1
|
Wang X, Zhuhuang C, He Y, Zhang X, Wang Y, Ni Q, Zhang Y, Xu G. Selective transformation of crocin-1 to crocetin-glucosyl esters by β-glucosidase (Lf18920) from Leifsonia sp. ZF2019: Insights from molecular docking and point mutations. Enzyme Microb Technol 2024; 181:110522. [PMID: 39378560 DOI: 10.1016/j.enzmictec.2024.110522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/30/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Crocetin di/mono-glucosyl esters (crocin-4 and crocin-5) are rarely distributed in nature, limiting their potential applications in the food and pharmaceutical industries. In the present study, a novel GH3 family β-glucosidase Lf18920 was identified from Leifsonia sp. ZF2019, which selectively hydrolyzed crocin-1 (crocetin di-gentiobiosyl ester) to crocin-5 and crocin-4, but not to its aglycone, crocetin. Under the optimal condition of 40 °C and pH 6.0 for 120 min, Lf18920 almost completely hydrolyzed crocin-1, yielding 73.50±5.66 % crocin-4 and 16.19±1.38 % crocin-5. Molecular docking and point mutation studies revealed that Lf18920 formed a narrow binding channel that facilitated crocin-1 binding. Five single amino acid variants (D50A, D53A, W274A, G420A, and Q421A) were constructed, all of which showed reduced hydrolytic activity. Mutations at D50 and D53, located distal to the active site, increased binding energy and decreased hydrolytic activity, while mutations at W274, G420, and Q421, proximal to the active site, disrupted hydrolytic function. These findings suggest that the narrow binding channel and specific enzyme-substrate interactions are crucial for Lf18920's selective hydrolytic activity. Overall, this study is the first to report a β-glucosidase capable of selectively transforming crocin-1 to crocetin di/mono-glucosyl esters, offering potential for synthesizing crocin-4 and crocin-5.
Collapse
Affiliation(s)
- Xi Wang
- College of Food Science and Health, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, China
| | - Chenzhi Zhuhuang
- College of Food Science and Health, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, China
| | - Yi He
- College of Food Science and Health, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, China
| | - Xiaolong Zhang
- College of Food Science and Health, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, China
| | - Yan Wang
- College of Food Science and Health, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, China
| | - Qinxue Ni
- College of Food Science and Health, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, China.
| | - Youzuo Zhang
- College of Food Science and Health, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, China
| | - Guangzhi Xu
- College of Food Science and Health, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, China.
| |
Collapse
|
2
|
Magwaza B, Amobonye A, Pillai S. Microbial β-glucosidases: Recent advances and applications. Biochimie 2024; 225:49-67. [PMID: 38734124 DOI: 10.1016/j.biochi.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/05/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
The global β-glucosidase market is currently estimated at ∼400 million USD, and it is expected to double in the next six years; a trend that is mainly ascribed to the demand for the enzyme for biofuel processing. Microbial β-glucosidase, particularly, has thus garnered significant attention due to its ease of production, catalytic efficiency, and versatility, which have all facilitated its biotechnological potential across different industries. Hence, there are continued efforts to screen, produce, purify, characterize and evaluate the industrial applicability of β-glucosidase from actinomycetes, bacteria, fungi, and yeasts. With this rising demand for β-glucosidase, various cost-effective and efficient approaches are being explored to discover, redesign, and enhance their production and functional properties. Thus, this present review provides an up-to-date overview of advancements in the utilization of microbial β-glucosidases as "Emerging Green Tools" in 21st-century industries. In this regard, focus was placed on the use of recombinant technology, protein engineering, and immobilization techniques targeted at improving the industrial applicability of the enzyme. Furthermore, insights were given into the recent progress made in conventional β-glucosidase production, their industrial applications, as well as the current commercial status-with a focus on the patents.
Collapse
Affiliation(s)
- Buka Magwaza
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P. O. Box 1334, Durban, 4000, South Africa.
| | - Ayodeji Amobonye
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P. O. Box 1334, Durban, 4000, South Africa.
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P. O. Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
3
|
Erkanli ME, El-Halabi K, Kang TK, Kim JR. Hotspot Wizard-informed engineering of a hyperthermophilic β-glucosidase for enhanced enzyme activity at low temperatures. Biotechnol Bioeng 2024; 121:2079-2090. [PMID: 38682557 DOI: 10.1002/bit.28732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
Hyperthermophilic enzymes serve as an important source of industrial enzymes due to their high thermostability. Unfortunately, most hyperthermophilic enzymes suffer from reduced activity at low temperatures (e.g., ambient temperature), limiting their applicability. In addition, evolving hyperthermophilic enzymes to increase low temperature activity without compromising other desired properties is generally difficult. In the current study, a variant of β-glucosidase from Pyrococcus furiosus (PfBGL) was engineered to enhance enzyme activity at low temperatures through the construction of a saturation mutagenesis library guided by the HotSpot Wizard analysis, followed by its screening for activity and thermostability. From this library construction and screening, one PfBGL mutant, PfBGL-A4 containing Q214S/A264S/F344I mutations, showed an over twofold increase in β-glucosidase activity at 25 and 50°C compared to the wild type, without compromising high-temperature activity, thermostability and substrate specificity. Our experimental and computational characterizations suggest that the findings with PfBGL-A4 may be due to the elevation of local conformational flexibility around the active site, while slightly compacting the global protein structure. This study showcases the potential of HotSpot Wizard-informed engineering of hyperthermophilic enzymes and underscores the interplays among temperature, enzyme activity, and conformational flexibility in these enzymes.
Collapse
Affiliation(s)
- Mehmet Emre Erkanli
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, New York, USA
| | - Khalid El-Halabi
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, New York, USA
| | - Ted Keunsil Kang
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, New York, USA
| | - Jin Ryoun Kim
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, New York, USA
| |
Collapse
|
4
|
Mo H, Chen X, Tang M, Qu Y, Li Z, Liu W, Yang C, Chen Y, Sun J, Yang H, Du G. Expression of a thermostable glucose-stimulated β-glucosidase from a hot-spring metagenome and its promising application to produce gardenia blue. Bioorg Chem 2024; 143:107036. [PMID: 38141330 DOI: 10.1016/j.bioorg.2023.107036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
This study reports a thermostable glucose-stimulated β-glucosidase, BglY442, from hot-spring metagenomic data that was cloned and expressed in Escherichia coli BL21 (DE3). The molecular mass of recombinant BglY442 was 69.9 kDa and was used in the production of gardenia blue. The recombinant BglY442 showed its maximum activity at pH 6.0 and 75 °C, maintained 50 % activity at 70 °C for 36 h, presented over 90 % activity in a broad pH range and a wide range of pH stability. Moreover, BglY442 exhibited excellent tolerance toward methanol and ethanol. The specific activity of BglY442 was 235 U/mg at pH 6.0 and 75 °C with 10 mM pNPG as substrate. BglY442 activity increased by over fourfold with 2 M glucose or xylose. Specifically, the enzyme kinetics of BglY442 seem to be non-Michaelis-Menten kinetics or atypical kinetics because the Michaelis-Menten saturation kinetics were not observed with pNPG, oNPG or geniposide as substrates. Under optimum conditions, geniposide was dehydrated by BglY442 and reacted with nine amino acids respectively by the one-pot method. Only the Arg or Met derived pigments showed bright blue, and these two pigments had similar ultraviolet absorption spectra. The OD590 nm of GB was detected to be 1.06 after 24 h with the addition of Arg and 1.61 after 36 h with the addition of Met. The intermediate was elucidated and identified as ginipin. Molecular docking analysis indicated that the enzyme had a similar catalytic mechanism to the reported GH1 Bgls. BglY442 exhibited potential for gardenia blue production by the one-pot method. With outstanding thermostability and glucose tolerance, BglY442 should be considered a potential β-glucosidase in biotechnology applications.
Collapse
Affiliation(s)
- Haiying Mo
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Xin Chen
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Manwen Tang
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Ying Qu
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Zhihao Li
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Wang Liu
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Chunlin Yang
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Yijian Chen
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Jingxian Sun
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Haiying Yang
- Yunnan Minzu University, School of Chemistry and Environment, Kunming, Yunnan, China.
| | - Gang Du
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China.
| |
Collapse
|
5
|
Erkanli ME, El-Halabi K, Kim JR. Exploring the diversity of β-glucosidase: Classification, catalytic mechanism, molecular characteristics, kinetic models, and applications. Enzyme Microb Technol 2024; 173:110363. [PMID: 38041879 DOI: 10.1016/j.enzmictec.2023.110363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/04/2023]
Abstract
High-value chemicals and energy-related products can be produced from biomass. Biorefinery technology offers a sustainable and cost-effective method for this high-value conversion. β-glucosidase is one of the key enzymes in biorefinery processes, catalyzing the production of glucose from aryl-glycosides and cello-oligosaccharides via the hydrolysis of β-glycosidic bonds. Although β-glucosidase plays a critical catalytic role in the utilization of cellulosic biomass, its efficacy is often limited by substrate or product inhibitions, low thermostability, and/or insufficient catalytic activity. To provide a detailed overview of β-glucosidases and their benefits in certain desired applications, we collected and summarized extensive information from literature and public databases, covering β-glucosidases in different glycosidase hydrolase families and biological kingdoms. These β-glucosidases show differences in amino acid sequence, which are translated into varying degrees of the molecular properties critical in enzymatic applications. This review describes studies on the diversity of β-glucosidases related to the classification, catalytic mechanisms, key molecular characteristics, kinetics models, and applications, and highlights several β-glucosidases displaying high stability, activity, and resistance to glucose inhibition suitable for desired biotechnological applications.
Collapse
Affiliation(s)
- Mehmet Emre Erkanli
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY 11201, United States
| | - Khalid El-Halabi
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY 11201, United States
| | - Jin Ryoun Kim
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY 11201, United States.
| |
Collapse
|
6
|
Omeroglu MA, Baltaci MO, Adiguzel A. Anoxybacillus: an overview of a versatile genus with recent biotechnological applications. World J Microbiol Biotechnol 2023; 39:139. [PMID: 36995480 DOI: 10.1007/s11274-023-03583-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
The Bacillaceae family members are considered to be a good source of microbial factories for biotechnological processes. In contrast to Bacillus and Geobacillus, Anoxybacillus, which would be thermophilic and spore-forming group of bacteria, is a relatively new genus firstly proposed in the year of 2000. The development of thermostable microbial enzymes, waste management and bioremediation processes would be a crucial parameter in the industrial sectors. There has been increasing interest in Anoxybacillus strains for biotechnological applications. Therefore, various Anoxybacillus strains isolated from different habitats have been explored and identified for biotechnological and industrial purposes such as enzyme production, bioremediation and biodegradation of toxic compounds. Certain strains have ability to produce exopolysaccharides possessing biological activities including antimicrobial, antioxidant and anticancer. This current review provides past and recent discoveries regarding Anoxybacillus strains and their potential biotechnological applications in enzyme industry, environmental processes and medicine.
Collapse
Affiliation(s)
- Mehmet Akif Omeroglu
- Faculty of Science, Department of Molecular Biology and Genetics, Ataturk University, Erzurum, 25400, Turkey
| | - Mustafa Ozkan Baltaci
- Faculty of Science, Department of Molecular Biology and Genetics, Ataturk University, Erzurum, 25400, Turkey.
| | - Ahmet Adiguzel
- Faculty of Science, Department of Molecular Biology and Genetics, Ataturk University, Erzurum, 25400, Turkey.
| |
Collapse
|
7
|
Yin Z, Zhang S, Liu X. Hierarchical Emulsion-Templated Monoliths (polyHIPEs) as Scaffolds for Covalent Immobilization of P. acidilactici. Polymers (Basel) 2023; 15:polym15081862. [PMID: 37112009 PMCID: PMC10145616 DOI: 10.3390/polym15081862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The immobilized cell fermentation technique (IMCF) has gained immense popularity in recent years due to its capacity to enhance metabolic efficiency, cell stability, and product separation during fermentation. Porous carriers used as cell immobilization facilitate mass transfer and isolate the cells from an adverse external environment, thus accelerating cell growth and metabolism. However, creating a cell-immobilized porous carrier that guarantees both mechanical strength and cell stability remains challenging. Herein, templated by water-in-oil (w/o) high internal phase emulsions (HIPE), we established a tunable open-cell polymeric P(St-co-GMA) monolith as a scaffold for the efficient immobilization of Pediococcus acidilactici (P. acidilactici). The porous framework's mechanical property was substantially improved by incorporating the styrene monomer and cross-linker divinylbenzene (DVB) in the HIPE's external phase, while the epoxy groups on glycidyl methacrylate (GMA) supply anchoring sites for P. acidilactici, securing the immobilization to the inner wall surface of the void. For the fermentation of immobilized P. acidilactici, the polyHIPEs permit efficient mass transfer, which increases along with increased interconnectivity of the monolith, resulting in higher L-lactic acid yield compared to that of suspended cells with an increase of 17%. The relative L-lactic acid production is constantly maintained above 92.9% of their initial relative production after 10 cycles, exhibiting both its great cycling stability and the durability of the material structure. Furthermore, the procedure during recycle batch also simplifies downstream separation operations.
Collapse
Affiliation(s)
- Zhengqiao Yin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shengmiao Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiucai Liu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
8
|
Yang W, Zhou J, Gu Q, Harindintwali JD, Yu X, Liu X. Combinatorial Enzymatic Catalysis for Bioproduction of Ginsenoside Compound K. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3385-3397. [PMID: 36780449 DOI: 10.1021/acs.jafc.2c08773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ginsenoside compound K (CK) is an emerging functional food or pharmaceutical product. To date, there are still challenges to exploring effective catalytic enzymes for enzyme-catalyzed manufacturing processes and establishing enzyme-catalyzed processes. Herein, we identified three ginsenoside hydrolases BG07 (glucoamylase), BG19 (β-glucosidase), and BG23 (β-glucosidase) from Aspergillus tubingensis JE0609 by transcriptome analysis and peptide mass fingerprinting. Among them, BG23 was expressed in Komagataella phaffii with a high volumetric activity of 235.73 U mL-1 (pNPG). Enzymatic property studies have shown that BG23 is an acidic (pH adaptation range of 4.5-7.0) and mesophilic (thermostable < 50 °C) enzyme. Moreover, a one-pot combinatorial enzyme-catalyzed strategy based on BG23 and BGA35 (β-galactosidase from Aspergillus oryzae) was established, with a high CK yield of 396.7 mg L-1 h-1. This study explored the ginsenoside hydrolases derived from A. tubingensis at the molecular level and provided a reference for the efficient production of CK.
Collapse
Affiliation(s)
- Wenhua Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214000, Jiangsu, China
| | - Jianli Zhou
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550003, Guizhou, China
| | - Qiuya Gu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214000, Jiangsu, China
| | - Jean Damascene Harindintwali
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China
| | - Xiaobin Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214000, Jiangsu, China
| | - Xiaobo Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| |
Collapse
|
9
|
Ziętara P, Dziewięcka M, Augustyniak M. Why Is Longevity Still a Scientific Mystery? Sirtuins-Past, Present and Future. Int J Mol Sci 2022; 24:728. [PMID: 36614171 PMCID: PMC9821238 DOI: 10.3390/ijms24010728] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The sirtuin system consists of seven highly conserved regulatory enzymes responsible for metabolism, antioxidant protection, and cell cycle regulation. The great interest in sirtuins is associated with the potential impact on life extension. This article summarizes the latest research on the activity of sirtuins and their role in the aging process. The effects of compounds that modulate the activity of sirtuins were discussed, and in numerous studies, their effectiveness was demonstrated. Attention was paid to the role of a caloric restriction and the risks associated with the influence of careless sirtuin modulation on the organism. It has been shown that low modulators' bioavailability/retention time is a crucial problem for optimal regulation of the studied pathways. Therefore, a detailed understanding of the modulator structure and potential reactivity with sirtuins in silico studies should precede in vitro and in vivo experiments. The latest achievements in nanobiotechnology make it possible to create promising molecules, but many of them remain in the sphere of plans and concepts. It seems that solving the mystery of longevity will have to wait for new scientific discoveries.
Collapse
Affiliation(s)
| | | | - Maria Augustyniak
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, ul. Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
10
|
He Y, Wang C, Jiao R, Ni Q, Wang Y, Gao Q, Zhang Y, Xu G. Biochemical characterization of a novel glucose-tolerant GH3 β-glucosidase (Bgl1973) from Leifsonia sp. ZF2019. Appl Microbiol Biotechnol 2022; 106:5063-5079. [PMID: 35833950 DOI: 10.1007/s00253-022-12064-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 11/25/2022]
Abstract
Beta-glucosidase (Bgl) is an enzyme with considerable food, beverage, and biofuel processing potential. However, as many Bgls are inhibited by their reaction end product glucose, their industrial applications are greatly limited. In this study, a novel Bgl gene (Bgl1973) was cloned from Leifsonia sp. ZF2019 and heterologously expressed in E. coli. Sequence analysis and structure modeling revealed that Bgl1973 was 748 aa, giving it a molecular weight of 78 kDa, and it showed high similarity with the glycoside hydrolase 3 (GH3) family Bgls with which its active site residues were conserved. By using pNPGlc (p-nitrophenyl-β-D-glucopyranoside) as substrate, the optimum temperature and pH of Bgl1973 were shown to be 50 °C and 7.0, respectively. Bgl1973 was insensitive to most metal ions (12.5 mM), 1% urea, and even 0.1% Tween-80. This enzyme maintained 60% of its original activity in the presence of 20% NaCl, demonstrating its excellent salt tolerance. Furthermore, it still had 83% residual activity in 1 M of glucose, displaying its outstanding glucose tolerance. The Km, Vmax, and kcat of Bgl1973 were 0.22 mM, 44.44 μmol/min mg, and 57.78 s-1, respectively. Bgl1973 had a high specific activity for pNPGlc (19.10 ± 0.59 U/mg) and salicin (20.43 ± 0.92 U/mg). Furthermore, molecular docking indicated that the glucose binding location and the narrow and deep active channel geometry might contribute to the glucose tolerance of Bgl1973. Our results lay a foundation for the studying of this glucose-tolerant β-glucosidase and its applications in many industrial settings. KEY POINTS: • A novel β-glucosidase from GH3 was obtained from Leifsonia sp. ZF2019. • Bgl1973 demonstrated excellent glucose tolerance. • The glucose tolerance of Bgl1973 was explained using molecular docking analysis.
Collapse
Affiliation(s)
- Yi He
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Chenxi Wang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Ronghu Jiao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Qinxue Ni
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Yan Wang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Qianxin Gao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Youzuo Zhang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Guangzhi Xu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China.
| |
Collapse
|
11
|
Su X, Meng F, Liu Y, Jiang W, Wang Z, Wu L, Guo X, Yao X, Wu J, Sun Z, Zha L, Gui S, Peng D, Xing S. Molecular Cloning and Functional Characterization of a β-Glucosidase Gene to Produce Platycodin D in Platycodon grandiflorus. FRONTIERS IN PLANT SCIENCE 2022; 13:955628. [PMID: 35860532 PMCID: PMC9289601 DOI: 10.3389/fpls.2022.955628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Platycodin D (PD) is a deglycosylated triterpene saponin with much higher pharmacological activity than glycosylated platycoside E (PE). Extensive studies in vitro showed that the transformation of platycoside E to platycodin D can be achieved using β-glucosidase extracted from several bacteria. However, whether similar enzymes in Platycodon grandiflorus could convert platycoside E to platycodin D, as well as the molecular mechanism underlying the deglycosylation process of platycodon E, remain unclear. Here, we identified a β-glucosidase in P. grandiflorus from our previous RNA-seq analysis, with a full-length cDNA of 1,488 bp encoding 495 amino acids. Bioinformatics and phylogenetic analyses showed that β-glucosidases in P. grandiflorus have high homology with other plant β-glucosidases. Subcellular localization showed that there is no subcellular preference for its encoding gene. β-glucosidase was successfully expressed as 6 × His-tagged fusion protein in Escherichia coli BL21 (DE3). Western blot analysis yielded a recombinant protein of approximately 68 kDa. In vitro enzymatic reactions determined that β-glucosidase was functional and could convert PE to PD. RT-qPCR analysis showed that the expression level of β-glucosidase was higher at night than during the day, with the highest expression level between 9:00 and 12:00 at night. Analysis of the promoter sequence showed many light-responsive cis-acting elements, suggesting that the light might regulate the gene. The results will contribute to the further study of the biosynthesis and metabolism regulation of triterpenoid saponins in P. grandiflorus.
Collapse
Affiliation(s)
- Xinglong Su
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Fei Meng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yingying Liu
- College of Humanities and International Education Exchange, Anhui University of Chinese Medicine, Hefei, China
| | - Weimin Jiang
- College of Life Sciences and Environment, Hengyang Normal University, Hengyang, China
| | - Zhaojian Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Liping Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaohu Guo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaoyan Yao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zongping Sun
- Engineering Technology Research Center of Anti-aging, Chinese Herbal Medicine, Fuyang Normal University, Fuyang, China
| | - Liangping Zha
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Shuangying Gui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- MOE-Anhui, Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Shihai Xing
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
12
|
Zhou J, Liang M, Lin Y, Pang H, Wei Y, Huang R, Du L. Application of β-Glucosidase in a Biphasic System for the Efficient Conversion of Polydatin to Resveratrol. Molecules 2022; 27:1514. [PMID: 35268615 PMCID: PMC8911618 DOI: 10.3390/molecules27051514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 11/25/2022] Open
Abstract
Resveratrol, an ingredient of traditional Chinese medicine, has beneficial effects on human health and huge potential for application in modern medicine. Polydatin is extracted from plants and then deglycosylated into resveratrol; enzymatic methods are preferred for this reaction. In this study, a β-D-glucosidase from Sphingomonas showed high efficiency in transforming polydatin into resveratrol and was tolerant toward organic solvents. Applying this enzyme in a biphasic transformation system resulted in 95.3% conversion of 20% concentration crude polydatin to resveratrol in 4 h. We thus report a new method for high-efficiency, clean production of resveratrol.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzymatic Technology, College of Life Science and Technology, Guangxi University, Daxue Road No. 100, Nanning 530005, China; (J.Z.); (M.L.); (Y.L.); (Y.W.); (R.H.)
| | - Meng Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzymatic Technology, College of Life Science and Technology, Guangxi University, Daxue Road No. 100, Nanning 530005, China; (J.Z.); (M.L.); (Y.L.); (Y.W.); (R.H.)
| | - Yu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzymatic Technology, College of Life Science and Technology, Guangxi University, Daxue Road No. 100, Nanning 530005, China; (J.Z.); (M.L.); (Y.L.); (Y.W.); (R.H.)
| | - Hao Pang
- Guangxi Key Laboratory of Bio-Refinery, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Daling Road No. 98, Nanning 530007, China
| | - Yutuo Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzymatic Technology, College of Life Science and Technology, Guangxi University, Daxue Road No. 100, Nanning 530005, China; (J.Z.); (M.L.); (Y.L.); (Y.W.); (R.H.)
| | - Ribo Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzymatic Technology, College of Life Science and Technology, Guangxi University, Daxue Road No. 100, Nanning 530005, China; (J.Z.); (M.L.); (Y.L.); (Y.W.); (R.H.)
| | - Liqin Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzymatic Technology, College of Life Science and Technology, Guangxi University, Daxue Road No. 100, Nanning 530005, China; (J.Z.); (M.L.); (Y.L.); (Y.W.); (R.H.)
| |
Collapse
|