1
|
Yang J, Zheng Y, Yang Y, Huang Z, Sun G, Zhao R, Zhou WW, Cheong KL, Wang Z, Feng S, Wang Q, Li M. Effects of microbial fermentation on the anti-inflammatory activity of Chinese yam polysaccharides. Front Nutr 2025; 11:1509624. [PMID: 39834465 PMCID: PMC11744012 DOI: 10.3389/fnut.2024.1509624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
In this study, Chinese yam polysaccharides (CYPs) were fermented using Lactobacillus plantarum M616, and changes in the chemical composition, structure, and anti-inflammatory activity of CYPs before and after fermentation were investigated. The carbohydrate content of L. plantarum M616-fermented CYP (CYP-LP) increased from 71.03% ± 2.75 to 76.28% ± 2.37%, whereas protein and polyphenol content were almost unaffected compared with those of the unfermented CYP (CYP-NF). The monosaccharide composition of CYP-NF included rhamnose, arabinose, galactose, glucose, and mannose in a molar ratio of 0.493:0.6695:0.9738:0.7655:12.4365. CYP-LP had the same monosaccharides as CYP-NF, but the molar ratio was 0.3237:0.3457:0.8278:2.5541:10.4995. Meanwhile, the molecular weight and polydispersity of CYP-LP, respectively, increased from 124.774 kDa and 6.58 (CYP-NF) to 376.628 kDa and 17.928, indicating a low homogeneity. In vitro antioxidant analysis showed that L. plantarum M616 fermentation had varying effects on CYP-LP against DPPH, ABTS, hydroxyl, and superoxide radicals. However, CYP-LP had superior anti-inflammatory activity to CYP-NF and is more effective in regulating superoxide dismutase, catalase, glutathione peroxidase, malondialdehyde, nitric oxide, tumor necrosis factor-α, interleukin-1β, and interleukin-6 release in lipopolysaccharide-induced RAW 264.7 macrophages. This study suggested that CYP-LP is a potential anti-inflammatory ingredient in drugs and functional food.
Collapse
Affiliation(s)
- Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| | - Yi Zheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yongfeng Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| | - Zhenzhen Huang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| | - Gangchun Sun
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, China
| | - Renyong Zhao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Wen-Wen Zhou
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Zichao Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Shouai Feng
- Technology Center, China Tobacco Guangxi Industrial Co. Ltd., Nanning, China
| | - Qiuling Wang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| | - Meng Li
- College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
2
|
Li J, Ye G, Wang J, Gong T, Wang J, Zeng D, Cifuentes A, Ibañez E, Zhao H, Lu W. Recent advances in pressurized hot water extraction/modification of polysaccharides: Structure, physicochemical properties, bioactivities, and applications. Compr Rev Food Sci Food Saf 2025; 24:e70104. [PMID: 39812161 DOI: 10.1111/1541-4337.70104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
Pressurized hot water, as a green and efficient physical treatment technology, has been widely utilized for the extraction and modification of polysaccharides, with the objective of enhancing the physicochemical properties and biological activities of polysaccharides applied in food systems. This article reviews the recent advances regarding the effects of pressurized hot water treatment (extraction and modification) on polysaccharide extraction rates, structure, physicochemical properties, and bioactivities. The potential modes and mechanisms of polysaccharides subjected to pressurized hot water treatment and the relevant applications of these treated polysaccharides are also thoroughly discussed. Finally, the challenges that it may encounter in commercial applications are analyzed, and the future trends in this field are envisioned. This article will be of great value for the scientific elucidation of polysaccharides treated with pressurized hot water and their potential food applications.
Collapse
Affiliation(s)
- Jiangfei Li
- Department of Food Nutrition and Health, School of Medicine and Health, Faculty of Life Sciences and Medicine, Harbin Institute of Technology, Harbin, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
- The Intelligent Equipment Research Center for the Development of Special Medicine and Food Resources, Chongqing Research Institute of HIT, Harbin Institute of Technology, Chongqing, China
| | - Guanjun Ye
- Department of Food Nutrition and Health, School of Medicine and Health, Faculty of Life Sciences and Medicine, Harbin Institute of Technology, Harbin, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
| | - Junwen Wang
- Department of Food Nutrition and Health, School of Medicine and Health, Faculty of Life Sciences and Medicine, Harbin Institute of Technology, Harbin, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
| | - Ting Gong
- Department of Food Nutrition and Health, School of Medicine and Health, Faculty of Life Sciences and Medicine, Harbin Institute of Technology, Harbin, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
| | - Jianlong Wang
- Department of Food Nutrition and Health, School of Medicine and Health, Faculty of Life Sciences and Medicine, Harbin Institute of Technology, Harbin, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
- The Intelligent Equipment Research Center for the Development of Special Medicine and Food Resources, Chongqing Research Institute of HIT, Harbin Institute of Technology, Chongqing, China
| | - Deyong Zeng
- Department of Food Nutrition and Health, School of Medicine and Health, Faculty of Life Sciences and Medicine, Harbin Institute of Technology, Harbin, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
- The Intelligent Equipment Research Center for the Development of Special Medicine and Food Resources, Chongqing Research Institute of HIT, Harbin Institute of Technology, Chongqing, China
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain
| | - Elena Ibañez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain
| | - Haitian Zhao
- Department of Food Nutrition and Health, School of Medicine and Health, Faculty of Life Sciences and Medicine, Harbin Institute of Technology, Harbin, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
- The Intelligent Equipment Research Center for the Development of Special Medicine and Food Resources, Chongqing Research Institute of HIT, Harbin Institute of Technology, Chongqing, China
| | - Weihong Lu
- Department of Food Nutrition and Health, School of Medicine and Health, Faculty of Life Sciences and Medicine, Harbin Institute of Technology, Harbin, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
- The Intelligent Equipment Research Center for the Development of Special Medicine and Food Resources, Chongqing Research Institute of HIT, Harbin Institute of Technology, Chongqing, China
| |
Collapse
|
3
|
Liu Y, Meng Y, Ji H, Guo J, Shi M, Lai F, Ji X. Structural characteristics and antioxidant activity of a low-molecular-weight jujube polysaccharide by ultrasound assisted metal-free Fenton reaction. Food Chem X 2024; 24:101908. [PMID: 39507930 PMCID: PMC11539519 DOI: 10.1016/j.fochx.2024.101908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
This study used an ultrasonically accelerated metal-free Fenton (H2O2-Vc system) reaction to promote water-extracted degrading polysaccharides from Ziziphus Jujuba cv. Muzao (DZMP). A novel jujube polysaccharide (DPZMP3) was obtained by degradation using DEAE-Sepharose Fast Flow and Sephacryl S-100 column chromatography. Methylation analysis, HPGPC, ion chromatography, FT-IR, and NMR spectroscopies were used to clarify the chemical structures of DPZMP3. Monosaccharide compositional analysis of DPZMP3 revealed the presence of Rha, Ara, Gal, and GalA at a molar ratio of 1.00:1.49:1.60:7.68, and the HPGPC data demonstrated the average Mw of 34.3 kDa. Based on the structural and linkage research using NMR spectroscopy and GC-MS, it was determined that DPZMP3 was a homogalacturonan pectic polysaccharide with a (1 → 4)-Galp branch at C-6 and a small amount of Araf and Rhap residues. The ultrasonic-aided Fenton treatment did not significantly alter the structure of DPZMP3. It may also be useful for DZMP and enhancing their antioxidant activity in vitro. The current study's findings could pave the way for the food sector to use jujube polysaccharides obtained by degradation as a functional food component.
Collapse
Affiliation(s)
- Yingying Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- National & Local Joint Engineering Research Center of Cereal-Based Foods (Henan), Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yan Meng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Haozhen Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- National & Local Joint Engineering Research Center of Cereal-Based Foods (Henan), Zhengzhou 450001, China
| | - Jianhang Guo
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- National & Local Joint Engineering Research Center of Cereal-Based Foods (Henan), Zhengzhou 450001, China
| | - Miaomiao Shi
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- National & Local Joint Engineering Research Center of Cereal-Based Foods (Henan), Zhengzhou 450001, China
| | - Feiliao Lai
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Xiaolong Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- National & Local Joint Engineering Research Center of Cereal-Based Foods (Henan), Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
4
|
Hassan D, Sani A, Chanihoon GQ, Antonio Pérez A, Ehsan M, Torres Huerta AL. Environmentally Sustainable and Green Polymeric Method for Chitosan (CH) Film Synthesis Using Natural Acids and Impact of Zinc Ferrite Nanoparticles (NPs) on Water Solubility (WS) and Physical Properties. Polymers (Basel) 2024; 16:3466. [PMID: 39771318 PMCID: PMC11728712 DOI: 10.3390/polym16243466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 01/16/2025] Open
Abstract
Currently, there is a rush to develop green polymeric films such as biodegradable chitosan (CH) films to control and prevent plastic pollution from degrading the environment. This study reports a novel and sustainable green approach to the development of CH films using lemon juice (LJ) and lemon peel extract (LPE), the latter to dilute the LJ. The LPE was also utilized for the synthesis of ZnFe2O4 nanoparticles (NPs), adding to this work's novelty. The crystalline size of the ZnFe2O4 NPs was computed to be ~16 nm. The introduction of 1% and 2% ZnFe2O4 NPs improved not only the mechanical properties of the films, but also their barrier properties and water solubility (WS). The tensile strength increased from 0.641 MPa to 0.835 MPa when 2% NPs were incorporated, which is almost 1.30 times greater; the NPs also enhanced the surface strength by 2.66 times, which was demonstrated by the puncture strength. The introduction of NPs occupied the vacant spaces and improved the barrier capabilities of the CH film by reducing the water vapor permeability (WVP) value from 8.752 ± 0.015 for bare CH films to 6.299 ± 0.009 for 2% NP-containing CH films. Overall, the introduction of ZnFe2O4 NPs boosted the mechanical and barrier properties of the CH films, and offers a promising method for developing sustainable, eco-friendly, and biodegradable polymeric films for potential packaging and medical applications to contribute to circular economic efforts.
Collapse
Affiliation(s)
- Dilawar Hassan
- School of Engineering and Sciences, Tecnologico de Monterrey, Atizapan de Zaragoza C.P. 52926, Estado de Mexico, Mexico; (A.S.); (A.A.P.); (A.L.T.H.)
| | - Ayesha Sani
- School of Engineering and Sciences, Tecnologico de Monterrey, Atizapan de Zaragoza C.P. 52926, Estado de Mexico, Mexico; (A.S.); (A.A.P.); (A.L.T.H.)
| | - Ghulam Qadir Chanihoon
- National Centre of Excellence in Analytical Chemistry (NCEAC), University of Sindh, Jamshoro 76080, Pakistan;
| | - Aurora Antonio Pérez
- School of Engineering and Sciences, Tecnologico de Monterrey, Atizapan de Zaragoza C.P. 52926, Estado de Mexico, Mexico; (A.S.); (A.A.P.); (A.L.T.H.)
| | - Muhammad Ehsan
- Centro de Bachillerato Tecnológico Agropecuario, 162. Carr. Mexico-Veracruz Vía Texcoco km 95, Francisco I. Madero C.P. 90280, Tlaxcala, Mexico;
| | - Ana Laura Torres Huerta
- School of Engineering and Sciences, Tecnologico de Monterrey, Atizapan de Zaragoza C.P. 52926, Estado de Mexico, Mexico; (A.S.); (A.A.P.); (A.L.T.H.)
| |
Collapse
|
5
|
Que Y, Zhang Y, Liang F, Wang L, Yang Y, Zhang J, Wang W, Sun Y, Zhong C, Zhang H, He C, Guan L, Ma H. Structural characterization, antioxidant activity, and fermentation characteristics of Flammulina velutipes residue polysaccharide degraded by ultrasonic assisted H 2O 2-Vc technique. ULTRASONICS SONOCHEMISTRY 2024; 111:107085. [PMID: 39368414 PMCID: PMC11490713 DOI: 10.1016/j.ultsonch.2024.107085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
Adhere to the concept of low-carbon environmental protection and turning waste into treasure, polysaccharides from Flammulina velutipes residue polysaccharide (FVRP) has been developed and possesses diverse bioactivities, comprising antioxidant, hypoglycemic, and relieving heavy metal damage, which still has the disadvantages of high molecular weight and low bioavailability. The current work is the first to prepare a degraded polysaccharide (FVRPV) from FVRP by ultrasonic assisted H2O2-Vc technique in order to reduce its molecular weight, thereby improving its activity and bioavailability. Our results found that the molecular weight and average particle size were declined, but the monosaccharide composition and characteristic functional group types of FVRPV had no impact. The structural changes of polysaccharides analyzed by XRD, Congo Red test, I2-KI, SEM, and methylation analysis indicated that the surface morphology and glycosidic bond composition of FVRPV possessed longer side chains and a greater number of branches with an amorphous crystal structure devoid of a triple helix configuration, and had experienced notable alterations after ultrasonic assisted H2O2-Vc treatment. Meanwhile, the in vitro antioxidant capacity of FVRPV had significantly increased compared to FVRP, implying ultrasonic assisted H2O2-Vc technique maybe a effective method to enhance the bioactivity of polysaccharides. In addition, the content of polysaccharide, reducing sugar, and uronic acid in FVRPV was significantly decreased, but antioxidant capacity of fermentation broth was stronger by in vitro human fecal fermentation. The 16S rDNA sequencing data displayed that FVRPV can enrich probiotics and reduce the abundance of pathogenic bacteria through different metabolic pathways mediated by gut microbiota, thereby exerting its potential probiotic effects. The interesting work provides a novel degraded polysaccharide by ultrasonic assisted H2O2-Vc technique, laying a foundation for developing FVRPV as a new antioxidant and prebiotic.
Collapse
Affiliation(s)
- Yunxiang Que
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Yao Zhang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Fengxiang Liang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Liping Wang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Yiting Yang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Jingbo Zhang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Wanting Wang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Ying Sun
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Changjiao Zhong
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Haipeng Zhang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Chengguang He
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Lili Guan
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China.
| | - Hongxia Ma
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China.
| |
Collapse
|
6
|
Alias AHD, Shafie MH. Star anise (Illicium verum Hook. F.) polysaccharides: Potential therapeutic management for obesity, hypertension, and diabetes. Food Chem 2024; 460:140533. [PMID: 39053285 DOI: 10.1016/j.foodchem.2024.140533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
This study explores the extraction of polysaccharides from star anise (Illicium verum Hook. f.) with its anti-obesity, antihypertensive, antidiabetic, and antioxidant properties. The aim is to optimize the extraction conditions of star anise polysaccharides (SAP) utilizing propane alcohols-based deep eutectic solvents and microwave-assisted methods. The optimized conditions resulted in an extraction yield of 5.14%. The characteristics of acidic pectin-like SAP, including high viscosity (44.86 mPa s), high oil-holding capacity (14.39%), a high degree of esterification (72.53%), gel-like properties, highly amorphous, a high galacturonic acid concentration, and a highly branching size polysaccharide structure, significantly contribute to their potent inhibition of pancreatic lipase (86.67%), angiotensin-converting enzyme (73.47%), and α-glucosidase (82.33%) activities as well as to their antioxidant properties of azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS, 34.94%) and ferric ion reducing antioxidant power (FRAP, 0.56 mM FeSO4). Therefore, SAP could be used as a potential therapeutic agent for obesity, hypertension, and diabetes mellitus management.
Collapse
Affiliation(s)
- Abu Hurairah Darwisy Alias
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, University Innovation Incubator Building, SAINS@USM Campus, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Muhammad Hakimin Shafie
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, University Innovation Incubator Building, SAINS@USM Campus, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia..
| |
Collapse
|
7
|
Yang S, Li X, Zhang H. Ultrasound-assisted extraction and antioxidant activity of polysaccharides from Tenebrio molitor. Sci Rep 2024; 14:28526. [PMID: 39557986 PMCID: PMC11574054 DOI: 10.1038/s41598-024-79482-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
Tenebrio molitor, which is rich in various nutrients, and its polysaccharides, as significant bioactive substances, exhibit strong antioxidant effects. This study utilized defatted T. molitor as raw material and employed an ultrasound-assisted extraction method. The factors considered include extraction temperature, time, ultrasound power, and liquid-to-feed ratio, with the yield of T. molitor polysaccharides as the response value. Based on single-factor experiments and response surface methodology, the optimal extraction parameters for T. molitor polysaccharides were determined. Following purification, protein removal, and dialysis to eliminate impurities, the structure of the extracted polysaccharides was preliminarily investigated using infrared spectroscopy. Their antioxidant activities were explored by measuring their DPPH·, OH·, and ABTS+· radical scavenging abilities and Fe3+ reducing power. The results indicated that the optimal conditions for ultrasound-assisted extraction were an extraction temperature of 75 °C, an extraction time of 150 min, an ultrasound power of 270 W, and a liquid-to-feed ratio of 15:1 mL/g, yielding a polysaccharide extraction rate of 9.513%. Infrared spectroscopy analysis revealed the presence of pyranose sugars with main functional groups including C-O, C=O, and O-H. Antioxidant activity tests showed that within a certain concentration range, the higher the polysaccharide concentration, the stronger its radical scavenging abilities. Compared with Vitamin C(Vc), the polysaccharides had stronger scavenging abilities for DPPH· and OH·, some scavenging ability for ABTS+·, and Fe3+ reduction ability, and corresponding to IC50 values of 0.9625, 9.1909, and 235.69 mg/mL respectively. The Fe3+ reducing power reached a maximum absorbance of 0.38899 at a concentration of 1.6 mg/mL. T. molitor polysaccharides demonstrate promising antioxidant activity and potential as functional ingredients in food, health products, and pharmaceuticals, providing new technical references for the development and utilization of T. molitor resources.
Collapse
Affiliation(s)
- Shengru Yang
- Department of Hematology, The First Affiliated Hospital of Henan University, 357 Ximen Road, Kaifeng, 475000, Henan Province, People's Republic of China.
| | - Xu Li
- Department of Hematology, The First Affiliated Hospital of Henan University, 357 Ximen Road, Kaifeng, 475000, Henan Province, People's Republic of China
| | - Hui Zhang
- Department of Hematology, The First Affiliated Hospital of Henan University, 357 Ximen Road, Kaifeng, 475000, Henan Province, People's Republic of China
| |
Collapse
|
8
|
Yao Q, Pu L, Dong B, Zhu D, Wu W, Yang Q. Effects of ultrasonic degradation on physicochemical and antioxidant properties of Gleditsia sinensis seed polysaccharides. Carbohydr Res 2024; 545:109272. [PMID: 39293243 DOI: 10.1016/j.carres.2024.109272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/26/2024] [Accepted: 09/08/2024] [Indexed: 09/20/2024]
Abstract
In this study, two degraded polysaccharides from Gleditsia sinensis seed were obtained under ultrasonic power treatments of 300 and 450 W. The physicochemical properties, structural characteristics, and antioxidant activities of the degraded and undegraded polysaccharides were studied and compared. Ion exchange chromatography and methylation analysis showed that the polysaccharides had similar basic structural features and were composed of the same monosaccharide units before and after degradation, but the ultrasonic treatment increased the total monosaccharide content and changed the Mannose/Galactose value. Furthermore, with the increase in the ultrasonic power, the molecular weight and intrinsic viscosity of polysaccharides decreased, and the micromorphology became looser. The scavenging capacities for 1,1-diphenyl-2-picrylhydrazyl and hydroxyl free radicals and the reducing ability were significantly increased by the ultrasonic treatment. In conclusion, ultrasonic treatment may be an effective way to improve the antioxidant activities of polysaccharides from G. sinensis seed, and further studies on its antioxidant mechanism are still needed.
Collapse
Affiliation(s)
- Qiuping Yao
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China; Key Laboratory of the Development and Utilization of Guizhou Minority Medical, Resources (Guizhou Minzu University), State Ethnic Affairs Commission, Guiyang, Guizhou, 50025, China.
| | - Longlin Pu
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China
| | - Boyu Dong
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China; Key Laboratory of the Development and Utilization of Guizhou Minority Medical, Resources (Guizhou Minzu University), State Ethnic Affairs Commission, Guiyang, Guizhou, 50025, China
| | - Dequan Zhu
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China; Key Laboratory of the Development and Utilization of Guizhou Minority Medical, Resources (Guizhou Minzu University), State Ethnic Affairs Commission, Guiyang, Guizhou, 50025, China
| | - Wenwen Wu
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China
| | - Qiong Yang
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China; Key Laboratory of the Development and Utilization of Guizhou Minority Medical, Resources (Guizhou Minzu University), State Ethnic Affairs Commission, Guiyang, Guizhou, 50025, China
| |
Collapse
|
9
|
Chen S, Wang L, Rong S, Duan Y, Wang H. Extraction, purification, chemical characterization, and in vitro hypoglycemic activity of polysaccharides derived from Rosa laevigata Michx. Int J Biol Macromol 2024; 279:135116. [PMID: 39208908 DOI: 10.1016/j.ijbiomac.2024.135116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to optimize the extraction process of polysaccharides from Rosa laevigata Michx. (RLMP) using an ultrasound-microwave-assisted method and investigate its in vitro hypoglycemic activity. Key factors affecting RLMP yield were identified using a Plackett-Burman design, followed by a Box-Behnken design and response-surface methodology, to determine the optimal extraction conditions. RLMP was purified using DEAE-52 cellulose, yielding two homogeneous fractions: RLMP-1 and RLMP-2. Monosaccharide composition was analyzed by gas chromatography, and structural characterization of RLMP, RLMP-1, and RLMP-2 was performed using FT-IR, SEM, and TEM. Methylation analysis and NMR were used to elucidate the sugar-chain structure of RLMP-1. In vitro hypoglycemic activity analysis showed that RLMP improved the glucose consumption and glycogen synthesis and enhanced the activities of pyruvate kinase and hexokinase in IR-HepG2 cells. Moreover, RLMP significantly increased the activities of antioxidant enzymes, such as CAT, SOD, and GSH-Px and decreased those of ROS and MDA. Western blotting analysis confirmed that RLMP enhances glucose and lipid metabolism and reduces oxidative stress by activating the PI3K/Akt/GLUT-4 signaling pathway, thereby exerting its hypoglycemic effect. These findings suggest that RLMP is a promising candidate for developing novel antioxidant agents or hypoglycemic drugs.
Collapse
Affiliation(s)
- Shuai Chen
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, China; Graduate school, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, China
| | - Liang Wang
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, China
| | - Shuang Rong
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, China
| | - Yuyuan Duan
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, China
| | - Huizhu Wang
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, China.
| |
Collapse
|
10
|
Zhang T, Chen M, Li D, Zheng J, Sun Y, Liu R, Sun T. Review of the recent advances in polysaccharides from Ficus carica: Extraction, purification, structural characteristics, bioactivities and potential applications. Int J Biol Macromol 2024; 281:136430. [PMID: 39389494 DOI: 10.1016/j.ijbiomac.2024.136430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Ficus carica (F. carica), commonly referred to as the fig tree, has received considerable attention due to its delectable and nutritious fruits. F. carica polysaccharides (FPs) are one of the key bioactive constituents of F. carica, demonstrating various biological activities such as antioxidative, immunomodulatory, anti-inflammatory, and antitumor effects, among others. Nevertheless, the extraction and purification techniques for FPs still require innovations to address their structural characteristics in order to elucidate the intricate mechanisms affecting their biological activities. Given this, the current review systematically summarizes the recent advancements in FPs, covering extraction, purification, structural characteristics, bioactivities, structure-activity relationships (SARs), current applications, challenges and future prospects. The composition of FPs predominantly includes Glu, Gal, and Rha, with a broad molecular weight distribution (ranging from 21.9 kDa to 6890 kDa). The SARs analysis suggests that the bioactivities of FPs are closely linked to their monosaccharide composition, molecular weight, uronic acid content, and configuration characteristics, underscoring the significant role of FPs in driving the development of novel bioactive compounds in the health, food, and medical sectors. In conclusion, this review would contribute the valuable research insights and provide the updated information to foster the advancement of FPs for diverse therapeutic and industrial applications.
Collapse
Affiliation(s)
- Ting Zhang
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China
| | - Mengjie Chen
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China
| | - Dan Li
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China
| | - Jianfeng Zheng
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China.
| | - Rui Liu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China.
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
11
|
Yan Z, Chen HQ. Anti-liver cancer effects and mechanisms and its application in nano DDS of polysaccharides: A review. Int J Biol Macromol 2024; 279:135181. [PMID: 39218183 DOI: 10.1016/j.ijbiomac.2024.135181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Liver cancer is the third leading cause of cancer death, with high incidence and poor treatment effect. In recent years, polysaccharides have attracted more and more attention in the research field of anti-liver cancer because of their high efficiency, low toxicity, good biocompatibility, wide sources and low cost. Polysaccharides have been proven to have good anti-liver cancer activity. In this paper, the pathways and molecular mechanisms of polysaccharides against liver cancer were reviewed in detail. Polysaccharides exert anti-liver cancer activity by blocking cell cycle, inducing apoptosis, regulating immunity, inhibiting cancer cell metastasis, inhibiting tumor angiogenesis and so on. The primary structure and chain conformation of polysaccharides have an important influence on their anti-liver cancer activity. Structural modification enhanced the anti-liver cancer activity of polysaccharides. Polysaccharides have good attenuated and synergistic effects on chemotherapy drugs. Polysaccharides can be used as functional carriers to construct intelligent nano drug delivery systems (DDS) targeting liver cancer. This review can provide theoretical support for the further development and application of polysaccharides in the field of anti-liver cancer, and provide theoretical reference and clues for relevant researchers in food, nutrition, medicine and other fields.
Collapse
Affiliation(s)
- Zheng Yan
- School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China
| | - Han-Qing Chen
- School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China.
| |
Collapse
|
12
|
Xiong S, Tao P, Yu Y, Wu W, Li Y, Chen G, Si J, Yang H. Effect of Polygonatum cyrtonema Hua polysaccharides on gluten structure, in vitro digestion and shelf-life of fresh wet noodle. Int J Biol Macromol 2024; 279:135475. [PMID: 39260637 DOI: 10.1016/j.ijbiomac.2024.135475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/14/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
This study aimed to investigate the effects of raw Polygonatum cyrtonema Hua polysaccharides (RPCPs) and "zhi" P. cyrtonema Hua polysaccharides (ZPCPs) on the gluten structure, in vitro digestion, and shelf life of fresh wet noodles (FWN). The results demonstrated that incorporating PCPs improved the cooking and sensory qualities of FWN. Moreover, the shelf life of FWN was extended by 6 days with 1.5 % RPCPs (w/w) compared with the control FWN. Furthermore, incorporating 1.5 % ZPCPs led to a 1.2- and 0.2-fold increase in the disulfide bond and α-helix content, respectively, compared with the control FWN. This resulted in enhanced gluten structure, improved springiness and viscidity, and reduced cooking loss by 14.47 %-52.19 %. The scanning electron microscopy analysis revealed that the starch particles were entrapped by PCPs, leading to higher gelatinization temperature and lower setback value of FWN, thereby reducing the starch digestion ratio to 55.50 %. In summary, the findings suggested that FWN containing PCPs can extend shelf life, improve taste, and slow starch digestion staple.
Collapse
Affiliation(s)
- Siqing Xiong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Pengcheng Tao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuanguo Yu
- Hemudu Yuanguo Agricultural Products Development Co., Ltd, Yuyao 315414, China
| | - Wenbing Wu
- Hunan Fenggu Food Technology Co., Ltd, Loudi 417612, China
| | - Yongxin Li
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Gang Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Huqing Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
13
|
Lu Y, Qin L, Mao Y, Lnong X, Wei Q, Su J, Chen S, Wei Z, Wang L, Liao X, Zhao L. Antibacterial activity of a polysaccharide isolated from litchi (Litchi chinensis Sonn.) pericarp against Staphylococcus aureus and the mechanism investigation. Int J Biol Macromol 2024; 279:134788. [PMID: 39173786 DOI: 10.1016/j.ijbiomac.2024.134788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
The long-term use of antibiotics can cause drug resistance. Natural polysaccharides are a novel means of treating bacterial infections, and the development and utilization of litchi pericarp polysaccharide (LPPs) as a bacteriostatic active substance offer a new research direction for the high-value utilization of litchi by-products. This study revealed that LPPs inhibited Staphylococcus aureus more than Escherichia coli, Listeria monocytogenes, and Salmonella typhimurium, with the minimum inhibitory concentrations of 145, 205, 325, and 445 μg/mL, respectively. The inhibitory activity of LPPs was insignificant for Bacillus subtilis at 505 μg/mL. The assessment of antibacterial mechanisms revealed that LPPs influenced the growth, conductivity, protein, and nucleic acid, reducing sugar, respiratory chain dehydrogenase activity, bacterial lipid peroxidation, intracellular adenosine triphosphate, and extracellular alkaline phosphatase levels of S. aureus. Of note, LPPs could modify the cell wall integrity and cell membrane permeability of S. aureus, resulting in the leakage of intracellular large and small molecules, inhibition of cellular respiratory metabolism, and oxidative losses. These processes exhibited an inhibitory effect and made the bacterium nonfunctional, thereby affecting its growth and metabolism or causing cell death. These findings provide support and insights into the potential application of LPPs as a natural antimicrobial agent.
Collapse
Affiliation(s)
- Yucui Lu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Homologous Resources Development of Medicine and Food, Nanning 530200, China
| | - Linyin Qin
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yuanhui Mao
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xianmei Lnong
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Qianni Wei
- Beihai Vocational College, Beihai 536000, China
| | - Junwen Su
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Shuwen Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zhongshi Wei
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Lijing Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiayun Liao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Homologous Resources Development of Medicine and Food, Nanning 530200, China.
| | - Lichun Zhao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Homologous Resources Development of Medicine and Food, Nanning 530200, China.
| |
Collapse
|
14
|
Wang J, Xu X, Zou X, Zhang R, Jia X, Dong L, Deng M, Zhang M, Huang F. Effect of ultrasound assisted H 2O 2 degradation on longan polysaccharide: degradation kinetics, physicochemical properties and prebiotic activity. Int J Biol Macromol 2024; 282:136902. [PMID: 39471915 DOI: 10.1016/j.ijbiomac.2024.136902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/23/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
This study aimed to investigate the effect of ultrasound-assisted H2O2 (US/H2O2) reaction on degradation parameters and kinetics, physicochemical properties and prebiotic activity of longan polysaccharide (LP). Results showed that US/H2O2 had a synergistic effect on the degradation of LP, and its kinetic equation followed to the fist - order model. US/H2O2 degradation did not change the chemical and monosaccharide composition of LP but altered their ratio. Compared with LP, three degraded polysaccharides (DLPs) displayed lower molecular weight, particle size and viscosity, but higher solubility. SEM and AFM revealed that US/H2O2 degradation led to significant differences in the microstructure and solution conformation of LP. Moreover, LP and DLPs showed different proliferation effects on four lactobacilli and bifidobacteria strains, among which DLP-8 (degraded for 8 h) exhibited the strongest prebiotic activity. US/H2O2 could be effectively applied to the degradation of LP to improve its physicochemical properties and bioactivities.
Collapse
Affiliation(s)
- Jidongtian Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xiang Xu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xiaoqin Zou
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xuchao Jia
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Mei Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| |
Collapse
|
15
|
Huang R, Yu H. Extraction methods, chemical compositions, molecular structure, health functions, and potential applications of tea polysaccharides as a promising biomaterial: a review. Int J Biol Macromol 2024; 277:134150. [PMID: 39059531 DOI: 10.1016/j.ijbiomac.2024.134150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Tea polysaccharides (TPS) have attracted much attention due to their multiple biological activities, excellent biocompatibility and good biodegradability, creating a wide range of potential applications in the food and pharmaceutical industries. However, the high molecular weight and complexity of TPS components have restricted its purification and bioactivity, limiting its potential applications. In this review, the effects of various extraction methods, tea processing, and degree of fermentation on the composition and structure of TPS were thoroughly investigated to overcome this dilemma. Through a comprehensive analysis of in vivo and in vitro studies, the health benefits of TPS are discussed in detail, including antioxidant, anti-obesity, modulation of gut microbial communities, and anticancer bioactivities. Typical structural characterization techniques of TPS are also summarized, and interactions with common food components are discussed in depth, providing a deeper perspective on the overall knowledge of TPS. Finally, this review offers an extensive overview of the wide range of applications of TPS, including its strong emulsifying properties and bio-accessibility, in various fields such as food nutrition, drug delivery, encapsulation films, and emulsifiers. This review aims to provide a theoretical basis for the profound development of TPS for productive utilization.
Collapse
Affiliation(s)
- Rong Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Minghang, Shanghai 200030, China.
| | - Hongfei Yu
- North Ring Road no.1, Xinyang Agriculture and Forestry University, Pingqiao, Xinyang, He'nan, China
| |
Collapse
|
16
|
Zhang M, Wang Y, Li Q, Luo Y, Tao L, Lai D, Zhang Y, Chu L, Shen Q, Liu D, Wu Y. Ultrasound-assisted extraction of polysaccharides from Ginkgo biloba: Process optimization, composition and anti-inflammatory activity. Heliyon 2024; 10:e37811. [PMID: 39315214 PMCID: PMC11417318 DOI: 10.1016/j.heliyon.2024.e37811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Plant derived polysaccharides can enhance immune function in the human body, effectively prevent diseases, and reduce the probability of bacterial infections. Ginkgo crude polysaccharide (GCP) was obtained from Ginkgo biloba by ultrasonic-assisted hot water extraction. Our data showed that the best extraction conditions of GCP were as follows: extraction temperature 80 °C, ultrasonic time 35 min, extraction time 3 h, and solid‒liquid ratio 1:30. Fourier transform infrared spectrometer (FT-IR) data showed that this polysaccharide might be an acidic polysaccharide with a carboxylic acid ring structure. Further studies implied that GCP was mainly composed of glucose, galacturonic acid, rhamnose, galactose and arabinose, accounting for 39.45 %, 25.01 %, 15.40 %, 11.94 % and 4.25 %, respectively. 0.1, 1 and 10 mg/mL GCP reduced the release of inflammatory factors in RAW264.7 cells via inhibition of the nuclear factor kappa-light-chain-enhancer of activated B (NF-κB) signalling pathway. GCP was separated into five components with different molecular weights by an ultrafiltration membrane. Our data showed that GPa with a molecular weight ≥100 kDa was the main component of GCP. 1 mg/mL GPa, GPb, GPc and GPd had anti-inflammatory activities, and 1 mg/mL GPa had the best anti-inflammatory activities. Our results preliminarily reveal the elements and biological activity of GCP, which will provide a reference for the development of Ginkgo biloba.
Collapse
Affiliation(s)
- Mengzhi Zhang
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yifei Wang
- Orient Science and Technology College of Hunan Agricultural University, Changsha, 410128, China
| | - Qiuyi Li
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yunfang Luo
- Changsha Medical University, Changsha, 410219, China
| | - Li Tao
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Dengli Lai
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Yu Zhang
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Ling Chu
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Qingwu Shen
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Dongbo Liu
- Horticulture and Landscape College, Hunan Agricultural University, Changsha, 410128, China
- State Key Laboratory of Subhealth Intervention Technology, Changsha, 410128, China
| | - Yanyang Wu
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
- Horticulture and Landscape College, Hunan Agricultural University, Changsha, 410128, China
- State Key Laboratory of Subhealth Intervention Technology, Changsha, 410128, China
| |
Collapse
|
17
|
Zhang Q, Wang Z, Qin Z, Li B, Guo Z. Effect of Pretreatment of Activated Carbon on Iron Oxide-Loaded Catalysts to Significantly Enhance Production of Sebacic Acid from Castor Oil. Molecules 2024; 29:4504. [PMID: 39339499 PMCID: PMC11435424 DOI: 10.3390/molecules29184504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
This study explores the efficient conversion of castor oil to sebacic acid utilizing iron oxide (Fe2O3) loaded on activated carbons as catalysts. Through a combination of saponification, acidification, and catalytic cracking, sebacic acid was produced with a notable yield improvement. The process involved using liquid paraffin as a thinning agent, overcoming the limitations of traditional toxic agents. The catalysts were prepared via adsorption-precipitation-calcination methods, with ultrasonication pretreatment to enhance iron adsorption on activated carbons. The chemical composition, structure, and morphology properties were investigated by different characterizations; such as scanning electron microscopy (SEM), thermogravimetric analysis (TG/DTG). Systematic investigations into the adsorption capacity, catalytic activity, and operational parameters like temperature, reaction time, and catalyst recycling were conducted. The optimized method achieved a sebacic acid yield of 83.4%, significantly higher than traditional methods (60.2%), with improved safety and environmental impact. The study provides valuable insights into sustainable and efficient sebacic acid production which is crucial for industrial applications in processing of castor oil.
Collapse
Affiliation(s)
- Qingyun Zhang
- College of Food Science and Engineering, Northwest University, Xi’an 710069, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhulin Wang
- College of Food Science and Engineering, Northwest University, Xi’an 710069, China
| | - Zhichao Qin
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Binglin Li
- College of Food Science and Engineering, Northwest University, Xi’an 710069, China
| | - Zisheng Guo
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China
| |
Collapse
|
18
|
Wu W, Wang Y, Yi P, Su X, Mi Y, Wu L, Tan Q. Various steaming durations alter digestion, absorption, and fermentation by human gut microbiota outcomes of Polygonatum cyrtonema Hua polysaccharides. Front Nutr 2024; 11:1466781. [PMID: 39364149 PMCID: PMC11446882 DOI: 10.3389/fnut.2024.1466781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Introduction Different steaming durations dramatically alter the structure of Polygonatum cyrtonema polysaccharides (PCPs). This study aimed to compare characteristics of digestion, absorption, and fermentation by gut microbiota across four representative PCPs from different steaming durations (0, 4, 8, and 12 h), each with unique molecular weights and monosaccharide profiles. Methods Chemical composition of the four PCPs was analyzed. Digestibility was evaluated using an in vitro saliva-gastrointestinal digestion model. Absorption characteristics were assessed with a Caco-2 monolayer model, and impacts on gut microbiota composition and short chain fatty acid (SCFA) levels were analyzed using in vitro fermentation with human gut microbiota. Results Longer steaming durations altered the chemical profiles of PCPs, reducing carbohydrate content (84.87-49.58%) and increasing levels of uronic acid (13.99-19.61%), protein (1.07-5.43%), and polyphenols (0.05-2.75%). Four PCPs were unaffected by saliva digestion but showed enhanced gastrointestinal digestibility, with reducing sugar content rising from 4.06% (P0) to 38.5% (P12). The four PCPs showed varying absorption characteristics, with P0 having the highest permeability coefficient value of 9.59 × 10-8 cm/s. However, all PCPs exhibited poor permeability, favoring gut microbiota fermentation. The four PCPs altered gut microbiota composition and elevated SCFA production, but levels declined progressively with longer steaming durations. All PCPs significantly increased the abundance of Bacteroidota, Firmicutes, and Actinobacteriota, making them the dominant bacterial phyla. Additionally, all PCPs significantly increased the abundance of Bifidobacterium, Prevotella, and Faecalibacterium compared to the control group, which, along with Bacteroides, became the dominant microbiota. Increasing the steaming duration led to a reduction in Prevotella levels, with PCPs from raw rhizomes showing the highest relative abundance at 24.90%. PCPs from moderately steamed rhizomes (4 h) led to a significant rise in Faecalibacterium (7.73%) among four PCPs. P8 and P12, derived from extensively steamed rhizomes (≥8 h), exhibited similar gut microbiota compositions, with significantly higher relative abundances of Bacteroides (20.23-20.30%) and Bifidobacterium (21.05-21.51%) compared to P0 and P4. Discussion This research highlights the importance of adjusting steaming durations to maximize the probiotic potential of P. cyrtonema polysaccharides, enhancing their effectiveness in modulating gut microbiota and SCFA levels.
Collapse
Affiliation(s)
- Weijing Wu
- Xiamen Medical College, Xiamen, China
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China
| | | | - Ping Yi
- Xiamen Medical College, Xiamen, China
| | - Xufeng Su
- Xiamen Medical College, Xiamen, China
| | - Yan Mi
- Xiamen Medical College, Xiamen, China
| | - Lanlan Wu
- Xiamen Medical College, Xiamen, China
| | | |
Collapse
|
19
|
Wu X, Li W, Li S, Zhu S, Pan F, Gu Q, Song D. Hypolipidemic effect of polysaccharide from Sargassum fusiforme and its ultrasonic degraded polysaccharide on zebrafish fed high-fat diet. Int J Biol Macromol 2024; 276:133771. [PMID: 38992531 DOI: 10.1016/j.ijbiomac.2024.133771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Sargassum fusiforme is a brown seaweed that grows abundantly along the rocky coastlines of Asian countries. The polysaccharides derived from Sargassum fusiforme (SFPS) have received much interest due to their various bioactivities, such as hypolipidemic, hypoglycemic, and antioxidant activities. In this study, we extracted and purified SFPS, and obtained the ultrasonic degradation product (SFPSUD). The lipid regulatory effects of SFPS and SFPSUD were investigated in a zebrafish model fed a high-fat diet. The results showed that SFPS significantly decreased the levels of total cholesterol (TC) and triglycerides (TG), and increased the activities of lipoprotein lipase (LPL) and hepatic lipase (HL). SFPSUD was more effective than the SFPS in reducing the TC and TG levels in zebrafish, as well as increasing the LPL and HL activities. Histopathological observations of zebrafish livers showed that SFPSUD significantly improved lipid metabolism disorder in the hepatocytes. The possible lipid-lowering mechanism in zebrafish associated with SFPS and SFPSUD may involve acceleration of the lipid metabolism rate by increasing the activities of LPL and HL. Thus, SFPSUD could be tested as a highly effective hypolipidemic drug. Our results suggest that SFPS and SFPSUD have potential uses as functional foods for the prevention and treatment of hyperlipidemia. Ultrasound can be effectively applied to degrade SFPS to improve its physicochemical properties and bioactivities.
Collapse
Affiliation(s)
- Xuhan Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Wenqing Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Shengjie Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Sunting Zhu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Feng Pan
- Wenzhou Xingbei Seaweed Food Co., Ltd., China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Dafeng Song
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China.
| |
Collapse
|
20
|
Duan Y, Hu Z, Jin L, Zong T, Zhang X, Liu Y, Yang P, Sun J, Zhou W, Li G. Efficient degradation and enhanced anticomplementary activity of Belamcanda chinensis (L.) DC. polysaccharides via trifluoroacetic acid treatment with different degrees. Int J Biol Macromol 2024; 276:134117. [PMID: 39084989 DOI: 10.1016/j.ijbiomac.2024.134117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
The degradation of Belamcanda chinensis (L.) DC. polysaccharides was carried out by five concentrations of trifluoroacetic acid (TFA) (1-5 mol/L), and their physicochemical properties, degradation kinetics and anticomplementary activity were investigated. The findings revealed a notable reduction in the molecular weight of BCP, from an initial value of 2.622 × 105 g/mol to a final value of 6.255 × 104 g/mol, and the water solubility index increased from 90.66 ± 0.42 % to 97.78 ± 0.43 %. The degraded polysaccharides of B. chinensis exhibited a comparable monosaccharide composition comprising Man, GalA, Glc, Gal, and Ara. As the concentration of TFA increased, the degradation rate constant increased from 1.468 × 10-3 to 5.943 × 10-3, and the process followed the first-order degradation kinetic model (R2 > 0.97) and the random fracture model (R2 > 0.96). Furthermore, the five degraded polysaccharides still exhibit good thermal stability. In vitro experiments showed that DBCP-3 exhibited more potent anticomplementary activity than the original polysaccharides and positive drugs, which was strongly correlated with its Mw (r = 0.6-0.8), inhibiting complement activation by blocking C2 and C4. These results indicated that TFA degradation has a positive effect on polysaccharides, of which DBCP-3 is expected to treat diseases involving hyperactivation of the complement system.
Collapse
Affiliation(s)
- Yuanqi Duan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, PR China
| | - Zhengyu Hu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, PR China.
| | - Long Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, PR China
| | - Tieqiang Zong
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, PR China
| | - Xiaohui Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, PR China
| | - Yanan Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, PR China
| | - Pengcheng Yang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, PR China.
| | - Jinfeng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, PR China.
| | - Wei Zhou
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, PR China.
| | - Gao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, PR China.
| |
Collapse
|
21
|
Cai W, Luo Y, Xue J, Guo R, Huang Q. Effect of ultrasound assisted H 2O 2/Vc treatment on the hyperbranched Lignosus rhinocerotis polysaccharide: Structures, hydrophobic microdomains, and antitumor activity. Food Chem 2024; 450:139338. [PMID: 38631210 DOI: 10.1016/j.foodchem.2024.139338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/31/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
The effect of ultrasonic intensity (28.14, 70.35, and 112.56 W/cm2) on Lignosus rhinocerotis polysaccharide (LRP) degraded by ultrasound assisted H2O2/Vc system (U-H/V) was investigated. U-H/V broke the molecular chain of LRP and improved the conformational flexibility, decreasing the molecular weight, intrinsic viscosity ([η]) and particle size. The functional groups and hyperbranched structure of LRP were almost stable after U-H/V treatment, however, the triple helix structure of LRP was partially disrupted. With increasing ultrasonic intensity, the critical aggregation concentration increased from 0.59 mg/mL to 1.57 mg/mL, and the hydrophobic microdomains reduced. Furthermore, the LRP treated with U-H/V significantly inhibited HepG2 cell proliferation by inducing apoptosis. The increase in antitumor activity of LRP was closely associated with the reduction of molecular weight, [η], particle size and hydrophobic microdomains. These results revealed that U-H/V treatment facilitates the degradation of LRP and provides a better insight into the structure-antitumor activity relationship of LRP.
Collapse
Affiliation(s)
- Wudan Cai
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States of America
| | - Jingyi Xue
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States of America
| | - Ruotong Guo
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qilin Huang
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
22
|
Liu W, Qin YM, Shi JY, Wu DL, Liu CY, Liang J, Xie SZ. Effect of ultrasonic degradation on the physicochemical characteristics, GLP-1 secretion, and antioxidant capacity of Polygonatum cyrtonema polysaccharide. Int J Biol Macromol 2024; 274:133434. [PMID: 38936570 DOI: 10.1016/j.ijbiomac.2024.133434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
This study aimed to evaluate the influence of ultrasonic degradation on the physicochemical and biological characteristics of Polygonatum cyrtonema polysaccharide (PCP, 8.59 kDa). PCP was subjected to ultrasonic treatment for 8, 16, and 24 h and yielded the degraded fractions PCP-8, PCP-16, and PCP-24 (5.06, 4.13, and 3.69 kDa), respectively. Compared with the intact PCP, PCP-8, PCP-16 and PCP-24 had a reduced particle size (decrements of 28.03 %, 46.15 % and 62.54 %, respectively). Although ultrasonic degradation did not alter the primary structure of PCP, its triple helical and superficial structures were disrupted, with degraded fractions demonstrating reduced thermal stability and apparent viscosities compared with those of the intact PCP. Furthermore, the functional properties of the degraded fractions were different. PCP-16 most favourably affected GLP-1 secretion, while PCP-8 and PCP-24 exhibited the strongest antioxidant and enzyme inhibitory activities, respectively. Hence, controlled ultrasound irradiation is an appealing approach for partially degrading PCP and enhancing its bioactivity as a functional agent.
Collapse
Affiliation(s)
- Wang Liu
- School of Pharmacy, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Ya-Min Qin
- School of Pharmacy, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Jin-Yang Shi
- School of Pharmacy, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - De-Ling Wu
- School of Pharmacy, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, China.
| | - Chun-Yang Liu
- School of Pharmacy, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Juan Liang
- School of Pharmacy, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Song-Zi Xie
- School of Pharmacy, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, China.
| |
Collapse
|
23
|
Pan Y, Liu C, Jiang S, Guan L, Liu X, Wen L. Ultrasonic-assisted extraction of a low molecular weight polysaccharide from Nostoc commune Vaucher and its structural characterization and immunomodulatory activity. ULTRASONICS SONOCHEMISTRY 2024; 108:106961. [PMID: 38936294 PMCID: PMC11260389 DOI: 10.1016/j.ultsonch.2024.106961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024]
Abstract
In the current study, a novel crude polysaccharide (cNCEP) was extracted from N. commune Vaucher utilizing ultrasonic-assisted extraction (UAE) with 60 % ethanol, employing response surface methodology. The optimal yield of cNCEP was determined to be 8.07 ± 0.08 mg/g, achieved through ultrasonic-assisted extraction under the conditions of a material-to-liquid ratio of 1:22, temperature of 56 °C, power of 570 W, and duration of 147 min. Subsequent purification of NCEP via Sephadex G75 resulted in a novel polysaccharide with a molecular weight of 20.466 kDa. NCEP exhibited significant scavenging activites against DPPH and hydroxyl radicals, as well as notable in vitro immunomodulatory properties. Furthermore, the mechanisms underlying the immunomodulatory effects of NCEP, involving enhancement of immunity, were investigated, revealing potential regulation of MAPK and TLR4-IRF7-NF-κB signaling pathways through RNA-Seq and Western blot analyses. These findings highlight the promising potential of NCEP as an organic immunomodulatory agent and functional food ingredient.
Collapse
Affiliation(s)
- Ying Pan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; Jilin Province Economic Management Cadre College,Changchun 130012, PR China
| | - Chunjuan Liu
- Jilin Province Economic Management Cadre College,Changchun 130012, PR China
| | - Shuo Jiang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Lili Guan
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, PR China
| | - Xinyao Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China.
| | - Liankui Wen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China.
| |
Collapse
|
24
|
Zhang H, Li Y, Fu Y, Jiao H, Wang X, Wang Q, Zhou M, Yong YC, Liu J. A structure-functionality insight into the bioactivity of microbial polysaccharides toward biomedical applications: A review. Carbohydr Polym 2024; 335:122078. [PMID: 38616098 DOI: 10.1016/j.carbpol.2024.122078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Microbial polysaccharides (MPs) are biopolymers secreted by microorganisms such as bacteria and fungi during their metabolic processes. Compared to polysaccharides derived from plants and animals, MPs have advantages such as wide sources, high production efficiency, and less susceptibility to natural environmental influences. The most attractive feature of MPs lies in their diverse biological activities, such as antioxidative, anti-tumor, antibacterial, and immunomodulatory activities, which have demonstrated immense potential for applications in functional foods, cosmetics, and biomedicine. These bioactivities are precisely regulated by their sophisticated molecular structure. However, the mechanisms underlying this precise regulation are not yet fully understood and continue to evolve. This article presents a comprehensive review of the most representative species of MPs, including their fermentation and purification processes and their biomedical applications in recent years. In particular, this work presents an in-depth analysis into the structure-activity relationships of MPs across multiple molecular levels. Additionally, this review discusses the challenges and prospects of investigating the structure-activity relationships, providing valuable insights into the broad and high-value utilization of MPs.
Collapse
Affiliation(s)
- Hongxing Zhang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yan Li
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yinyi Fu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Haixin Jiao
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Xiangyu Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Qianqian Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Mengbo Zhou
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jun Liu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
25
|
Xu G, Fang S, Li J, Li X, Jia Y, Song Y, Wang J, Wang L, Zhang H. Rational modification of xanthan gum based on assistance of molecular dynamics simulation. Int J Biol Macromol 2024; 271:132625. [PMID: 38795884 DOI: 10.1016/j.ijbiomac.2024.132625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Graft copolymerization is an effective approach to improve performance of polysaccharide. However, selecting the most suitable modification strategy can be challenging due to the intricate molecular structure. Rational design through computer aided molecular dynamics (MD) simulations requires substantial computational resources. This study designed a simplified MD simulation strategy and suggested that grafting acrylamide (AM) could effectively adjust the molecular conformation of xanthan gum (XG) and its derivatives, thus regulating its viscosity and gelation properties. To rationally modify XG, a uniform experimental design was applied to tune the grafting ratios ranging from 72 % to 360 %, resulting in XG-AM solutions with viscosity ranging from 9 to 104 mPa•s at a concentration of 0.3 %. XG-AM was crosslinked by acid phenolic resin to generate gel with the viscosity of 7890 mPa·s in 3 days, which was 13 times the viscosity of unmodified XG. The controllable gelation will enhance the efficacy of XG-AM in oil recovery. By integrating rational selection of grafting strategies based on simplified MD simulation of polysaccharide derivatives and controllable grafting modification with specified grafting rates, customized production of polysaccharide derivatives can meet the requirements of a diverse range of applications.
Collapse
Affiliation(s)
- Guorui Xu
- Tianjin Branch of China Oilfield Services Limited, Tianjin 300450, Tianjin, China
| | - Senbiao Fang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China; Shandong Energy Institute, Qingdao 266101, Shandong, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, Shandong, China
| | - Jianye Li
- Tianjin Branch of China Oilfield Services Limited, Tianjin 300450, Tianjin, China
| | - Xiang Li
- Tianjin Branch of China Oilfield Services Limited, Tianjin 300450, Tianjin, China
| | - Yongkang Jia
- Tianjin Branch of China Oilfield Services Limited, Tianjin 300450, Tianjin, China
| | - Yajie Song
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China; Shandong Energy Institute, Qingdao 266101, Shandong, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, Shandong, China
| | - Jiming Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China; Shandong Energy Institute, Qingdao 266101, Shandong, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, Shandong, China.
| | - Lei Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China; Shandong Energy Institute, Qingdao 266101, Shandong, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, Shandong, China.
| | - Haibo Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China; Shandong Energy Institute, Qingdao 266101, Shandong, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, Shandong, China.
| |
Collapse
|
26
|
Wang Z, Zheng Y, Hu Y, Yang L, Liu X, Zhao R, Gao M, Li Z, Feng Y, Xu Y, Li N, Yang J, Wang Q, An L. Improvement of antibacterial activity of polysaccharides via chemical modification: A review. Int J Biol Macromol 2024; 269:132163. [PMID: 38729490 DOI: 10.1016/j.ijbiomac.2024.132163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Antibiotic residue and bacterial resistance induced by antibiotic abuse have seriously threatened food safety and human healthiness. Thus, the development and application of safe, high-efficiency, and environmentally friendly antibiotic alternatives are urgently necessary. Apart from antitumor, antivirus, anti-inflammatory, gut microbiota regulation, immunity improvement, and growth promotion activities, polysaccharides also have antibacterial activity, but such activity is relatively low, which cannot satisfy the requirements of food preservation, clinical sterilization, livestock feeding, and agricultural cultivation. Chemical modification not only provides polysaccharides with better antibacterial activity, but also promotes easy operation and large-scale production. Herein, the enhancement of the antibacterial activity of polysaccharides via acetylation, sulfation, phosphorylation, carboxymethylation, selenation, amination, acid graft, and other chemical modifications is reviewed. Meanwhile, a new trend on the application of loading chemically modified polysaccharides into nanostructures is discussed. Furthermore, possible limitations and future recommendations for the development and application of chemically modified polysaccharides with better antibacterial activity are suggested.
Collapse
Affiliation(s)
- Zichao Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yi Zheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yiwei Hu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Libo Yang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056038, China.
| | - Xirui Liu
- School of Foreign Languages, Henan University of Technology, Zhengzhou 450001, China
| | - Renyong Zhao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zhitao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yingjie Feng
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Yongming Xu
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Na Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China.
| | - Qi Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Lemei An
- Department of Rheumatology and Clinical Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| |
Collapse
|
27
|
Liang M, Wu Y, Sun J, Zhao Y, Liu L, Zhao R, Wang Y. Ultrasound-Assisted Extraction of Atractylodes chinensis (DC.) Koidz. Polysaccharides and the Synergistic Antigastric Cancer Effect in Combination with Oxaliplatin. ACS OMEGA 2024; 9:18375-18384. [PMID: 38680328 PMCID: PMC11044243 DOI: 10.1021/acsomega.4c00364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
Oxaliplatin (OXA) is recognized as a first-line drug for gastric cancer. However, low accumulation of the OXA in the target site and the development of drug resistance directly led to treatment failure. In the present study, an ultrasonic extraction method for Atractylodes chinensis (DC.) Koidz. polysaccharides (AKUs) and the combination treatment with OXA in vitro were studied. Results showed that when the pH level was 11, the ultrasound power at 450 W, the solid-liquid ratio was 1:20, and the ultrasound treatment for 30 min, the yield of AKUs was significantly increased to 13.20 ± 0.35%. The molecular weights of the AKUs ranged from 7.21 to 185.94 kDa, and its monosaccharides were mainly composed of arabinose (Ara), galactose (Gal), and glucose (Glu) with a ratio of 58.36, 16.90, and 15.49%, respectively. Cell experiments showed that, compared to OXA alone (2 μg/mL, inhibition rate of 18%), the treatment of OXA with AKUs had a significant synergistic inhibitory effect on MKN45 proliferation, which increased to 33, 41, and 45% with increasing AKUs concentrations (5-50 μg/mL), respectively, representing a 2.5-fold inhibition. Inductively coupled plasma-mass spectrometry (ICP-MS) determination confirmed that AKUs significantly increased the intracellular uptake of OXA by 29%, compared to that of OXA alone. We first demonstrated that the combined synergistic inhibitory effect of AKUs and OXA on gastric cancer cells was mediated by reducing the expression of efflux proteins (MRP1 and MRP2) and increasing the expression of ingested protein (OCT2). As a result of the above, AKUs deserved to be an effective adjuvant combined with chemotherapeutics in a clinical setting.
Collapse
Affiliation(s)
- Minjie Liang
- School
of Chinese Materia Medica, Guangdong Pharmaceutical
University, Guangzhou 510006, China
| | - Yayun Wu
- State
Key Laboratory of Dampaness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510006, China
| | - Jimin Sun
- School
of Chinese Materia Medica, Guangdong Pharmaceutical
University, Guangzhou 510006, China
| | - Ya Zhao
- State
Key Laboratory of Dampaness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510006, China
| | - Lijuan Liu
- State
Key Laboratory of Dampaness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510006, China
| | - Ruizhi Zhao
- State
Key Laboratory of Dampaness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510006, China
| | - Yan Wang
- School
of Chinese Materia Medica, Guangdong Pharmaceutical
University, Guangzhou 510006, China
| |
Collapse
|
28
|
Yu C, Zhu H, Fang Y, Qiu Y, Lei P, Xu H, Zhang Q, Li S. Efficient conversion of cane molasses into Tremella fuciformis polysaccharides with enhanced bioactivity through repeated batch culture. Int J Biol Macromol 2024; 264:130536. [PMID: 38432273 DOI: 10.1016/j.ijbiomac.2024.130536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Tremella fuciformis polysaccharide (TFPS) is a natural mushroom mucopolysaccharide widely used in health foods, medical care, cosmetic and surgical materials. In this study, we developed an efficient strategy for the repeated batch production of highly bioactive TFPS from the agro-industrial residue cane molasses. Cane molasses contained 39.92 % sucrose (w/w), 6.36 % fructose and 3.53 % glucose, all of which could be utilized by T. fuciformis spores, whereas, the TFPS production efficiency only reached 0.74 g/L/d. Corn cobs proved to be the best immobilized carrier that could tightly absorb spores and significantly shorten the fermentation lag period. The average yield of TFPS in eight repeated batch culture was 5.52 g/L with a production efficiency of 2.04 g/L/d. The average fermentation cycle after optimization was reduced by 61.61 % compared with the initial conditions. Compared to glucose as a carbon source, cane molasses significantly increased the proportion of low-molecular-weight TFPS (TFPS-2) in total polysaccharides from 3.54 % to 17.25 % (w/w). Moreover, TFPS-2 exhibited potent antioxidant capacity against four free radicals (O2-, ABTS+, OH, and DPPH). In conclusion, this study lays the foundation for the efficient conversion of cane molasses and production of TFPS with high bioactivity.
Collapse
Affiliation(s)
- Caiyuan Yu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Haipeng Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yan Fang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yibin Qiu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qi Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
29
|
Zhang B, Zhang M, Tian J, Zhang X, Zhang D, Li J, Yang L. Advances in the regulation of radiation-induced apoptosis by polysaccharides: A review. Int J Biol Macromol 2024; 263:130173. [PMID: 38360238 DOI: 10.1016/j.ijbiomac.2024.130173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/03/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Polysaccharides are biomolecules composed of monosaccharides that are widely found in animals, plants and microorganisms and are of interest for their various health benefits. Cumulative studies have shown that the modulation of radiation-induced apoptosis by polysaccharides can be effective in preventing and treating a wide range of radiation injuries with safety and few side effects. Therefore, this paper summarizes the monosaccharide compositions, molecular weights, and structure-activity relationships of natural polysaccharides that regulate radiation-induced apoptosis, and also reviews the molecular mechanisms by which these polysaccharides modulate radiation-induced apoptosis, primarily focusing on promoting cancer cell apoptosis to enhance radiotherapy efficacy, reducing radiation damage to normal tissues, and inhibiting apoptosis in normal cells. Additionally, the role of gut microbiota in mediating the interaction between polysaccharides and radiation is discussed, providing innovative ideas for various radiation injuries, including hematopoiesis, immunity, and organ damage. This review will contribute to a better understanding of the value of natural polysaccharides in the field of radiation and provide guidance for the development of natural radioprotective agents and radiosensitizers.
Collapse
Affiliation(s)
- Beibei Zhang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China; Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Mingyu Zhang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China; Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xi Zhang
- Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Dan Zhang
- Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Jiabao Li
- Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Lei Yang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China; Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China.
| |
Collapse
|
30
|
Bamigbade GB, Subhash AJ, Al-Ramadi B, Kamal-Eldin A, Gan RY, Liu SQ, Ayyash M. Gut microbiota modulation, prebiotic and bioactive characteristics of date pomace polysaccharides extracted by microwave-assisted deep eutectic solvent. Int J Biol Macromol 2024; 262:130167. [PMID: 38360226 DOI: 10.1016/j.ijbiomac.2024.130167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
This study investigated the characteristics of polysaccharides from date pomace using microwave-assisted deep eutectic solvents. The impact on the gut microbiota and probiotics growth was examined in vitro. The study also examined its antioxidant properties, ability to inhibit enzymes linked to diabetes and high blood pressure, impact on cell growth, and physical properties. The isolated MPS had an average molecular weight of 8073.38 kDa and contained mannose, galacturonic acid, galactose, glucose, and fructose in specific proportions. At a concentration of 1000 mg/L, MPS showed strong antioxidant activity, with significant scavenging rates in various tests such as DPPH (57.0 ± 1.05 %) and ABTS (66.4 ± 2.48 %). MPS displayed 77 %, 80 %, and 43 % inhibition for α-amylase, α-glucosidase, and ACE-inhibition, respectively. MPS displayed significant antiproliferative effects, achieving 100 % and 99 % inhibition against Caco-2 and MCF-7 cells at 2500 mg/L, respectively. MPS showed broad-spectrum antibacterial properties against both Gram-positive and Gram-negative foodborne bacteria. Gemmiger formicilis, Blautia species, Collinsella aerofaciens, and Bifidobacterium longum showed strong positive correlations, suggesting increased SCFA production. Network analysis indicated species correlations, with 86 % showing negative correlations with Escherichia and Enterococcus saccharolyticus. MPS was abundant in Firmicutes, Actinobacteria, and Proteobacteria phyla. Date pomace could serve as a dietary fiber source, promoting better health.
Collapse
Affiliation(s)
- Gafar Babatunde Bamigbade
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain, United Arab Emirates
| | - Athira Jayasree Subhash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain, United Arab Emirates
| | - Basel Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Afaf Kamal-Eldin
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain, United Arab Emirates
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore 138669, Singapore
| | - Shao Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates.
| |
Collapse
|
31
|
Chakraborty S, Paidi MK, Dhinakarasamy I, Sivakumar M, Clements C, Thirumurugan NK, Sivakumar L. Adaptive mechanism of the marine bacterium Pseudomonas sihuiensis-BFB-6S towards pCO 2 variation: Insights into synthesis of extracellular polymeric substances and physiochemical modulation. Int J Biol Macromol 2024; 261:129860. [PMID: 38309406 DOI: 10.1016/j.ijbiomac.2024.129860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Marine bacteria can adapt to various extreme environments by the production of extracellular polymeric substances (EPS). Throughout this investigation, impact of variable pCO2 levels on the metabolic activity and physiochemical modulation in EPS matrix of marine bacterium Pseudomonas sihuiensis - BFB-6S was evaluated using a fluorescence microscope, excitation-emission matrix (EEM), 2D-Fourier transform infrared correlation spectroscopy (2D-ATR-FTIR-COS), FT-NMR and TGA-DSC. From the results at higher pCO2 levels, there was a substantial reduction in EPS production by 58-62.8 % (DW). In addition to the biochemical composition of EPS, reduction in carbohydrates (8.7-47.6 %), protein (7.1-91.5 %), and lipids (16.9-68.6 %) content were observed at higher pCO2 levels. Functional discrepancies of fluorophores (tyrosine and tryptophan-like) in EPS, speckled differently in response to variable pCO2. The 2D-ATR-FTIR-COS analysis revealed functional amides (CN, CC, CO bending, -NH bending in amines) of EPS were preferentially altered, which led to the domination of polysaccharides relevant functional groups at higher pCO2. 1H NMR analysis of EPS confirmed the absence of chemical signals from H-C-COOH of proteins, α, β anomeric protons, and acetyl group relevant region at higher pCO2 levels. These findings can contribute new insights into the influence of pCO2 on the adaptation of marine microbes in future ocean acidification scenarios.
Collapse
Affiliation(s)
- Subham Chakraborty
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES-Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Murali Krishna Paidi
- CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Inbakandan Dhinakarasamy
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES-Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India.
| | - Manikandan Sivakumar
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES-Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Clarita Clements
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES-Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Naren Kumar Thirumurugan
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES-Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Lakshminarayanan Sivakumar
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES-Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| |
Collapse
|
32
|
Zheng CC, Li T, Tang YY, Lu T, Wu MK, Sun J, Man RJ, He XM, Zhou ZG. Structural and functional investigation on stem and peel polysaccharides from different varieties of pitaya. Int J Biol Macromol 2024; 259:129172. [PMID: 38176496 DOI: 10.1016/j.ijbiomac.2023.129172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/19/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Varieties of plant species may affect the composition and structures of the polysaccharides, thus have an impact on their chemical properties and biological activities. Herein, the present study comparatively evaluated the differences in the chemical composition, morphological structures, antioxidant activity, and anti-inflammatory activity of the stem and peel polysaccharides from different varieties of pitaya. The FT-IR and NMR spectra indicated that the six polysaccharides had similar structural features, whereas the physicochemical characterization showed that they differed significantly in terms of the monosaccharide composition, molecular weight, and surface morphology. In addition, different varieties of pitaya polysaccharides exhibited different antioxidant activities and similar anti-inflammatory activities. These data suggested that varietal differences resulted in pitaya stem and peel polysaccharides with different monosaccharide compositions and molecular weights, thus led to different antioxidant activities and protection against oxidative damage, while similar structural features were closely related to their similar anti-inflammatory activities. Therefore, the study of the stem and peel polysaccharides from different varieties of pitaya can help us to better understand the relationship between their composition and structure and their biological activities. In addition, pitaya stem and peel polysaccharides have the potential to act as antioxidants or to treat inflammatory damage.
Collapse
Affiliation(s)
- Chi-Chong Zheng
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, Nanning, China; Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China; Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, China; Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Nanning, China
| | - Tong Li
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, Nanning, China; Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China; Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, China
| | - Ya-Yuan Tang
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China; Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, China
| | - Tian Lu
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, Nanning, China; Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China; Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, China
| | - Meng-Ke Wu
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, Nanning, China; Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China; Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, China
| | - Jian Sun
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, China
| | - Ruo-Jun Man
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, Nanning, China; Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Nanning, China.
| | - Xue-Mei He
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China; Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, China.
| | - Zhu-Gui Zhou
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China; Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, China.
| |
Collapse
|
33
|
Huan C, Zhang R, Xie L, Wang X, Wang X, Wang X, Yao J, Gao S. Plantago asiatica L. polysaccharides: Physiochemical properties, structural characteristics, biological activity and application prospects: A review. Int J Biol Macromol 2024; 258:128990. [PMID: 38158057 DOI: 10.1016/j.ijbiomac.2023.128990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/14/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Plantago asiatica L. (PAL), a traditional herb, has been used in East Asia for thousands of years. In recent years, polysaccharides extracted from PAL have garnered increased attention due to their outstanding pharmacological and biological properties. Previous research has established that PAL-derived polysaccharides exhibit antioxidant, anti-inflammatory, antidiabetic, antitumor, antimicrobial, immune-regulatory, intestinal health-promoting, antiviral, and other effects. Nevertheless, a comprehensive summary of the research related to Plantago asiatica L. polysaccharides (PALP) has not been reported to date. In this paper, we review the methods for isolation and purification, physiochemical properties, structural features, and biological activities of PALP. To provide a foundation for research and application in the fields of medicine and food, this review also outlines the future development prospects of plantain polysaccharides.
Collapse
Affiliation(s)
- Changchao Huan
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Ruizhen Zhang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Li Xie
- Fujian Yixinbao Biopharmaceutical Co., Ltd., Zhangzhou, China
| | - Xingyu Wang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Xiaotong Wang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Xiaobing Wang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Jingting Yao
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Song Gao
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
34
|
Wang Q, Zhou X, Gou H, Chang H, Lan J, Li J, Li Z, Gao M, Wang Z, Yi Y, Li N. Antibacterial activity of a polysaccharide isolated from Artemisia argyi leaf against Staphylococcus aureus and mechanism investigation. Int J Biol Macromol 2023; 253:126636. [PMID: 37657565 DOI: 10.1016/j.ijbiomac.2023.126636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Abuse of antibiotics has led to excessive amounts of antibiotic residues in food and environment, thus enhancing pathogenic bacterium resistance and threatening human health. Therefore, searching and developing safe and green antibiotic alternatives are necessary. In this study, an Artemisia argyi leaf polysaccharide (AALP) fraction was extracted and analyzed. Chemical composition analysis showed that the carbohydrate, uronic acid, protein, and polyphenol content in AALP were 68.3 % ± 4.13 %, 9.4 % ± 0.86 %, 1.79 % ± 0.27 %, and 0.16 % ± 0.035 %, respectively. Chromatographic results suggested that AALP contained rhamnose, arabinose, glucosamine, galactose, glucose, xylose, mannose, galacturonic acid, and glucuronic acid in a molar ratio of 9.26, 1.35, 1.18, 3.04, 48.51, 2.33, 31.26, 3.93, and 9.08; the weight average molecular weight, number average molecular weight, and polydispersity of AALP were 5.41 kDa, 4.63 kDa, and 1.168, respectively. Fourier transform infrared spectroscopy indicated that AALP constituted the polysaccharide-specific groups of CH, CO, and OH. Meanwhile, AALP showed a dose-dependent inhibitory effect on Staphylococcus aureus in the inhibition zone assay, and the minimal inhibitory concentration was 1.25 mg/mL. Furthermore, AALP disrupted the cell wall, depolarized the inner membrane potential, and inhibited the activities of succinate dehydrogenase and malate dehydrogenase in S. aureus.
Collapse
Affiliation(s)
- Qi Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueyan Zhou
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Haiqin Gou
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - He Chang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Junyi Lan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jia Li
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Zhitao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zichao Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Yanjie Yi
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Na Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Provincial Key Laboratory of Ultrasound Imaging and Artificial Intelligence, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
35
|
Wang W, Liu X, Wang L, Song G, Jiang W, Mu L, Li J. Ficus carica polysaccharide extraction via ultrasound-assisted technique: Structure characterization, antioxidant, hypoglycemic and immunomodulatory activities. ULTRASONICS SONOCHEMISTRY 2023; 101:106680. [PMID: 37956509 PMCID: PMC10661605 DOI: 10.1016/j.ultsonch.2023.106680] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/22/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
In this research, the ultrasound-assisted extraction (UAE) conditions of the water-soluble polysaccharide (FCPS) from Ficus carica fruits were optimized using the response surface methodology. The optimal FCPS yield was 7.97 % achieved by conducting ultrasound-assisted extraction four times at a solid-liquid ratio of 1:20 (g/mL) and an ultrasound temperature of 70 °C. Then, the structure, antioxidant properties, hypoglycemic effects, and immunomodulatory activities of FCPS were evaluated. FCPS was characterized as irregular, rough-surfaced, flaky materials consisting of pyran-type polysaccharides with α- and β-glycosidic linkages, and composed of multiple monosaccharides and only one homogeneous concentrated polysaccharide component (FCPS1) with a molecular weight of 4.224 × 104 Da. The results suggested FCPS exhibited remarkable antioxidant activity in vitro, as evidenced by improved cell viability and reduced the reactive oxygen species (ROS) levels. Meanwhile, FCPS effectively improved liver-related insulin resistance by promoting glucose consumption in hepatocytes and activated the immune response through activation of murine bone marrow-derived dendritic cells (DCs) and upregulation of interleukin 6 (IL6) and interleukin 12 (IL-12) expression. The findings demonstrate the efficacy of the UAE technique in isolating FCPS with biological functionality and FCPS could potentially serve as a beneficial organic antioxidant source and functional food, carrying important implications for future studies.
Collapse
Affiliation(s)
- Weilan Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Xiaoying Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Lixue Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Guirong Song
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Wei Jiang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Lihong Mu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
36
|
Dou Z, Zhang Y, Tang W, Deng Q, Hu B, Chen X, Niu H, Wang W, Li Z, Zhou H, Zeng N. Ultrasonic effects on the degradation kinetics, structural characteristics and protective effects on hepatocyte lipotoxicity induced by palmitic acid of Pueraria Lobata polysaccharides. ULTRASONICS SONOCHEMISTRY 2023; 101:106652. [PMID: 37865008 PMCID: PMC10597800 DOI: 10.1016/j.ultsonch.2023.106652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
In this study, a high-molecular-weight Pueraria lobata polysaccharide (PLP) with a molecular weight of 273.54 kDa was degraded by ultrasound, and the ultrasonic degradation kinetics, structural characteristics and hepatoprotective activity of ultrasonic degraded PLP fractions (PLPs) were evaluated. The results showed that the ultrasonic treatment significantly reduced the Mw and particle size of PLP, and the kinetic equation of ultrasonic degradation of PLP followed to the midpoint fracture model (the fist-order model). The monosaccharide composition analysis, FT-IR, triple helix structure and XRD analysis all indicated that the ultrasound degradation did not destroy the primary structure of PLP, but the thermal stability of degraded fractions improved. Additionally, the scanning electron microscopy analysis demonstrated that the surface morphology of PLP was altered from smooth, flat, compact large flaky structure to a sparse rod-like structure with sparse crosslinking (PLP-7). The degraded PLP fractions (0.5 mg/mL) with lower Mw exhibited better antioxidant activities and protective effects against palmitic acid-induced hepatic lipotoxicity, which may be due to the increased exposure of active groups such as hydroxyl groups of PLP after ultrasound. Further investigation showed that PLPs not only increased Nrf2 phosphorylation and its nuclear translocation, thereby activating Nrf2/Keap1 signaling pathway, but also enhanced HO-1, NQO-1, γ-GCL gene expressions and promoted superoxide dismutase and catalase activities, which protected hepatocytes against PA-induced oxidative stress and lipotoxicity. Overall, our research might provide an in-depth insight into P. Lobata polysaccharide in ameliorating lipid metabolic disorders, and the results revealed that ultrasonic irradiation could be a promising degradation method to produce value-added polysaccharide for use in functional food.
Collapse
Affiliation(s)
- Zuman Dou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yulong Zhang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Waijiao Tang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Qiong Deng
- School of Business Administration, Guangzhou Institute of Science and Technology, Guangzhou 510282, China
| | - Baishun Hu
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Usnciciences, Enshi 445000, China
| | - Xianwei Chen
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Hui Niu
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Wenduo Wang
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Zhuang Li
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Nianyi Zeng
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
37
|
Xiu W, Wang X, Na Z, Yu S, Wang J, Yang M, Ma Y. Ultrasound-assisted hydrogen peroxide-ascorbic acid method to degrade sweet corncob polysaccharides can help treat type 2 diabetes via multiple pathways in vivo. ULTRASONICS SONOCHEMISTRY 2023; 101:106683. [PMID: 37948893 PMCID: PMC10663900 DOI: 10.1016/j.ultsonch.2023.106683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/22/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
In this study, we aimed to investigate the impact of various ultrasound durations on the structure and bioactivity of sweet corncob polysaccharides treated with ultrasound-assisted degradation using hydrogen peroxide and ascorbic acid (H2O2-Vc). We subjected sweet corncob polysaccharides to ultrasound treatment for 0, 30, 60, and 90 min alongside the H2O2-Vc method. We then analyzed their chemical composition and structure. Additionally, we administered these polysaccharides to mice with type 2 diabetes (T2DM) through gavage at a dosage of 200 mg/kg/day. The results indicated a significant reduction in the molecular weight of the degraded sweet corncob polysaccharides, while their composition remained relatively stable. However, the basic structure of the polysaccharides was retained. In vivo experiments demonstrated that ultrasound-assisted degradation of these polysaccharides had a positive impact on T2DM, particularly the 60-minute ultrasound treatment (UH-DSCBP-60 min), which effectively controlled blood glucose levels by regulating glycolipid metabolism in the livers of mice with T2DM. This approach also reduced inflammation and oxidative stress levels and inhibited disaccharide activity in the small intestine. We demonstrated that ultrasound can positively affect the sweet corncob polysaccharides hypoglycemic activity. The findings of our study provide a theoretical foundation for the valuable utilization of sweet corncob polysaccharides.
Collapse
Affiliation(s)
- Weiye Xiu
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang 150028, China
| | - Xin Wang
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang 150028, China.
| | - Zhiguo Na
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang 150028, China
| | - Shiyou Yu
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang 150028, China
| | - Jingyang Wang
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang 150028, China
| | - Mengyuan Yang
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang 150028, China
| | - Yongqiang Ma
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang 150028, China
| |
Collapse
|
38
|
Chen SK, Wang X, Guo YQ, Song XX, Yin JY, Nie SP. Exploring the partial degradation of polysaccharides: Structure, mechanism, bioactivities, and perspectives. Compr Rev Food Sci Food Saf 2023; 22:4831-4870. [PMID: 37755239 DOI: 10.1111/1541-4337.13244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023]
Abstract
Polysaccharides are promising biomolecules with lowtoxicity and diverse bioactivities in food processing and clinical drug development. However, an essential prerequisite for their applications is the fine structure characterization. Due to the complexity of polysaccharide structure, partial degradation is a powerful tool for fine structure analysis, which can effectively provide valid information on the structure of backbone and branching glycosidic fragments of complex polysaccharides. This review aims to conclude current methods of partial degradation employed for polysaccharide structural characterization, discuss the molecular mechanisms, and describe the molecular structure and solution properties of degraded polysaccharides. In addition, the effects of polysaccharide degradation on the conformational relationships between the molecular structure and bioactivities, such as antioxidant, antitumor, and immunomodulatory activities, are also discussed. Finally, we summarize the prospects and current challenges for the partial degradation of polysaccharides. This review will be of great value for the scientific elucidation of polysaccharide fine structures and potential applications.
Collapse
Affiliation(s)
- Shi-Kang Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Xin Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Yu-Qing Guo
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiao-Xiao Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
39
|
Lee Q, Han X, Zheng M, Lv F, Liu B, Zeng F. Preparation of low molecular weight polysaccharides from Tremella fuciformis by ultrasonic-assisted H 2O 2-Vc method: Structural characteristics, in vivo antioxidant activity and stress resistance. ULTRASONICS SONOCHEMISTRY 2023; 99:106555. [PMID: 37582309 PMCID: PMC10448212 DOI: 10.1016/j.ultsonch.2023.106555] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 08/17/2023]
Abstract
Different methods were used to degrade Tremella fuciformis polysaccharides (TFP) and prepare low molecular weight polysaccharides of Tremella fuciformis (TFLP) to improve their bioavailability. It was found that the TFLP prepared by ultrasonic-assisted H2O2-Vc method showed the highest level of antioxidant activity and stress resistance in C. elegans. The structural characteristics, in vivo antioxidant and stress resistance of TFLP-1 were evaluated after isolation and purification of TFLP, it was found that TFLP-1 was an acid polysaccharide with a molecular weight of 75770 Da, which mainly composed of mannose. Meanwhile, it could regulate the antioxidant activity and stress resistance in C. elegans by upregulating the transcription of fat-5, fat-7, acs-2, glp-1, hsf-1, hsp-1, mtl-1, nhr-49, skn-1 and sod-3 mRNA. The improvement effects were closely related to the significant regulation of galactose metabolism, alpha linolenic acid metabolism, and pantothenate and CoA biosynthesis metabolic pathways. These results provided insights into the high value application of Tremella fuciformis in the food industry and the development of antioxidant related functional foods.
Collapse
Affiliation(s)
- Quancen Lee
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xianjing Han
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingfeng Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Lv
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
40
|
Xie L, Chen T, Qi X, Li H, Xie J, Wang L, Xie J, Huang Z. Exopolysaccharides from Genistein-Stimulated Monascus purpureus Ameliorate Cyclophosphamide-Induced Intestinal Injury via PI3K/AKT-MAPKs/NF-κB Pathways and Regulation of Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12986-13002. [PMID: 37611142 DOI: 10.1021/acs.jafc.3c03186] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Exopolysaccharides from genistein-stimulated Monascus purpureus (G-EMP) exhibited immunomodulatory potential in vitro, but whether it had immune-enhancing effects in vivo and its potential mechanism are not yet known. Here, the immunomodulatory effects of G-EMP were investigated by establishing an immunosuppressed mouse model treated with cyclophosphamide (Cy). The results suggested that G-EMP effectively alleviated the signs of weight reduction and diet reduction caused by Cy, increased fecal water content and splenic index, and decreased the oxidative stress of the liver. Simultaneously, G-EMP improved Cy-induced intestinal injury by restoring villus length, increasing the number of cupped cells, upregulating the expression of mucin and tight junction proteins, and downregulating the ratio of apoptotic proteins (Bax/Bcl-2). It also boosted the levels of mouse colonic cytokines, CD4+ and CD8+ T cells. Additionally, G-EMP markedly enhanced immunomodulation via the activation of PI3K/AKT-MAPKs/NF-κB signal pathways. Furthermore, G-EMP intervention displayed a positive association with most immunological indexes by elevating the levels of short-chain fatty acids, varying gut microbiota composition, and enhancing beneficial bacteria (Lactobacillaceae, Prevotellaceae, and S24-7). These findings demonstrated that G-EMP can strengthen immunity, repair intestinal mucosal damage, regulate gut microbiota, and be a potential source of prebiotics.
Collapse
Affiliation(s)
- Liuming Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Ting Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Xin Qi
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Hong Li
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jiayan Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Linchun Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
41
|
Yang X, Yu A, Hu W, Zhang Z, Ruan Y, Kuang H, Wang M. Extraction, Purification, Structural Characteristics, Health Benefits, and Application of the Polysaccharides from Lonicera japonica Thunb.: A Review. Molecules 2023; 28:4828. [PMID: 37375383 DOI: 10.3390/molecules28124828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Lonicera japonica Thunb. is a widely distributed plant with ornamental, economic, edible, and medicinal values. L. japonica is a phytoantibiotic with broad-spectrum antibacterial activity and a potent therapeutic effect on various infectious diseases. The anti-diabetic, anti-Alzheimer's disease, anti-depression, antioxidative, immunoregulatory, anti-tumor, anti-inflammatory, anti-allergic, anti-gout, and anti-alcohol-addiction effects of L. japonica can also be explained by bioactive polysaccharides isolated from this plant. Several researchers have determined the molecular weight, chemical structure, and monosaccharide composition and ratio of L. japonica polysaccharides by water extraction and alcohol precipitation, enzyme-assisted extraction (EAE) and chromatography. This article searched in the Chinese Pharmacopoeia, Flora of China, Web of Science, PubMed, and CNKI databases within the last 12 years, using "Lonicera. japonica polysaccharides", "Lonicera. japonica Thunb. polysaccharides", and "Honeysuckle polysaccharides" as the key word, systematically reviewed the extraction and purification methods, structural characteristics, structure-activity relationship, and health benefits of L. japonica polysaccharides to provide insights for future studies. Further, we elaborated on the potential applications of L. japonica polysaccharides in the food, medicine, and daily chemical industry, such as using L. japonica as raw material to make lozenges, soy sauce and toothpaste, etc. This review will be a useful reference for the further optimization of functional products developed from L. japonica polysaccharides.
Collapse
Affiliation(s)
- Xinpeng Yang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Aiqi Yu
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Wenjing Hu
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Zhaojiong Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Ye Ruan
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| |
Collapse
|