1
|
Dhandapani S, Choi HS, Chung H, Perumalsamy H, Wang R, Balusamy SR, Natarajan S, Park J, Kim YJ. Lysine-Rich Polypeptide Modulates Forkhead Box O3 and Phosphoinositide 3-Kinase-Protein Kinase B Pathway To Induce Apoptosis in Breast Cancer. ACS Pharmacol Transl Sci 2024; 7:1884-1900. [PMID: 38898949 PMCID: PMC11184599 DOI: 10.1021/acsptsci.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
The PI3K/AKT/FOXO3 pathway is one of the most frequently involved signaling pathways in cancer, including breast cancer. Therefore, we synthesized a novel lysine-rich polypeptide (Lys-PP) using de novo assembly method and evaluated its anticancer effect. We characterized the structural and physicochemical properties of Lys-PP using various techniques. Later, we used integrated approaches such as in silico, in vitro, and in vivo analysis to confirm the anticancer and therapeutic effect of Lys-PP. First, RNA sequencing suggests Lys-PP disrupted the central carbon metabolic pathway through the modulation of prolactin signaling. Additionally, docking analysis also confirmed the significant association of PI3K/AKT and FOXO3 pathway to induce an apoptotic effect on cancer. Second, Lys-PP exhibited a significant cytotoxicity effect against MDA-MB-231 but no cytotoxic effects on RAW 264.7 and HEK-293, respectively. The cytotoxic effect of Lys-PP-induced apoptosis by an increase in FOXO3a protein expression and a decrease in PI3K/AKT pathway was confirmed by quantitative real-time polymerase chain reaction, immunoblotting, and fluorescent microscopy. Later, immunohistochemistry and hematoxylin and eosin staining on MDA-MD-231 showed increased FOXO3a expression and cell death in the xenograft mice model. Further, liver function, metabolic health, or lipid profile upon Lys-PP showed the absence of significant modulation in the biomarkers except for kidney-related biomarkers. Overall, our comprehensive study provides the first evidence of Lys-PP antibreast cancer action, which could serve as a potential treatment in an alternative or complementary medicine practice.
Collapse
Affiliation(s)
- Sanjeevram Dhandapani
- Graduate
School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si 17104, Republic
of Korea
| | - Han-Sol Choi
- Graduate
School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si 17104, Republic
of Korea
| | - Hoyong Chung
- 3BIGS
Co., Ltd., Suwon-si 16506, Republic of Korea
| | - Haribalan Perumalsamy
- Graduate
School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si 17104, Republic
of Korea
- Research
Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic
of Korea
| | - Rongbo Wang
- Graduate
School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si 17104, Republic
of Korea
| | - Sri Renukadevi Balusamy
- Department
of Food Science and Biotechnology, Sejong
University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | | | | | - Yeon-Ju Kim
- Graduate
School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si 17104, Republic
of Korea
| |
Collapse
|
2
|
Zhang J, Zhu X, Chen S, Li P, Yang L, Zhang J. The research status of biodegradable polymers in repair of Achilles tendon defects. INT J POLYM MATER PO 2024; 73:771-784. [DOI: 10.1080/00914037.2023.2206658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/19/2023] [Indexed: 01/06/2025]
Affiliation(s)
- Jinchi Zhang
- Department of Biomaterials, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
- Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang 110031, PR China
- College of Kinesiology, Shenyang Sport University, Shenyang 110102, PR China
| | - Xiaolin Zhu
- Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang 110031, PR China
| | - Siyu Chen
- China Medical University and Queen’s University Belfast, Shenyang 110122, PR China
| | - Peng Li
- Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang 110031, PR China
| | - Liqun Yang
- Department of Biomaterials, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
- Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang 110031, PR China
| | - Jinzhe Zhang
- Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang 110031, PR China
| |
Collapse
|
3
|
Xiang C, Wang Z, Zhang Q, Guo Z, Li X, Chen W, Wei X, Li P. Tough physically crosslinked poly(vinyl alcohol)-based hydrogels loaded with collagen type I to promote bone regeneration in vitro and in vivo. Int J Biol Macromol 2024; 261:129847. [PMID: 38296142 DOI: 10.1016/j.ijbiomac.2024.129847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 03/09/2024]
Abstract
Poly(vinyl alcohol) (PVA) hydrogels exhibit great potential as ideal biomaterials for tissue engineering, owing to their non-toxicity, high water content, and strong biocompatibility. However, limited mechanical strength and low bioactivity have constrained their application in bone tissue engineering. In this study, we have developed a tough PVA-based hydrogel using a facile physical crosslinking method, comprising of PVA, tannic acid (TA), and hydroxyapatite (HA). Systematic experiments were conducted to examine the physicochemical properties of PVA/HA/TA hydrogels, including their compositions, microstructures, and mechanical and rheological properties. The results demonstrated that the PVA/HA/TA hydrogels possessed the porous microstructures and excellent mechanical properties. Furthermore, collagen type I (ColI) was used to further improve the biocompatibility and bioactivity of PVA/HA/TA hydrogels. In vitro experiments revealed that PVA/HA/TA/COL hydrogel could offer a suitable microenvironment for the growth of MC3T3-E1 cells and promote their osteogenic differentiation. Meanwhile, the PVA/HA/TA/COL hydrogel demonstrated the ability to promote bone regeneration and osteointegration in a rat femoral defect model. This study provides a potential strategy for the use of PVA-based hydrogels in bone tissue engineering.
Collapse
Affiliation(s)
- Changxin Xiang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Zehua Wang
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Qing Zhang
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zijian Guo
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaona Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China.
| | - Weiyi Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China.
| | - Xiaochun Wei
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China.
| | - Pengcui Li
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Argentati C, Morena F, Guidotti G, Soccio M, Lotti N, Martino S. Tight Regulation of Mechanotransducer Proteins Distinguishes the Response of Adult Multipotent Mesenchymal Cells on PBCE-Derivative Polymer Films with Different Hydrophilicity and Stiffness. Cells 2023; 12:1746. [PMID: 37443780 PMCID: PMC10341130 DOI: 10.3390/cells12131746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Mechanotransduction is a molecular process by which cells translate physical stimuli exerted by the external environment into biochemical pathways to orchestrate the cellular shape and function. Even with the advancements in the field, the molecular events leading to the signal cascade are still unclear. The current biotechnology of tissue engineering offers the opportunity to study in vitro the effect of the physical stimuli exerted by biomaterial on stem cells and the mechanotransduction pathway involved in the process. Here, we cultured multipotent human mesenchymal/stromal cells (hMSCs) isolated from bone marrow (hBM-MSCs) and adipose tissue (hASCs) on films of poly(butylene 1,4-cyclohexane dicarboxylate) (PBCE) and a PBCE-based copolymer containing 50 mol% of butylene diglycolate co-units (BDG50), to intentionally tune the surface hydrophilicity and the stiffness (PBCE = 560 Mpa; BDG50 = 94 MPa). We demonstrated the activated distinctive mechanotransduction pathways, resulting in the acquisition of an elongated shape in hBM-MSCs on the BDG50 film and in maintaining the canonical morphology on the PBCE film. Notably, hASCs acquired a new, elongated morphology on both the PBCE and BDG50 films. We found that these events were mainly due to the differences in the expression of Cofilin1, Vimentin, Filamin A, and Talin, which established highly sensitive machinery by which, rather than hASCs, hBM-MSCs distinguished PBCE from BDG50 films.
Collapse
Affiliation(s)
- Chiara Argentati
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy; (C.A.); (F.M.)
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy; (C.A.); (F.M.)
| | - Giulia Guidotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, 40131 Bologna, Italy; (G.G.); (M.S.)
| | - Michelina Soccio
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, 40131 Bologna, Italy; (G.G.); (M.S.)
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, 40136 Bologna, Italy
| | - Nadia Lotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, 40131 Bologna, Italy; (G.G.); (M.S.)
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, 40136 Bologna, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy; (C.A.); (F.M.)
- CEMIN (Centro di Eccellenza Materiali Innovativi Nanostrutturali per Applicazioni Chimica Fisiche e Biomediche), University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
5
|
Mariadoss AVA, Subramanian SA, Kwon YM, Shin S, Kim SJ. Epigallocatechin gallate protects the hydrogen peroxide-induced cytotoxicity and oxidative stress in tenocytes. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
6
|
Hu J, Liu S, Fan C. Applications of functionally-adapted hydrogels in tendon repair. Front Bioeng Biotechnol 2023; 11:1135090. [PMID: 36815891 PMCID: PMC9934866 DOI: 10.3389/fbioe.2023.1135090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Despite all the efforts made in tissue engineering for tendon repair, the management of tendon injuries still poses a challenge, as current treatments are unable to restore the function of tendons following injuries. Hydrogels, due to their exceptional biocompatibility and plasticity, have been extensively applied and regarded as promising candidate biomaterials in tissue regeneration. Varieties of approaches have designed functionally-adapted hydrogels and combined hydrogels with other factors (e.g., bioactive molecules or drugs) or materials for the enhancement of tendon repair. This review first summarized the current state of knowledge on the mechanisms underlying the process of tendon healing. Afterward, we discussed novel strategies in fabricating hydrogels to overcome the issues frequently encountered during the applications in tendon repair, including poor mechanical properties and undesirable degradation. In addition, we comprehensively summarized the rational design of hydrogels for promoting stem-cell-based tendon tissue engineering via altering biophysical and biochemical factors. Finally, the role of macrophages in tendon repair and how they respond to immunomodulatory hydrogels were highlighted.
Collapse
Affiliation(s)
- Jiacheng Hu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Shen Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| |
Collapse
|
7
|
A Porous Hydrogel with High Mechanical Strength and Biocompatibility for Bone Tissue Engineering. J Funct Biomater 2022; 13:jfb13030140. [PMID: 36135575 PMCID: PMC9504119 DOI: 10.3390/jfb13030140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/11/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Polyvinyl alcohol (PVA) hydrogels are considered to be ideal materials for tissue engineering due to their high water content, low frictional behavior, and good biocompatibility. However, their limited mechanical properties restrict them from being applied when repairing load-bearing tissue. Inspired by the composition of mussels, we fabricated polyvinyl alcohol/hydroxyapatite/tannic acid (PVA/HA/TA) hydrogels through a facile freeze–thawing method. The resulting composite hydrogels exhibited high moisture content, porous structures, and good mechanical properties. The compressive strength and tensile strength of PVA hydrogels were improved from 0.77 ± 0.11 MPa and 0.08 ± 0.01 MPa to approximately 3.69 ± 0.41 MPa and 0.43 ± 0.01 MPa, respectively, for the PVA/HA/1.5TA hydrogel. The toughness and the compressive elastic modulus of PVA/HA/1.5TA hydrogel also attained 0.86 ± 0.02 MJm−3 and 0.11 ± 0.02 MPa, which was approximately 11 times and 5 times higher than the PVA hydrogel, respectively. The PVA/HA/1.5TA hydrogel also exhibited fatigue resistance abilities. The mechanical properties of the composite hydrogels were improved through the introduction of TA. Furthermore, in vitro PVA/HA/1.5TA hydrogel showed excellent cytocompatibility by promoting cell proliferation in vitro. Scanning electron microscopy analysis indicated that PVA/HA/1.5TA hydrogels provided favorable circumstances for cell adhesion. The aforementioned results also indicate that the composite hydrogels had potential applications in bone tissue engineering, and this study provides a facile method to improve the mechanical properties of PVA hydrogel.
Collapse
|