1
|
Zhang C, Wang D, Wang C, Yu H, Zhong P, Dang W, Yang Y, Wang Y, Yan X. Developing a Ni-grafted magnetic nanoparticle for direct CotA capture in rapid detoxification of aflatoxin B1. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136829. [PMID: 39708604 DOI: 10.1016/j.jhazmat.2024.136829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/14/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024]
Abstract
Aflatoxin B1 (AFB1) exposure often causes serious food safety problems and illnesses in humans and animals, even at extremely low content. Therefore, effective degradation of AFB1 is vitally significant. Biodegradation by enzymes is an effective method to eliminate hazardous toxins, but the degradation efficiency and cost of the enzyme limit its wide application. In this work, we found that CotA derived from Bacillus subtilis can rapidly degrade AFB1 into small molecules with low toxicity. Molecular docking analysis was used to evaluate the feasibility of rapid degradation of AFB1 by CotA, and the UPLC-Q-TOF-MS was used to deduce the degradation products and pathways. Two biotransformation pathways were proposed based on the structures of these degradation products. Inspired by commercial Ni-NTA purification media, Ni-grafted magnetic nanoparticles (PNMP) were designed to capture CotA from cell-lysis buffer onto the PNMP surface, enabling direct immobilization of CotA to form PNMP@CotA. The PNMP@CotA exhibits higher activity, good tolerance to temperature and pH than free CotA. Furthermore, in vitro and in vivo experiments revealed a significant reduction in the toxicity of AFB1 degradation products.
Collapse
Affiliation(s)
- Chengyu Zhang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Danni Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Cong Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huijuan Yu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Peng Zhong
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Weifan Dang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yufan Yang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuefei Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xiaohui Yan
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Chang H, Li K, Ye J, Chen J, Zhang J. Effect of Dual-Modified Tapioca Starch/Chitosan/SiO 2 Coating Loaded with Clove Essential Oil Nanoemulsion on Postharvest Quality of Green Grapes. Foods 2024; 13:3735. [PMID: 39682807 DOI: 10.3390/foods13233735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
As consumer awareness regarding health and nutrition continues to increase, there is a growing demand for fresh, nutritious fruits such as green grapes. However, the short storage life and susceptibility of these fruits to spoilage lead to significant commercial losses. Currently, the plastic wrap method is commonly used to keep green grapes fresh, but this packaging effect is limited and not environmentally friendly. Therefore, there is an urgent need to explore sustainable and effective preservation methods. In this study, a high-pressure microfluidization technique was employed to prepare an essential oil nanoemulsion with a ratio of Tween 80 to clove essential oil of 1:1, and a biopolymer-based film solution was prepared using dual-modified tapioca starch and chitosan loaded with clove essential oil nanoemulsion. The dual-modified tapioca starch/chitosan/SiO2/1.25 wt % clove essential oil (DM/Ceo-1.25) solution coating was successfully applied for the packaging and preservation of fresh green grapes. Compared with the CK and polyethylene wrap (PE) groups, the DM/Ceo-1.25 coating significantly improved the quality of the green grapes, increasing the storage period of the green grapes from 4 to 8 days at room temperature. On the 10th day of storage, the coated grapes retained significantly better quality, with a hardness of 4.01 N, a titratable acidity of 1.625%, an anthocyanin content of 1.013 mg/kg, and a polyphenol content of 21.32 μg/mL. These results indicate that the DM/Ceo-1.25 solution coating developed in this study can be used as a new active material for fruit preservation and provides ideas for the development of safer and more sustainable food packaging.
Collapse
Affiliation(s)
- Hui Chang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Kaimian Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jianqiu Ye
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jian Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jie Zhang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
3
|
Liu J, Chen H, Lv Y, Yang L, Wang W, Huang J, Zhang D. Synergistic effect of acetic acid and chitosan against Aspergillus flavus. Int J Biol Macromol 2024; 281:136548. [PMID: 39396599 DOI: 10.1016/j.ijbiomac.2024.136548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/26/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
The mycotoxin-producing fungi contamination of foodstuffs and agricultural commodities is a serious problem. In this study, the efficacy of acetic acid (AcA), chitosan (CS), and CS with extra AcA (CS/extra AcA) against Aspergillus flavus (A. flavus) in vitro and in vivo were investigated. Results showed that CS/extra AcA strongly inhibited the mycelial growth and aflatoxins production of A. flavus at lower concentrations than CS (MIC > 16.0 mg/mL) or AcA (MIC: 0.31 %). Significant inhibition was achieved in the presence of 4.0/0.12 and 8.0/0.08 CS (mg/mL)/extra AcA (%). CS/extra AcA exhibited remarkable antifungal activities based on the results of spore germination inhibition, abnormalities of spore morphology, disruption of cell membrane, mitochondrial dysfunction, and induction of apoptosis of hyphae. Moreover, pathogenicity test in peanut kernels showed that 8.0/0.16 CS (mg/mL)/extra AcA (%) could effectively inhibit the fungal infection and aflatoxin B1 production. The efficacy of CS/extra AcA is possibly due to the synergy of the antifungal property of CS, and undissociated AcA. The findings referred that CS/extra AcA is safe, efficient, and economical, and it could be used as a promising way to control A. flavus contamination in agro-foods preservation.
Collapse
Affiliation(s)
- Jing Liu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Hao Chen
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yan Lv
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Lijun Yang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Wenjie Wang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Jianying Huang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| | - Dandan Zhang
- School of Public Health, Jining Medical University, Jining 272067, PR China; School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, PR China
| |
Collapse
|
4
|
Hanan E, Dar AH, Shams R, Goksen G. New insights into essential oil nano emulsions loaded natural biopolymers recent development, formulation, characterization and packaging applications: A comprehensive review. Int J Biol Macromol 2024; 280:135751. [PMID: 39304053 DOI: 10.1016/j.ijbiomac.2024.135751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/29/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Customer demand for wholesome diets has spurred researchers to explore preservative-free methods for maintaining food product quality. Nano emulsion-based coatings and films are seen as sustainable solutions for extending the shelf life of fresh produce. These innovations are driving progress in various industries. Nano emulsion techniques offer effective encapsulation of bioactive compounds due to their small droplet size, stability, and enhanced activity. This review highlights the preparation and manufacturing methods of biopolymer-based nano emulsions containing essential oils, which are used as edible coatings and films over the past decade, representing the first comprehensive review paper on this topic to encompass research from the past ten years. The characterization and application of these coatings and films are also discussed. It has been revealed that essential oils can be successfully incorporated into nano emulsion delivery system with different biopolymers. These edible coatings and films help delay or prevent oxidation in various food products, enhancing their quality and safety during storage. They present a green, sustainable, and biodegradable solution for protecting fresh foods in the industry. Essential oil biopolymer nano emulsions not only extend shelf life but also offer protection against hazards, contributing to consumer trust in food safety and quality. This technology holds promise for delivering healthier food options in the marketplace. The current review thus provides an updated overview of the latest literature on EO nano emulsions as active agents in the advancement of edible coatings and films.
Collapse
Affiliation(s)
- Entesar Hanan
- Department of Nutrition and Dietetics, School of Allied Health Sciences, Manav Rachna International Institute of Research and Studies, Faridabad Haryana, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, India.
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100, Mersin, Turkey.
| |
Collapse
|
5
|
Das S, Maurya A, Singh VK, Chaudhari AK, Singh BK, Dwivedy AK, Dubey NK. Chitosan nanoemulsion incorporated with Carum carvi essential oil as ecofriendly alternative for mitigation of aflatoxin B 1 contamination in stored herbal raw materials. Int J Biol Macromol 2024; 270:132248. [PMID: 38729502 DOI: 10.1016/j.ijbiomac.2024.132248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
The present investigation entails the first report on entrapment of Carum carvi essential oil (CCEO) into chitosan polymer matrix for protection of stored herbal raw materials against fungal inhabitation and aflatoxin B1 (AFB1) production. Physico-chemical characterization of nanoencapsulated CCEO was performed through Fourier transform infrared spectroscopy, dynamic light scattering, X-ray diffractometry, and scanning electron microscopy. The nanoencapsulated CCEO displayed improved antifungal and AFB1 suppressing potentiality along with controlled delivery over unencapsulated CCEO. The encapsulated CCEO nanoemulsion obstructed the ergosterol production and escalated the efflux of cellular ions, thereby suggesting plasma membrane as prime target of antifungal action in Aspergillus flavus cells. The impairment in methyglyoxal production and modeling based carvone interaction with Afl-R protein validated the antiaflatoxigenic mechanism of action. In addition, CCEO displayed augmentation in antioxidant potentiality after encapsulation into chitosan nanomatrix. Moreover, the in-situ study demonstrated the effective protection of Withania somnifera root samples (model herbal raw material) against fungal infestation and AFB1 contamination along with prevention of lipid peroxidation. The acceptable organoleptic qualities of W. somnifera root samples and favorable safety profile in mice (animal model) strengthen the application of nanoencapsulated CCEO emulsion as nano-fungitoxicant for preservation of herbal raw materials against fungi and AFB1 mediated biodeterioration.
Collapse
Affiliation(s)
- Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, 713104, West Bengal, India.
| | - Akash Maurya
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India; Department of Botany, Shri Murli Manohar Town Post Graduate College, Ballia 277001, Uttar Pradesh, India
| | - Vipin Kumar Singh
- Department of Botany, K. S. Saket P. G. College, Ayodhya 224123, Uttar Pradesh, India
| | - Anand Kumar Chaudhari
- Department of Botany, Rajkiya Mahila Snatkottar Mahavidyalaya, Ghazipur 233001, Uttar Pradesh, India
| | | | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
6
|
Allam E, El-Darier S, Ghattass Z, Fakhry A, Elghobashy RM. Application of chitosan nanopriming on plant growth and secondary metabolites of Pancratium maritimum L. BMC PLANT BIOLOGY 2024; 24:466. [PMID: 38807068 PMCID: PMC11131174 DOI: 10.1186/s12870-024-05148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Nanotechnology has demonstrated its vital significance in all aspects of daily life. Our research was conducted to estimate the potential of primed seed with chitosan nanoparticles in seed growth and yield by inducing plant secondary metabolism of Pancratium maritimum L. one of the important medicinal plants. Petri dish and pot experiments were carried out. Seeds of Pancratium maritimum L. were soaked in Nano solution (0.1, 0.5, 1 mg/ ml) for 4, 8, 12 h. Germination parameters (germination percentage, germination velocity, speed of germination, germination energy, germination index, mean germination time, seedling shoot and root length, shoot root ratio, seedling vigor index, plant biomass and water content), alkaloids and antioxidant activity of Pancratium maritimum L. were recorded and compared between coated and uncoated seeds. RESULTS Our results exhibited that chitosan nanopriming had a positive effect on some growth parameters, while it fluctuated on others. However, the data showed that most germination parameters were significantly affected in coated seeds compared to uncoated seeds. GC-MS analysis of Pancratium maritimum L. with different nanopriming treatments showed that the quantity of alkaloids decreased, but the amount of pancratistatin, lycorine and antioxidant content increased compared with the control. CONCLUSIONS Applying chitosan nanoparticles in priming seeds might be a simple and effective way to improve the quantity of secondary metabolites of Pancratium maritimum L. valuable medicinal plant.
Collapse
Affiliation(s)
- Eman Allam
- Institute of Graduate Studies & Research, Alexandria University, Alexandria, Egypt
| | - Salama El-Darier
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Zekry Ghattass
- Institute of Graduate Studies & Research, Alexandria University, Alexandria, Egypt
| | - Amal Fakhry
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Roufaida M Elghobashy
- Biology and Geology Department, Faculty of Education, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
7
|
Sahin K, Gencoglu H, Korkusuz AK, Orhan C, Aldatmaz İE, Erten F, Er B, Morde A, Padigaru M, Kilic E. Impact of a Novel Valerian Extract on Sleep Quality, Relaxation, and GABA/Serotonin Receptor Activity in a Murine Model. Antioxidants (Basel) 2024; 13:657. [PMID: 38929096 PMCID: PMC11200646 DOI: 10.3390/antiox13060657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 06/28/2024] Open
Abstract
Insomnia is a major global health issue, highlighting the need for treatments that are both effective and safe. Valerian extract, a traditional remedy for sleep problems, offers potential therapeutic options. This research examined the potential sleep-enhancing effects of VA (Valerian Pdr%2) in mice. The study evaluated sleep quality by comparing the impact of the VA extract against melatonin on brain activity, using electrocorticography (ECoG) to assess changes in brain waves. For this purpose, the study utilized two experimental models on BALB/c mice to explore the effects of caffeine-induced insomnia and pentobarbital-induced sleep. In the first model, 25 mice were assigned to five groups to test the effects of caffeine (caffeine, 7.5 mg/kg i.p) alone, caffeine with melatonin (2 mg/kg), or caffeine with different doses of valerian extract (100 or 300 mg/kg) given orally on brain activity, assessed via electrocorticography (ECoG) and further analyses on the receptor proteins and neurotransmitters. In the second model, a different set of 25 mice were divided into five groups to examine the impact of pentobarbital (42 mg/kg) alone, with melatonin, or with the valerian extract on sleep induction, observing the effects 45 min after administration. The study found that ECoG frequencies were lower in groups treated with melatonin and two doses of valerian extract (100 and 300 mg/kg), with 300 mg/kg showing the most significant effect in reducing frequencies compared to the caffeine control group, indicating enhanced sleep quality (p < 0.05). This was supported by increased levels of serotonin, melatonin, and dopamine and higher levels of certain brain receptors in the melatonin and valerian extract groups (p < 0.05). Modulatory efficacy for the apoptotic markers in the brain was also noted (p < 0.05). Additionally, melatonin and both doses of VA increased sleep duration and reduced sleep onset time compared to the pentobarbital control, which was particularly notable with high doses. In conclusion, the findings suggest that high doses (300 mg/kg) of valerian extract enhance both the quantity and quality of sleep through the GABAergic pathway and effectively increase sleep duration while reducing the time to fall asleep in a pentobarbital-induced sleep model in mice.
Collapse
Affiliation(s)
- Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119 Elazig, Türkiye;
| | - Hasan Gencoglu
- Department of Biology, Faculty of Science, Firat University, 23119 Elazig, Türkiye; (H.G.); (B.E.)
| | - Ahmet Kayhan Korkusuz
- Department of Physiology, School of Medicine, Istanbul Medipol University, 34810 Istanbul, Türkiye; (A.K.K.); (İ.E.A.)
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119 Elazig, Türkiye;
| | - İsmail Ertuğ Aldatmaz
- Department of Physiology, School of Medicine, Istanbul Medipol University, 34810 Istanbul, Türkiye; (A.K.K.); (İ.E.A.)
| | - Fusun Erten
- Department of Veterinary Science, Pertek Sakine Genc Vocational School, Munzur University, 62500 Tunceli, Türkiye;
| | - Besir Er
- Department of Biology, Faculty of Science, Firat University, 23119 Elazig, Türkiye; (H.G.); (B.E.)
| | - Abhijeet Morde
- Research and Development, OmniActive Health Technologies, Mumbai 400013, India; (A.M.); (M.P.)
| | - Muralidhara Padigaru
- Research and Development, OmniActive Health Technologies, Mumbai 400013, India; (A.M.); (M.P.)
| | - Ertugrul Kilic
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, 34700 Istanbul, Türkiye;
| |
Collapse
|
8
|
Xie D, Ma H, Xie Q, Guo J, Liu G, Zhang B, Li X, Zhang Q, Cao Q, Li X, Ma F, Li Y, Guo M, Yin J. Developing active and intelligent biodegradable packaging from food waste and byproducts: A review of sources, properties, film production methods, and their application in food preservation. Compr Rev Food Sci Food Saf 2024; 23:e13334. [PMID: 38563107 DOI: 10.1111/1541-4337.13334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/14/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
Food waste and byproducts (FWBP) are a global issue impacting economies, resources, and health. Recycling and utilizing these wastes, due to processing and economic constraints, face various challenges. However, valuable components in food waste inspire efficient solutions like active intelligent packaging. Though research on this is booming, its material selectivity, effectiveness, and commercial viability require further analysis. This paper categorizes FWBP and explores their potential for producing packaging from both animal and plant perspectives. In addition, the preparation/fabrication methods of these films/coatings have also been summarized comprehensively, focusing on the advantages and disadvantages of these methods and their commercial adaptability. Finally, the functions of these films/coatings and their ultimate performance in protecting food (meat, dairy products, fruits, and vegetables) are also reviewed systematically. FWBP provide a variety of methods for the application of edible films, including being made into coatings, films, and fibers for food preservation, or extracting active substances directly or indirectly from them (in the form of encapsulation) and adding them to packaging to endow them with functions such as barrier, antibacterial, antioxidant, and pH response. In addition, the casting method is the most commonly used method for producing edible films, but more film production methods (extrusion, electrospinning, 3D printing) need to be tried to make up for the shortcomings of the current methods. Finally, researchers need to conduct more in-depth research on various active compounds from FWBP to achieve better application effects and commercial adaptability.
Collapse
Affiliation(s)
- Delang Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Haiyang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qiwen Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Jiajun Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Bingbing Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaojun Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qian Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qingqing Cao
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaoxue Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Fang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Yang Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Mei Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Junjie Yin
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
9
|
Jin J, Luo B, Xuan S, Shen P, Jin P, Wu Z, Zheng Y. Degradable chitosan-based bioplastic packaging: Design, preparation and applications. Int J Biol Macromol 2024; 266:131253. [PMID: 38556240 DOI: 10.1016/j.ijbiomac.2024.131253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Food packaging is an essential part of food transportation, storage and preservation. Biodegradable biopolymers are a significant direction for the future development of food packaging materials. As a natural biological polysaccharide, chitosan has been widely concerned by researchers in the field of food packaging due to its excellent film-forming property, good antibacterial property and designability. Thus, the application research of chitosan-based food packaging films, coatings and aerogels has been greatly developed. In this review, recent advances on chitosan-based food packaging materials are summarized. Firstly, the development background of chitosan-based packaging materials was described, and then chitosan itself was introduced. In addition, the design, preparation and applications of films, coatings and aerogels in chitosan-based packaging for food preservation were discussed, and the advantages and disadvantages of each research in the development of chitosan-based packaging materials were analyzed. Finally, the application prospects, challenges and suggestions for solving the problems of chitosan-based packaging are summarized and prospected.
Collapse
Affiliation(s)
- Jing Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bodan Luo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Simin Xuan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Shen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengguo Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Yu Y, Liu K, Zhang S, Zhang L, Chang J, Jing Z. Characterizations of Water-Soluble Chitosan/Curdlan Edible Coatings and the Inhibitory Effect on Postharvest Pathogenic Fungi. Foods 2024; 13:441. [PMID: 38338576 PMCID: PMC10855209 DOI: 10.3390/foods13030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
This study focused on developing a composite coating comprising water-soluble chitosan (CTS) and curdlan (CUR). Cherry tomatoes served as the test material for assessing the preservative efficacy of these coatings. The incorporation of CUR markedly enhanced the coating's surface properties, refined its molecular structure, and improved its tensile strength and elongation at break. Additionally, the coating demonstrated enhanced permeability to water vapor, oxygen, and carbon dioxide and improved light transmission. The storage experiment, conducted at 25 ± 1 °C with a relative humidity of approximately 92% over 10 days, revealed that the CTS/CUR composite coating at a 1:1 ratio significantly outperformed the individual CTS or CUR coating and uncoated samples in maintaining the quality of postharvest cherry tomatoes. The 1:1 CTS/CUR composite coating demonstrated superior preservative effects. This study suggested that water-soluble chitosan/curdlan composite coatings have considerable potential for use in the preservation of postharvest fruits and vegetables.
Collapse
Affiliation(s)
- Youwei Yu
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (K.L.); (S.Z.); (L.Z.); (J.C.); (Z.J.)
| | | | | | | | | | | |
Collapse
|
11
|
Almeida NA, Freire L, Carnielli-Queiroz L, Bragotto APA, Silva NCC, Rocha LO. Essential oils: An eco-friendly alternative for controlling toxigenic fungi in cereal grains. Compr Rev Food Sci Food Saf 2024; 23:e13251. [PMID: 38284600 DOI: 10.1111/1541-4337.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 01/30/2024]
Abstract
Fungi are widely disseminated in the environment and are major food contaminants, colonizing plant tissues throughout the production chain, from preharvest to postharvest, causing diseases. As a result, grain development and seed germination are affected, reducing grain quality and nutritional value. Some fungal species can also produce mycotoxins, toxic secondary metabolites for vertebrate animals. Natural compounds, such as essential oils, have been used to control fungal diseases in cereal grains due to their antimicrobial activity that may inhibit fungal growth. These compounds have been associated with reduced mycotoxin contamination, primarily related to reducing toxin production by toxigenic fungi. However, little is known about the mechanisms of action of these compounds against mycotoxigenic fungi. In this review, we address important information on the mechanisms of action of essential oils and their antifungal and antimycotoxigenic properties, recent technological strategies for food industry applications, and the potential toxicity of essential oils.
Collapse
Affiliation(s)
- Naara A Almeida
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - Luísa Freire
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul. Cidade Universitária, Campo Grande, Mato Grosso do Sul, Brazil
| | - Lorena Carnielli-Queiroz
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória-Espírito Santo, Brazil
| | - Adriana P A Bragotto
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - Nathália C C Silva
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - Liliana O Rocha
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
| |
Collapse
|
12
|
Wang Y, Wang Z, Lu W, Hu Y. Review on chitosan-based antibacterial hydrogels: Preparation, mechanisms, and applications. Int J Biol Macromol 2024; 255:128080. [PMID: 37977472 DOI: 10.1016/j.ijbiomac.2023.128080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/09/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Chitosan (CS) is known for its remarkable properties, such as good biocompatibility, biodegradability, and renewability, in addition to its antibacterial and biological activities. However, as CS is insoluble in water, it displays limited antibacterial performance under neutral and physiological conditions. A viable solution to this problem is grafting chemically modified groups onto the CS framework, thereby increasing its solubility and enhancing its antibacterial effect. Herein, the antibacterial action mechanism of CS and its derivatives is reviewed, confirming the prevalent use of composite materials comprising CS and its derivatives as an antibacterial agent. Generally, the antimicrobial ability of CS-based biomaterials can be enhanced by incorporating supplementary polymers and antimicrobial agents. Research on CS-based composite biomaterials is ongoing and numerous types of biomaterials have been reported, including inorganic nanoparticles, antibacterial agents, and CS derivatives. The development of these composite materials has considerably expanded the application of CS-based antibacterial materials. This study reviews the latest progress in research regarding CS-based composite hydrogels for wound repair, tissue engineering, drug release, water purification, and three-dimensional printing applications. Finally, the summary and future outlook of CS-based antibacterial hydrogels are presented in anticipation of a broader range of applications of CS-based antibacterial hydrogels.
Collapse
Affiliation(s)
- Yixi Wang
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan 614000, China; Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan, Sichuan 614000, China.
| | - Zhicun Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Wenya Lu
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan 614000, China
| | - Yu Hu
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan 614000, China; Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan, Sichuan 614000, China.
| |
Collapse
|
13
|
Chaudhari AK, Das S, Dwivedi A, Dubey NK. Application of chitosan and other biopolymers based edible coatings containing essential oils as green and innovative strategy for preservation of perishable food products: A review. Int J Biol Macromol 2023; 253:127688. [PMID: 37890742 DOI: 10.1016/j.ijbiomac.2023.127688] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Deterioration of perishable foods due to fungal contamination and lipid peroxidation are the most threatened concern to food industry. Different chemical preservatives have been used to overcome these constrains; however their repetitive use has been cautioned owing to their negative impact after consumption. Therefore, attention has been paid to essential oils (EOs) because of their natural origin and proven antifungal and antioxidant activities. Many EO-based formulations have been in use but their industrial-scale application is still limited, possibly due to its poor solubility, vulnerability towards oxidation, and aroma effect on treated foods. In this sense, active food packaging using biopolymers could be considered as promising approach. The biopolymers can enhance the stability and effectiveness of EOs through controlled release, thus minimizes the deterioration of foods caused by fungal pathogens and oxidation without compromising their sensory properties. This review gives a concise appraisal on latest advances in active food packaging, particularly developed from natural polymers (chitosan, cellulose, cyclodextrins etc.), characteristics of biopolymers, and current status of EOs. Then, different packaging and their effectiveness against fungal pathogens, lipid-oxidation, and sensory properties with recent previous works has been discussed. Finally, effort was made to highlights their safety and commercialization aspects towards market solutions.
Collapse
Affiliation(s)
- Anand Kumar Chaudhari
- Department of Botany, Rajkiya Mahila Snatkottar Mahavidyalaya, Ghazipur, Uttar Pradesh 233001, India.
| | - Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, West Bengal 713104, India
| | - Awanindra Dwivedi
- National Centre for Disease Control, Ministry of Health and Family Welfare, New Delhi 110054, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
14
|
Rusu AG, Niță LE, Roșca I, Croitoriu A, Ghilan A, Mititelu-Tarțău L, Grigoraș AV, Crețu BEB, Chiriac AP. Alginate-Based Hydrogels Enriched with Lavender Essential Oil: Evaluation of Physicochemical Properties, Antimicrobial Activity, and In Vivo Biocompatibility. Pharmaceutics 2023; 15:2608. [PMID: 38004586 PMCID: PMC10675056 DOI: 10.3390/pharmaceutics15112608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Owing to its antibacterial, anti-inflammatory, and antioxidant activities, in the last few years, lavender essential oil (LVO) has been used in medical applications as a promising approach for treating infected wounds. However, the practical applicability of LVO is limited by its high volatility and storage stability. This study aimed to develop a novel hybrid hydrogel by combining phytic acid (PA)-crosslinked sodium alginate (SA) and poly(itaconic anhydride-co-3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5] undecane (PITAU) and evaluate its potential effectiveness as an antibacterial wound dressing after incorporating LVO. The influence of the mass ratio between SA and PITAU on the properties and stability of hydrogels was investigated. After LVO loading, the effect of oil addition to hydrogels on their functional properties and associated structural changes was studied. FTIR analysis revealed that hydrogen bonding is the primary interaction mechanism between components in the hybrid hydrogels. The morphology was analyzed using SEM, evidencing a porosity dependent on the ratio between SA and PITAU, while LVO droplets were well dispersed in the polymer blend. The release of LVO from the hydrogels was determined using UV-VIS spectroscopy, indicating a sustained release over time, independent of the LVO concentration. In addition, the hybrid hydrogels were tested for their antioxidant properties and antimicrobial activity against Gram-positive and Gram-negative bacteria. Very good antimicrobial activity was obtained in the case of sample SA_PITAU3+LVO10% against S. aureus and C. albicans. Moreover, in vivo tests showed an increased antioxidant effect of the SA_PITAU3+LVO10% hydrogel compared to the oil-free scaffold that may aid in accelerating the healing process of wounds.
Collapse
Affiliation(s)
- Alina Gabriela Rusu
- Natural Polymers, Bioactive and Biocompatible Materials Department, “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (L.E.N.); (A.C.); (A.G.); (B.-E.-B.C.); (A.P.C.)
| | - Loredana Elena Niță
- Natural Polymers, Bioactive and Biocompatible Materials Department, “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (L.E.N.); (A.C.); (A.G.); (B.-E.-B.C.); (A.P.C.)
| | - Irina Roșca
- Center of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| | - Alexandra Croitoriu
- Natural Polymers, Bioactive and Biocompatible Materials Department, “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (L.E.N.); (A.C.); (A.G.); (B.-E.-B.C.); (A.P.C.)
| | - Alina Ghilan
- Natural Polymers, Bioactive and Biocompatible Materials Department, “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (L.E.N.); (A.C.); (A.G.); (B.-E.-B.C.); (A.P.C.)
| | - Liliana Mititelu-Tarțău
- Department of Pharmacology, Clinical Pharmacology and Algesiology, “Grigore T. Popa” University of Medicine and Pharmacy, Universitǎţii Street 16, 700115 Iasi, Romania;
| | - Aurica Valentin Grigoraș
- Stejarul Research Centre for Biological Sciences, National Institute of Research and Development for Biological Sciences, Alexandru cel Bun Street, 6, 610004 Piatra Neamț, Romania;
| | - Bianca-Elena-Beatrice Crețu
- Natural Polymers, Bioactive and Biocompatible Materials Department, “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (L.E.N.); (A.C.); (A.G.); (B.-E.-B.C.); (A.P.C.)
| | - Aurica P. Chiriac
- Natural Polymers, Bioactive and Biocompatible Materials Department, “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (L.E.N.); (A.C.); (A.G.); (B.-E.-B.C.); (A.P.C.)
| |
Collapse
|
15
|
Soni M, Yadav A, Maurya A, Das S, Dubey NK, Dwivedy AK. Advances in Designing Essential Oil Nanoformulations: An Integrative Approach to Mathematical Modeling with Potential Application in Food Preservation. Foods 2023; 12:4017. [PMID: 37959136 PMCID: PMC10648556 DOI: 10.3390/foods12214017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Preservation of foods, along with health and safety issues, is a growing concern in the current generation. Essential oils have emerged as a natural means for the long-term protection of foods along with the maintenance of their qualities. Direct applications of essential oils have posed various constraints to the food system and also have limitations in application; hence, encapsulation of essential oils into biopolymers has been recognized as a cutting-edge technology to overcome these challenges. This article presents and evaluates the strategies for the development of encapsulated essential oils on the basis of fascination with the modeling and shuffling of various biopolymers, surfactants, and co-surfactants, along with the utilization of different fabrication processes. Artificial intelligence and machine learning have enabled the preparation of different nanoemulsion formulations, synthesis strategies, stability, and release kinetics of essential oils or their bioactive components from nanoemulsions with improved efficacy in food systems. Different mathematical models for the stability and delivery kinetics of essential oils in food systems have also been discussed. The article also explains the advanced application of modeling-based encapsulation strategies on the preservation of a variety of food commodities with their intended implication in food and agricultural industries.
Collapse
Affiliation(s)
| | | | | | | | | | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Banaras Hindu University, Varanasi 221005, India; (M.S.); (A.Y.); (A.M.); (S.D.); (N.K.D.)
| |
Collapse
|
16
|
Salehi F, Inanloodoghouz M. Effects of gum-based coatings combined with ultrasonic pretreatment before drying on quality of sour cherries. ULTRASONICS SONOCHEMISTRY 2023; 100:106633. [PMID: 37820414 PMCID: PMC10571025 DOI: 10.1016/j.ultsonch.2023.106633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/21/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Application of pretreatment methods such as ultrasound and edible coatings is used to reduce processing time and/or preserve food product quality in drying technology. The aim of this research was to measure the impacts of gum-based coatings (guar, sodium alginate, and basil seed gums) in combination with sonication before drying on total phenolic content (TPC), antioxidant capacity (AC), effective water diffusivity (Deff), total color difference (ΔE), surface shrinkage (SS), and rehydration ratio (RR) of sour cherries. Ultrasonic pretreatment (40 kHz, 150 W, at 25 °C, for 12 min) increased the TPC, AC, Deff, and RR, and decreased the drying time, ΔE, and SS values of sour cherries. Edible coating increased the TPC, AC, drying time, and RR, and decreased the Deff, ΔE, and SS values of sonicated sour cherries. The TPC for untreated, uncoated-sonicated, guar gum-coated, sodium alginate-coated, and basil seed gum-coated sour cherries were 2965.9, 3398.1, 3480.8, 3511.0, and 3898.3 µg gallic acid equivalent/g dry, respectively. The highest value of AC (71.2±3.7 %) was observed on coated sour cherries by basil seed gum. The experimental data for drying curves were fitted to several widely used models, and the Midilli model using the experimental constants that best represent the drying rate of sour cherries. The edible coatings significantly reduced the color changes and shrinkage of dried sour cherries, with the lowest ΔE and SS values in the basil seed gum-coated samples (p < 0.05).
Collapse
Affiliation(s)
- Fakhreddin Salehi
- Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran.
| | - Moein Inanloodoghouz
- Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
17
|
Lamarra J, Rivero S, Pinotti A, Lopez D. Nanofiber mats functionalized with Mentha piperita essential oil stabilized in a chitosan-based emulsion designed via an electrospinning technique. Int J Biol Macromol 2023; 248:125980. [PMID: 37506795 DOI: 10.1016/j.ijbiomac.2023.125980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/15/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
A nanostructured device based on poly(vinyl alcohol) (PVA) loaded with a cross-linked chitosan (CH) emulsion, soy lecithin, and peppermint essential oil (Mentha piperita) was designed for topical applications using an electrospinning instrument coupled to a rotary drum collector. Different suspensions were obtained by varying the PVA to emulsion ratio (PVA:Em) 87.5:12.5, 82:18, and 75:25, using a PVA solution as a control. ATR-FTIR spectra confirmed the interactions among the components of the system. Scanning electron microscopy (SEM) of the mats evinced that the aligned fiber diameter decreased with higher proportions of emulsion while dynamic mechanical analysis (DMA) revealed a decrease in the storage modulus. The entrapment of the functionalized emulsions not only improved the elongation of the matrices but also provided them with greater structural integrity compared to the single PVA matrix. The most favorable formulation in terms of mechanical properties was found to be the 82:18 ratio. After 1 h of close contact between the 82:18 matrix and a porcine skin explant, the latter was examined by confocal microscopy, which revealed the localization of the essential oil mainly on the surface of the stratum corneum (SC).However, after 7 h of contact, the distribution of the peppermint EO throughout the viable epidermis was observed, which was further supported by ATR-FTIR studies. Tailored electrospun matrices would have potential applications as devices for topical or transdermal treatments due to their vehiculization role that allows the diffusion of peppermint essential oil as a skin penetration enhancer.
Collapse
Affiliation(s)
- Javier Lamarra
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CCT-CONICET La Plata, CIC, UNLP), 47 y 116 S/N, La Plata, Buenos Aires, Argentina; Facultad de Ciencias Exactas, UNLP, La Plata 1900, Argentina.
| | - Sandra Rivero
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CCT-CONICET La Plata, CIC, UNLP), 47 y 116 S/N, La Plata, Buenos Aires, Argentina; Facultad de Ciencias Exactas, UNLP, La Plata 1900, Argentina
| | - Adriana Pinotti
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CCT-CONICET La Plata, CIC, UNLP), 47 y 116 S/N, La Plata, Buenos Aires, Argentina; Facultad de Ingeniería, UNLP, La Plata 1900, Argentina
| | - Daniel Lopez
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de La Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
18
|
Sun W, Shahrajabian MH, Petropoulos SA, Shahrajabian N. Developing Sustainable Agriculture Systems in Medicinal and Aromatic Plant Production by Using Chitosan and Chitin-Based Biostimulants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2469. [PMID: 37447031 DOI: 10.3390/plants12132469] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
Chitosan is illustrated in research as a stimulant of plant tolerance and resistance that promotes natural defense mechanisms against biotic and abiotic stressors, and its use may lessen the amount of agrochemicals utilized in agriculture. Recent literature reports indicate the high efficacy of soil or foliar usage of chitin and chitosan in the promotion of plant growth and the induction of secondary metabolites biosynthesis in various species, such as Artemisia annua, Curcuma longa, Dracocephalum kotschyi, Catharanthus roseus, Fragaria × ananassa, Ginkgo biloba, Iberis amara, Isatis tinctoria, Melissa officinalis, Mentha piperita, Ocimum basilicum, Origanum vulgare ssp. Hirtum, Psammosilene tunicoides, Salvia officinalis, Satureja isophylla, Stevia rebaudiana, and Sylibum marianum, among others. This work focuses on the outstanding scientific contributions to the field of the production and quality of aromatic and medicinal plants, based on the different functions of chitosan and chitin in sustainable crop production. The application of chitosan can lead to increased medicinal plant production and protects plants against harmful microorganisms. The effectiveness of chitin and chitosan is also due to the low concentration required, low cost, and environmental safety. On the basis of showing such considerable characteristics, there is increasing attention on the application of chitin and chitosan biopolymers in horticulture and agriculture productions.
Collapse
Affiliation(s)
- Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Spyridon A Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece
| | - Nazanin Shahrajabian
- Department of Economics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81595-158, Iran
| |
Collapse
|
19
|
Amighi M, Zahedifar M, Alizadeh H, Payandeh M. Encapsulation of Nepeta hormozganica and Nepeta dschuprensis essential oils in shrimp chitosan NPs: Enhanced antifungal activity. Int J Biol Macromol 2023; 238:124112. [PMID: 36948343 DOI: 10.1016/j.ijbiomac.2023.124112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023]
Abstract
This study investigated the encapsulation of Nepeta hormozganica (NHEO) and Nepeta Dschuprensis (NDEO) essential oils into chitosan nanoparticles (CSN) via a simple ionic gelation method with tripolyphosphate (TPP). Chitosan (CS) is prepared by demineralizing, deproteinizing, and deacetylating shrimp shells waste in high yield (70.2 %). SEM, TEM, FT-IR, TGA, and XRD techniques were employed to characterize the encapsulated essential oils ((NHEO-CSN) and (NDEO-CSN)). The prepared EOs-CSN and CSN are found with particle sizes of 100-150 nm and 400-500 nm, respectively, and regular distribution. The encapsulation efficiency of encapsulated Nepeta hormozganica and Dschuprensis essential oils were found to be 73.64 % and 75.91 %, respectively. The synthesized nanocapsules were evaluated for antifungal activity against Fusarium oxysporium, Sclerotinia sclerotiorum, Pythium aphanidermatum, Alternaria alternata, Rhizactonia Solani, and Botrytis cinerea. Antifungal studies show that encapsulated essential oils increased antifungal efficiency by up to 100 %.
Collapse
Affiliation(s)
- Mina Amighi
- Department of Plant Protection Faculty of Agriculture, University of Jiroft, Jiroft 7867161167, Iran
| | - Mahboobeh Zahedifar
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft 7867161167, Iran.
| | - Hamidreza Alizadeh
- Department of Plant Protection Faculty of Agriculture, University of Jiroft, Jiroft 7867161167, Iran.
| | - Maryam Payandeh
- Department of Biology, Faculty of Science, University of Jiroft, Jiroft 7867161167, Iran
| |
Collapse
|