1
|
Liang J, Huang YX, Zhu XH, Zhou FY, Wu TY, Jia JF, Liu X, Kuang HX, Xia YG. Structural identification, rheological properties and immunological receptor of a complex galacturonoglucan from fruits of Schisandra chinensis (Turcz.) Baill. Carbohydr Polym 2024; 346:122644. [PMID: 39245531 DOI: 10.1016/j.carbpol.2024.122644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
A complex heteropolysaccharide SCP-2 named schisanan B (Mw = 1.005 × 105 g/mol) was obtained from water extracts of Schisandra chinensis fruits, and its planar structure was finally deduced as a galacturonoglucan by a combination of monosaccharide compositions, methylation analysis, partial acid hydrolysis, enzymatic hydrolysis and 1D/2D-nuclear magnetic resonance spectroscopy. The conformation of SCP-2 exhibited a globular shape with branching in ammonium formate aqueous solutions. The rheological properties of SCP-2 were investigated on concentrations, temperature, pH and salts. The in vitro immunomodulatory activity assay demonstrated that SCP-2 significantly enhanced the production of nitric oxide (NO) and stimulated the secretion of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in macrophages. Through a combination of high-resolution live-cell imaging, surface plasmon resonance, and molecular docking techniques, SCP-2 exhibited a strong binding affinity with the Toll-like receptor 4 (TLR4). Moreover, western blot analysis revealed that SCP-2 effectively induced downstream signaling proteins associated with TLR4 activation, thereby promoting macrophage activation. The evidence strongly indicates that TLR4 functions as a membrane protein target in the activation of macrophages and immune regulation induced by SCP-2.
Collapse
Affiliation(s)
- Jun Liang
- Key Laboratory of Basic and Application Research of Bei yao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Yong-Xin Huang
- Key Laboratory of Basic and Application Research of Bei yao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Xin-Hua Zhu
- Key Laboratory of Basic and Application Research of Bei yao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Fang-Yu Zhou
- Key Laboratory of Basic and Application Research of Bei yao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Tian-Yuan Wu
- Key Laboratory of Basic and Application Research of Bei yao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Ju-Fang Jia
- Key Laboratory of Basic and Application Research of Bei yao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Xu Liu
- Key Laboratory of Basic and Application Research of Bei yao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Bei yao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Yong-Gang Xia
- Key Laboratory of Basic and Application Research of Bei yao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China.
| |
Collapse
|
2
|
Tao L, Zhang J, Lan W, Liu H, Wu Q, Yang S, Song S, Yu L, Bi Y. Neutral oligosaccharides from ginseng (Panax ginseng) residues vs. neutral ginseng polysaccharides: A comparative study of structure elucidation and biological activity. Food Chem 2024; 464:141674. [PMID: 39426268 DOI: 10.1016/j.foodchem.2024.141674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
This study aimed to compare the structural and biological activities of neutral ginseng residue oligosaccharides (GRO-N) and neutral ginseng polysaccharides (GP-N). Their structures of GRO-N and GP-N were established based on their molecular weight (Mw), monosaccharide composition, Fourier-transform infrared spectroscopy, methylation, and nuclear magnetic resonance analyses. The Mws of GRO-N and GP-N were 1121.0 Da and 12,791.0 Da, respectively. Both had major chain structures comprising α-D-Glcp-(1→, →4)-α-D-Glcp-(1→, and →4)-α/β-D-Glcp, with branch points at →4,6)-α-D-Glcp-(1→. Moreover, the branched chain of GRO-N was α-D-Glcp-(1→ and →6)-α-D-Glcp-(1→. The branched chain of GP-N was α-D-Glcp-(1→ and →4)-α-D-Glcp-(1→. GRO-N, with a lower Mw and more diverse glycosidic bonds, exhibited higher antioxidant, hypoglycemic, and immune activities than GP-N. Cell viability peaked (202.81 ± 4.80 %) at a GRO-N concentration of 200 μg/mL. These findings provide a theoretical basis for further utilization of ginseng residual saccharides.
Collapse
Affiliation(s)
- Li Tao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Jingwei Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Wenfei Lan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - He Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Qi Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Shenglong Yang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Shixin Song
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Lei Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, China.
| | - Yunfeng Bi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
3
|
Wu G, Liu S, Wang Z, Wang X. Structural characteristics of neutral polysaccharides purified from coix seed and its anti-insulin resistance effects on HepG2 cells. Food Sci Nutr 2024; 12:8419-8431. [PMID: 39479660 PMCID: PMC11521644 DOI: 10.1002/fsn3.4402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 11/02/2024] Open
Abstract
Coix seed is recognized as a functional medicinal food due to its valuable biological activities, with polysaccharides being the primary active compounds. In this study, an ultrasonic-assisted enzymatic extraction technique was employed, and response surface methodology was used to optimize the yield of polysaccharides to 9.55 ± 0.26%. A novel neutral polysaccharide, CSPsN-1, was purified with a molecular weight of 7.75 kDa. CSPsN-1 was composed of arabinose, galactose, glucose, xylose, and mannose in molar ratios of 0.48: 7.92: 86.39: 2.42: 2.79. Its backbone composed of →4)-α-D-Glcp-(1→ and →3,4)-α-D-Glcp-(1→ units, with terminal residues of α-D-Glcp. In vitro experiments, CSPsN-1 enhanced glucose consumption in insulin-resistant HepG2 cells and upregulated GLUT4 expression by activating the PI3K/AKT signaling pathway. These findings suggest that CSPsN-1 holds significant promise as a functional ingredient for treating insulin resistance and related metabolic disorders.
Collapse
Affiliation(s)
- Guozhen Wu
- School of Pharmaceutical SciencesShandong University of Traditional Chinese MedicineJinanP.R. China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test CenterQilu University of Technology (Shandong Academy of Sciences)JinanP.R. China
| | - Shuang Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test CenterQilu University of Technology (Shandong Academy of Sciences)JinanP.R. China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical SciencesQilu University of Technology (Shandong Academy of Sciences)JinanP.R. China
| | - Zhenqiang Wang
- School of Pharmaceutical SciencesShandong University of Traditional Chinese MedicineJinanP.R. China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test CenterQilu University of Technology (Shandong Academy of Sciences)JinanP.R. China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test CenterQilu University of Technology (Shandong Academy of Sciences)JinanP.R. China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical SciencesQilu University of Technology (Shandong Academy of Sciences)JinanP.R. China
| |
Collapse
|
4
|
Han D, Yang L, Liang Q, Sun H, Sun Y, Yan G, Zhang X, Han Y, Wang X, Wang X. Natural resourced polysaccharides: Preparation, purification, structural elucidation, structure-activity relationships and regulating intestinal flora, a system review. Int J Biol Macromol 2024; 280:135956. [PMID: 39317289 DOI: 10.1016/j.ijbiomac.2024.135956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/30/2024] [Accepted: 09/21/2024] [Indexed: 09/26/2024]
Abstract
Natural resourced polysaccharides (NRPs), as metabolites synthesized during activity of organisms, widely present in animal cell membranes or plant and microbial cell walls. NRPs have garnered extensive attention in the fields of medicine, foods, and farming owing to their distinct bioactivities and structural diversity. Despite the burgeoning growth in NRPs research, the available literature focuses primarily on a review of specific polysaccharides, necessitating an urgent need for a comprehensive summary of NRPs to offer readers a whole landscape of current advancements in NRPs research. Based on this, this article comprehensively reviews the latest research progress regarding preparation, purification, structure elucidation, structure-activity relationships and regulation of intestinal flora of NRPs in electronic databases, such as PubMed, Wiley, ScienceDirect and Web of Science from last 5 years. This review analyzes the effects of various extraction techniques on NRPs and also delves into the intrinsic correlation between the biological activity and structure of NRPs, highlighting that chemical modification can enhance their structural diversity and confer novel or improved biological functions. Moreover, this article extensively explores the application of NRP in promoting intestinal microecology balance, underscoring its significant potential as a probiotic initiator. This review lays a solid theoretical foundation for the future research and development of NRPs.
Collapse
Affiliation(s)
- Di Han
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Qichao Liang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Hui Sun
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China.
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Guangli Yan
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xiwu Zhang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ying Han
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xiaoyu Wang
- Technology Innovation Center of Wusulijiang Ciwujia, Revolution Street, Hulin 154300, China
| | - Xijun Wang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
5
|
Suo A, Fan G, Wu C, Li T, Li X, Zhou D, Cong K, Cheng X, Sun W. Efficient degradation and enhanced α-glucosidase inhibitory activity of apricot polysaccharides through non-thermal plasma assisted non-metallic Fenton reaction. Int J Biol Macromol 2024; 266:131103. [PMID: 38522683 DOI: 10.1016/j.ijbiomac.2024.131103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Dielectric barrier discharge (DBD) was a commonly used non-thermal plasma (CP) technology. This paper aimed to enhance the biological activity of apricot polysaccharides (AP) by using dielectric barrier discharge (DBD-CP) assisted H2O2-VC Fenton reaction for degradation. The degradation conditions were optimized through response surface methodology. The molecular weight (Mw) of degraded apricot polysaccharides (DAP) was 19.71 kDa, which was 7.25 % of AP. The inhibition rate of DAP (2 mg/mL) was 82.8 ± 3.27 %, which was 106.87 % higher than that of AP. DBD-CP/H2O2-VC degradation changed the monosaccharide composition of AP and improved the linearity of polysaccharide chains. In addition, a novel apricot polysaccharide DAP-2 with a Mw of only 6.60 kDa was isolated from DAP. The repeating units of the main chain of DAP-2 were →4)-α-D-GalpA-(1 →, the branch chain was mainly composed of α-D-GalpA-(1 → 2)-α-L-Rhap-(1→ connected to O-3 position →3,4)-α-D-GalpA-(1→. The complex structure formed by the combination of DAP-2 and α-glucosidase was stable. DAP-2 had a higher α-glucosidase binding ability than the acarbose. These results suggested that DAP-2 had the potential to be developed as a potential hypoglycemic functional food and drug.
Collapse
Affiliation(s)
- Andi Suo
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Gongjian Fan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Tingting Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Dandan Zhou
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Kaiping Cong
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Xin Cheng
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Wenjuan Sun
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| |
Collapse
|
6
|
Zhang X, Wang J, Zhang T, Li S, Liu J, Li M, Lu J, Zhang M, Chen H. Updated Progress on Polysaccharides with Anti-Diabetic Effects through the Regulation of Gut Microbiota: Sources, Mechanisms, and Structure-Activity Relationships. Pharmaceuticals (Basel) 2024; 17:456. [PMID: 38675416 PMCID: PMC11053653 DOI: 10.3390/ph17040456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetes mellitus (DM) is a common chronic metabolic disease worldwide. The disturbance of the gut microbiota has a complex influence on the development of DM. Polysaccharides are one type of the most important natural components with anti-diabetic effects. Gut microbiota can participate in the fermentation of polysaccharides, and through this, polysaccharides regulate the gut microbiota and improve DM. This review begins by a summary of the sources, anti-diabetic effects and the gut microbiota regulation functions of natural polysaccharides. Then, the mechanisms of polysaccharides in regulating the gut microbiota to exert anti-diabetic effects and the structure-activity relationship are summarized. It is found that polysaccharides from plants, fungi, and marine organisms show great hypoglycemic activities and the gut microbiota regulation functions. The mechanisms mainly include repairing the gut burrier, reshaping gut microbiota composition, changing the metabolites, regulating anti-inflammatory activity and immune function, and regulating the signal pathways. Structural characteristics of polysaccharides, such as monosaccharide composition, molecular weight, and type of glycosidic linkage, show great influence on the anti-diabetic activity of polysaccharides. This review provides a reference for the exploration and development of the anti-diabetic effects of polysaccharides.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Tingting Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Junyu Liu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Mingyue Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Jingyang Lu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Min Zhang
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, China;
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| |
Collapse
|
7
|
Tang Y, Zhou M, Mao Z, Zhu B, Zhou F, Ye X, Chen Y, Ding Z. Structure of a polysaccharide MDP2-1 from Melastoma dodecandrum Lour. and its anti-inflammatory effects. Int J Biol Macromol 2024; 265:131015. [PMID: 38521298 DOI: 10.1016/j.ijbiomac.2024.131015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/01/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
The anti-inflammatory activity of polysaccharides derived from Melastoma dodecandrum Lour. was evaluated in pyretic mice and HEK-Blue™ hTLR4 cells. The testing led to the identification of MDP2-1, which was then investigated for its structural characteristics and anti-inflammatory effects. Results showed that MDP2-1 had a molecular weight of 29.234 kDa and primarily consisted of galactose, arabinose, rhamnose, glucose, glucuronic acid, and galacturonic acid. Its main backbone was composed of →4)-α-D-GalpA-(1→, →2)-α-L-Rhap-(1→, →3,4)-α-D-GalpA-(1→, →2,4)-α-D-GlcpA-(1→, and its side chains were connected by →4)-α-D-Galp-(1→, α-D-Galp-(1→, →4)-β-D-Glcp-(1→, and α-L-Araf-(1→. In vivo experiments on mice demonstrated that MDP2-1 attenuated LPS-induced acute lung injury, and in vitro experiments on RAW264.7 cells showed that MDP2-1 reduced the levels of inflammatory mediators and mitigated LPS-induced inflammatory damage by inhibiting the activation of the TLR4 downstream NF-κB/MAPK pathway. These findings suggest that MDP2-1 is a novel anti-inflammatory agent for therapeutic interventions.
Collapse
Affiliation(s)
- Youying Tang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Mingyuan Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Zian Mao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Yuchi Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| |
Collapse
|
8
|
Dwivedi R, Maurya AK, Ahmed H, Farrag M, Pomin VH. Nuclear magnetic resonance-based structural elucidation of novel marine glycans and derived oligosaccharides. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:269-285. [PMID: 37439410 DOI: 10.1002/mrc.5377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
Marine glycans of defined structures are unique representatives among all kinds of structurally complex glycans endowed with important biological actions. Besides their unique biological properties, these marine sugars also enable advanced structure-activity relationship (SAR) studies given their distinct and defined structures. However, the natural high molecular weights (MWs) of these marine polysaccharides, sometimes even bigger than 100 kDa, pose a problem in many biophysical and analytical studies. Hence, the preparation of low MW oligosaccharides becomes a strategy to overcome the problem. Regardless of the polymeric or oligomeric lengths of these molecules, structural elucidation is mandatory for SAR studies. For this, nuclear magnetic resonance (NMR) spectroscopy plays a pivotal role. Here, we revisit the NMR-based structural elucidation of a series of marine sulfated poly/oligosaccharides discovered in our laboratory within the last 2 years. This set of structures includes the α-glucan extracted from the bivalve Marcia hiantina; the two sulfated galactans extracted from the red alga Botryocladia occidentalis; the fucosylated chondroitin sulfate isolated from the sea cucumber Pentacta pygmaea; the oligosaccharides produced from the fucosylated chondroitin sulfates from this sea cucumber species and from another species, Holothuria floridana; and the sulfated fucan from this later species. Specific 1H and 13C chemical shifts, generated by various 1D and 2D homonuclear and heteronuclear NMR spectra, are exploited as the primary source of information in the structural elucidation of these marine glycans.
Collapse
Affiliation(s)
- Rohini Dwivedi
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA
| | - Antim K Maurya
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA
| | - Hoda Ahmed
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA
| | - Marwa Farrag
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA
| | - Vitor H Pomin
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| |
Collapse
|
9
|
Gu X, Zhao R, Li H, Dong X, Meng M, Li T, Zhao Q, Li Y. Patterns of the Nutrients and Metabolites in Apostichopus japonicus Fermented by Bacillus natto and Their Ability to Alleviate Acute Alcohol Intoxication. Foods 2024; 13:262. [PMID: 38254563 PMCID: PMC10814447 DOI: 10.3390/foods13020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
The aim of this study was to understand the changes in nutrient composition and differences in metabolites in Apostichopus japonicus fermented by Bacillus natto and their function in alleviating acute alcohol intoxication (AAI) through in vivo studies. The results showed no significant difference between the basic components of sea cucumber (SC) and fermented sea cucumber (FSC). The SC proteins were degraded after fermentation, and the amino acid content in FSC was significantly increased. The differentially abundant metabolites of SC and FSC were identified by LC-MS/MS. The contents of amino acid metabolites increased after fermentation, and arachidonic acid metabolism was promoted. The results demonstrated that FSC alleviated AAI by improving the activities of alcohol-metabolizing enzymes and antioxidant enzymes in the liver but did not alleviate the accumulation of triglycerides. Our results will provide beneficial information for the development and application of new products from FSC.
Collapse
Affiliation(s)
- Xingyu Gu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.G.); (R.Z.); (H.L.); (X.D.); (M.M.)
| | - Ran Zhao
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.G.); (R.Z.); (H.L.); (X.D.); (M.M.)
- Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian 116023, China
| | - Haiman Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.G.); (R.Z.); (H.L.); (X.D.); (M.M.)
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian 116023, China
| | - Xinyu Dong
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.G.); (R.Z.); (H.L.); (X.D.); (M.M.)
- Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian 116023, China
| | - Meishan Meng
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.G.); (R.Z.); (H.L.); (X.D.); (M.M.)
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian 116650, China;
| | - Qiancheng Zhao
- Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian 116023, China
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian 116023, China
| | - Ying Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.G.); (R.Z.); (H.L.); (X.D.); (M.M.)
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian 116650, China;
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
10
|
Lu C, Wang X, Ma J, Wang M, Liu W, Wang G, Ding Y, Lin Z, Li Y. Chemical substances and their activities in sea cucumber Apostichopus japonicus: A review. Arch Pharm (Weinheim) 2024; 357:e2300427. [PMID: 37853667 DOI: 10.1002/ardp.202300427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
Apostichopus japonicus, also known as Stichopus japonicus, with medicinal and food homologous figures, is a globally recognized precious ingredient with extremely high nutritional value. There is no relevant review available through literature search, so this article selects the research articles through the keywords "sea cucumber" and "Apostichopus japonicus (Stichopus japonicus)" in six professional databases, such as Wiley, PubMed, ScienceDirect, ACS, Springer, and Web of Science, from 2000 to the present, summarizing the extraction, isolation, and purification methods for the four major categories (polysaccharides, proteins and peptides, saponins, and other components) of the A. japonicus chemical substances and 10 effective biological activities of A. japonicus. Included are anticoagulation, anticancer/antitumor activities, hematopoiesis, regulation of gut microbiota, and immune regulatory activities that correspond to traditional efficacy. Literature support is provided for the development of medicines and functional foods and related aspects that play a leading role in future directions.
Collapse
Affiliation(s)
- Chang Lu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xueyu Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jiahui Ma
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Mengtong Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Wei Liu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Guangyue Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhe Lin
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
11
|
Dong YH, Wang ZX, Chen C, Wang PP, Fu X. A review on the hypoglycemic effect, mechanism and application development of natural dietary polysaccharides. Int J Biol Macromol 2023; 253:127267. [PMID: 37820903 DOI: 10.1016/j.ijbiomac.2023.127267] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Diabetes mellitus (DM) as one chronic metabolic disease was greatly increased over recent decades. The major agents treating diabetes have noticeable side effects as well as the tolerability problems. The bioactive dietary polysaccharides from abundant natural resources exhibit good hypoglycemic effect with rare adverse effects, which might serve as a candidate to prevent and treat diabetes. However, the correlations between the hypoglycemic mechanism of polysaccharides and their structure were not mentioned in several studies, what's more, most of the current hypoglycemic studies on polysaccharides were based on in vitro and in vivo experiments, and there was a lack of knowledge about the effects in human clinical trials. The aim of this review is to discuss recent literature about the variety of dietary polysaccharides with hypoglycemic activity, as well the mechanism of action and the structure-function relationship are highlighted. Meanwhile, the application of dietary polysaccharides in functional foods and clinical medicine are realized with an in-depth understanding. So as to promote the exploration of dietary polysaccharides in low glycemic healthy foods or clinical medicine to prevent and treat diabetes.
Collapse
Affiliation(s)
- Yu-Hao Dong
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Zhen-Xing Wang
- College of life Science, Southwest Forestry University, Kunming 650224, China
| | - Chun Chen
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangzhou Inst Modern Ind Technol, Nansha 511458, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| | - Ping-Ping Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangzhou Inst Modern Ind Technol, Nansha 511458, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| |
Collapse
|
12
|
Chen H, Liu X, Xie M, Zhong X, Yan C, Xian M, Wang S. Two polysaccharides from Rehmannia glutinosa: isolation, structural characterization, and hypoglycemic activities. RSC Adv 2023; 13:30190-30201. [PMID: 37842674 PMCID: PMC10573874 DOI: 10.1039/d3ra05677e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023] Open
Abstract
Rehmannia glutinosa (RG) as a Chinese herbal medicine can be used both in medicine and food. As the main component of RG, the polysaccharides have a hypoglycemic effect, however, the hypoglycemic activity of RG homopolysaccharides remains unknown. We isolated and purified two polysaccharides, RGP70-1-1 and RGP70-1-2 (4.9 kDa and 2.8 kDa) from RG. The structural characteristics, including monosaccharide composition, linkage, and configuration were analyzed by FT-IR, HPLC, GC-MS, NMR spectroscopy, Congo test, and SEM. RGP70-1-1 and RGP70-1-2 consist of four monosaccharides (glucose, mannose, arabinose, and galactose). RGP70-1-1 contains 14 connection modes, with the linkages including l-Araf-(1→, →3)-l-Araf-(1→, →5)-l-Araf-(1→, →3,5)-l-Araf-(1→, →2,5)-l-Araf-(1→, d-Manp-(1→, →2)-d-Manp-(1→, →4)-d-Manp-(1→, d-Galp-(1→, →4)-d-Galp-(1→, →4,6)-d-Galp-(1→, →6)-d-Glcp-(1→, →4,6)-d-Glcp-(1→, →3,6)-d-Glcp-(1→. The linkages of RGP70-1-2 is including →5)-l-Araf-(1→, →3,5)-l-Araf-(1→, →4)-d-Manp-(1→, →3,6)-d-Manp-(1→, d-Galp-(1→, →6)-d-Galp-(1→, d-Glcp-(1→, →6)-d-Glcp-(1→, →4,6)-d-Glcp-(1→. Furthermore, RGP70-1-1 and RGP70-1-2 can inhibit α-glucosidase and α-amylase. RGP70-1-1 stimulated GLP-1 secretion in STC-1 cells and was related to the up-regulation of PI3K and p-AKT protein expression. The findings revealed a natural product with potential hypoglycemic activity, which may be used as a GLP-1 secretagogue and a beneficial functional food ingredient for T2D.
Collapse
Affiliation(s)
- Huien Chen
- Guangdong Pharmaceutical University Guangzhou 510006 China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University Guangzhou 510006 China
- Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Xinyu Liu
- Guangdong Pharmaceutical University Guangzhou 510006 China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University Guangzhou 510006 China
- Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Meixia Xie
- Guangdong Pharmaceutical University Guangzhou 510006 China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University Guangzhou 510006 China
- Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Xiaoting Zhong
- Guangdong Pharmaceutical University Guangzhou 510006 China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University Guangzhou 510006 China
- Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Chunyan Yan
- Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Minghua Xian
- Guangdong Pharmaceutical University Guangzhou 510006 China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University Guangzhou 510006 China
- Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Shumei Wang
- Guangdong Pharmaceutical University Guangzhou 510006 China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University Guangzhou 510006 China
- Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University Guangzhou 510006 China
| |
Collapse
|
13
|
Tang L, Xiao M, Cai S, Mou H, Li D. Potential Application of Marine Fucosyl-Polysaccharides in Regulating Blood Glucose and Hyperglycemic Complications. Foods 2023; 12:2600. [PMID: 37444337 DOI: 10.3390/foods12132600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Diabetes mellitus (DM) has become the world's third major disease after tumors and cardiovascular disease. With the exploitation of marine biological resources, the efficacy of using polysaccharides isolated from marine organisms in blood glucose regulation has received widespread attention. Some marine polysaccharides can reduce blood glucose by inhibiting digestive enzyme activity, eliminating insulin resistance, and regulating gut microbiota. These polysaccharides are mainly fucose-containing sulphated polysaccharides from algae and sea cucumbers. It follows that the hypoglycemic activity of marine fucosyl-polysaccharides is closely related to their structure, such as their sulfate group, monosaccharide composition, molecular weight and glycosidic bond type. However, the structure of marine fucosyl-polysaccharides and the mechanism of their hypoglycemic activity are not yet clear. Therefore, this review comprehensively covers the effects of marine fucosyl-polysaccharides sources, mechanisms and the structure-activity relationship on hypoglycemic activity. Moreover, the potential regulatory effects of fucosyl-polysaccharides on vascular complications caused by hyperglycemia are also summarized in this review. This review provides rationales for the activity study of marine fucosyl-polysaccharides and new insights into the high-value utilization of marine biological resources.
Collapse
Affiliation(s)
- Luying Tang
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266003, China
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266003, China
| | - Shenyuan Cai
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266003, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266003, China
| | - Dongyu Li
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266003, China
| |
Collapse
|
14
|
Li Y, Liu S, Ding Y, Li S, Sang X, Li T, Zhao Q, Yu S. Structure, in vitro digestive characteristics and effect on gut microbiota of sea cucumber polysaccharide fermented by Bacillus subtilis Natto. Food Res Int 2023; 169:112872. [PMID: 37254322 DOI: 10.1016/j.foodres.2023.112872] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 06/01/2023]
Abstract
This study aimed to understand the structural, digestion and fecal fermentation behaviors of sea cucumber polysaccharide fermented by Bacillus subtilis Natto. Results showed that both sea cucumber polysaccharide (SP) and fermented sea cucumber polysaccharide (FSP) were sulfated polysaccharides mainly containing fucose. The physicochemical property, molecular weight, thermal property, and functional groups were no significant difference between SP and FSP, but the microscopic morphology and monosaccharide composition of FSP changed. Both SP and FSP showed similar digestion and fecal fermentation characteristics, that is, they could not be digested by saliva and gastric juice, but could be partially degraded by small intestine. Due to the decomposition of glycosidic bonds after intestinal digestion and fecal fermentation, the relative molecular mass of SP and FSP decreased. In terms of impacts on gut microbiota, Lachnospira, Bacteroides finegoldii, and Bifidobacteriaceae were significantly increased in SP, while Acinetobacter was significantly increased in FSP. This study provides a good understanding of the changes in the structure and digestive characteristics of sea cucumber polysaccharides caused by fermentation. That information will be beneficial for the development and application of new fermented sea cucumber products.
Collapse
Affiliation(s)
- Ying Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, PR China; Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian 116650, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shuang Liu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, PR China; Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian 116023, PR China
| | - Yujie Ding
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, PR China; Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian 116023, PR China
| | - Shuangshuang Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, PR China; Dalian Xinyulong Marine Organisms Seed Industry Technology CO., LtD, Dalian 116023, PR China
| | - Xue Sang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, PR China; Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian 116023, PR China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian 116650, PR China
| | - Qiancheng Zhao
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, PR China; Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian 116023, China.
| | - Shuang Yu
- Dalian Xinyulong Marine Organisms Seed Industry Technology CO., LtD, Dalian 116023, PR China
| |
Collapse
|
15
|
Li Y, Guo X, Zhong R, Ye C, Chen J. Structure characterization and biological activities evaluation of two hetero-polysaccharides from Lepista nuda: Cell antioxidant, anticancer and immune-modulatory activities. Int J Biol Macromol 2023:125204. [PMID: 37271268 DOI: 10.1016/j.ijbiomac.2023.125204] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/14/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
Polysaccharides LNP-1 and LNP-2 were extracted and purified from Lepista nuda, and their structural characteristics and biological activities were evaluated. The molecular weights of LNP-1 and LNP-2 were determined to be 16,263 Da and 17,730 Da, respectively. The monosaccharide composition analysis showed that LNP-1 and LNP-2 were composed of fucose, mannose, glucose, and galactose in a molar ratio of 1.00:2.42:1.09:4.04 and 1.00:2.39:1.61:4.23, respectively. The structure analysis revealed that these two polysaccharides were mainly composed of T-Fuc, T-Man, T-Glc, 1,6-Glc 1,6-Gal, and 1,2,6-Man, 1,2,6-Gal. Additionally, LNP-2 contained an additional 1,4-Glc glycosidic linkage in comparison to LNP-1. Both LNP-1 and LNP-2 exhibited anti-proliferation effects on A375 cells, but not on HepG2 cells. Furthermore, LNP-2 showed better cellular antioxidant activity (CAA) than LNP-1. RT-PCR results indicated that LNP-1 and LNP-2 could induce macrophages to secrete immune-modulatory factors NO, IL-6, and TNF-α by regulating their mRNA expression. Overall, this study provides a theoretical basis for the further development of the structure-function relationship of polysaccharides from L. nuda.
Collapse
Affiliation(s)
- Yimeng Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xuxiang Guo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ruifang Zhong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Changming Ye
- Era Biotechnology(Shenzhen)Co. Ltd., Shenzhen, Guangdong, China
| | - Jian Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
16
|
Huang Y, Ye Y, Xu D, Ji J, Sun J, Xu M, Xia B, Shen H, Xia R, Shi W, Sun X. Structural characterization and anti-inflammatory activity of a novel neutral polysaccharide isolated from Smilax glabra Roxb. Int J Biol Macromol 2023; 234:123559. [PMID: 36754268 DOI: 10.1016/j.ijbiomac.2023.123559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
Crude polysaccharides isolated from Smilax glabra were screened for anti-inflammatory activity using mice ear swelling animal experiments, during which the neutral polysaccharide S1 was identified. The structural characteristics and anti-inflammatory effects of the anti-inflammatory S1 polysaccharide were then investigated. The results showed that S1 was mainly composed of rhamnose, arabinose, galactose, glucose, xylose, and mannose. The structure of the main chain consisted of →6)-α-Galp-(1 → 6)-β-Galp-(1 → 4)-α-Xylp-(1 → 6)-β-Galp-(1→, with branched chains comprising α-Araf-(1 → 4)-α → Manp-(1 → and β-Rhap-(1 → 4)-α-Glcp-(1 → units. Furthermore, S1 did not have a triple helix conformation. S1 could inhibit NO secretion, reduce the levels of pro-inflammatory factors (IL-6 and TNF-α), and significantly reduce LPS-stimulated inflammatory damage in RAW 264.7 cells by inhibiting activation of the NF-κB (p65) pathway. These results shed light on the possibility of S1 to be developed as a novel anti-inflammatory drug for therapeutic purposes.
Collapse
Affiliation(s)
- Yaoguang Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Deping Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mengqi Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bangen Xia
- Ningbo Xiabang New Pharmaceutical Technology Co., Ltd, Ningbo, Zhejiang, China
| | - Hongfang Shen
- Ningbo Xiabang New Pharmaceutical Technology Co., Ltd, Ningbo, Zhejiang, China
| | - Ruowei Xia
- Ningbo Xiabang New Pharmaceutical Technology Co., Ltd, Ningbo, Zhejiang, China
| | - Wenqin Shi
- Ningbo Xiabang New Pharmaceutical Technology Co., Ltd, Ningbo, Zhejiang, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
17
|
Rao NNM, Palodkar KK, Kumar TS, Sadhu V, Aminabhavi TM, Kakarla RR, Sesha Sainath AV. Water-soluble PEG segmented mannose-based macromolecules: Synthesis and their biocompatibility. Int J Biol Macromol 2023; 237:124119. [PMID: 36963543 DOI: 10.1016/j.ijbiomac.2023.124119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/11/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023]
Abstract
The macromolecular architectures, namely mannose-based methacrylate acetyl-mannopyranoside and PEG block copolymers (AB type copolymer [PEG-b-PMAM], poly(ethyleneglycol)-b-poly(methacryl-2,3,4,6-tetra-O-acetyl-D-mannopyranoside and ABA type copolymer [PMAM-b-PEG-b-PMAM], poly(methacryl-2,3,4,6-tetra-O-acetyl-D-mannopyranoside-b-poly(ethyleneglycol)-b-poly(methacryl-2,3,4,6-tetra-O-acetyl-D-mannopyranoside) were synthesized by atom transfer radical polymerization (ATRP) method that were deacetylated to generate the corresponding water-soluble and biocompatible glycopolymer macromolecules. The molecular weight of acetyl and deacetylate macromolecules was in the range of 7083-9499 and 4659-6026, as determined by GPC and proton NMR spectra. The 5 % decomposition temperatures for acetylated methacrylate macromolecules (218-299 °C) were higher than the corresponding water-soluble macromolecules (204-248 °C). The conjugation of poly(methacryl-2,3,4,6-tetra-O-acetyl-D-mannopyranoside (PMAM) segment with the PEG block decreased the glass transition (Tg) value, and the water-soluble macromolecules displayed Tg in the range of 92-95 °C. The biocompatibility of the synthesized water-soluble mannose-based macromolecules was determined using Human Bone Derived Cells (HBDC) culture with the TCP (Tissue culture plastic) template as control. Using three different concentrations of the synthesized glycopolymers, HBDC's were cultured for 1, 3, and 7 days. The effect of mannomethacrylate macromolecules on mitochondrial activity of HBDC's was estimated using colorimetry that showed the conversion of MTS [3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium-bromide] to formazan (MTS assay). ABA type diblock copolymer architecture exhibited increased absorbance values of 3 and 7 day cultures at 1-100 M concentrations, with the highest values observed at a concentration of 1 M for day 3 cultures. The design of these novel mannose-based macromolecules is important for improving cell proliferation, cell adhesion, and osteointegration efficiency.
Collapse
Affiliation(s)
- N Naga Malleswara Rao
- Polymers and Functional Materials and Fluoro-Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Krushna K Palodkar
- Polymers and Functional Materials and Fluoro-Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - T Sandeep Kumar
- Polymers and Functional Materials and Fluoro-Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| | - Veera Sadhu
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava, Slovak Republic; Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovak Republic
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580 031, Karnataka, India; School of Engineering, UPES, Bidholi, Dehradun, Uttarakhand 248 007, India.
| | - Raghava Reddy Kakarla
- School Chemical Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Annadanam V Sesha Sainath
- Polymers and Functional Materials and Fluoro-Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India.
| |
Collapse
|
18
|
Sun W, Kou XH, Wu CE, Fan GJ, Li TT, Cheng X, Xu K, Suo A, Tao Z. Low-temperature plasma modification, structural characterization and anti-diabetic activity of an apricot pectic polysaccharide. Int J Biol Macromol 2023; 240:124301. [PMID: 37004936 DOI: 10.1016/j.ijbiomac.2023.124301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
To fully research the anti-diabetic activity of apricot polysaccharide, low temperature plasma (LTP) was used to modify apricot polysaccharide. The modified polysaccharide was isolated and purified using column chromatography. It was found that LTP modification can significantly improve the α-glucosidase glucosidase inhibition rate of apricot polysaccharides. The isolated fraction FAPP-2D with HG domain showed excellent anti-diabetic activity in insulin resistance model in L6 cell. We found that FAPP-2D increased the ADP/ATP ratio and inhibited PKA phosphorylation, activating the LKB1-AMPK pathway. Moreover, FAPP-2D activated AMPK-PGC1α pathway, which could stimulated mitochondrial production and regulate energy metabolism, promoting GLUT4 protein transport to achieve an anti-diabetic effect. The Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy data showed that the LTP modification could increase the CH bond content while decreasing the C-O-C/C-O bond content, indicating that LTP destroyed the C-O-C/C-O bond, which enhanced the anti-diabetes activity of the modified apricot pectin polysaccharide. Our findings could pave the way for the molecular exploitation of apricot polysaccharides and the application of low-temperature plasma.
Collapse
Affiliation(s)
- Wenjuan Sun
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Nanjing Institute of Product Quality Inspection (Nanjing Institute of Quality Development and Advanced Technology Application), Nanjing 210019, China
| | - Xiao-Hong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Cai-E Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Gong-Jian Fan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Ting-Ting Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Xin Cheng
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Kaiqian Xu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Andi Suo
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Zheng Tao
- Yangzhou Inspection and Testing Center (National Quality Inspection and Testing Center for Toiletries), Yangzhou 225111, China
| |
Collapse
|
19
|
Apostolova E, Lukova P, Baldzhieva A, Delattre C, Molinié R, Petit E, Elboutachfaiti R, Nikolova M, Iliev I, Murdjeva M, Kokova V. Structural Characterization and In Vivo Anti-Inflammatory Activity of Fucoidan from Cystoseira crinita (Desf.) Borry. Mar Drugs 2022; 20:714. [PMID: 36421993 PMCID: PMC9693085 DOI: 10.3390/md20110714] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to evaluate the effects of fucoidan isolated from C. crinita on histamine-induced paw inflammation in rats, and on the serum levels of TNF-α, IL-1β, IL-6, and IL-10 in rats during systemic inflammation response. The levels of TNF-α in a model of acute peritonitis in rats were also investigated. The isolated crude fucoidan was identified as a sulfated xylogalactofucan with high, medium, and low molecular weight fractions and a content of fucose of 39.74%, xylose of 20.75%, and galactose of 15.51%. Fucoidan from C. crinita showed better anti-inflammatory effects in the rat paw edema model, and this effect was present during all stages of the experiment. When compared to controls, a commercial fucoidan from F. vesiculosus, the results also displayed anti-inflammatory activity on the 60th, 90th, and 120th minute of the experiment. A significant decrease in serum levels of IL-1β in rats treated with both doses of C. crinita fucoidan was observed in comparison to controls, whereas TNF-α concentrations were reduced only in the group treated with fucoidan from C. crinita at the dose of 25 mg/kg bw. In the model of carrageenan-induced peritonitis, we observed a tendency of decrease in the levels of the pro-inflammatory cytokine TNF-α in peritoneal fluid after a single dose of C. crinita fucoidan, but this did not reach the statistical significance margin. Single doses of C. crinita fucoidan did not alter serum levels of the anti-inflammatory cytokine IL-10 in animals with lipopolysaccharide-induced systemic inflammation.
Collapse
Affiliation(s)
- Elisaveta Apostolova
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Alexandra Baldzhieva
- Department of Microbiology and Immunology, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Cédric Delattre
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Roland Molinié
- UMRT INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Avenue des Facultés, IUT d’Amiens, Université de Picardie Jules Verne, Le Bailly, 80025 Amiens, France
| | - Emmanuel Petit
- UMRT INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Avenue des Facultés, IUT d’Amiens, Université de Picardie Jules Verne, Le Bailly, 80025 Amiens, France
| | - Redouan Elboutachfaiti
- UMRT INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Avenue des Facultés, IUT d’Amiens, Université de Picardie Jules Verne, Le Bailly, 80025 Amiens, France
| | - Mariana Nikolova
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University Paisii Hilendarski, Tsar Asen Str. 24, 4000 Plovdiv, Bulgaria
| | - Ilia Iliev
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University Paisii Hilendarski, Tsar Asen Str. 24, 4000 Plovdiv, Bulgaria
| | - Marianna Murdjeva
- Department of Microbiology and Immunology, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Vesela Kokova
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| |
Collapse
|