1
|
Li Z, Wang Y, Wang X, Chen S. Ultra-high toughness and strength polylactic acid/bio-polyamide 11 blend induced by dendritic structure of hyperbranched polyester with microcrystalline cellulose as the core. Int J Biol Macromol 2024; 281:136440. [PMID: 39482124 DOI: 10.1016/j.ijbiomac.2024.136440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/28/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024]
Abstract
The development and use of bio-based materials instead of traditional petroleum-based materials is an effective way to conserve fossil resources and reduce carbon emissions. Polylactic acid (PLA) has considerable potential as a bio-based material for industrial purposes. However, its limited toughness restricts its widespread application. In this study, a hyperbranched polyester with microcrystalline cellulose as the core (MCC-EHBP) was designed, synthesized, and used to upgrade the compatibility of a PLA/bio-based polyamide 11 (PA11) blend by synchronously enhancing the toughness and strength of PLA. Owing to the excellent reactivity of the epoxy group, MCC-EHBP forms a block-like dendritic polymer structure with the molecular chain of PLA/PA11, which observably improves the compatibility of the two phases of the blend. The prepared PLA/PA11/MCC-EHBP blend has tensile strength of 67.37 MPa, impact strength of 38.75 kJ m-2, and an elongation at break of 30.3 %, which are 36.9 %, 241.7 %, and 300.1 % higher than those of PLA, respectively. Moreover, the initial decomposition temperature and activation energy of PLA are increased by 5 °C and 17.3 %, respectively. The proposed simple, efficient, and environmentally friendly method for preparing PLA with ultra-high toughness, strength, and heat resistance is expected to broaden the industrial applications of this polyacid.
Collapse
Affiliation(s)
- Zhuolun Li
- College of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; China Key Laboratory of Polymer Foam Materials Processing and Application for light Industry, China
| | - Yaqiao Wang
- College of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Advanced Materials of Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiangdong Wang
- College of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; China Key Laboratory of Polymer Foam Materials Processing and Application for light Industry, China
| | - Shihong Chen
- College of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; China Key Laboratory of Polymer Foam Materials Processing and Application for light Industry, China.
| |
Collapse
|
2
|
Luo H, Yang X, Ding Q, Sheng B, Deng J, Yan X, Wu Y, Chen H, Hao C, Yuan S, Zeng J, Zhou W. Tensile properties and deformation by different compatibilizers in bio-based polylactide/poly(4-hydroxybutyrate) blends. Int J Biol Macromol 2024; 281:136550. [PMID: 39426776 DOI: 10.1016/j.ijbiomac.2024.136550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/21/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Blending chemically synthesized poly(4-hydroxybutyrate) (P4HB) with polylactide (PLLA) can overcome PLLA's brittleness, offering fully biobased blends. However, due to low compatibility between PLLA and P4HB, the influence of compatibilizers on the morphology, structure and tensile deformation of PLLA/P4HB blends remains to be unresolved. This article introduces reactive poly(methyl methacrylate-co-styrene-glycidyl methacrylate) (MSG) and non-reactive polyformaldehyde (POM) compatibilizers to improve the compatibility between P4HB and PLLA, achieving the maximal elongation at break exceeding 300 % at 2 wt% MSG or 3 wt% POM. MSG inhibits PLLA crystallization, extending stress stability in the silver streak stage, while POM enhances crystallization, prolonging the strain-hardening stage. Small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) analysis show that pristine PLLA forms voids before fracture, and PLLA/P4HB blends cavitate at the yield point and develop crazes in the silver streak stage. MSG effectively transmits stress and delays cavitation, extending the silver streak stage, whereas POM forms a microcrystalline network, lowering the energy barrier for stretching-induced recrystallization. These findings could provide theoretical guidelines on selecting compatibilizers for different PLLA based blends.
Collapse
Affiliation(s)
- Haoqi Luo
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Xiangyan Yang
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Qingyi Ding
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Bogang Sheng
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Jing Deng
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Xiaofei Yan
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Yang Wu
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Han Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Chaowei Hao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Shuaishuai Yuan
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, 266042 Qingdao, PR China.
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201204 Shanghai, PR China; Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201800 Shanghai, PR China.
| | - Weihua Zhou
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China.
| |
Collapse
|
3
|
Dan Y, Wang Y, Zhang M, Huang L, Sun Q, Zhang P, Li Z, Wang W, Tang J. Synthesis of Polyethylene Terephthalate (PET) with High Crystallization and Mechanical Properties via Functionalized Graphene Oxide as Nucleation Agent. Molecules 2024; 29:1953. [PMID: 38731443 PMCID: PMC11085443 DOI: 10.3390/molecules29091953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
In this work, a novel functionalized graphene oxide nucleating agent (GITP) was successfully synthesized using a silane coupling agent (IPTES), and polymer block (ITP) to efficiently improve the crystallization and mechanical performance of PET. To comprehensively investigate the effect of functionalized GO on PET properties, PET/GITP nanocomposites were prepared by introducing GITP into the PET matrix using the melt blending method. The results indicate that PET/GITP exhibits better thermal stability and crystallization properties compared with pure PET, increasing the melting temperature from 244.1 °C to 257.1 °C as well as reducing its crystallization half-time from 595 s to 201 s. Moreover, the crystallization temperature of PET/GITP nanocomposites was increased from 185.1 °C to 207.5 °C and the tensile strength was increased from 50.69 MPa to 66.8 MPa. This study provides an effective strategy for functionalized GO as a nucleating agent with which to improve the crystalline and mechanical properties of PET polyester.
Collapse
Affiliation(s)
| | - Yao Wang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (Y.D.); (M.Z.); (L.H.); (Q.S.); (P.Z.); (Z.L.); (W.W.)
| | | | | | | | | | | | | | - Jiangguo Tang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (Y.D.); (M.Z.); (L.H.); (Q.S.); (P.Z.); (Z.L.); (W.W.)
| |
Collapse
|
4
|
Li Z, Wang Y, Lu H, Sun Y, Wang X, Chen S. Stable nanoscale sea-island structure of biobased polyamide 56/poly (butylene adipate-co-terephthalate) blends compatibilized by interfacial hyperbranched structure: Toward biobased polymer blends with ultrahigh toughness. Int J Biol Macromol 2024; 259:129310. [PMID: 38216014 DOI: 10.1016/j.ijbiomac.2024.129310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Developing biobased materials is a considerably effective approach to save fossil resources and reduce emissions. Biobased polyamide 56 (PA56) is an excellent engineering material, but it has low toughness. Herein, to enhance the toughness of PA56, an ultra-tough biodegradable material, i.e., poly (butylene adipate-co-terephthalate) (PBAT) was introduced into PA56. Moreover, a self-synthesized epoxy-terminated hyperbranched polyester (EHBP) was used to improve the compatibility of the blended materials. The results of differential scanning calorimetry and Fourier-transform infrared spectroscopy indicated that the epoxide group of EHBP could react with PA56 and PBAT to form a block-like polymer structure and limit the crystallization behavior of the blends. The scanning electron microscopy results show that the addition of EHBP considerably reduced the dispersed-phase size in the blends, forming a nanoscale island structure. Moreover, the hydrogen bonds formed between EHBP and PA56/PBAT enhanced the intermolecular interaction between the two materials. Thus, PA56 blends with ultrahigh toughness were successfully prepared. The prepared PA56/PBAT/EHBP blend exhibited a notch impact strength of 20.71 kJ/m2 and a breaking elongation of 38.3 %, which represent increases of 427.3 % and 252.8 %, respectively, compared with those of pure PA56. Thus, the proposed method is suitable for toughening PA56 and broadening its applications.
Collapse
Affiliation(s)
- Zhuolun Li
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing, People's Republic of China
| | - Yaqiao Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China; College of Materials Science and Engineering, Fujian University of Technology, Fujian 350118, People's Republic of China
| | - Haofan Lu
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing, People's Republic of China
| | - Yibo Sun
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing, People's Republic of China
| | - Xiangdong Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing, People's Republic of China
| | - Shihong Chen
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing, People's Republic of China.
| |
Collapse
|
5
|
Xie S, Hu J, Li K, Zhao Y, Ma N, Wang Y, Jin Y, Guo G, Kumar R, Li J, Huang J, Tian H. Substantial and efficient adsorption of heavy metal ions based on protein and polyvinyl alcohol nanofibers by electrospinning. Int J Biol Macromol 2023; 253:126536. [PMID: 37634775 DOI: 10.1016/j.ijbiomac.2023.126536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
The adverse effects of heavy metal pollutants in wastewater have threatened human health in recent decades. Therefore, the development of absorbents for such pollutants is essential to overcome these problems. Electrospun nanofibers are often used for wastewater treatment owing to their high porosity and high specific surface area. Zein from plants and collagen from animals are vulnerable to moisture, which limits its broad application in practice. However fully biodegradable polyvinyl alcohol (PVA), which is soluble in water, can be mixed with protein individually to overcome the limitation. In this work, the two proteins described above and PVA were combined to prepare protein nanofibers by electrospinning technology, which could achieve adsorption of Cu2+. As the protein content increased, the adsorption properties of the obtained nanofibers for Cu2+ showed a rising and then decreasing trend, with the highest point at 50 % of protein content, especially the collagen nanofibers, which reached 24.62 mg/g. Both protein nanofibers reached adsorption equilibrium after 15 h, but overall, collagen nanofibers showed a superior adsorption performance for Cu2+ than that by zein nanofibers. In the process of Cu2+ adsorption by protein nanofibers, both physical and chemical effect existed, and the physical effect played the leading role.
Collapse
Affiliation(s)
- Shiyu Xie
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Jing Hu
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Ke Li
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yaxin Zhao
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Na Ma
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yaomin Wang
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yujuan Jin
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Gaiping Guo
- College of Materials Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, PR China
| | - Rakesh Kumar
- Department of Biotechnology, Central University of South Bihar, Gaya 7648, India
| | - Jian Li
- Key Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, Beijing Technology and Business University, Beijing 100048, PR China
| | - Jin Huang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Huafeng Tian
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China.
| |
Collapse
|
6
|
Xu Z, Wang G, Wang Z, Zhang A, Zhao G. High performance plant-derived thermoplastic polyester elastomer foams achieved by manipulating charging order of mixed blowing agents. Int J Biol Macromol 2023; 252:126261. [PMID: 37591438 DOI: 10.1016/j.ijbiomac.2023.126261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 07/30/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
Plant-derived thermoplastic polyester elastomer (TPEE) is an environment friendly polymer known for its exceptional tear strength and mechanical properties, whose monomers are generated from crops. To prepare high-performance TPEE foams is still challenging due to the intrinsic shrinkage behavior. Herein, two microcellular foaming routes with different charging orders of mixed blowing agents, namely "CO2 firstly charging process (CO2-F-process)" and "N2 firstly charging process (N2-F-process)", were developed to elucidate the effects of mixed blowing agents on foaming behavior. Compared with the case in N2-F-process, more carbon dioxide and less nitrogen were adsorbed in CO2-F-process. Thus, TPEE foams prepared by N2-F-process show less shrinkage and higher creep recovery ratio than those prepared by CO2-F-process. Thanks to better structural stability and smaller shrinkage, TPEE foams prepared by N2-F-process exhibited enhanced strength and resilience. For the foams with similar density, compression strength can be increased by 52 %, and energy loss coefficient can be reduced to 50 %, by using N2-F-process. Thus, not only biomass TPEE foams with enhanced mechanical performance shows promising prospects in those areas that needs lightweight, insulation and high resilience, but also novel microcellular foaming technique with mixed blowing agents opens a new way for developing high-performance polymeric foams.
Collapse
Affiliation(s)
- Zhaorui Xu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, Shandong 250061, China
| | - Guilong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, Shandong 250061, China.
| | - Zhaozhi Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, Shandong 250061, China
| | - Aimin Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, Shandong 250061, China
| | - Guoqun Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, Shandong 250061, China
| |
Collapse
|
7
|
Han X, Han Y, Jin Y, Wang Z, Tian H, Huang J, Guo M, Men S, Lei H, Kumar R, Hu J. Microcrystalline cellulose grafted hyperbranched polyester with roll comb structure for synergistic toughening and strengthening of microbial PHBV/bio-based polyester elastomer composites. Int J Biol Macromol 2023; 242:124608. [PMID: 37116850 DOI: 10.1016/j.ijbiomac.2023.124608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
The brittle feature of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is the major challenge that strongly restricts its application at present. Successfully synthesized bio-based engineering polyester elastomers (BEPE) were combined with PHBV to create entirely bio-composites with the intention of toughening PHBV. Herein, the 2,2-Bis(hydroxymethyl)-propionic acid (DMPA) was grafted onto microcrystalline cellulose (MCC) and then further transformed into hyperbranched polyester structure via polycondensation. The modified MCC, named MCHBP, had plenty of terminal hydroxyl groups, which get dispersed between PHBV and BEPE. Besides, a large number of terminal hydroxyl groups of MCHBP can interact with the carbonyl groups of PHBV or BEPE in a wide range of hydrogen bonds, and subsequently increase the adhesion and stress transfer between the PHBV and BEPE. The tensile toughness and the elongation at break of the PHBV/BEPE composites with 0.5phr MCHBP were improved by 559.7 % and 221.8 % in comparison to those of PHBV/BEPE composites. Results also showed that MCHBP can play a heterogeneous nucleation effect on the crystallization of PHBV. Therefore, this research can address the current issue of biopolymers' weak mechanical qualities and may have uses in food packaging.
Collapse
Affiliation(s)
- Xiaolong Han
- School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yi Han
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing 100029, PR China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing 100029, PR China
| | - Yujuan Jin
- School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Zhao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing 100029, PR China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing 100029, PR China
| | - Huafeng Tian
- School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Jiawei Huang
- School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China
| | - Maolin Guo
- School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China
| | - Shuang Men
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China; Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100048, PR China
| | - Haibo Lei
- College of Basic Science, Tianjin Agricultural University, Tianjin 300392, China
| | - Rakesh Kumar
- Department of Biotechnology, Central University of South Bihar, Gaya 824236, India
| | - Jing Hu
- School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China.
| |
Collapse
|
8
|
Aguilar GJ, Tapia-Blácido DR. Evaluating how avocado residue addition affects the properties of cassava starch-based foam trays. Int J Biol Macromol 2023; 240:124348. [PMID: 37028632 DOI: 10.1016/j.ijbiomac.2023.124348] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/25/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
Avocado seed (AS) is an interesting residue for biopackaging because it has high starch content (41 %). We have prepared composite foam trays based on cassava starch containing different AS concentrations (0, 5, 10 and 15 % w/w) by thermopressing. Composite foam trays with AS were colorful because this residue contains phenolic compounds. The composite foam trays 10AS and 15AS were thicker (2.1-2.3 mm) and denser (0.8-0.9 g/cm3), but less porous (25.6-35.2 %) than cassava starch foam (Control). High AS concentrations yielded composite foam tray less puncture resistant (~40.4 N) and less flexible (0.7-0.9 %), but with tensile strength values (2.1 MPa) almost similar to the Control. The composite foam trays were less hydrophilic and more water resistant than control due to the presence of protein, lipid, and fibers and starch with more amylose content in AS. High AS concentration in composite foam tray decreases the temperature of thermal decomposition peak corresponding to starch. At temperatures >320 °C the foam trays with AS were more resistant to the thermal degradation due to the presence of fibers in AS. High AS concentrations delayed the degradation time of the composite foam trays by 15 days.
Collapse
Affiliation(s)
- Guilherme J Aguilar
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, S/N, CEP 14040-903 Ribeirão Preto, SP, Brazil
| | - Delia R Tapia-Blácido
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, S/N, CEP 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|