1
|
Polina I, Domondon M, Fox R, Sudarikova AV, Troncoso M, Vasileva VY, Kashyrina Y, Gooz MB, Schibalski RS, DeLeon-Pennell KY, Fitzgibbon WR, Ilatovskaya DV. Differential effects of low-dose sacubitril and/or valsartan on renal disease in salt-sensitive hypertension. Am J Physiol Renal Physiol 2020; 319:F63-F75. [PMID: 32463726 PMCID: PMC7468826 DOI: 10.1152/ajprenal.00125.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Diuretics and renin-angiotensin system blockers are often insufficient to control the blood pressure (BP) in salt-sensitive (SS) subjects. Abundant data support the proposal that the level of atrial natriuretic peptide may correlate with the pathogenesis of SS hypertension. We hypothesized here that increasing atrial natriuretic peptide levels with sacubitril, combined with renin-angiotensin system blockage by valsartan, can be beneficial for alleviation of renal damage in a model of SS hypertension, the Dahl SS rat. To induce a BP increase, rats were challenged with a high-salt 4% NaCl diet for 21 days, and chronic administration of vehicle or low-dose sacubitril and/or valsartan (75 μg/day each) was performed. Urine flow, Na+ excretion, and water consumption were increased on the high-salt diet compared with the starting point (0.4% NaCl) in all groups but remained similar among the groups at the end of the protocol. Upon salt challenge, we observed a mild decrease in systolic BP and urinary neutrophil gelatinase-associated lipocalin levels (indicative of alleviated tubular damage) in the valsartan-treated groups. Sacubitril, as well as sacubitril/valsartan, attenuated the glomerular filtration rate decline induced by salt. Alleviation of protein cast formation and lower renal medullary fibrosis were observed in the sacubitril/valsartan- and valsartan-treated groups, but not when sacubitril alone was administered. Interestingly, proteinuria was mildly mitigated only in rats that received sacubitril/valsartan. Further studies of the effects of sacubitril/valsartan in the setting of SS hypertension, perhaps involving a higher dose of the drug, are warranted to determine if it can interfere with the progression of the disease.
Collapse
Affiliation(s)
- Iuliia Polina
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Mark Domondon
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Rebecca Fox
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Anastasia V Sudarikova
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Miguel Troncoso
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Valeriia Y Vasileva
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Yuliia Kashyrina
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Monika Beck Gooz
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Ryan S Schibalski
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Kristine Y DeLeon-Pennell
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Wayne R Fitzgibbon
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Daria V Ilatovskaya
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
2
|
Dalila N, Brockmöller J, Tzvetkov MV, Schirmer M, Haubrock M, Vormfelde SV. Impact of mineralocorticoid receptor polymorphisms on urinary electrolyte excretion with and without diuretic drugs. Pharmacogenomics 2015; 16:115-27. [DOI: 10.2217/pgs.14.163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Polymorphisms in the mineralocorticoid receptor may affect urinary sodium and potassium excretion. We investigated polymorphisms in the MR gene in relation to urinary electrolyte excretion in two separate studies. Patients & methods: The genotype–phenotype association was studied in healthy volunteers after single doses of bumetanide, furosemide, torsemide, hydrochlorothiazide, triamterene and after NaCl restriction. Results: High potassium excretion under all conditions except torsemide, and high NaCl excretion after bumetanide and furosemide were associated with the A allele of the intron-3 polymorphism (rs3857080). This polymorphism explained 5–10% of the functional variation and in vitro, rs3857080 affected DNA binding of the transcription factor LHX4. Conclusion: rs3857080 may be a promising new candidate for research in cardiac and renal disorders and on antialdosteronergic drugs like spironolactone. Original submitted 23 June 2014; Revision submitted 5 November 2014
Collapse
Affiliation(s)
- Nawar Dalila
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Jürgen Brockmöller
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Markus Schirmer
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Martin Haubrock
- Institute of Bioinformatics, University Medical Center Göttingen, Göttingen, Germany
| | | |
Collapse
|
3
|
Atrial natriuretic peptide gene variants and circulating levels: implications in cardiovascular diseases. Clin Sci (Lond) 2014; 127:1-13. [PMID: 24611929 DOI: 10.1042/cs20130427] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
ANP (atrial natriuretic peptide), discovered 30 years ago in rat cardiac atria, has been extensively investigated with regard to physiology, pathophysiology, cardiovascular disease therapeutics and molecular genetic aspects. Besides its diuretic, natriuretic and vasorelaxant effects, novel properties of this hormone have been described. Thus anti-hypertrophic, anti-fibrotic, anti-proliferative and anti-inflammatory actions suggest that ANP contributes not only to haemodynamic homoeostasis and adjustments, but has also a role in cardiovascular remodelling. Circulating ANP levels represent a valuable biomarker in cardiovascular diseases. ANP structure is highly conserved among species, indicating a key role in cardiovascular health. Thus an abnormal ANP structure may contribute to an increased risk of disease due to altered functions at either the vascular or cardiac level. Among others, the 2238T>C exon 3 variant has been associated with endothelial cell damage and dysfunction and with an increased risk of acute cardiovascular events, a frameshift mutation within exon 3 has been related to increased risk of atrial fibrillation, and ANP gene variants have been linked to increased risk of hypertension in different ethnic groups. On the other hand, the rs5068 variant, falling within the 3' UTR and associated with higher circulating ANP levels, has been shown to have a beneficial cardioprotective and metabolic effect. Dissecting out the disease mechanisms dependent on specific ANP molecular variants may reveal information useful in the clinical setting for diagnostic, prognostic and therapeutic purposes. Furthermore, insights from molecular genetic analysis of ANP may well integrate advancing knowledge on the role of ANP as a significant biomarker in patients affected by cardiovascular diseases.
Collapse
|