1
|
Fracka AB, Sharma S, Baumwart R, Owen TJ. Peritoneal pericardial diaphragmatic hernia with an incidental finding of suspected right ventricular wall aneurysms in a dog. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2024; 65:1019-1027. [PMID: 39355700 PMCID: PMC11411473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
A 3-year-old neutered male standard poodle mix dog was presented because of acute onset vomiting, increased respiratory effort, hyporexia, and progressive lethargy. On physical examination, intermittent tachycardia, tachypnea with mildly increased respiratory effort, and bilateral ventral muffled lung sounds were noted. Thoracic and abdominal computed tomography with contrast revealed a peritoneal pericardial diaphragmatic hernia (PPDH) with herniation of the liver and gallbladder, moderate abdominal lymphadenopathy, and mild pleural effusion. The dog underwent an emergency laparotomy and median sternotomy. Right ventral PPDH with a herniated, necrosed, and nonviable quadrate liver lobe and gallbladder; 2 suspected right ventricular (RV) aneurysms; and generalized mesenteric and portal lymphadenopathy were present. The affected liver lobe and gallbladder were removed; suspected aneurysms were managed by placing 2 purse-string sutures around the lesions and anchoring a pericardial flap over the aneurysms. The dog developed a ventricular arrhythmia postoperatively. Due to the arrhythmia and intraoperative findings of suspected aneurysms, echocardiography was performed and revealed focal RV systolic dysfunction, left ventricular systolic dysfunction, mild left ventricular dilation, and a hyperechoic area on the RV free wall, consistent with the purse string. An angiotensin-convertingenzyme (ACE) inhibitor was prescribed for left ventricular dilation. The dog was discharged 4 d postoperatively and was doing well 12 mo postoperatively. To our knowledge, this is the first report of a PPDH and suspected concurrent RV wall aneurysm in a dog successfully treated with a purse string and pericardial flap. Key clinical message: An RV aneurysm is extremely rare yet can be life-threatening in small animals. Early detection and treatment may minimize the risk of aneurysm rupture and sudden death.
Collapse
Affiliation(s)
- Agnieszka B Fracka
- College of Veterinary Medicine, Washington State University, 205 Ott Road, Pullman, Washington 99164, USA
| | - Surabhi Sharma
- College of Veterinary Medicine, Washington State University, 205 Ott Road, Pullman, Washington 99164, USA
| | - Ryan Baumwart
- College of Veterinary Medicine, Washington State University, 205 Ott Road, Pullman, Washington 99164, USA
| | - Tina J Owen
- College of Veterinary Medicine, Washington State University, 205 Ott Road, Pullman, Washington 99164, USA
| |
Collapse
|
2
|
Cui J, Wang Y, Li S, Le Y, Deng Y, Chen J, Peng Q, Xu R, Li J. Efficacy of mesenchymal stem cells in treating tracheoesophageal fistula via the TLR4/NF-κb pathway in beagle macrophages. Heliyon 2024; 10:e32903. [PMID: 39021940 PMCID: PMC11253233 DOI: 10.1016/j.heliyon.2024.e32903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Background Tracheoesophageal fistula (TEF) remains a rare but significant clinical challenge, mainly due to the absence of established, effective treatment approaches. The current focus of therapeutic strategy is mainly on fistula closure. However, this approach often misses important factors, such as accelerating fistula contraction and fostering healing processes, which significantly increases the risk of disease recurrence. Methods In order to investigate if Mesenchymal Stem Cells (MSCs) can enhance fistula repair, developed a TEF model in beagles. Dynamic changes in fistula diameter were monitored by endoscopy. Concurrently, we created a model of LPS-induced macrophage to replicate the inflammatory milieu typical in TEF. In addition, the effect of MSC supernatant on inflammation mitigation was evaluated. Furthermore, we looked at the role of TLR4/NF-κB pathway plays in the healing process. Results Our research revealed that the local administration of MSCs significantly accelerated the fistula's healing process. This was demonstrated by a decline in TEF apoptosis and decrease in the production of pro-inflammatory cytokines. Furthermore, in vivo experiments demonstrated that the MSC supernatant was effective in suppressing pro-inflammatory cytokine expression and alleviating apoptosis in LPS-induced macrophages. These therapeutic effects were mainly caused by the suppression of TLR4/NF-κB pathway. Conclusion According to this study, MSCs can significantly improve TEF recovery. They achieve this via modulating apoptosis and inflammatory responses, mainly by selectively inhibiting the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Jinghua Cui
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong, 510080, China
| | - Yuchao Wang
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong, 510080, China
- School of Medicine South China University of Technology, Guangzhou, 510006, China
| | - Shuixiu Li
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong, 510080, China
- The Second School of Clinical Medicine, Southern Medical University. Guangzhou, Guangdong, 51006, China
| | - Yanqing Le
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong, 510080, China
| | - Yi Deng
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong, 510080, China
- Medical School, Kunming University of Science and Technology, Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province Kunming, Yunnan, China. 650000
| | - Jingjing Chen
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong, 510080, China
| | - Qian Peng
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong, 510080, China
| | - Rongde Xu
- Department of Interventional Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou Guangdong, China, 510080
| | - Jing Li
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University. Guangzhou, Guangdong, 510080, China
| |
Collapse
|
3
|
Zhang C, Shi Y, Liu C, Sudesh SM, Hu Z, Li P, Liu Q, Ma Y, Shi A, Cai H. Therapeutic strategies targeting mechanisms of macrophages in diabetic heart disease. Cardiovasc Diabetol 2024; 23:169. [PMID: 38750502 PMCID: PMC11097480 DOI: 10.1186/s12933-024-02273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
Diabetic heart disease (DHD) is a serious complication in patients with diabetes. Despite numerous studies on the pathogenic mechanisms and therapeutic targets of DHD, effective means of prevention and treatment are still lacking. The pathogenic mechanisms of DHD include cardiac inflammation, insulin resistance, myocardial fibrosis, and oxidative stress. Macrophages, the primary cells of the human innate immune system, contribute significantly to these pathological processes, playing an important role in human disease and health. Therefore, drugs targeting macrophages hold great promise for the treatment of DHD. In this review, we examine how macrophages contribute to the development of DHD and which drugs could potentially be used to target macrophages in the treatment of DHD.
Collapse
Affiliation(s)
- Chaoyue Zhang
- Cardiovascular Clinical Medical Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunke Shi
- Cardiovascular Clinical Medical Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Changzhi Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shivon Mirza Sudesh
- Faculty of Medicine, St. George University of London, London, UK
- University of Nicosia Medical School, University of Nicosia, Nicosia, Cyprus
| | - Zhao Hu
- Department of Geriatric Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Pengyang Li
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Qi Liu
- Wafic Said Molecular Cardiology Research Laboratory, The Texas Heart Institute, Houston, TX, USA
| | - Yiming Ma
- Cardiovascular Clinical Medical Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ao Shi
- Faculty of Medicine, St. George University of London, London, UK.
- University of Nicosia Medical School, University of Nicosia, Nicosia, Cyprus.
| | - Hongyan Cai
- Cardiovascular Clinical Medical Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
4
|
Zhang L, Shao L, Li J, Zhang Y, Shen Z. Annexin A1-Loaded Alginate Hydrogel Promotes Cardiac Repair via Modulation of Macrophage Phenotypes after Myocardial Infarction. ACS Biomater Sci Eng 2024; 10:3232-3241. [PMID: 38556725 DOI: 10.1021/acsbiomaterials.4c00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Myocardial infarction (MI) is associated with inflammatory reaction, which is a pivotal component in MI pathogenesis. Moreover, excessive inflammation post-MI can lead to cardiac dysfunction and adverse remodeling, emphasizing the critical need for an effective inflammation-regulating treatment for cardiac repair. Macrophage polarization is crucial in the inflammation process, indicating its potential as an adjunct therapy for MI. In this study, we developed an injectable alginate hydrogel loaded with annexin A1 (AnxA1, an endogenous anti-inflammatory and pro-resolving mediator) for MI treatment. In vitro results showed that the composite hydrogel had good biocompatibility and consistently released AnxA1 for several days. Additionally, this hydrogel led to a reduced number of pro-inflammatory macrophages and an increased proportion of pro-healing macrophages via the adenosine monophosphate (AMP)-activated protein kinase (AMPK)-mammalian target of the rapamycin (mTOR) axis. Furthermore, the intramyocardial injection of this composite hydrogel into a mouse MI model effectively modulated macrophage transition to pro-healing phenotypes. This transition mitigated early inflammatory responses and cardiac fibrosis, promoted angiogenesis, and improved cardiac function. Therefore, our study findings suggest that combining biomaterials and endogenous proteins for MI treatment is a promising approach for limiting adverse cardiac remodeling, preventing cardiac damage, and preserving the function of infarcted hearts.
Collapse
Affiliation(s)
- Lingling Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215000, P. R. China
- Department of Intensive Care Medicine and Medical Research Center, Affiliated Hospital 2 of Nantong University and Nantong First People's Hospital, Nantong 226001, P. R. China
| | - Lianbo Shao
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215000, P. R. China
| | - Jingjing Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215000, P. R. China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215000, P. R. China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215000, P. R. China
| |
Collapse
|
5
|
Barrère-Lemaire S, Vincent A, Jorgensen C, Piot C, Nargeot J, Djouad F. Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing. Physiol Rev 2024; 104:659-725. [PMID: 37589393 DOI: 10.1152/physrev.00009.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/05/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most common cause of heart failure. Reopening of the occluded artery, i.e., reperfusion, is the only way to save the myocardium. However, the expected benefits of reducing infarct size are disappointing due to the reperfusion paradox, which also induces specific cell death. These ischemia-reperfusion (I/R) lesions can account for up to 50% of final infarct size, a major determinant for both mortality and the risk of heart failure (morbidity). In this review, we provide a detailed description of the cell death and inflammation mechanisms as features of I/R injury and cardioprotective strategies such as ischemic postconditioning as well as their underlying mechanisms. Due to their biological properties, the use of mesenchymal stromal/stem cells (MSCs) has been considered a potential therapeutic approach in AMI. Despite promising results and evidence of safety in preclinical studies using MSCs, the effects reported in clinical trials are not conclusive and even inconsistent. These discrepancies were attributed to many parameters such as donor age, in vitro culture, and storage time as well as injection time window after AMI, which alter MSC therapeutic properties. In the context of AMI, future directions will be to generate MSCs with enhanced properties to limit cell death in myocardial tissue and thereby reduce infarct size and improve the healing phase to increase postinfarct myocardial performance.
Collapse
Affiliation(s)
- Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Anne Vincent
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Christian Jorgensen
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Christophe Piot
- Département de Cardiologie Interventionnelle, Clinique du Millénaire, Montpellier, France
| | - Joël Nargeot
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Farida Djouad
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| |
Collapse
|
6
|
Li Z, Wang S, Qin Y, Yang B, Wang C, Lu T, Xu J, Zhu L, Yuan C, Han W. Gabapentin attenuates cardiac remodeling after myocardial infarction by inhibiting M1 macrophage polarization through the peroxisome proliferator-activated receptor-γ pathway. Eur J Pharmacol 2024; 967:176398. [PMID: 38350591 DOI: 10.1016/j.ejphar.2024.176398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
OBJECTIVES Inflammation regulates ventricular remodeling after myocardial infarction (MI), and gabapentin exerts anti-inflammatory effects. We investigated the anti-inflammatory role and mechanism of gabapentin after MI. METHODS Rats were divided into the sham group (n = 12), MI group (n = 20), and MI + gabapentin group (n = 16). MI was induced by left coronary artery ligation. The effects of gabapentin on THP-1-derived macrophages were examined in vitro. RESULTS In vivo, 1 week after MI, gabapentin significantly reduced inducible nitric oxide synthase (iNOS; M1 macrophage marker) expression and decreased pro-inflammatory factors (tumor necrosis factor [TNF]-α and interleukin [IL]-1β). Gabapentin upregulated the M2 macrophage marker arginase-1, as well as CD163 expression, and increased the expression of anti-inflammatory factors, including chitinase-like 3, IL-10, and transforming growth factor-β. Four weeks after MI, cardiac function, infarct size, and cardiac fibrosis improved after gabapentin treatment. Gabapentin inhibited sympathetic nerve activity and decreased ventricular electrical instability in rats after MI. Tyrosine hydroxylase and growth-associated protein 43 were suppressed after gabapentin treatment. Gabapentin downregulated nerve growth factor (NGF) and reduced pro-inflammatory factors (iNOS, TNF-α, and IL-1β). In vitro, gabapentin reduced NGF, iNOS, TNF-α, and IL-1β expression in lipopolysaccharide-stimulated macrophages. Mechanistic studies revealed that the peroxisome proliferator-activated receptor-γ antagonist GW9662 attenuated the effects of gabapentin. Moreover, gabapentin reduced α2δ1 expression in the macrophage plasma membrane and reduced the calcium content of macrophages. CONCLUSION Gabapentin attenuates cardiac remodeling by inhibiting inflammation via peroxisome proliferator-activated receptor-γ activation and preventing calcium overload.
Collapse
Affiliation(s)
- Zhenjun Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Shaoxian Wang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ying Qin
- College of Sports and Human Sciences, Harbin Sport University, Harbin, 150001, China
| | - Bo Yang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Chengcheng Wang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Tianyi Lu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jie Xu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Lige Zhu
- Medical Department, The Second Affiliated Hospital of Hei Long Jiang University of Chinese Medicine, Harbin, 150001, China
| | - Chen Yuan
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Wei Han
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Department of Heart Failure, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
7
|
Das A, Nikhil A, Shiekh PA, Yadav B, Jagavelu K, Kumar A. Ameliorating impaired cardiac function in myocardial infarction using exosome-loaded gallic-acid-containing polyurethane scaffolds. Bioact Mater 2024; 33:324-340. [PMID: 38076649 PMCID: PMC10701288 DOI: 10.1016/j.bioactmat.2023.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 06/21/2024] Open
Abstract
Myocardial infarction (MI) can be tackled by implanting cardiac patches which provide mechanical support to the heart. However, most tissue-engineered scaffolds face difficulty in attenuating oxidative stress, maintaining mechanical stability, and regenerating damaged cardiomyocytes. Here, we fabricated elastic cryogels using polyurethane modified with antioxidant gallic acid in its backbone (PUGA) and further coated them with decellularized extracellular matrix (dECM) to improve adhesiveness, biocompatibility and hemocompatibility. The scaffold was functionalized with exosomes (EXO) isolated from adipose-derived stem cells having regenerative potential. PUGA-dECM + EXO was tested in a rat model with induced MI where echocardiography after 8 weeks of implantation showed significant recovery in treatment group. Histological analysis revealed a decrease in fibrosis after application of patch and promotion of angiogenesis with reduced oxidative stress was shown by immunostaining. Expression of cardiac tissue contractile function marker was also observed in treatment groups. Thus, the proposed biomaterial has a promising application to be utilized as a patch for cardiac regeneration. More detailed studies with larger animal species are needed for using these observations for specific applications.
Collapse
Affiliation(s)
- Ankita Das
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, U.P., India
| | - Aman Nikhil
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, U.P., India
| | - Parvaiz Ahmad Shiekh
- SMART Lab, Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Babita Yadav
- Department of Pharmacology, Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, 226031, U.P., India
| | - Kumaravelu Jagavelu
- Department of Pharmacology, Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, 226031, U.P., India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, U.P., India
- Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, U.P., India
- Centre of Excellence for Orthopaedics and Prosthetics, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, 208016, U.P., India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, 208016, U.P., India
| |
Collapse
|
8
|
Mallikarjun V, Yin B, Caggiano LR, Blimbaum S, Pavelec CM, Holmes JW, Ewald SE. Automated spatially targeted optical micro proteomics identifies fibroblast- and macrophage-specific regulation of myocardial infarction scar maturation in rats. J Mol Cell Cardiol 2024; 186:1-15. [PMID: 37951204 DOI: 10.1016/j.yjmcc.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/13/2023]
Abstract
Myocardial infarction (MI) results from occlusion of blood supply to the heart muscle causing death of cardiac muscle cells. Following myocardial infarction (MI), extracellular matrix deposition and scar formation mechanically stabilize the injured heart as damaged myocytes undergo necrosis and removal. Fibroblasts and macrophages are key drivers of post-MI scar formation, maturation, and ongoing long-term remodelling; however, their individual contributions are difficult to assess from bulk analyses of infarct scar. Here, we employ state-of-the-art automated spatially targeted optical micro proteomics (autoSTOMP) to photochemically tag and isolate proteomes associated with subpopulations of fibroblasts (SMA+) and macrophages (CD68+) in the context of the native, MI tissue environment. Over a time course of 6-weeks post-MI, we captured dynamic changes in the whole-infarct proteome and determined that some of these protein composition signatures were differentially localized near SMA+ fibroblasts or CD68+ macrophages within the scar region. These results link specific cell populations to within-infarct protein remodelling and illustrate the distinct metabolic and structural processes underlying the observed physiology of each cell type.
Collapse
Affiliation(s)
- Venkatesh Mallikarjun
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Bocheng Yin
- Department of Microbiology, Immunology and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Laura R Caggiano
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Sydney Blimbaum
- Department of Microbiology, Immunology and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Caitlin M Pavelec
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Jeffrey W Holmes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA; School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Sarah E Ewald
- Department of Microbiology, Immunology and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
9
|
Sun D, Chang Q, Lu F. Immunomodulation in diabetic wounds healing: The intersection of macrophage reprogramming and immunotherapeutic hydrogels. J Tissue Eng 2024; 15:20417314241265202. [PMID: 39071896 PMCID: PMC11283672 DOI: 10.1177/20417314241265202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024] Open
Abstract
Diabetic wound healing presents a significant clinical challenge due to the interplay of systemic metabolic disturbances and local inflammation, which hinder the healing process. Macrophages undergo a phenotypic shift from M1 to M2 during wound healing, a transition pivotal for effective tissue repair. However, in diabetic wounds, the microenvironment disrupts this phenotypic polarization, perpetuating inflammation, and impeding healing. Reprograming macrophages to restore their M2 phenotype offers a potential avenue for modulating the wound immune microenvironment and promoting healing. This review elucidates the mechanisms underlying impaired macrophage polarization toward the M2 phenotype in diabetic wounds and discusses novel strategies, including epigenetic and metabolic interventions, to promote macrophage conversion to M2. Hydrogels, with their hydrated 3D cross-linked structure, closely resemble the physiological extracellular matrix and offer advantageous properties such as biocompatibility, tunability, and versatility. These characteristics make hydrogels promising candidates for developing immunomodulatory materials aimed at addressing diabetic wounds. Understanding the role of hydrogels in immunotherapy, particularly in the context of macrophage reprograming, is essential for the development of advanced wound care solutions. This review also highlights recent advancements in immunotherapeutic hydrogels as a step toward precise and effective treatments for diabetic wounds.
Collapse
Affiliation(s)
- Dan Sun
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Chang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Lu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Shi LX, Liu XR, Zhou LY, Zhu ZQ, Yuan Q, Zou T. Nanocarriers for gene delivery to the cardiovascular system. Biomater Sci 2023; 11:7709-7729. [PMID: 37877418 DOI: 10.1039/d3bm01275a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Cardiovascular diseases have posed a great threat to human health. Fortunately, gene therapy holds great promise in the fight against cardiovascular disease (CVD). In gene therapy, it is necessary to select the appropriate carriers to deliver the genes to the target cells of the target organs. There are usually two types of carriers, viral carriers and non-viral carriers. However, problems such as high immunogenicity, inflammatory response, and limited loading capacity have arisen with the use of viral carriers. Therefore, scholars turned their attention to non-viral carriers. Among them, nanocarriers are highly valued because of their easy modification, targeting, and low toxicity. Despite the many successes of gene therapy in the treatment of human diseases, it is worth noting that there are still many problems to be solved in the field of gene therapy for the treatment of cardiovascular diseases. In this review, we give a brief introduction to the common nanocarriers and several common cardiovascular diseases (arteriosclerosis, myocardial infarction, myocardial hypertrophy). On this basis, the application of gene delivery nanocarriers in the treatment of these diseases is introduced in detail.
Collapse
Affiliation(s)
- Ling-Xin Shi
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Xiu-Ran Liu
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Ling-Yue Zhou
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Zi-Qi Zhu
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Qiong Yuan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research and Institute of Metabolic Diseases, Southwest Medical University, Luzhou 646000, China
| | - Tao Zou
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| |
Collapse
|
11
|
Shook PL, Singh M, Singh K. Macrophages in the Inflammatory Phase following Myocardial Infarction: Role of Exogenous Ubiquitin. BIOLOGY 2023; 12:1258. [PMID: 37759657 PMCID: PMC10526096 DOI: 10.3390/biology12091258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death worldwide. One of the most common implications of CVD is myocardial infarction (MI). Following MI, the repair of the infarcted heart occurs through three distinct, yet overlapping phases of inflammation, proliferation, and maturation. Macrophages are essential to the resolution of the inflammatory phase due to their role in phagocytosis and efferocytosis. However, excessive and long-term macrophage accumulation at the area of injury and dysregulated function can induce adverse cardiac remodeling post-MI. Ubiquitin (UB) is a highly evolutionarily conserved small protein and is a normal constituent of plasma. Levels of UB are increased in the plasma during a variety of pathological conditions, including ischemic heart disease. Treatment of mice with UB associates with decreased inflammatory response and improved heart function following ischemia/reperfusion injury. This review summarizes the role of macrophages in the infarct healing process of the heart post-MI, and discusses the role of exogenous UB in myocardial remodeling post-MI and in the modulation of macrophage phenotype and function.
Collapse
Affiliation(s)
- Paige L. Shook
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (P.L.S.); (M.S.)
| | - Mahipal Singh
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (P.L.S.); (M.S.)
| | - Krishna Singh
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (P.L.S.); (M.S.)
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- James H. Quillen Veterans Affairs Medical Center, Mountain Home, TN 37684, USA
| |
Collapse
|
12
|
Lang Y, Liu Y, Ye C, Tang X, Cheng Z, Xie L, Feng L, Liu Y. Loss of LEAP-2 alleviates obesity-induced myocardial injury by regulating macrophage polarization. Exp Cell Res 2023; 430:113702. [PMID: 37414204 DOI: 10.1016/j.yexcr.2023.113702] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Obesity is a serious public health issue worldwide, which is a risk factor of cardiovascular disorders. Obesity has been shown to be associated with subclinical myocardial injury, increasing the risk of heart failure. Our study aims to explore novel mechanisms underlying obesity-induced myocardial injury. METHODS Mice were fed a high-fat diet (HFD) to establish a mouse model of obesity, and serum levels of TG, TCH, LDL, CK-MB, LDH, cTnI and BNP were examined. Inflammatory response was evaluated by determining the expression and secretion of proinflammatory cytokines IL-1β and TNF-α. Macrophage infiltration in the heart was examined by IHC staining, and H&E staining was applied to evaluate myocardial injury. Primary peritoneal macrophages were isolated from mice and treated with palmitic acid (PA). Macrophage polarization was evaluated by determine the expression of CCL2, iNOS, CD206 and arginase I via Western blot, RT-qPCR, and flow cytometry. Co-IP assays were performed to examine the interaction between LEAP-2, GHSR and ghrelin. RESULTS Hyperlipidemia, increased proinflammatory cytokines and myocardial injury were observed in mice with obesity, and silencing of LEAP-2 ameliorated HFD-induced hyperlipidemia, inflammation, and myocardial injury. Moreover, HFD-induced macrophage infiltration and M1 polarization were reversed by LEAP-2 knockdown in mice. Furthermore, silencing of LEAP-2 suppressed PA-induced M1 polarization but enhanced M2 polarization in vitro. LEAP-2 interacted with GHSR in macrophages, and knockdown of LEAP-2 promoted the interaction of GHSR and ghrelin. Overexpression of ghrelin enhanced LEAP-1 silencing-mediated suppression of inflammatory response and upregulation of M2 polarization in PA-induced macrophages. CONCLUSION Knockdown of LEAP-2 ameliorates obesity-induced myocardial injury via promoting M2 polarization.
Collapse
Affiliation(s)
- Yuanyuan Lang
- The Image Center, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, PR China
| | - Yanling Liu
- Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, PR China
| | - Chunfeng Ye
- Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, PR China
| | - Xiaomin Tang
- Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, PR China
| | - Zugen Cheng
- Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, PR China
| | - Lixin Xie
- Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, PR China
| | - Lihua Feng
- Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, PR China
| | - Yang Liu
- Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, PR China.
| |
Collapse
|
13
|
Pei G, Liu R, Wang L, He C, Fu C, Wei Q. Monocyte to high-density lipoprotein ratio is associated with mortality in patients with coronary artery diseases. BMC Cardiovasc Disord 2023; 23:451. [PMID: 37697241 PMCID: PMC10496218 DOI: 10.1186/s12872-023-03461-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/19/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Whether the monocyte to high-density lipoprotein ratio (MHR) is associated with the prognosis of coronary artery disease (CAD) is inconclusive. METHODS Patients with CAD were enrolled and their data were collected. Blood was sampled within 24 h after admission. Multivariate Cox regression analysis was performed to determine the relationship between the MHR and all-cause mortality as well as complications during hospitalization. RESULTS We included 5371 patients in our cohort study. Among them, 114 (2.12%) patients died in hospital. MHR was independently associated with all-cause mortality (hazard ratio [HR], 1.81; 95% confidence interval [CI] 1.35, 2.42), cardiovascular mortality (1.69; 1.17, 2.45) and non-cardiovascular mortality (2.04; 1.27, 3.28). This association was only observed in patients with hypertension (P for interaction = 0.003). Patients with higher MHR levels also have a higher risk of complications, including infection, pneumonia, electrolyte disturbance, gastrointestinal bleeding, multiple organ dysfunction syndrome, and disturbance of consciousness. The receiver operating characteristic (ROC) analysis showed that the MHR had higher prognostic values than monocytes and high-density lipoprotein. CONCLUSION MHR was an independent predictor of all-cause mortality and in-hospital complications in patients with CAD, especially in patients with hypertension.
Collapse
Affiliation(s)
- Gaiqin Pei
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Rui Liu
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Lu Wang
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Chengqi He
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Chenying Fu
- West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, Chengdu, Sichuan, China.
- Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Quan Wei
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China.
| |
Collapse
|
14
|
Su M, Cui J, Zhao J, Fu X. Skimmin ameliorates cardiac function via the regulation of M2 macrophages in a myocardial infarction mouse model. Perfusion 2023; 38:1298-1307. [PMID: 35532100 DOI: 10.1177/02676591221100742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE Myocardial infarction (MI) is a coronary artery disorder with several complications, such as inflammation, oxidative stress, and cardiac fibrosis. The current study is aimed to explore the protective effect of skimmin (SKI) on impaired heart tissues in MI. METHODS A mouse model of MI was induced by ligation of the left anterior descending artery. SKI was intragastric administration for 7 days after MI. Masson staining was then conducted to measure the area of fibrosis in the myocardium. The expression levels of collagen I and collagen III were analyzed using Western blot. The levels of glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD), and inflammatory factor were also detected. The expression of M1 polarization markers and M2 polarization markers in mice and LPS-induced RAW264.7 cells were detected using RT-qPCR and Western blot, respectively. Finally, the migration and proliferation of vascular smooth muscle cells (VSMCs) in vitro were analyzed using transwell and EDU, respectively. RESULTS SKI improved cardiac function and cardiac fibrosis in mice with MI. SKI also decreased collagen I and collagen III expression, and inhibited inflammatory factor TNF-α, IL-1β, and IL-6 levels. SKI decreased the levels of MDA and increased the levels of GSH and SOD. Meanwhile, SKI could promote M2 macrophage polarization in vivo and in vitro. SKI could also repress the migration and proliferation of VSMCs. CONCLUSIONS SKI may ameliorate inflammation, oxidative stress, and cardiac fibrosis of MI by promoting M2 polarization.
Collapse
Affiliation(s)
- Manxia Su
- Department of Comprehensive Geriatric Health Care, Yidu Central Hospital of Weifang, Qingzhou, China
| | - Jingming Cui
- Office of Returning Visit, Yidu Central Hospital of Weifang, Qingzhou, China
| | - Jia Zhao
- Department of Comprehensive Geriatric Health Care, Yidu Central Hospital of Weifang, Qingzhou, China
| | - Xiaoyan Fu
- Department of Cardiovascular Medicine, Weifang People's Hospital, Weifang, China
| |
Collapse
|
15
|
Li J, Chen Q, Zhang R, Liu Z, Cheng Y. The phagocytic role of macrophage following myocardial infarction. Heart Fail Rev 2023:10.1007/s10741-023-10314-5. [PMID: 37160618 DOI: 10.1007/s10741-023-10314-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
Myocardial infarction (MI) is one of the cardiovascular diseases with high morbidity and mortality. MI causes large amounts of apoptotic and necrotic cells that need to be efficiently and instantly engulfed by macrophage to avoid second necrosis. Phagocytic macrophages can dampen or resolve inflammation to protect infarcted heart. Phagocytosis of macrophages is modulated by various factors including proteins, receptors, lncRNA and cytokines. A better understanding of mechanisms in phagocytosis will be beneficial to regulate macrophage phagocytosis capability towards a desired direction in cardioprotection after MI. In this review, we describe the phagocytosis effect of macrophages and summarize the latest reported signals regulating phagocytosis after MI, which will provide a new thinking about phagocytosis-dependent cardiac protection after MI.
Collapse
Affiliation(s)
- Jiahua Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong-Hong Kong-Macau Joint Lab On Chinese Medicine and Immune Disease Research, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, China
| | - Qi Chen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Rong Zhang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong-Hong Kong-Macau Joint Lab On Chinese Medicine and Immune Disease Research, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
- Guangdong-Hong Kong-Macau Joint Lab On Chinese Medicine and Immune Disease Research, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, China.
| | - Yuanyuan Cheng
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
- Guangdong-Hong Kong-Macau Joint Lab On Chinese Medicine and Immune Disease Research, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
16
|
Lin M, Wang B, Wei B, Li C, Tu L, Zhu X, Wu Z, Huang G, Lu X, Xiong G, Lu S, Yang X, Li P, Liu X, Li W, Lu Y, Zhou H. Characteristics, prognostic determinants of monocytes, macrophages and T cells in acute coronary syndrome: protocol for a multicenter, prospective cohort study. BMC Cardiovasc Disord 2023; 23:220. [PMID: 37118659 PMCID: PMC10148483 DOI: 10.1186/s12872-023-03224-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/02/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Acute coronary syndrome(ACS) is the leading cause of mortality and disability worldwide. Immune response has been confirmed to play a vital role in the occurrence and development of ACS. The objective of this prospective, multicenter, observational study is to define immune response and their relationship to the occurrence and progressive of ACS. METHODS This is a multicenter, prospective, observational longitudinal cohort study. The primary outcome is the incidence of major adverse cardiovascular events (MACE) including in-stent restenosis, severe ventricular arrhythmia, heart failure, recurrent angina pectoris, and sudden cardiac death, and stroke one year later after ACS. Demographic characteristics, clinical data, treatments, and outcomes are collected by local investigators. Furthermore, freshly processed samples will be stained and assessed by flow cytometry. The expression of S100A4, CD47, SIRPα and Tim-3 on monocytes, macrophages and T cells in ACS patients were collected. FOLLOW-UP during hospitalization, 3, 6 and 12 months after discharge. DISCUSSION It is expected that this study will reveal the possible targets to improve the prognosis or prevent from occurrence of MACE in ACS patients. Since it's a multicenter study, the enrollment rate of participants will be accelerated and it can ensure that the collected data are more symbolic and improve the richness and credibility of the test basis. ETHICS AND DISSEMINATION This study has been registered in Chinese Clinical Trial Registry Center. Ethical approval was obtained from the Affiliated Hospital of Guizhou Medical University. The dissemination will occur through the publication of articles in international peer-reviewed journals. TRIAL REGISTRATION Chinese Clinical Trial Registry: ChiCTR2200066382.
Collapse
Affiliation(s)
- Muzhi Lin
- Department of Cardiology Vascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - Bing Wang
- Department of Internal Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Bo Wei
- Department of Cardiology Vascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - Chao Li
- Department of Internal Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Lin Tu
- Internal Medicine-Cardiovascular Department, The First People's Hospital of Guiyang, Guiyang, 550000, Guizhou, China
| | - Xiaohan Zhu
- Department of Cardiology, The Second People's Hospital of Guiyang, Guiyang, Guizhou, China
| | - Zheyi Wu
- Department of Internal Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Guangwei Huang
- Department of Internal Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiyang Lu
- Department of Internal Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Guobao Xiong
- Department of Cardiology Vascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - Shanglin Lu
- Department of Cardiology Vascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - Xinglin Yang
- Department of Clinical Laboratory, Guiyang Public Health Clinical Center, Guiyang, Guizhou, China
| | - Peng Li
- Science and Education Division, Guiyang Public Health Clinical Center, Guiyang, Guizhou, China
| | - Xingde Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Wei Li
- Department of Cardiology Vascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China.
| | - Yuming Lu
- Internal Medicine-Cardiovascular Department, The First People's Hospital of Guiyang, Guiyang, 550000, Guizhou, China.
| | - Haiyan Zhou
- Department of Cardiology Vascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China.
| |
Collapse
|
17
|
Wakabayashi H, Mori H, Hiromasa T, Akatani N, Inaki A, Kozaka T, Kitamura Y, Ogawa K, Kinuya S, Taki J. 125I-labeled 2-[4-(2-iodophenyl)piperidino]cyclopentanol ( 125I-OI5V) imaging visualized augmented sigma-1 receptor expression according to the severity of myocardial ischemia. J Nucl Cardiol 2023; 30:653-661. [PMID: 35915325 DOI: 10.1007/s12350-022-03064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND We aimed to explore how the severity of myocardial ischemia affects myocardial sigma-1 receptor (Sig-1R) expression using 125I-labeled 2-[4-(2-iodophenyl)piperidino]cyclopentanol (125I-OI5V) imaging. METHODS AND RESULTS The left coronary artery was occluded for 30, 20, and 10 minute, to vary the severity of myocardial ischemia, followed by reperfusion. Dual-tracer autoradiography of the left ventricular short-axis slices was performed 3 and 7 days after reperfusion. 125I-OI5V was injected 30 minute before sacrifice and the area at risk (AAR) was evaluated by 99mTc-MIBI. Intense 125I-OI5V uptake was observed in the AAR and was significantly increased with increasing ischemia duration. To evaluate salvaged and nonsalvaged areas (preserved and decreased perfusion areas), triple-tracer autoradiography was performed 3 days after reperfusion. After dual-tracer autoradiography, 201Tl was injected 20 minute post 125I-OI5V injection. On triple-tracer autoradiography, the AAR/normally perfused area 125I-OI5V uptake ratio was positively correlated with the nonsalvaged area/whole left ventricular (LV) area ratio (P < .05). The AAR/normally perfused area 125I-OI5V uptake ratio was negatively correlated with the 201Tl uptake ratio of the AAR to normally perfused areas (P < .05). The comparison of the immunostaining distribution of 125I-OI5V and the macrophage marker CD68 revealed that 125I-OI5V was present mainly in, and immediately adjacent to the macrophage infiltration area. CONCLUSIONS Significant 125I-OI5V uptake in the AAR depends on the duration of ischemia and reduced 201Tl uptake; furthermore, 125I-OI5V was found in and around the macrophage infiltrate area. These results indicate that iodine-labeled OI5V is a promising tool for visualizing Sig-1R expression according to the ischemic burden.
Collapse
Affiliation(s)
- Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Hiroshi Mori
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Tomo Hiromasa
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Norihito Akatani
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Anri Inaki
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Takashi Kozaka
- Division of Probe Chemistry for Disease Analysis, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yoji Kitamura
- Division of Probe Chemistry for Disease Analysis, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kazuma Ogawa
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Junichi Taki
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
- Kanazawa Advanced Medical Center, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-0934, Japan
| |
Collapse
|
18
|
Chang Z, Li H. KLF9 deficiency protects the heart from inflammatory injury triggered by myocardial infarction. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:177-185. [PMID: 36815257 PMCID: PMC9968950 DOI: 10.4196/kjpp.2023.27.2.177] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/17/2022] [Accepted: 12/26/2022] [Indexed: 02/24/2023]
Abstract
The excessive inflammatory response induced by myocardial infarction exacerbates heart injury and leads to the development of heart failure. Recent studies have confirmed the involvement of multiple transcription factors in the modulation of cardiovascular disease processes. However, the role of KLF9 in the inflammatory response induced by cardiovascular diseases including myocardial infarction remains unclear. Here, we found that the expression of KLF9 significantly increased during myocardial infarction. Besides, we also detected high expression of KLF9 in infiltrated macrophages after myocardial infarction. Our functional studies revealed that KLF9 deficiency prevented cardiac function and adverse cardiac remodeling. Furthermore, the downregulation of KLF9 inhibited the activation of NF-κB and MAPK signaling, leading to the suppression of inflammatory responses of macrophages triggered by myocardial infarction. Mechanistically, KLF9 was directly bound to the TLR2 promoter to enhance its expression, subsequently promoting the activation of inflammation-related signaling pathways. Our results suggested that KLF9 is a pro-inflammatory transcription factor in macrophages and targeting KLF9 may be a novel therapeutic strategy for ischemic heart disease.
Collapse
Affiliation(s)
- Zhihong Chang
- Department of Cardiology, Heji Hospital of Changzhi Medical College, Changzhi 046011, China
| | - Hongkun Li
- Department of Cardiology, Heji Hospital of Changzhi Medical College, Changzhi 046011, China,Correspondence Hongkun Li, E-mail:
| |
Collapse
|
19
|
Chen W, Wang C, Liu W, Zhao B, Zeng Z, Long F, Wang C, Li S, Lin N, Zhou J. A Matrix-Metalloproteinase-Responsive Hydrogel System for Modulating the Immune Microenvironment in Myocardial Infarction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209041. [PMID: 36754377 DOI: 10.1002/adma.202209041] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Injectable hydrogels carrying therapeutic factors to modulate the infarct immune microenvironment show great potential in the treatment of myocardial infarction (MI). However, conventional injectable hydrogels release therapeutic factors in an uncontrolled manner, which leads to poor treatment efficacy and acute side effects on normal tissues. In this work, a matrix metalloproteinase (MMP)2/9-responsive hydrogel system (MPGC4) is developed, considering the characteristics of the post-MI microenvironment. MPGC4 consists of tetra-poly(ethylene glycol) (PEG) hydrogels and a composite gene nanocarrier (CTL4) that is composed of carbon dots (CDots) coupled with interleukin-4 plasmid DNA via electrostatic interactions. MPGC4 can be automatically triggered to release CTL4 on demand after MI to regulate the infarct immune microenvironment. In addition, due to the photoluminescence properties of CDots, a large amount of viscoelastic MPGC4 is found to be retained in situ after injection into the infarct region without leakage. The in vitro results demonstrate that CTL4 promotes proinflammatory M1 macrophage polarization to the anti-inflammatory M2 subtype and contributes to cardiomyocyte survival through macrophage transition. In a rat model of MI, MPGC4 clears MMPs and precisely targets CTL4 to the infarcted region. In particular, MPGC4 improves cardiac function by modulating macrophage transition to reduce early inflammatory responses and proangiogenic activity.
Collapse
Affiliation(s)
- Wei Chen
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing, 100850, P. R. China
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Changyong Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing, 100850, P. R. China
| | - Wei Liu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing, 100850, P. R. China
| | - Bicheng Zhao
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Zhicheng Zeng
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Fen Long
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Chunlan Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing, 100850, P. R. China
| | - Siwei Li
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing, 100850, P. R. China
| | - Naibo Lin
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Jin Zhou
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing, 100850, P. R. China
| |
Collapse
|
20
|
Chen H, Hou Y, Zhai Y, Yang J, Que L, Liu J, Lu L, Ha T, Li C, Xu Y, Li J, Li Y. Peli1 deletion in macrophages attenuates myocardial ischemia/reperfusion injury by suppressing M1 polarization. J Leukoc Biol 2023; 113:95-108. [PMID: 36822176 DOI: 10.1093/jleuko/qiac012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Indexed: 01/18/2023] Open
Abstract
The polarization of macrophages to the M1 or M2 phenotype has a pivotal role in inflammatory response following myocardial ischemia/reperfusion injury. Peli1, an E3 ubiquitin ligase, is closely associated with inflammation and autoimmunity as an important regulatory protein in the Toll-like receptor signaling pathway. We aimed to explore the function of Peli1 in macrophage polarization under myocardial ischemia/reperfusion injury and elucidate the possible mechanisms. We show here that Peli1 is upregulated in peripheral blood mononuclear cells from patients with myocardial ischemia/reperfusion, which is correlated with myocardial injury and cardiac dysfunction. We also found that the proportion of M1 macrophages was reduced and myocardial infarct size was decreased, paralleling improvement of cardiac function in mice with Peli1 deletion in hematopoietic cells or macrophages. Macrophage Peli1 deletion lessened M1 polarization and reduced the migratory ability in vitro. Mechanistically, Peli1 contributed to M1 polarization by promoting K63-linked ubiquitination and nuclear translocation of IRF5. Moreover, Peli1 deficiency in macrophages reduced the apoptosis of cardiomyocytes in vivo and in vitro. Together, our study demonstrates that Peli1 deficiency in macrophages suppresses macrophage M1 polarization and alleviates myocardial ischemia/reperfusion injury by inhibiting the nuclear translocation of IRF5, which may serve as a potential intervention target for myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu, China
| | - Yuxing Hou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu, China.,Department of Pathology, Wannan Medical College, 22 Wenchang West Road, Wuhu 241002, Anhui, China
| | - Yali Zhai
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu, China
| | - Jie Yang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu, China
| | - Linli Que
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu, China
| | - Jichun Liu
- Department of Cardiology, Affiliated Yijishan Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu 241001, Anhui, China
| | - Linming Lu
- Department of Pathology, Wannan Medical College, 22 Wenchang West Road, Wuhu 241002, Anhui, China
| | - Tuanzhu Ha
- Department of Surgery, East Tennessee State University, Campus Box 70575, Johnson City, TN 37614-0575, United States
| | - Chuanfu Li
- Department of Surgery, East Tennessee State University, Campus Box 70575, Johnson City, TN 37614-0575, United States
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu, China
| | - Jiantao Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu, China
| | - Yuehua Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu, China
| |
Collapse
|
21
|
Fontaine MAC, Jin H, Gagliardi M, Rousch M, Wijnands E, Stoll M, Li X, Schurgers L, Reutelingsperger C, Schalkwijk C, van den Akker NMS, Molin DG, Gullestad L, Eritsland J, Hoffman P, Skjelland M, Andersen GØ, Aukrust P, Karel J, Smirnov E, Halvorsen B, Temmerman L, Biessen EA. Blood Milieu in Acute Myocardial Infarction Reprograms Human Macrophages for Trauma Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203053. [PMID: 36526599 PMCID: PMC9929255 DOI: 10.1002/advs.202203053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/06/2022] [Indexed: 06/17/2023]
Abstract
Acute myocardial infarction (AMI) is accompanied by a systemic trauma response that impacts the whole body, including blood. This study addresses whether macrophages, key players in trauma repair, sense and respond to these changes. For this, healthy human monocyte-derived macrophages are exposed to 20% human AMI (n = 50) or control (n = 20) serum and analyzed by transcriptional and multiparameter functional screening followed by network-guided data interpretation and drug repurposing. Results are validated in an independent cohort at functional level (n = 47 AMI, n = 25 control) and in a public dataset. AMI serum exposure results in an overt AMI signature, enriched in debris cleaning, mitosis, and immune pathways. Moreover, gene networks associated with AMI and with poor clinical prognosis in AMI are identified. Network-guided drug screening on the latter unveils prostaglandin E2 (PGE2) signaling as target for clinical intervention in detrimental macrophage imprinting during AMI trauma healing. The results demonstrate pronounced context-induced macrophage reprogramming by the AMI systemic environment, to a degree decisive for patient prognosis. This offers new opportunities for targeted intervention and optimized cardiovascular disease risk management.
Collapse
|
22
|
Mohamad HE, Asker ME, Shaheen MA, Baraka NM, Fantoukh OI, Alqahtani A, Salama AE, Mahmoud YK. Secukinumab and Black Garlic Downregulate OPG/RANK/RANKL Axis and Devitalize Myocardial Interstitial Fibrosis Induced by Sunitinib in Experimental Rats. Life (Basel) 2023; 13:life13020308. [PMID: 36836664 PMCID: PMC9962443 DOI: 10.3390/life13020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Sunitinib has been associated with several cardiotoxic effects such as cardiac fibrosis. The present study was designed to explore the role of interleukin (IL)-17 in sunitinib-induced myocardial fibrosis (MF) in rats and whether its neutralization and/or administration of black garlic (BG), a form of fermented raw garlic (Allium sativum L.), could extenuate this adverse effect. Male Wistar albino rats received sunitinib (25 mg/kg three times a week, orally) and were co-treated with secukinumab (3 mg/kg, subcutaneously, three times total) and/or BG (300 mg/kg/day, orally) for four weeks. Administration of sunitinib induced significant increase in cardiac index, cardiac inflammatory markers, and cardiac dysfunction that were ameliorated by both secukinumab and BG, and to a preferable extent, with the combined treatment. Histological examination revealed disruption in the myocardial architecture and interstitial fibrosis in cardiac sections of the sunitinib group, which were reversed by both secukinumab and BG treatments. Both drugs and their co-administration restored normal cardiac functions, downregulated cardiac inflammatory cytokines, mainly IL-17 and NF-κB, along with increasing the MMP1/TIMP1 ratio. Additionally, they attenuated sunitinib-induced upregulation of the OPG/RANK/RANKL axis. These findings highlight another new mechanism through which sunitinib can induce interstitial MF. The current results propose that neutralizing IL-17 by secukinumab and/or supplementation with BG can be a promising therapeutic approach for ameliorating sunitinib-induced MF.
Collapse
Affiliation(s)
- Hoda E. Mohamad
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Correspondence: ; Tel.: +20-10-2799-4483
| | - Mervat E. Asker
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed A. Shaheen
- Department of Histology & Cell Biology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Nourhan M. Baraka
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Omer I. Fantoukh
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulaziz Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alaa E. Salama
- Department of Cardiology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Yasmin K. Mahmoud
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
23
|
Shi T, Miller EJ. Novel Radiotracers for Molecular Imaging of Myocardial Inflammation: an Update Focused on Clinical Translation of Non-18F-FDG Radiotracers. CURRENT CARDIOVASCULAR IMAGING REPORTS 2023; 16:1-9. [PMID: 36926261 PMCID: PMC9996562 DOI: 10.1007/s12410-023-09574-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2023] [Indexed: 03/11/2023]
Abstract
Purpose of Review The purpose of this paper is to provide a focused update on recent advances in non-18F-FDG radiotracers for myocardial inflammatory diseases, with a focus on cardiac sarcoidosis and myocarditis. Recent Findings Novel radiotracers targeting molecular features of inflammation have the potential to visualize underlying molecular mechanisms key to the pathogenesis of inflammatory cardiomyopathies such as sarcoidosis and myocarditis. These radiotracers may provide unique opportunities for improved mechanistic insight, higher specificity, and better quantification of disease activity, as well as potential for guidance and monitoring of immunomodulatory therapies. Summary Novel radiotracers provide unique possibilities in diagnosis, prognostic performance, and therapy guidance for cardiac sarcoidosis and myocarditis.
Collapse
Affiliation(s)
- Tiantian Shi
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT USA
| | - Edward J Miller
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT USA
| |
Collapse
|
24
|
Zhu XM, Tan Y, Shi YH, Li Q, Zhu J, Liu XD, Tong QZ. TMT-based quantitative proteomics analysis of the effects of Jiawei Danshen decoction myocardial ischemia-reperfusion injury. Proteome Sci 2022; 20:17. [PMID: 36517846 PMCID: PMC9749149 DOI: 10.1186/s12953-022-00200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Every year, approximately 17 million people worldwide die due to coronary heart disease, with China ranking second in terms of the death toll. Myocardial ischemia-reperfusion injury (MIRI) significantly influences cardiac function and prognosis in cardiac surgery patients. Jiawei Danshen Decoction (JWDSD) is a traditional Chinese herbal prescription that has been used clinically for many years in China to treat MIRI. The underlying molecular mechanisms, however, remain unknown. To investigate the proteomic changes in myocardial tissue of rats given JWDSD for MIRI therapy-based proteomics. METHODS MIRI rat model was created by ligating/releasing the left anterior descending coronary artery. For seven days, the drugs were administered twice daily. The model was created following the last drug administration. JWDSD's efficacy in improving MIRI was evaluated using biochemical markers and cardiac histology. Tandem mass tag-based quantitative proteomics (TMT) technology was also used to detect proteins in the extracted heart tissue. To analyze differentially expressed proteins (DEPs), bioinformatics analysis, including gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathways, were employed. Furthermore, western blotting confirmed the potential targets regulated by JWDSD. RESULTS The histopathologic characteristics and biochemical data showed JWDSD's protective effects on MIRI rats. A total of 4549 proteins were identified with FDR (false discovery rate) ≤1%. Twenty overlapping were identified (162 DEPs and 45 DEPs in Model/Control or JWDSD/Model group, respectively). Of these DEPs, 16 were regulated by JWDSD. GO analysis provided a summary of the deregulated protein expression in the categories of biological process (BP), cell component (CC), and molecular function (MF). KEGG enrichment analysis revealed that the signaling pathways of neutrophil extracellular trap formation, RNA polymerase, serotonergic synapse, and linoleic acid metabolism are all closely related to JWDSD effects in MIRI rats. Furthermore, T-cell lymphoma invasion and metastasis 1 (TIAM1) was validated using western blotting, and the results were consistent with proteomics data. CONCLUSIONS Our study suggests that JWDSD may exert therapeutic effects through multi-pathways regulation in MIRI treatment. This work may provide proteomics clues for continuing research on JWDSD in treating MIRI.
Collapse
Affiliation(s)
- Xiang-Mei Zhu
- grid.488482.a0000 0004 1765 5169Pharmacy of College, Hunan University of Chinese Medicine, Xueshi Road, Number 300, Changsha, Hunan 410208, People’s Republic of China ,grid.67293.39The Second Hospital of Hunan University of Chinese Medicine, Caie North Road, Number 233, Changsha, Hunan 410005, People’s Republic of China
| | - Yang Tan
- grid.488482.a0000 0004 1765 5169Pharmacy of College, Hunan University of Chinese Medicine, Xueshi Road, Number 300, Changsha, Hunan 410208, People’s Republic of China
| | - Yu-He Shi
- grid.488482.a0000 0004 1765 5169Pharmacy of College, Hunan University of Chinese Medicine, Xueshi Road, Number 300, Changsha, Hunan 410208, People’s Republic of China
| | - Qing Li
- grid.488482.a0000 0004 1765 5169Pharmacy of College, Hunan University of Chinese Medicine, Xueshi Road, Number 300, Changsha, Hunan 410208, People’s Republic of China
| | - Jue Zhu
- grid.488482.a0000 0004 1765 5169Pharmacy of College, Hunan University of Chinese Medicine, Xueshi Road, Number 300, Changsha, Hunan 410208, People’s Republic of China
| | - Xiang-Dan Liu
- grid.488482.a0000 0004 1765 5169Pharmacy of College, Hunan University of Chinese Medicine, Xueshi Road, Number 300, Changsha, Hunan 410208, People’s Republic of China ,Key Laboratory of Germplasm Resources and Standardized Planting of Bulk Authentic Medicinal Materials from Hunan, Xueshi Road, Number 300, Changsha, Hunan 410208, People’s Republic of China
| | - Qiao-Zhen Tong
- grid.488482.a0000 0004 1765 5169Pharmacy of College, Hunan University of Chinese Medicine, Xueshi Road, Number 300, Changsha, Hunan 410208, People’s Republic of China ,Key Laboratory of Germplasm Resources and Standardized Planting of Bulk Authentic Medicinal Materials from Hunan, Xueshi Road, Number 300, Changsha, Hunan 410208, People’s Republic of China
| |
Collapse
|
25
|
Li W, Chen P, Pan Y, Lu L, Ning X, Liu J, Wei J, Chen M, Zhao P, Ou C. Construction of a Band-Aid Like Cardiac Patch for Myocardial Infarction with Controllable H 2 S Release. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204509. [PMID: 36285675 PMCID: PMC9762300 DOI: 10.1002/advs.202204509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Excessive or persistent inflammation incites cardiomyocytes necrosis by generating reactive oxygen species in myocardial infarction (MI). Hydrogen sulfide (H2 S), a gaseous signal molecule, can quickly permeate cells and tissues, growing concerned for its cardioprotective effects. However, short resident time and strong side effects greatly restrict its application. Herein, a complex scaffold (AAB) is first developed to slowly release H2 S for myocardial protection by integrating alginate modified with 2-aminopyridine-5-thiocarboxamide (H2 S donor) into albumin electrospun fibers. Next, a band-aid like patch is constructed based on AAB (center) and nanocomposite scaffold which comprises albumin scaffold and black phosphorus nanosheets (BPNSs). With near-infrared laser (808 nm), thermal energy generated by BPNSs can locally change the molecular structure of fibrous scaffold, thereby attaching patch to the myocardium. In this study, it is also demonstrated that AAB can enhance regenerative M2 macrophage and attenuate inflammatory polarization of macrophages via reduction in intracellular ROS. Eventually, this engineered cardiac patch can relieve inflammation and promote angiogenesis after MI, and thereby recover heart function, providing a promising therapeutic strategy for MI treatment.
Collapse
Affiliation(s)
- Weirun Li
- Affiliated Dongguan HospitalSouthern Medical University (Dongguan People's Hospital)Dongguan523058China
| | - Peier Chen
- Department of CardiologyLaboratory of Heart CenterHeart CenterZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Yuxuan Pan
- Affiliated Dongguan HospitalSouthern Medical University (Dongguan People's Hospital)Dongguan523058China
| | - Ling Lu
- NMPA Key Laboratory for Research and Evaluation of Drug MetabolismGuangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Xiaodong Ning
- Affiliated Dongguan HospitalSouthern Medical University (Dongguan People's Hospital)Dongguan523058China
| | - Jiamin Liu
- NMPA Key Laboratory for Research and Evaluation of Drug MetabolismGuangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jintao Wei
- Affiliated Dongguan HospitalSouthern Medical University (Dongguan People's Hospital)Dongguan523058China
| | - Minsheng Chen
- Department of CardiologyLaboratory of Heart CenterHeart CenterZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug MetabolismGuangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
- Guangdong Provincial Key Laboratory of Cardiac Function and MicrocirculationSouthern Medical UniversityGuangzhou510515China
| | - Caiwen Ou
- Affiliated Dongguan HospitalSouthern Medical University (Dongguan People's Hospital)Dongguan523058China
- Guangdong Provincial Key Laboratory of Shock and MicrocirculationGuangzhou510515China
| |
Collapse
|
26
|
Li Z, Liu X, Zhang X, Zhang W, Gong M, Qin X, Luo J, Fang Y, Liu B, Wei Y. TRIM21 aggravates cardiac injury after myocardial infarction by promoting M1 macrophage polarization. Front Immunol 2022; 13:1053171. [PMID: 36439111 PMCID: PMC9684192 DOI: 10.3389/fimmu.2022.1053171] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/25/2022] [Indexed: 08/27/2024] Open
Abstract
Macrophage polarization followed by myocardial infarction (MI) is essential for wound healing. Tripartite motif-containing protein 21 (TRIM21), a member of E3 ubiquitin ligases, is emerging as a mediator in cardiac injury and heart failure. However, its function in modulating post-MI macrophage polarization remains elusive. Here, we detected that the levels of TRIM21 significantly increased in macrophages of wild-type (WT) mice after MI. In contrast, MI was ameliorated in TRIM21 knockout (TRIM21-/-) mice with improved cardiac remodeling, characterized by a marked decrease in mortality, decreased infarct size, and improved cardiac function compared with WT-MI mice. Notably, TRIM21 deficiency impeded the post-MI apoptosis and DNA damage in the hearts of mice. Consistently, the accumulation of M1 phenotype macrophages in the infarcted tissues was significantly reduced with TRIM21 deletion. Mechanistically, the deletion of TRIM21 orchestrated the process of M1 macrophage polarization at least partly via a PI3K/Akt signaling pathway. Overall, we identify TRIM21 drives the inflammatory response and cardiac remodeling by stimulating M1 macrophage polarization through a PI3K/Akt signaling pathway post-MI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Baoxin Liu
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yidong Wei
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Zhang J, Zhang F, Ge J. SGLT2 inhibitors protect cardiomyocytes from myocardial infarction: a direct mechanism? Future Cardiol 2022; 18:867-882. [PMID: 36111579 DOI: 10.2217/fca-2022-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
SGLT2 inhibitors have been developed as a novel class of glucose-lowering drugs affecting reabsorption of glucose and metabolic processes. They have been recently identified to be remarkably favorable in treating cardiovascular diseases, especially heart failure. Preclinical experiments have shown that SGLT2 inhibitors could hinder the progression of myocardial infarction and alleviate cardiac remodeling by mechanisms of metabolism influence, autophagy induction, inflammation attenuation and fibrosis reduction. Here we summarize the direct mechanism of SGLT2 inhibitors on myocardial infarction and investigate whether it could be applied to the clinic in improving cardiac function and healing after myocardial infarction.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Feng Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
28
|
Li YL. Stellate Ganglia and Cardiac Sympathetic Overactivation in Heart Failure. Int J Mol Sci 2022; 23:ijms232113311. [PMID: 36362099 PMCID: PMC9653702 DOI: 10.3390/ijms232113311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Heart failure (HF) is a major public health problem worldwide, especially coronary heart disease (myocardial infarction)-induced HF with reduced ejection fraction (HFrEF), which accounts for over 50% of all HF cases. An estimated 6 million American adults have HF. As a major feature of HF, cardiac sympathetic overactivation triggers arrhythmias and sudden cardiac death, which accounts for nearly 50–60% of mortality in HF patients. Regulation of cardiac sympathetic activation is highly integrated by the regulatory circuitry at multiple levels, including afferent, central, and efferent components of the sympathetic nervous system. Much evidence, from other investigators and us, has confirmed the afferent and central neural mechanisms causing sympathoexcitation in HF. The stellate ganglion is a peripheral sympathetic ganglion formed by the fusion of the 7th cervical and 1st thoracic sympathetic ganglion. As the efferent component of the sympathetic nervous system, cardiac postganglionic sympathetic neurons located in stellate ganglia provide local neural coordination independent of higher brain centers. Structural and functional impairments of cardiac postganglionic sympathetic neurons can be involved in cardiac sympathetic overactivation in HF because normally, many effects of the cardiac sympathetic nervous system on cardiac function are mediated via neurotransmitters (e.g., norepinephrine) released from cardiac postganglionic sympathetic neurons innervating the heart. This review provides an overview of cardiac sympathetic remodeling in stellate ganglia and potential mechanisms and the role of cardiac sympathetic remodeling in cardiac sympathetic overactivation and arrhythmias in HF. Targeting cardiac sympathetic remodeling in stellate ganglia could be a therapeutic strategy against malignant cardiac arrhythmias in HF.
Collapse
Affiliation(s)
- Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; ; Tel.: +1-402-559-3016; Fax: +1-402-559-9659
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
29
|
Adipose-derived stem cell-secreted exosomes enhance angiogenesis by promoting macrophage M2 polarization in type 2 diabetic mice with limb ischemia via the JAK/STAT6 pathway. Heliyon 2022; 8:e11495. [DOI: 10.1016/j.heliyon.2022.e11495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/21/2022] [Accepted: 11/04/2022] [Indexed: 11/15/2022] Open
|
30
|
Current knowledge of pyroptosis in heart diseases. J Mol Cell Cardiol 2022; 171:81-89. [PMID: 35868567 DOI: 10.1016/j.yjmcc.2022.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/22/2022] [Accepted: 07/13/2022] [Indexed: 10/17/2022]
Abstract
Pyroptosis is a form of pro-inflammatory, necrotic cell death mediated by proteins of the gasdermin family. Various heart diseases, including myocardial ischemia/reperfusion injury, myocardial infarction, and heart failure, involve cardiomyocyte and non-myocyte pyroptosis. Cardiomyocyte pyroptosis also causes the release of pro-inflammatory cytokines. Recent studies have confirmed that pyroptosis is predominantly triggered by both the canonical and non-canonical inflammasome pathways, which independently facilitate caspase-1 or caspase-11/4/5 activation and gasdermin D (GSDMD) cleavage. Cardiac fibroblast and myeloid cell pyroptosis also contributes to the pathogenesis and development of heart diseases. This review summarizes the recent studies on pyroptosis in heart diseases and discusses the associated therapeutic targets.
Collapse
|
31
|
Lam NT, Nguyen NUN, Ahmed MS, Hsu CC, Rios Coronado PE, Li S, Menendez-Montes I, Thet S, Elhelaly WM, Xiao F, Wang X, Williams NS, Canseco DC, Red-Horse K, Rothermel BA, Sadek HA. Targeting calcineurin induces cardiomyocyte proliferation in adult mice. NATURE CARDIOVASCULAR RESEARCH 2022; 1:679-688. [PMID: 39196243 DOI: 10.1038/s44161-022-00098-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 06/07/2022] [Indexed: 08/29/2024]
Abstract
The mammalian neonatal heart can regenerate for 1 week after birth, after which, the majority of cardiomyocytes exit the cell cycle. Recent studies demonstrated that calcineurin mediates cell-cycle arrest of postnatal cardiomyocytes, partly through induction of nuclear translocation of the transcription factor Hoxb13 (a cofactor of Meis1). Here we show that inducible cardiomyocyte-specific deletion of calcineurin B1 in adult cardiomyocytes markedly decreases cardiomyocyte size and promotes mitotic entry, resulting in increased total cardiomyocyte number and improved left ventricular (LV) systolic function after myocardial infarction (MI). Similarly, pharmacological inhibition of calcineurin activity using FK506 promotes cardiomyocyte proliferation in vivo and increases cardiomyocyte number; however, FK506 administration after MI in mice failed to improve LV systolic function, possibly due to inhibition of vasculogenesis and blunting of the post-MI inflammatory response. Collectively, our results demonstrate that loss of calcineurin activity in adult cardiomyocytes promotes cell cycle entry; however, the effects of the calcineurin inhibitor FK506 on other cell types preclude a significant improvement of LV systolic function after MI.
Collapse
Affiliation(s)
- Nicholas T Lam
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ngoc Uyen Nhi Nguyen
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mahmoud Salama Ahmed
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ching-Cheng Hsu
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Shujuan Li
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ivan Menendez-Montes
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Suwannee Thet
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Waleed M Elhelaly
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Feng Xiao
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoyu Wang
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Noelle S Williams
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Diana C Canseco
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Beverly A Rothermel
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hesham A Sadek
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
32
|
Combined therapy with dapagliflozin and entresto offers an additional benefit on improving the heart function in rat after ischemia-reperfusion injury. Biomed J 2022; 46:100546. [PMID: 35718305 DOI: 10.1016/j.bj.2022.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/29/2022] [Accepted: 06/11/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND This study tested whether combined dapagliflozin and entresto treatment would be superior to either one alone for preserving the left-ventricular ejection-fraction (LVEF) in rat after ischemia-reperfusion (IR) injury. METHODS AND RESULTS In vitro flow-cytometric result showed that the intracellular and mitochondrial reactive oxygen species and mitochondrial permeability transition pore, and protein levels of oxidative-stress/DNA-damaged markers [NADPH-oxidase-1 (NOX-1)/NOX-2/oxidized-protein/γ-H2A-histone-family member X (γ-H2AX)] were significantly higher in hydrogen peroxide (H2O2) (300μM)-treated H9C2 cells as compared with the controls that were significantly reversed in sacubitril/valsartan and dapagliflozin therapy in the same H2O2-treated condition, whereas the protein expressions of antioxidants [Sirtuin-1 (SIRT1)/SIRT3/superoxide dismutase/catalase/glutathione peroxidase) exhibited an opposite pattern among the groups (all p<0.001). Adult-male-Sprague-Dawley rat (n=40) were equally categorized into group 1 (sham-operated control), group 2 (IR), group 3 (IR+dapagliflozin/20mg/kg/orally at 3h and post-days 1/2/3 after IR), group 4 (IR+entresto/100mg/kg/orally at 3h and post-days 1/2/3 after IR) and group 5 (IR+dapagliflozin+entresto) and the hearts were harvested by day 3 after IR. The 3rd day's LVEF was highest in group 1, lowest in group 2 and significantly higher in group 5 than in groups 3/4, but it was similar between the latter two groups (p<0.001). The protein expressions of oxidative-stress (NOX-1/NOX-2/oxidized protein), fibrotic (transforming-growth factor-ß/phosphorylated-Smad3), apoptotic [mitochondrial-Bax/cleaved-caspase-3/cleaved-poly (ADP-ribose) polymerase], mitochondria/DNA damaged (cytosolic-cytochrome-C/γ-H2AX), pressure-overload/heart-failure [brain natriuretic peptide (BNP)/ß-myosin heavy chain] and autophagic (ratio of meiotic cyclins CLB3-II/CLB3-I) biomarkers, and the upstream (high-mobility group box 1/Toll-like receptor-4/MyD88/phosphorylated-nuclear factor-κB and downstream [interleukin (IL)-1ß/IL-6/tumor necrosis factor-α] inflammatory signalings revealed an antithetical features of LVEF among the groups (all p<0.0001). The cellular levels of inflammatory (myeloperoxidase+/CD68+), pressure-overload/heart-failure (BNP+) and DNA-damage (γ-H2AX+) biomarkers as well as infarct area demonstrated an opposite pattern of LVEF among the groups (all p<0.0001). CONCLUSION Incorporated entresto-dapagliflozin treatment was superior to either one alone on protecting the heart against IR injury.
Collapse
|
33
|
Shishikura D, Octavia Y, Hayat U, Thondapu V, Barlis P. Atherogenesis and Inflammation. Interv Cardiol 2022. [DOI: 10.1002/9781119697367.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
34
|
Zhang X, Liu W. Engineering Injectable Anti‐Inflammatory Hydrogels to Treat Acute Myocardial Infarction. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xiaoping Zhang
- Tianjin Key Laboratory of Composite and Functional Materials School of Material Science and Engineering Tianjin University Tianjin 300350 China
| | - Wenguang Liu
- Tianjin Key Laboratory of Composite and Functional Materials School of Material Science and Engineering Tianjin University Tianjin 300350 China
| |
Collapse
|
35
|
Moise N, Friedman A. A mathematical model of immunomodulatory treatment in myocardial infarction. J Theor Biol 2022; 544:111122. [DOI: 10.1016/j.jtbi.2022.111122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/16/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
|
36
|
ABSTRACTS (BY NUMBER). Tissue Eng Part A 2022. [DOI: 10.1089/ten.tea.2022.29025.abstracts] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
37
|
Chalise U, Daseke MJ, Kalusche WJ, Konfrst SR, Rodriguez-Paar JR, Flynn ER, Cook LM, Becirovic-Agic M, Lindsey ML. Macrophages secrete murinoglobulin-1 and galectin-3 to regulate neutrophil degranulation after myocardial infarction. Mol Omics 2022; 18:186-195. [PMID: 35230372 PMCID: PMC8963000 DOI: 10.1039/d1mo00519g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/11/2022] [Indexed: 02/03/2023]
Abstract
Inflammation presides early after myocardial infarction (MI) as a key event in cardiac wound healing. Ischemic cardiomyocytes secrete inflammatory cues to stimulate infiltration of leukocytes, predominantly macrophages and neutrophils. Infiltrating neutrophils degranulate to release a series of proteases including matrix metalloproteinase (MMP)-9 to break down extracellular matrix and remove necrotic myocytes to create space for the infarct scar to form. While neutrophil to macrophage communication has been explored, the reverse has been understudied. We used a proteomics approach to catalogue the macrophage secretome at MI day 1. Murinoglobulin-1 (MUG1) was the highest-ranked secreted protein (4.1-fold upregulated at MI day 1 vs. day 0 pre-MI cardiac macrophages, p = 0.004). By transcriptomics evaluation, galectin-3 (Lgals3) was 2.2-fold upregulated (p = 0.008) in MI day 1 macrophages. We explored the direct roles of MUG1 and Lgals3 on neutrophil degranulation. MUG1 blunted while Lgals3 amplified neutrophil degranulation in response to phorbol 12-myristate 13-acetate or interleukin-1β, as measured by MMP-9 secretion. Lgals3 itself also stimulated MMP-9 secretion. To determine if MUG1 regulated Lgals3, we co-stimulated neutrophils with MUG1 and Lgals3. MUG1 limited degranulation stimulated by Lgals3 by 64% (p < 0.001). In vivo, MUG1 was elevated in the infarct region at MI days 1 and 3, while Lgals3 increased at MI day 7. The ratio of MUG1 to Lgals3 positively correlated with infarct wall thickness, revealing that MUG1 attenuated infarct wall thinning. In conclusion, macrophages at MI day 1 secrete MUG1 to limit and Lgals3 to accentuate neutrophil degranulation to regulate infarct wall thinning.
Collapse
Affiliation(s)
- Upendra Chalise
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
| | - Michael J Daseke
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - William J Kalusche
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Shelby R Konfrst
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
| | - Jocelyn R Rodriguez-Paar
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
| | - Elizabeth R Flynn
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Leah M Cook
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mediha Becirovic-Agic
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
| | - Merry L Lindsey
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
| |
Collapse
|
38
|
Yang L, Zhang X, Wang Q. Effects and mechanisms of SGLT2 inhibitors on the NLRP3 inflammasome, with a focus on atherosclerosis. Front Endocrinol (Lausanne) 2022; 13:992937. [PMID: 36589841 PMCID: PMC9797675 DOI: 10.3389/fendo.2022.992937] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Atherosclerosis is a lipid-driven chronic inflammatory disease that is widespread in the walls of large and medium-sized arteries. Its pathogenesis is not fully understood. The currently known pathogenesis includes activation of pro-inflammatory signaling pathways in the body, increased oxidative stress, and increased expression of cytokines/chemokines. In the innate immune response, inflammatory vesicles are an important component with the ability to promote the expression and maturation of inflammatory factors, release large amounts of inflammatory cytokines, trigger a cascade of inflammatory responses, and clear pathogens and damaged cells. Studies in the last few years have demonstrated that NLRP3 inflammatory vesicles play a crucial role in the development of atherosclerosis as well as its complications. Several studies have shown that NLRP3 binding to ligands promotes inflammasome formation, activates caspase-1, and ultimately promotes its maturation and the maturation and production of IL-1β and IL-18. IL-1β and IL-18 are considered to be the two most prominent inflammatory cytokines in the inflammasome that promote the development of atherosclerosis. SGLT2 inhibitors are novel hypoglycemic agents that also have significant antiatherosclerotic effects. However, their exact mechanism is not yet clear. This article is a review of the literature on the effects and mechanisms of SGLT2 inhibitors on the NLRP3 inflammasome, focusing on their role in antiatherosclerosis.
Collapse
|
39
|
Fibroblast growth factor 21 inhibited inflammation and fibrosis after myocardial infarction via EGR1. Eur J Pharmacol 2021; 910:174470. [PMID: 34478691 DOI: 10.1016/j.ejphar.2021.174470] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/21/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022]
Abstract
Myocardial fibrosis in post-myocardial infarction is a self-healing process of the myocardium, making ventricular remodelling difficult to reverse and develop continuously. Fibroblast growth factor 21 (FGF21) plays an essential role in cardiovascular and metabolic diseases. However, the effect and mechanism of FGF21 action on cardiac inflammation and fibrosis caused by myocardial injury have rarely been reported. Adult male Sprague-Dawley rats administered with or without recombinant human basic FGF21 (rhbFGF21) were assessed using echocardiography and haematoxylin-eosin and Masson's trichrome staining to determine the cardiac function and cardiac inflammation and fibrosis levels. FGF21 might improve cardiac remodelling, as characterised by a decrease in the expression of a series of inflammatory and fibrosis-related factors. Moreover, when FGF receptors (FGFRs) were blocked, the effects of FGF21 disappeared. Mechanistically, we found that oxidative stress induced the downregulation of early growth response protein 1 (EGR1), which contributed to inflammatory factors and fibrosis reduction in cardiomyocytes treated with H2O2. Collectively, FGF21 effectively suppressed the inflammation and fibrosis in post-infarcted hearts by regulating FGFR-EGR1.
Collapse
|
40
|
Hobby ARH, Berretta RM, Eaton DM, Kubo H, Feldsott E, Yang Y, Headrick AL, Koch KA, Rubino M, Kurian J, Khan M, Tan Y, Mohsin S, Gallucci S, McKinsey TA, Houser SR. Cortical bone stem cells modify cardiac inflammation after myocardial infarction by inducing a novel macrophage phenotype. Am J Physiol Heart Circ Physiol 2021; 321:H684-H701. [PMID: 34415185 PMCID: PMC8794230 DOI: 10.1152/ajpheart.00304.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/30/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022]
Abstract
Acute damage to the heart, as in the case of myocardial infarction (MI), triggers a robust inflammatory response to the sterile injury that is part of a complex and highly organized wound-healing process. Cortical bone stem cell (CBSC) therapy after MI has been shown to reduce adverse structural and functional remodeling of the heart after MI in both mouse and swine models. The basis for these CBSC treatment effects on wound healing are unknown. The present experiments show that CBSCs secrete paracrine factors known to have immunomodulatory properties, most notably macrophage colony-stimulating factor (M-CSF) and transforming growth factor-β, but not IL-4. CBSC therapy increased the number of galectin-3+ macrophages, CD4+ T cells, and fibroblasts in the heart while decreasing apoptosis in an in vivo swine model of MI. Macrophages treated with CBSC medium in vitro polarized to a proreparative phenotype are characterized by increased CD206 expression, increased efferocytic ability, increased IL-10, TGF-β, and IL-1RA secretion, and increased mitochondrial respiration. Next generation sequencing revealed a transcriptome significantly different from M2a or M2c macrophage phenotypes. Paracrine factors from CBSC-treated macrophages increased proliferation, decreased α-smooth muscle actin expression, and decreased contraction by fibroblasts in vitro. These data support the idea that CBSCs are modulating the immune response to MI to favor cardiac repair through a unique macrophage polarization that ultimately reduces cell death and alters fibroblast populations that may result in smaller scar size and preserved cardiac geometry and function.NEW & NOTEWORTHY Cortical bone stem cell (CBSC) therapy after myocardial infarction alters the inflammatory response to cardiac injury. We found that cortical bone stem cell therapy induces a unique macrophage phenotype in vitro and can modulate macrophage/fibroblast cross talk.
Collapse
Affiliation(s)
- Alexander R H Hobby
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Remus M Berretta
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Deborah M Eaton
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Hajime Kubo
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Eric Feldsott
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Yijun Yang
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Alaina L Headrick
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Keith A Koch
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Marcello Rubino
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Justin Kurian
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Mohsin Khan
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Yinfei Tan
- Genomic Facility, Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Sadia Mohsin
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Pharmacology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Stefania Gallucci
- Department of Microbiology & Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Timothy A McKinsey
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Steven R Houser
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
41
|
Zhou J, Liu W, Zhao X, Xian Y, Wu W, Zhang X, Zhao N, Xu F, Wang C. Natural Melanin/Alginate Hydrogels Achieve Cardiac Repair through ROS Scavenging and Macrophage Polarization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100505. [PMID: 34414693 PMCID: PMC8529445 DOI: 10.1002/advs.202100505] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/24/2021] [Indexed: 05/04/2023]
Abstract
The efficacy of cardiac regenerative strategies for myocardial infarction (MI) treatment is greatly limited by the cardiac microenvironment. The combination of reactive oxygen species (ROS) scavenging to suppress the oxidative stress damage and macrophage polarization to regenerative M2 phenotype in the MI microenvironment can be desirable for MI treatment. Herein, melanin nanoparticles (MNPs)/alginate (Alg) hydrogels composed of two marine-derived natural biomaterials, MNPs obtained from cuttlefish ink and alginate extracted from ocean algae, are proposed. Taking advantage of the antioxidant property of MNPs and mechanical support from injectable alginate hydrogels, the MNPs/Alg hydrogel is explored for cardiac repair by regulating the MI microenvironment. The MNPs/Alg hydrogel is found to eliminate ROS against oxidative stress injury of cardiomyocytes. More interestingly, the macrophage polarization to regenerative M2 macrophages can be greatly promoted in the presence of MNPs/Alg hydrogel. An MI rat model is utilized to evaluate the feasibility of the as-prepared MNPs/Alg hydrogel for cardiac repair in vivo. The antioxidant, anti-inflammatory, and proangiogenesis effects of the hydrogel are investigated in detail. The present study opens up a new way to utilize natural biomaterials for MI treatment and allows to rerecognize the great value of natural biomaterials in cardiac repair.
Collapse
Affiliation(s)
- Jin Zhou
- Beijing Institute of Basic Medical Sciences27 Taiping RdBeijing100850P. R. China
| | - Wei Liu
- Beijing Institute of Basic Medical Sciences27 Taiping RdBeijing100850P. R. China
| | - Xiaoyi Zhao
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical TechnologyMinistry of Education)Beijing Laboratory of Biomedical MaterialsBeijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Yifan Xian
- Beijing Institute of Basic Medical Sciences27 Taiping RdBeijing100850P. R. China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical TechnologyMinistry of Education)Beijing Laboratory of Biomedical MaterialsBeijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Wei Wu
- Beijing Institute of Basic Medical Sciences27 Taiping RdBeijing100850P. R. China
| | - Xiao Zhang
- Beijing Institute of Basic Medical Sciences27 Taiping RdBeijing100850P. R. China
| | - Nana Zhao
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical TechnologyMinistry of Education)Beijing Laboratory of Biomedical MaterialsBeijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Fu‐Jian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical TechnologyMinistry of Education)Beijing Laboratory of Biomedical MaterialsBeijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Changyong Wang
- Beijing Institute of Basic Medical Sciences27 Taiping RdBeijing100850P. R. China
| |
Collapse
|
42
|
Ning H, Chen H, Deng J, Xiao C, Xu M, Shan L, Yang C, Zhang Z. Exosomes secreted by FNDC5-BMMSCs protect myocardial infarction by anti-inflammation and macrophage polarization via NF-κB signaling pathway and Nrf2/HO-1 axis. Stem Cell Res Ther 2021; 12:519. [PMID: 34583757 PMCID: PMC8480009 DOI: 10.1186/s13287-021-02591-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/09/2021] [Indexed: 12/17/2022] Open
Abstract
Background Exosomes are considered a substitute for stem cell-based therapy for myocardial infarction (MI). FNDC5, a transmembrane protein located in the cytoplasm, plays a crucial role in inflammation diseases and MI repair. Furthermore, our previous study found that FNDC5 pre-conditioning bone marrow-derived mesenchymal stem cells (BMMSCs) could secrete more exosomes, but little was known on MI repair. Methods Exosomes isolated from BMMSCs with or without FNDC5-OV were injected into infarcted hearts. Then, cardiomyocytes apoptosis and inflammation responses were detected. Furthermore, exosomes were administrated to RAW264.7 macrophage with LPS treatment to investigate its effect on inflammation and macrophage polarization. Results Compared with MSCs-Exo, FNDC5-MSCs-Exo had superior therapeutic effects on anti-inflammation and anti-apoptosis, as well as polarizing M2 macrophage in vivo. Meanwhile, the in vitro results also showed that FNDC5-MSCs-Exo decreased pro-inflammatory secretion and increased anti-inflammatory secretion under LPS stimulation, which partly depressed NF‐κB signaling pathway and upregulated Nrf2/HO-1 Axis. Conclusions FNDC5-BMMSCs-derived exosomes play anti-inflammation effects and promote M2 macrophage polarization via NF-κB signaling pathway and Nrf2/HO-1 Axis, which may develop a promising cell-free therapy for MI. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02591-4.
Collapse
Affiliation(s)
- Hongjuan Ning
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Haixu Chen
- Institute of Geriatrics, Health Care Office, National Clinical Research Center of Geriatrics Disease, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jingyu Deng
- Air Force Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Chun Xiao
- PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China
| | - Moyan Xu
- Institute of Geriatrics, Health Care Office, National Clinical Research Center of Geriatrics Disease, Chinese PLA General Hospital, Beijing, 100853, China
| | - Lina Shan
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Chao Yang
- PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China.
| | - Zheng Zhang
- PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China.
| |
Collapse
|
43
|
Metformin Attenuates Postinfarction Myocardial Fibrosis and Inflammation in Mice. Int J Mol Sci 2021; 22:ijms22179393. [PMID: 34502314 PMCID: PMC8430638 DOI: 10.3390/ijms22179393] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/22/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
Diabetes is a major risk factor for the development of cardiovascular disease with a higher incidence of myocardial infarction. This study explores the role of metformin, a first-line antihyperglycemic agent, in postinfarction fibrotic and inflammatory remodeling in mice. Three-month-old C57BI/6J mice were submitted to 30 min cardiac ischemia followed by reperfusion for 14 days. Intraperitoneal treatment with metformin (5 mg/kg) was initiated 15 min after the onset of reperfusion and maintained for 14 days. Real-time PCR was used to determine the levels of COL3A1, αSMA, CD68, TNF-α and IL-6. Increased collagen deposition and infiltration of macrophages in heart tissues are associated with upregulation of the inflammation-associated genes in mice after 14 days of reperfusion. Metformin treatment markedly reduced postinfarction fibrotic remodeling and CD68-positive cell population in mice. Moreover, metformin resulted in reduced expression of COL3A1, αSMA and CD68 after 14 days of reperfusion. Taken together, these results open new perspectives for the use of metformin as a drug that counteracts adverse myocardial fibroticand inflammatory remodeling after MI.
Collapse
|
44
|
Lafci Büyükkahraman M, Sabine GK, Kojouharov HV, Chen-Charpentier BM, McMahan SR, Liao J. Using models to advance medicine: mathematical modeling of post-myocardial infarction left ventricular remodeling. Comput Methods Biomech Biomed Engin 2021; 25:298-307. [PMID: 34266318 DOI: 10.1080/10255842.2021.1953487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The heart is an organ with limited capacity for regeneration and repair. The irreversible cell death and corresponding diminished ability of the heart to repair after myocardial infarction (MI), is a leading cause of morbidity and mortality worldwide. In this paper, a new mathematical model is presented to study the left ventricular (LV) remodeling and associated events after MI. The model accurately describes and predicts the interactions among heart cells and the immune system post-MI in the absence of medical interventions. The resulting system of nonlinear ordinary differential equations is studied both analytically and numerically in order to demonstrate the functionality and performance of the new model. To the best of our knowledge, this model is the only one of its kind to consider and correctly apply all of the known factors in diseased heart LV modeling. This model has the potential to provide researchers with a predictive computational tool to better understand the MI pathology and develop various cell-based treatment options, with benefits of lowering the cost and reducing the development time.
Collapse
Affiliation(s)
- Mehtap Lafci Büyükkahraman
- Department of Mathematics, The University of Texas at Arlington, Arlington, TX, USA.,Department of Mathematics, Uşak University, Uşak, Turkey
| | - Gavin K Sabine
- Department of Mathematics, The University of Texas at Arlington, Arlington, TX, USA
| | - Hristo V Kojouharov
- Department of Mathematics, The University of Texas at Arlington, Arlington, TX, USA
| | | | - Sara R McMahan
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, USA
| | - Jun Liao
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
45
|
Association of lymphocyte-to-monocyte ratio with the long-term outcome after hospital discharge in patients with ST-elevation myocardial infarction: a retrospective cohort study. Coron Artery Dis 2021; 31:248-254. [PMID: 31658149 DOI: 10.1097/mca.0000000000000818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Lymphocyte-to-monocyte ratio (LMR), a novel systemic inflammatory factor, correlates with adverse outcomes in patients with cardiovascular disease. However, data are limited regarding the prognostic value of LMR in patients with ST-elevation myocardial infarction (STEMI) after hospital discharge. Therefore, the aim of our study was to evaluate the prognostic impact of admission LMR in hospital survivors of STEMI. METHODS This retrospective observational study enrolled 1369 STEMI patients between 2014 and 2017. The study population was divided into three groups according to tertiles (T) of LMR (T1: ≥2.84; T2: 1.85-2.83; T3: <1.85). The primary outcomes were long-term outcomes after discharge including major adverse cardiac events (MACE) and all-cause mortality. The associations between LMR and long-term outcomes were assessed using Cox regression analysis. RESULTS The median follow-up period was 556 days (interquartile range, 342-864 days). Independent correlations were observed between LMR and both long-term MACE and all-cause mortality. For long-term MACE, the T3 (adjusted hazard ratio [HR], 1.74; 95% confidence interval [CI]: 1.12-2.70; P = 0.013) and T2 groups (adjusted HR, 1.65; CI: 1.07-2.54; P = 0.024) showed significantly higher risk of MACE than did the T1 group. For long-term all-cause mortality, the adjusted HR was 3.07 (CI: 1.10-8.54; P = 0.032) in the T3 group and 2.35 (CI: 0.82-6.76; P = 0.112) in the T2 group compared with that of the T1 group. CONCLUSION Decreased admission LMR was independently associated with long-term all-cause mortality and MACE after discharge in patients with STEMI.
Collapse
|
46
|
Wang M, Liu Y, Liang Y, Naruse K, Takahashi K. Systematic Understanding of Pathophysiological Mechanisms of Oxidative Stress-Related Conditions-Diabetes Mellitus, Cardiovascular Diseases, and Ischemia-Reperfusion Injury. Front Cardiovasc Med 2021; 8:649785. [PMID: 33928135 PMCID: PMC8076504 DOI: 10.3389/fcvm.2021.649785] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) plays a role in intracellular signal transduction under physiological conditions while also playing an essential role in diseases such as hypertension, ischemic heart disease, and diabetes, as well as in the process of aging. The influence of ROS has some influence on the frequent occurrence of cardiovascular diseases (CVD) in diabetic patients. In this review, we considered the pathophysiological relationship between diabetes and CVD from the perspective of ROS. In addition, considering organ damage due to ROS elevation during ischemia-reperfusion, we discussed heart and lung injuries. Furthermore, we have focused on the transient receptor potential (TRP) channels and L-type calcium channels as molecular targets for ROS in ROS-induced tissue damages and have discussed about the pathophysiological mechanism of the injury.
Collapse
Affiliation(s)
| | | | | | | | - Ken Takahashi
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
47
|
Lyu J, Huang J, Wu J, Yu T, Wei X, Lei Q. Lack of Macrophage Migration Inhibitory Factor Reduces Susceptibility to Ventricular Arrhythmias During the Acute Phase of Myocardial Infarction. J Inflamm Res 2021; 14:1297-1311. [PMID: 33854357 PMCID: PMC8039209 DOI: 10.2147/jir.s304553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/16/2021] [Indexed: 12/29/2022] Open
Abstract
Background Macrophages are involved in inflammatory responses and play a crucial role in aggravating ventricular arrhythmias (VAs) after myocardial infarction (MI). Macrophage migration inhibitory factor (MIF) participates in inflammatory responses during acute MI. In the present study, we hypothesized that knockout (KO) of MIF may prevent VAs during the acute phase of MI by inhibiting macrophage-derived pro-inflammatory mediators. Methods and Results We demonstrated that MIF-KO mice in a mouse model of MI exhibited a significant decrease in susceptibility to VAs both in vivo (84.6% vs 40.7%, P < 0.05) and ex vivo (86.7% vs 40.0%, P < 0.05) at day 3 after MI compared with that in wild-type (WT) mice. Both WT and MIF-KO mice presented similar left ventricular contractility, peri-infarct myocardial fibrosis and sympathetic reinnervation, and circulating and local norepinephrine levels during the acute phase of MI. Meanwhile, MIF-KO mice had inhibited macrophage aggregation, alleviated connexin 43 (Cx43) redistribution, and reduced level of pro-inflammatory mediators, including tumor necrosis factor-α and interleukin-1β (P < 0.05) at day 3 after MI. The differences in susceptibility to VAs, expression of pro-inflammatory mediators, and Cx43 redistribution after MI between WT and MIF-KO mice disappeared by macrophage depletion with clodronate liposomes in both groups. Furthermore, the pro-inflammatory activity of cultured peritoneal macrophages was inhibited by MIF deficiency and recovered with replenishment of exogenous MIF in vitro. Conclusion In conclusion, we found that lack of MIF reduced the susceptibility to VAs in mouse heart during the acute phase of MI by inhibiting pro-inflammatory activity of macrophages and improving gap-junction and electrical remodeling.
Collapse
Affiliation(s)
- Juanjuan Lyu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jia Huang
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, People's Republic of China
| | - Jin Wu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Tao Yu
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, People's Republic of China.,Department of Cardiac Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Xinchuan Wei
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, People's Republic of China
| | - Qian Lei
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, People's Republic of China
| |
Collapse
|
48
|
Scalise RFM, De Sarro R, Caracciolo A, Lauro R, Squadrito F, Carerj S, Bitto A, Micari A, Bella GD, Costa F, Irrera N. Fibrosis after Myocardial Infarction: An Overview on Cellular Processes, Molecular Pathways, Clinical Evaluation and Prognostic Value. Med Sci (Basel) 2021; 9:medsci9010016. [PMID: 33804308 PMCID: PMC7931027 DOI: 10.3390/medsci9010016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
The ischemic injury caused by myocardial infarction activates a complex healing process wherein a powerful inflammatory response and a reparative phase follow and balance each other. An intricate network of mediators finely orchestrate a large variety of cellular subtypes throughout molecular signaling pathways that determine the intensity and duration of each phase. At the end of this process, the necrotic tissue is replaced with a fibrotic scar whose quality strictly depends on the delicate balance resulting from the interaction between multiple actors involved in fibrogenesis. An inflammatory or reparative dysregulation, both in term of excess and deficiency, may cause ventricular dysfunction and life-threatening arrhythmias that heavily affect clinical outcome. This review discusses cellular process and molecular signaling pathways that determine fibrosis and the imaging technique that can characterize the clinical impact of this process in-vivo.
Collapse
Affiliation(s)
- Renato Francesco Maria Scalise
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98100 Messina, Italy; (R.F.M.S.); (R.D.S.); (A.C.); (S.C.); (G.D.B.); (N.I.)
| | - Rosalba De Sarro
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98100 Messina, Italy; (R.F.M.S.); (R.D.S.); (A.C.); (S.C.); (G.D.B.); (N.I.)
| | - Alessandro Caracciolo
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98100 Messina, Italy; (R.F.M.S.); (R.D.S.); (A.C.); (S.C.); (G.D.B.); (N.I.)
| | - Rita Lauro
- Section of Pharmacology, Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy; (R.L.); (F.S.); (A.B.)
| | - Francesco Squadrito
- Section of Pharmacology, Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy; (R.L.); (F.S.); (A.B.)
| | - Scipione Carerj
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98100 Messina, Italy; (R.F.M.S.); (R.D.S.); (A.C.); (S.C.); (G.D.B.); (N.I.)
| | - Alessandra Bitto
- Section of Pharmacology, Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy; (R.L.); (F.S.); (A.B.)
| | - Antonio Micari
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, A.O.U. Policlinico “G. Martino”, 98100 Messina, Italy;
| | - Gianluca Di Bella
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98100 Messina, Italy; (R.F.M.S.); (R.D.S.); (A.C.); (S.C.); (G.D.B.); (N.I.)
| | - Francesco Costa
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98100 Messina, Italy; (R.F.M.S.); (R.D.S.); (A.C.); (S.C.); (G.D.B.); (N.I.)
- Correspondence: ; Tel.: +39-090-221-23-41; Fax: +39-090-221-23-81
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98100 Messina, Italy; (R.F.M.S.); (R.D.S.); (A.C.); (S.C.); (G.D.B.); (N.I.)
| |
Collapse
|
49
|
Procopio MC, Lauro R, Nasso C, Carerj S, Squadrito F, Bitto A, Di Bella G, Micari A, Irrera N, Costa F. Role of Adenosine and Purinergic Receptors in Myocardial Infarction: Focus on Different Signal Transduction Pathways. Biomedicines 2021; 9:biomedicines9020204. [PMID: 33670488 PMCID: PMC7922652 DOI: 10.3390/biomedicines9020204] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
Myocardial infarction (MI) is a dramatic event often caused by atherosclerotic plaque erosion or rupture and subsequent thrombotic occlusion of a coronary vessel. The low supply of oxygen and nutrients in the infarcted area may result in cardiomyocytes necrosis, replacement of intact myocardium with non-contractile fibrous tissue and left ventricular (LV) function impairment if blood flow is not quickly restored. In this review, we summarized the possible correlation between adenosine system, purinergic system and Wnt/β-catenin pathway and their role in the pathogenesis of cardiac damage following MI. In this context, several pathways are involved and, in particular, the adenosine receptors system shows different interactions between its members and purinergic receptors: their modulation might be effective not only for a normal functional recovery but also for the treatment of heart diseases, thus avoiding fibrosis, reducing infarcted area and limiting scaring. Similarly, it has been shown that Wnt/β catenin pathway is activated following myocardial injury and its unbalanced activation might promote cardiac fibrosis and, consequently, LV systolic function impairment. In this regard, the therapeutic benefits of Wnt inhibitors use were highlighted, thus demonstrating that Wnt/β-catenin pathway might be considered as a therapeutic target to prevent adverse LV remodeling and heart failure following MI.
Collapse
Affiliation(s)
- Maria Cristina Procopio
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Rita Lauro
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Chiara Nasso
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Scipione Carerj
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Gianluca Di Bella
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Antonio Micari
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, A.O.U. Policlinic “G. Martino”, 98165 Messina, Italy;
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
- Correspondence: ; Tel.: +39-090-221-3093; Fax: +39-090-221-23-81
| | - Francesco Costa
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| |
Collapse
|
50
|
Liu X, Zhang J, Zeigler AC, Nelson AR, Lindsey ML, Saucerman JJ. Network Analysis Reveals a Distinct Axis of Macrophage Activation in Response to Conflicting Inflammatory Cues. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:883-891. [PMID: 33408259 PMCID: PMC7854506 DOI: 10.4049/jimmunol.1901444] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/07/2020] [Indexed: 12/19/2022]
Abstract
Macrophages are subject to a wide range of cytokine and pathogen signals in vivo, which contribute to differential activation and modulation of inflammation. Understanding the response to multiple, often-conflicting cues that macrophages experience requires a network perspective. In this study, we integrate data from literature curation and mRNA expression profiles obtained from wild type C57/BL6J mice macrophages to develop a large-scale computational model of the macrophage signaling network. In response to stimulation across all pairs of nine cytokine inputs, the model predicted activation along the classic M1-M2 polarization axis but also a second axis of macrophage activation that distinguishes unstimulated macrophages from a mixed phenotype induced by conflicting cues. Along this second axis, combinations of conflicting stimuli, IL-4 with LPS, IFN-γ, IFN-β, or TNF-α, produced mutual inhibition of several signaling pathways, e.g., NF-κB and STAT6, but also mutual activation of the PI3K signaling module. In response to combined IFN-γ and IL-4, the model predicted genes whose expression was mutually inhibited, e.g., iNOS or Nos2 and Arg1, or mutually enhanced, e.g., Il4rα and Socs1, validated by independent experimental data. Knockdown simulations further predicted network mechanisms underlying functional cross-talk, such as mutual STAT3/STAT6-mediated enhancement of Il4rα expression. In summary, the computational model predicts that network cross-talk mediates a broadened spectrum of macrophage activation in response to mixed pro- and anti-inflammatory cytokine cues, making it useful for modeling in vivo scenarios.
Collapse
Affiliation(s)
- Xiaji Liu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908; and
| | - Jingyuan Zhang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908; and
| | - Angela C Zeigler
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908; and
| | - Anders R Nelson
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908; and
| | - Merry L Lindsey
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center and Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68198
| | - Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908; and
| |
Collapse
|