78 %), emulsifying stability (92.65 ± 0.46 %), solubility (89.36 ± 1.69 %), and foaming capacity (16.13 ± 0.41 %). Moreover, the powder showed strong antibiofilm activity against food-pathogenic bacteria, including Escherichia coli (73.52 ± 1.14 %) and Staphylococcus aureus (79.57 ± 1.23 %), with minimum inhibitory concentrations of 3.125 mg/mL and 1.562 mg/mL respectively. Overall, based on the above findings the spray-dried powder of Aegle marmelos fruit nanomucilage could be utilized as a potential functional ingredient in various food products formulations.
Collapse
Affiliation(s)
- Madhu Sharma
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India.
| |
Collapse
|
9
|
Arab K, Ghanbarzadeh B, Karimi S, Ebrahimi B, Hosseini M. Gelling and rheological properties of a polysaccharide extracted from Ocimum album L. seed. Int J Biol Macromol 2023; 246:125603. [PMID: 37390999 DOI: 10.1016/j.ijbiomac.2023.125603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/04/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
In this study, a new polysaccharide was isolated from Ocimum album L. seed (OA), and its physicochemical and rheological properties were investigated. Ocimum album polysaccharide (OAP) was an acidic heteropolysaccharide with a molecular weight of 1935 kDa, and it was composed of five types of sugars: mannose (32.95 %), glucose (27.57 %), galactose (19.29 %), rhamnose, (15.96 %) and galacturonic acid (4.23 %). According to the results obtained from Huggins and Kraemer equations, the intrinsic viscosity was 6.9 dL/g in distilled water. The OAP solutions at a concentration between 0.1 and 1.5 %, showed shear-thinning behavior, and the Herschel-Bulkley and Cross models exhibited a high ability to describe the flow behavior of OAP solutions. The apparent viscosity of 1 % OAP solution was decreased in the presence of different concentrations of NaCl (0.1, 0.3, and 0.5 M), at different pHs (3-11), and in temperatures between 5 and 100 °C. Also, the pseudoplastic behavior was observed in all samples. In OAP solutions (0.1-1.5 %), the up and down curves in the shear stress-shear rate diagram did not coincide, which indicated time-dependent (thixotropic) behavior. Although, the thixotropic properties of 1 % OAP solution were weakened with adding NaCl (0.1-0.5 M) and at different pH (3-11). The results obtained from the dynamic oscillatory test showed that the OAP solutions at concentrations higher than 0.1 % had a gel-like behavior, and the viscoelastic moduli (G' and G″) were weakened in the presence of salt and with a change in pH. Also, in the temperature sweep test, the 1 % solution showed the behavior of thermally irreversible gels.
Collapse
Affiliation(s)
- Khaled Arab
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran; Department of Food Engineering, Faculty of Engineering, Near East University, P. O. Box 99138, Nicosia, Cyprus, Mersin 10, Turkey.
| | - Shafagh Karimi
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Behzad Ebrahimi
- Department of Food Science and Technology, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mohammadyar Hosseini
- Department of Food Science and Hygiene, Faculty of Para-Veterinary, Ilam University, Ilam, Iran
| |
Collapse
|
10
|
Study of Varietal Differences in the Composition of Heteropolysaccharides of Oil Flax and Fiber Flax. POLYSACCHARIDES 2023. [DOI: 10.3390/polysaccharides4010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Flaxseed mucilage and its derivatives have been extensively investigated over the last decade, mainly due to their inherent techno-functional (thickening, gelling, interface-stabilizing, and film-forming) properties that are relevant in the food industry. Hydrocolloids are used to modify food properties, such as for stabilization and emulsion, and are also used to control the microstructure of the food. Increasing research attention has been paid to the application of hydrocolloid materials in gel particles for encapsulation or texture control in food, pharmaceutical, cosmetic, and probiotic products. Thus, it is important to investigate the properties of hydrocolloids manufactured from various sources and explore their possible applications in the food industry. The applied nature of the study of plant mucus substances is associated with the ever-increasing demand for their use in the food, cosmetic, and pharmacological industries, determining the related research priorities, including the development of the most effective methods for the extraction of glycans and the search for highly productive raw materials for the production of polysaccharides. The aim of this work was to study varietal differences in the compositions of heteropolysaccharides in the mucus samples of oilseed and fiber flax varieties using a modern methodological approach for obtaining glycans based on the ultrasonic extraction of polysaccharides. The seeds of 10 flax varieties were studied, differing in their morphotype, place, and time of creation. The obtained results indicated significant differences in the quantitative and qualitative compositions of the heteropolysaccharides of flax seeds of various varieties. The contents of reducing sugars in the studied varieties ranged from 5.61 ± 0.01 to 18.81 ± 0.01 mg/g, indicating significant differences in the structural organization of glycans in different flax varieties. Additionally, the results obtained here allowed us to conclude that the range of reducing sugars for flax heteropolysaccharides is significantly less than this range for oilseed flax varieties. The obtained results of the study of the composition of flax seed heteropolysaccharides allowed us to consider them as selection trait and genetic markers.
Collapse
|
11
|
Impact of Flaxseed Gums on the Colloidal Changes and In Vitro Digestibility of Milk Proteins. Foods 2022; 11:foods11244096. [PMID: 36553838 PMCID: PMC9778069 DOI: 10.3390/foods11244096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Flaxseed (Linum usitatissimum L.) mucilage is one of the most studied plant seed gums in terms of its techno-functional and health-promoting properties. Nonetheless, the interplay of flaxseed gum (FG) with other food biopolymers, such as milk proteins, under in vitro digestion conditions remains underexplored. The aim of the present work was to investigate the colloidal interplay between flaxseed gum (golden or brown) and milk proteins (sodium caseinate or whey protein isolate) under simulated in vitro digestion conditions and its relationship with the attained in vitro protein digestibility. The presence of flaxseed gum in the milk protein food models and in the oral food boluses obtained was associated with the occurrence of segregative microphase separation. Flaxseed gum exhibited a prominent role in controlling the acid-mediated protein aggregation phenomena, particularly in the sodium caseinate gastric chymes. The addition of FG in the food models was associated with a higher amount of intact total caseins and β-lactoglobulin at the end of the gastric processing step. Monitoring of the intestinal processing step revealed a very advanced cleavage of the whey proteins (>98%) and caseins (>90%). The degree of the milk protein hydrolysis achieved at the end of the intestinal processing was significantly higher in the systems containing flaxseed gum (i.e., 59−62%) than their gum-free protein counterparts (i.e., 46−47%). It was postulated that the electrostatic milk protein complexation capacity and, to a lesser extent, the thickening effect of flaxseed gum influenced the in vitro digestibility of the milk proteins.
Collapse
|
12
|
Structural Characterization and Functional Properties of Flaxseed Hydrocolloids and Their Application. Foods 2022; 11:foods11152304. [PMID: 35954070 PMCID: PMC9368198 DOI: 10.3390/foods11152304] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 01/15/2023] Open
Abstract
Flaxseed is an excellent source of valuable nutrients and is also considered a functional food. There are two types of hydrocolloids in flaxseed: flaxseed gum and proteins. Flaxseed gum exhibits emulsifying and foaming activities or can be used as a thickening and gelling agent. Due to its form of soluble fiber, flaxseed gum is related to many health benefits. Flaxseed proteins have various functional properties based on their physicochemical properties. While albumins possess the emulsion-forming ability, globulins better serve as foaming agents. Flaxseed proteins may also serve as a source of functional peptides with interesting biological and health-related activities. Functional properties and health-related benefits predetermine the application of these hydrocolloids, mainly in the food industry or medicine. Although these properties of flaxseed hydrocolloids have been recently and extensively studied, they are still not widely used on the industrial scale compared to other popular plant gums and proteins. The aim of this review was to present, discuss and highlight the recent discoveries in the structural characteristics and functional and biological properties of these versatile hydrocolloids with respect to factors affecting their characteristics and offer new insights into their potential applications as comparable alternatives to the other natural hydrocolloids or as the sources of novel functional products.
Collapse
|
13
|
Hellebois T, Gaiani C, Cambier S, Noo A, Soukoulis C. Exploration of the co-structuring and stabilising role of flaxseed gum in whey protein isolate based cryo-hydrogels. Carbohydr Polym 2022; 289:119424. [DOI: 10.1016/j.carbpol.2022.119424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/28/2022] [Accepted: 03/26/2022] [Indexed: 12/26/2022]
|
14
|
Puligundla P, Lim S. A Review of Extraction Techniques and Food Applications of Flaxseed Mucilage. Foods 2022; 11:1677. [PMID: 35741874 PMCID: PMC9223220 DOI: 10.3390/foods11121677] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/15/2022] Open
Abstract
Flaxseed contains significant concentration of mucilage or gum (a type of hydrocolloid). Flaxseed mucilage (FM) predominantly occurs in the outermost layer of the seed's hull and is known to possess numerous health benefits such as delayed gastric emptying, reduced serum cholesterol, and improved glycemic control. FM is typically composed of an arabinoxylan (neutral in nature) and a pectic-like material (acidic in nature). Similar to gum arabic, FM exhibits good water-binding capacity and rheological properties (similar functionality); therefore, FM can be used as its replacement in foods. In this review, an overview of methods used for FM extraction and factors influencing the extraction yield were discussed initially. Thereafter, food applications of FM as gelling agent/gel-strengthening agent, structure-forming agent, stabilizing agent, fat replacer, anti-retrogradation agent, prebiotic, encapsulating agent, edible coatings and films/food packaging material, and emulsifier/emulsion stabilizer were included. At the end, some limitations to its wide application and potential solutions were added.
Collapse
Affiliation(s)
| | - Seokwon Lim
- Department of Food Science & Biotechnology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Korea;
| |
Collapse
|