1
|
Salve BG, Sharma S, Vijay N. Evolutionary diversity of CXCL16-CXCR6: Convergent substitutions and recurrent gene loss in sauropsids. Immunogenetics 2024; 76:397-415. [PMID: 39400711 DOI: 10.1007/s00251-024-01357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
The CXCL16-CXCR6 axis is crucial for regulating the persistence of CD8 tissue-resident memory T cells (TRM). CXCR6 deficiency lowers TRM cell numbers in the lungs and depletes ILC3s in the lamina propria, impairing mucosal defence. This axis is linked to diseases like HIV/SIV, cancer, and COVID-19. Together, these highlight that the CXCL16-CXCR6 axis is pivotal in host immunity. Previous studies of the CXCL16-CXCR6 axis found genetic variation among species but were limited to primates and rodents. To understand the evolution and diversity of CXCL16-CXCR6 across vertebrates, we compared approximately 400 1-to-1 CXCR6 orthologs spanning diverse vertebrates. The unique DRF motif of CXCR6 facilitates leukocyte adhesion by interacting with cell surface-expressed CXCL16 and plays a key role in G-protein selectivity during receptor signalling; however, our findings show that this motif is not universal. The DRF motif is restricted to mammals, turtles, and frogs, while the DRY motif, typical in other CKRs, is found in snakes and lizards. Most birds exhibit the DRL motif. These substitutions at the DRF motif affect the receptor-Gi/o protein interaction. We establish recurrent CXCR6 gene loss in 10 out of 36 bird orders, including Galliformes and Passeriformes, Crocodilia, and Elapidae, attributed to segmental deletions and/or frame-disrupting changes. Notably, single-cell RNA sequencing of the lung shows a drop in TRM cells in species with CXCR6 loss, suggesting a possible link. The concurrent loss of ITGAE, CXCL16, and CXCR6 in chickens may have altered CD8 TRM cell abundance, with implications for immunity against viral diseases and vaccines inducing CD8 TRM cells.
Collapse
Affiliation(s)
- Buddhabhushan Girish Salve
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Sandhya Sharma
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India.
| |
Collapse
|
2
|
Bai Y, Chen L, Guo F, Zhang J, Hu J, Tao X, Lu Q, Li W, Chen X, Gong T, Qiu N, Jin Y, Yang L, Lei Y, Ruan C, Jing Q, Cooke JP, Wang S, Zou Y, Ge J. EphrinB2-mediated CDK5/ISL1 pathway enhances cardiac lymphangiogenesis and alleviates ischemic injury by resolving post-MI inflammation. Signal Transduct Target Ther 2024; 9:326. [PMID: 39557830 PMCID: PMC11574162 DOI: 10.1038/s41392-024-02019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/23/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
EphrinB2 (erythropoietin-producing hepatoma interactor B2) is a key Eph/ephrin family member, promoting angiogenesis, vasculogenesis, and lymphangiogenesis during embryonic development. However, the role of EphrinB2 in cardiac lymphangiogenesis following myocardial infarction (MI) and the potential molecular mechanism remains to be demonstrated. This study revealed that EphrinB2 prevented ischemic heart post-MI from remodeling and dysfunction by activating the cardiac lymphangiogenesis signaling pathway. Deletion of EphrinB2 impaired cardiac lymphangiogenesis and aggravated adverse cardiac remodeling and ventricular dysfunction post-MI. At the same time, overexpression of EphrinB2 stimulated cardiac lymphangiogenesis which facilitated cardiac infiltrating macrophage drainage and reduced inflammation in the ischemic heart. The beneficial effects of EphrinB2 on improving clearance of inflammatory response and cardiac function were abolished in Lyve1 knockout mice. Mechanistically, EphrinB2 accelerated cell cycling and lymphatic endothelial cell proliferation and migration by activating CDK5 and CDK5-dependent ISL1 nuclear translocation. EphrinB2 enhanced the transcriptional activity of ISL1 at the VEGFR3 (FLT4) promoter, and VEGFR3 inhibitor MAZ51 significantly diminished the EphrinB2-mediated lymphangiogenesis and deteriorated the ischemic cardiac function. We uncovered a novel mechanism of EphrinB2-driven cardiac lymphangiogenesis in improving myocardial remodeling and function after MI.
Collapse
Affiliation(s)
- Yingnan Bai
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Liming Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fanghao Guo
- Center for Reproductive Medicine & Fertility Preservation Program, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Innovation Center for Intervention of Chronic Disease and Promotion of Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinghong Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jinlin Hu
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xuefei Tao
- Department of Geriatric Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Qing Lu
- Department of Radiology, Shanghai Dongfang Hospital, Shanghai Tongji University School of Medicine, Shanghai, China
| | - Wenyi Li
- Department of Endocrinology, Tongren Hospital, Shanghai JiaoMo Tong University School of Medicine, Shanghai, China
| | - Xueying Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ting Gong
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Nan Qiu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yawei Jin
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lifan Yang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yu Lei
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chengchao Ruan
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Innovation Center for Intervention of Chronic Disease and Promotion of Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - John P Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, USA
| | - Shijun Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China.
- Minhang Hospital, Fudan University, Shanghai, China.
| | - Yunzeng Zou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China.
- Institute of Advanced Medicine, Henan University, Kaifeng, Henan, China.
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Huang X, Fei Y, Qiu X, Qian T, Shang Q, Cui J, Song Y, Sheng S, Xiao W, Yu Q, Wang T, Wang X. MiR-625-5p is a potential therapeutic target in sepsis by regulating CXCL16/CXCR6 axis and endothelial barrier. Int Immunopharmacol 2024; 137:112508. [PMID: 38889512 DOI: 10.1016/j.intimp.2024.112508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND MicroRNA plays an important role in the progression of sepsis. We found a significant increase of in miR-625-5p expression in the blood of patients with sepsis, and lipopolysaccharide (LPS)-stimulated EA.hy926 cells. To date, little is known about the specific biological function of miR-625-5p in sepsis. METHODS Changes in miR-625-5p expression were verified through quantitative real-time polymerase chain reaction in 45 patients with sepsis or septic shock and 30 healthy subjects. In vitro, EA.hy926 cells were treated with LPS. Transendothelial electrical resistance assay and FITC-dextran were used in evaluating endothelial barrier function. RESULTS Herein, patients with sepsis or septic shock had significantly higher miR-625-5p expression levels, chemokine (C-X-C motif) ligand 16 (CXCL16) levels, and glycocalyx components than the healthy controls, and miR-625-5p level was positively correlated with disease. Kaplan-Meier analysis demonstrated a strong association between miR-625-5p level and 28-day mortality. Furthermore, the miR-625-5p inhibitor significantly alleviated LPS-induced endothelial barrier injury in vitro. Then, miR-625-5p positively regulated CXCL16 and down-regulated miR-625-5p attenuated CXCL16 transcription and expression in EA.hy926 cells. CXCL16 knockout significantly alleviated vascular barrier dysfunction in the LPS-induced EA.hy926 cells. sCXCL16 treatment in EA.hy926 cells significantly increased endothelial hyperpermeability by disrupting endothelial glycocalyx, tight junction proteins, and adherens junction proteins through the modulation of C-X-C chemokine receptor type 6 (CXCR6). CONCLUSIONS Increase in miR-625-5p level may be an effective biomarker for predicting 28-day mortality in patients with sepsis/septic shock. miR-625-5p is a critical pathogenic factor for endothelial barrier dysfunction in LPS-induced EA.hy926 cells because it activates the CXCL16/CXCR6 axis.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yuxin Fei
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xiaoyu Qiu
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Pulmonary and Critical Care Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Tiantian Qian
- Department of Respiratory Medicine, Ji'nan Zhangqiu District People's Hospital, No. 1920 Mingshuihuiquan Road, Ji'nan, 250200, Shandong, China
| | - Quanmei Shang
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jinfeng Cui
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yutong Song
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Shurui Sheng
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Wenhan Xiao
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Qilin Yu
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Tao Wang
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Xiaozhi Wang
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
4
|
Wang FT, Wu TQ, Lin Y, Jiao YR, Li JY, Ruan Y, Yin L, Chen CQ. The role of the CXCR6/CXCL16 axis in the pathogenesis of fibrotic disease. Int Immunopharmacol 2024; 132:112015. [PMID: 38608478 DOI: 10.1016/j.intimp.2024.112015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
CXC chemokine receptor 6 (CXCR6), a seven-transmembrane domain G-protein-coupled receptor, plays a pivotal regulatory role in inflammation and tissue damage through its interaction with CXC chemokine ligand 16 (CXCL16). This axis is implicated in the pathogenesis of various fibrotic diseases and correlates with clinical parameters that indicate disease severity, activity, and prognosis in organ fibrosis, including afflictions of the liver, kidney, lung, cardiovascular system, skin, and intestines. Soluble CXCL16 (sCXCL16) serves as a chemokine, facilitating the migration and recruitment of CXCR6-expressing cells, while membrane-bound CXCL16 (mCXCL16) functions as a transmembrane protein with adhesion properties, facilitating intercellular interactions by binding to CXCR6. The CXCR6/CXCL16 axis is established to regulate the cycle of damage and repair during chronic inflammation, either through modulating immune cell-mediated intercellular communication or by independently influencing fibroblast homing, proliferation, and activation, with each pathway potentially culminating in the onset and progression of fibrotic diseases. However, clinically exploiting the targeting of the CXCR6/CXCL16 axis requires further elucidation of the intricate chemokine interactions within fibrosis pathogenesis. This review explores the biology of CXCR6/CXCL16, its multifaceted effects contributing to fibrosis in various organs, and the prospective clinical implications of these insights.
Collapse
Affiliation(s)
- Fang-Tao Wang
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Tian-Qi Wu
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yin Lin
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yi-Ran Jiao
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ji-Yuan Li
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yu Ruan
- Surgery and Anesthesia Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lu Yin
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Chun-Qiu Chen
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
5
|
Jia KW, Yao RQ, Fan YW, Zhang DJ, Zhou Y, Wang MJ, Zhang LY, Dong Y, Li ZX, Wang SY, Wang M, Li YH, Zhang LX, Lei T, Gui LC, Lu S, Yang YY, Wang SX, Yu YZ, Yao YM, Hou J. Interferon-α stimulates DExH-box helicase 58 to prevent hepatocyte ferroptosis. Mil Med Res 2024; 11:22. [PMID: 38622688 PMCID: PMC11017495 DOI: 10.1186/s40779-024-00524-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/19/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Liver ischemia/reperfusion (I/R) injury is usually caused by hepatic inflow occlusion during liver surgery, and is frequently observed during war wounds and trauma. Hepatocyte ferroptosis plays a critical role in liver I/R injury, however, it remains unclear whether this process is controlled or regulated by members of the DEAD/DExH-box helicase (DDX/DHX) family. METHODS The expression of DDX/DHX family members during liver I/R injury was screened using transcriptome analysis. Hepatocyte-specific Dhx58 knockout mice were constructed, and a partial liver I/R operation was performed. Single-cell RNA sequencing (scRNA-seq) in the liver post I/R suggested enhanced ferroptosis by Dhx58hep-/-. The mRNAs and proteins associated with DExH-box helicase 58 (DHX58) were screened using RNA immunoprecipitation-sequencing (RIP-seq) and IP-mass spectrometry (IP-MS). RESULTS Excessive production of reactive oxygen species (ROS) decreased the expression of the IFN-stimulated gene Dhx58 in hepatocytes and promoted hepatic ferroptosis, while treatment using IFN-α increased DHX58 expression and prevented ferroptosis during liver I/R injury. Mechanistically, DHX58 with RNA-binding activity constitutively associates with the mRNA of glutathione peroxidase 4 (GPX4), a central ferroptosis suppressor, and recruits the m6A reader YT521-B homology domain containing 2 (YTHDC2) to promote the translation of Gpx4 mRNA in an m6A-dependent manner, thus enhancing GPX4 protein levels and preventing hepatic ferroptosis. CONCLUSIONS This study provides mechanistic evidence that IFN-α stimulates DHX58 to promote the translation of m6A-modified Gpx4 mRNA, suggesting the potential clinical application of IFN-α in the prevention of hepatic ferroptosis during liver I/R injury.
Collapse
Affiliation(s)
- Kai-Wei Jia
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical University, Shanghai, 200433, China
| | - Ren-Qi Yao
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100853, China
| | - Yi-Wen Fan
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical University, Shanghai, 200433, China
| | - Ding-Ji Zhang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical University, Shanghai, 200433, China
| | - Ye Zhou
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical University, Shanghai, 200433, China
| | - Min-Jun Wang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical University, Shanghai, 200433, China
| | - Li-Yuan Zhang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical University, Shanghai, 200433, China
| | - Yue Dong
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical University, Shanghai, 200433, China
| | - Zhi-Xuan Li
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical University, Shanghai, 200433, China
| | - Su-Yuan Wang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical University, Shanghai, 200433, China
| | - Mu Wang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical University, Shanghai, 200433, China
| | - Yun-Hui Li
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical University, Shanghai, 200433, China
| | - Lu-Xin Zhang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical University, Shanghai, 200433, China
| | - Ting Lei
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical University, Shanghai, 200433, China
| | - Liang-Chen Gui
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical University, Shanghai, 200433, China
| | - Shan Lu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical University, Shanghai, 200433, China
| | - Ying-Yun Yang
- Center for Immunotherapy, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Si-Xian Wang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical University, Shanghai, 200433, China
| | - Yi-Zhi Yu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical University, Shanghai, 200433, China
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100853, China.
| | - Jin Hou
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
6
|
Zhang M, Liu Q, Meng H, Duan H, Liu X, Wu J, Gao F, Wang S, Tan R, Yuan J. Ischemia-reperfusion injury: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:12. [PMID: 38185705 PMCID: PMC10772178 DOI: 10.1038/s41392-023-01688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/29/2023] [Accepted: 10/18/2023] [Indexed: 01/09/2024] Open
Abstract
Ischemia-reperfusion (I/R) injury paradoxically occurs during reperfusion following ischemia, exacerbating the initial tissue damage. The limited understanding of the intricate mechanisms underlying I/R injury hinders the development of effective therapeutic interventions. The Wnt signaling pathway exhibits extensive crosstalk with various other pathways, forming a network system of signaling pathways involved in I/R injury. This review article elucidates the underlying mechanisms involved in Wnt signaling, as well as the complex interplay between Wnt and other pathways, including Notch, phosphatidylinositol 3-kinase/protein kinase B, transforming growth factor-β, nuclear factor kappa, bone morphogenetic protein, N-methyl-D-aspartic acid receptor-Ca2+-Activin A, Hippo-Yes-associated protein, toll-like receptor 4/toll-interleukine-1 receptor domain-containing adapter-inducing interferon-β, and hepatocyte growth factor/mesenchymal-epithelial transition factor. In particular, we delve into their respective contributions to key pathological processes, including apoptosis, the inflammatory response, oxidative stress, extracellular matrix remodeling, angiogenesis, cell hypertrophy, fibrosis, ferroptosis, neurogenesis, and blood-brain barrier damage during I/R injury. Our comprehensive analysis of the mechanisms involved in Wnt signaling during I/R reveals that activation of the canonical Wnt pathway promotes organ recovery, while activation of the non-canonical Wnt pathways exacerbates injury. Moreover, we explore novel therapeutic approaches based on these mechanistic findings, incorporating evidence from animal experiments, current standards, and clinical trials. The objective of this review is to provide deeper insights into the roles of Wnt and its crosstalk signaling pathways in I/R-mediated processes and organ dysfunction, to facilitate the development of innovative therapeutic agents for I/R injury.
Collapse
Affiliation(s)
- Meng Zhang
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
| | - Qian Liu
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hui Meng
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hongxia Duan
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Xin Liu
- Second Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fei Gao
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Rubin Tan
- Department of Physiology, Basic medical school, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China.
| |
Collapse
|
7
|
Pan W, Zhang J, Zhang L, Zhang Y, Song Y, Han L, Tan M, Yin Y, Yang T, Jiang T, Li H. Comprehensive view of macrophage autophagy and its application in cardiovascular diseases. Cell Prolif 2024; 57:e13525. [PMID: 37434325 PMCID: PMC10771119 DOI: 10.1111/cpr.13525] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the primary drivers of the growing public health epidemic and the leading cause of premature mortality and economic burden worldwide. With decades of research, CVDs have been proven to be associated with the dysregulation of the inflammatory response, with macrophages playing imperative roles in influencing the prognosis of CVDs. Autophagy is a conserved pathway that maintains cellular functions. Emerging evidence has revealed an intrinsic connection between autophagy and macrophage functions. This review focuses on the role and underlying mechanisms of autophagy-mediated regulation of macrophage plasticity in polarization, inflammasome activation, cytokine secretion, metabolism, phagocytosis, and the number of macrophages. In addition, autophagy has been shown to connect macrophages and heart cells. It is attributed to specific substrate degradation or signalling pathway activation by autophagy-related proteins. Referring to the latest reports, applications targeting macrophage autophagy have been discussed in CVDs, such as atherosclerosis, myocardial infarction, heart failure, and myocarditis. This review describes a novel approach for future CVD therapies.
Collapse
Affiliation(s)
- Wanqian Pan
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jun Zhang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Lei Zhang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yue Zhang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yiyi Song
- Suzhou Medical College of Soochow UniversitySuzhouChina
| | - Lianhua Han
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Mingyue Tan
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yunfei Yin
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Tianke Yang
- Department of Ophthalmology, Eye Institute, Eye & ENT HospitalFudan UniversityShanghaiChina
- Department of OphthalmologyThe First Affiliated Hospital of USTC, University of Science and Technology of ChinaHefeiChina
| | - Tingbo Jiang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Hongxia Li
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
8
|
Delrue C, Delanghe JR, Speeckaert MM. The role of sRAGE in cardiovascular diseases. Adv Clin Chem 2023; 117:53-102. [PMID: 37973322 DOI: 10.1016/bs.acc.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Advanced glycation end products (AGEs), by-products of glucose metabolism, have been linked to the emergence of cardiovascular disorders (CVD). AGEs can cause tissue damage in four different ways: (1) by altering protein function, (2) by crosslinking proteins, which makes tissue stiffer, (3) by causing the generation of free radicals, and (4) by activating an inflammatory response after binding particular AGE receptors, such as the receptor for advanced glycation end products (RAGE). It is suggested that the soluble form of RAGE (sRAGE) blocks ligand-mediated pro-inflammatory and oxidant activities by serving as a decoy. Therefore, several studies have investigated the possible anti-inflammatory and anti-oxidant characteristics of sRAGE, which may help lower the risk of CVD. According to the results of various studies, the relationship between circulating sRAGE, cRAGE, and esRAGE and CVD is inconsistent. To establish the potential function of sRAGE as a therapeutic target in the treatment of cardiovascular illnesses, additional studies are required to better understand the relationship between sRAGE and CVD. In this review, we explored the potential function of sRAGE in different CVD, highlighting unanswered concerns and outlining the possibilities for further investigation.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium; Research Foundation-Flanders (FWO), Brussels, Belgium.
| |
Collapse
|
9
|
Zhang RYK, Cochran BJ, Thomas SR, Rye KA. Impact of Reperfusion on Temporal Immune Cell Dynamics After Myocardial Infarction. J Am Heart Assoc 2023; 12:e027600. [PMID: 36789837 PMCID: PMC10111498 DOI: 10.1161/jaha.122.027600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Excessive inflammation and impaired healing of cardiac tissue following a myocardial infarction (MI) can drive the development of heart failure. Cardiac repair begins immediately after the onset of MI and continues for months. The repair process can be divided into the following 3 overlapping phases, each having distinct functions and sequelae: the inflammatory phase, the proliferative phase, and the maturation phase. Macrophages, neutrophils, and lymphocytes are present in the myocardium throughout the repair process and govern the duration and function of each of these phases. However, changes in the functions of these cell types across each phase are poorly characterized. Numerous immunomodulatory therapies that specifically target inflammation have been developed for promoting cardiac repair and preventing heart failure after MI. However, these treatments have been largely unsuccessful in large-scale clinical randomized controlled trials. A potential explanation for this failure is the lack of a thorough understanding of the time-dependent evolution of the functions of immune cells after a major cardiovascular event. Failure to account for this temporal plasticity in cell function may reduce the efficacy of immunomodulatory approaches that target cardiac repair. This review is concerned with how the functions of different immune cells change with time following an MI. Improved understanding of the temporal changes in immune cell function is important for the future development of effective and targeted treatments for preventing heart failure after MI.
Collapse
Affiliation(s)
| | - Blake J Cochran
- School of Medical Sciences University of New South Wales Sydney New South Wales
| | - Shane R Thomas
- School of Medical Sciences University of New South Wales Sydney New South Wales
| | - Kerry-Anne Rye
- School of Medical Sciences University of New South Wales Sydney New South Wales
| |
Collapse
|
10
|
Zhang J, Ding W, Liu J, Wan J, Wang M. Scavenger Receptors in Myocardial Infarction and Ischemia/Reperfusion Injury: The Potential for Disease Evaluation and Therapy. J Am Heart Assoc 2023; 12:e027862. [PMID: 36645089 PMCID: PMC9939064 DOI: 10.1161/jaha.122.027862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Scavenger receptors (SRs) are a structurally heterogeneous superfamily of evolutionarily conserved receptors that are divided into classes A to J. SRs can recognize multiple ligands, such as modified lipoproteins, damage-associated molecular patterns, and pathogen-associated molecular patterns, and regulate lipid metabolism, immunity, and homeostasis. According to the literature, SRs may play a critical role in myocardial infarction and ischemia/reperfusion injury, and the soluble types of SRs may be a series of promising biomarkers for the diagnosis and prognosis of patients with acute coronary syndrome or acute myocardial infarction. In this review, we briefly summarize the structure and function of SRs and discuss the association between each SR and ischemic cardiac injury in patients and animal models in detail. A better understanding of the effect of SRs on ischemic cardiac injury will inspire novel ideas for therapeutic drug discovery and disease evaluation in patients with myocardial infarction.
Collapse
Affiliation(s)
- Jishou Zhang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina,Cardiovascular Research InstituteWuhan UniversityWuhanChina,Hubei Key Laboratory of CardiologyWuhanChina
| | - Wen Ding
- Department of RadiologyThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Jianfang Liu
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina,Cardiovascular Research InstituteWuhan UniversityWuhanChina,Hubei Key Laboratory of CardiologyWuhanChina
| | - Jun Wan
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina,Cardiovascular Research InstituteWuhan UniversityWuhanChina,Hubei Key Laboratory of CardiologyWuhanChina
| | - Menglong Wang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina,Cardiovascular Research InstituteWuhan UniversityWuhanChina,Hubei Key Laboratory of CardiologyWuhanChina
| |
Collapse
|
11
|
Zhou W, Ji L, Liu X, Tu D, Shi N, Yangqu W, Chen S, Gao P, Zhu H, Ruan C. AIFM1, negatively regulated by miR-145-5p, aggravates hypoxia-induced cardiomyocyte injury. Biomed J 2022; 45:870-882. [PMID: 34863964 PMCID: PMC9795367 DOI: 10.1016/j.bj.2021.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/06/2021] [Accepted: 11/25/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Hypoxia-induced apoptosis is linked to the pathogenesis of myocardial infarction. The role of apoptosis-inducing factor mitochondria associated 1 (AIFM1) in cardiomyocyte injury remains unclear. This study was aimed at probing into the role and the underlying regulatory mechanism of AIFM1 in myocardial injury. METHODS H9c2 cardiomyocytes and C57BL/6 mice were used for myocardial hypoxic/ischemic injury and myocardial infarction animal models. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to evaluate the expression levels of AIFM1 mRNA and miR-145-5p. Western blot was used for examining the expression levels of AIFM1, caspase-3, cleaved caspase-3, p-53, and γ-H2AX. Cell viability was examined by cell counting kit-8 (CCK-8) assay and BrdU assay. Interaction between AIFM1 and miR-145-5p was determined by bioinformatics analysis, qRT-PCR, Western blot, and dual-luciferase reporter assay. RESULTS AIFM1 expression was markedly highly elevated, while miR-145-5p expression was significantly down-regulated in the myocardial infarction animal model and H9c2 cells under hypoxia. Augmentation of AIFM1 led to a dramatic decrease of cell viability, accompanied by an increase of the secretion of the inflammatory cytokines IL-1β, TNF-α, IL-6, and the expression of cleaved caspase-3. Furthermore, AIFM1 was identified as a target of miR-145-5p. In addition, miR-145-5p/AIFM1 axis regulated the expression of p53. CONCLUSION AIFM1 may exacerbate myocardial ischemic injury by promoting inflammation and the injury of cardiomyocytes, and its up-regulation may be partly due to the down-regulation of miR-145-5p.
Collapse
Affiliation(s)
- Wugang Zhou
- Department of Emergency, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Department of Intensive Care Unit, Shigatse People's Hospital, Shigatse, Tibet Autonomous Region, China
| | - Lv Ji
- Department of Intensive Care Unit, Shigatse People's Hospital, Shigatse, Tibet Autonomous Region, China
| | - Xuqin Liu
- Department of Intensive Care Unit, Shigatse People's Hospital, Shigatse, Tibet Autonomous Region, China
| | - Dan Tu
- Department of Intensive Care Unit, Shigatse People's Hospital, Shigatse, Tibet Autonomous Region, China
| | - Ningning Shi
- Department of Intensive Care Unit, Shigatse People's Hospital, Shigatse, Tibet Autonomous Region, China
| | - Wangmu Yangqu
- Department of Intensive Care Unit, Shigatse People's Hospital, Shigatse, Tibet Autonomous Region, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China,Brain Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Pingjin Gao
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong Zhu
- Clinical Medical School, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Corresponding author. Clinical Medical School, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Room 401, Building 1, Jinzun Rd. 115, Pudong Dist., Shanghai 200125, China.
| | - Chengchao Ruan
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China,Corresponding author. Department of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin 2nd Rd. 197, Shanghai 200024, China.
| |
Collapse
|
12
|
CXCR6 Mediates Pressure Overload-Induced Aortic Stiffness by Increasing Macrophage Recruitment and Reducing Exosome-miRNA29b. J Cardiovasc Transl Res 2022; 16:271-286. [PMID: 36018423 DOI: 10.1007/s12265-022-10304-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
Aortic stiffness is an independent risk factor for aortic diseases such as aortic dissection which commonly occurred with aging and hypertension. Chemokine receptor CXCR6 is critically involved in vascular inflammation and remodeling. Here, we investigated whether and how CXCR6 plays a role in aortic stiffness caused by pressure overload. CXCR6-/- and WT mice underwent transverse aortic constriction (TAC) surgery for 8 weeks. CXCR6 deficiency significantly improved TAC-induced aortic remodeling and endothelial dysfunction by decreasing CD11c+ macrophage infiltration, suppressing VCAM-1 and ICAM-1, reducing collagen deposition, and downregulating MMP12 and osteopontin in the aorta. Consistently, blocking the CXCL16/CXCR6 axis also reduced aortic accumulation of CD11c+ macrophages and vascular stiffness but without affecting the release of TNF-α and IL-6 from the aorta. Furthermore, pressure overload inhibited aortic release of exosomes, which could be reversed by suppressing CXCR6 or CXCL16. Inhibition of exosome release by GW4869 significantly aggravated TAC-induced aortic calcification and stiffness. By exosomal microRNA microarray analysis, we found that microRNA-29b was significantly reduced in aortic endothelial cells (AECs) receiving TAC. Intriguingly, blocking the CXCL16/CXCR6 axis restored the expression of miR-29b in AECs. Finally, overexpression of miR-29b significantly increased eNOS and reduced MMPs and collagen in AECs. By contrast, antagonizing miR-29b in vivo further enhanced TAC-induced expressions of MMP12 and osteopontin, aggravated aortic fibrosis, calcification, and stiffness. Our study demonstrated a key role of the CXCL16/CXCR6 axis in macrophage recruitment and macrophage-mediated aortic stiffness under pressure overload through an exosome-miRNAs-dependent manner.
Collapse
|
13
|
Lu X, Wang Z, Ye D, Feng Y, Liu M, Xu Y, Wang M, Zhang J, Liu J, Zhao M, Xu S, Ye J, Wan J. The Role of CXC Chemokines in Cardiovascular Diseases. Front Pharmacol 2022; 12:765768. [PMID: 35668739 PMCID: PMC9163960 DOI: 10.3389/fphar.2021.765768] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/08/2021] [Indexed: 01/07/2023] Open
Abstract
Cardiovascular disease (CVD) is a class of diseases with high disability and mortality rates. In the elderly population, the incidence of cardiovascular disease is increasing annually. Between 1990 and 2016, the age-standardised prevalence of CVD in China significantly increased by 14.7%, and the number of cardiovascular disease deaths increased from 2.51 million to 3.97 million. Much research has indicated that cardiovascular disease is closely related to inflammation, immunity, injury and repair. Chemokines, which induce directed chemotaxis of reactive cells, are divided into four subfamilies: CXC, CC, CX3C, and XC. As cytokines, CXC chemokines are similarly involved in inflammation, immunity, injury, and repair and play a role in many cardiovascular diseases, such as atherosclerosis, myocardial infarction, cardiac ischaemia-reperfusion injury, hypertension, aortic aneurysm, cardiac fibrosis, postcardiac rejection, and atrial fibrillation. Here, we explored the relationship between the chemokine CXC subset and cardiovascular disease and its mechanism of action with the goal of further understanding the onset of cardiovascular disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jing Ye
- *Correspondence: Jing Ye, ; Jun Wan,
| | - Jun Wan
- *Correspondence: Jing Ye, ; Jun Wan,
| |
Collapse
|
14
|
Intrapericardial Administration of Secretomes from Menstrual Blood-Derived Mesenchymal Stromal Cells: Effects on Immune-Related Genes in a Porcine Model of Myocardial Infarction. Biomedicines 2022; 10:biomedicines10051117. [PMID: 35625854 PMCID: PMC9138214 DOI: 10.3390/biomedicines10051117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/26/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
Acute myocardial infarction (AMI) is a manifestation of ischemic heart disease where the immune system plays an important role in the re-establishment of homeostasis. We hypothesize that the anti-inflammatory activity of secretomes from menstrual blood-derived mesenchymal stromal cells (S-MenSCs) and IFNγ/TNFα-primed MenSCs (S-MenSCs*) may be considered a therapeutic option for the treatment of AMI. To assess this hypothesis, we have evaluated the effect of S-MenSCs and S-MenSCs* on cardiac function parameters and the involvement of immune-related genes using a porcine model of AMI. Twelve pigs were randomly divided into three biogroups: AMI/Placebo, AMI/S-MenSCs, and AMI/S-MenSCs*. AMI models were generated using a closed chest coronary occlusion-reperfusion procedure and, after 72 h, the different treatments were intrapericardially administered. Cardiac function parameters were monitored by magnetic resonance imaging before and 7 days post-therapy. Transcriptomic analyses in the infarcted tissue identified 571 transcripts associated with the Gene Ontology term Immune response, of which 57 were differentially expressed when different biogroups were compared. Moreover, a prediction of the interactions between differentially expressed genes (DEGs) and miRNAs from secretomes revealed that some DEGs in the infarction area, such as STAT3, IGFR1, or BCL6 could be targeted by previously identified miRNAs in secretomes from MenSCs. In conclusion, the intrapericardial administration of secretome early after infarction has a significant impact on the expression of immune-related genes in the infarcted myocardium. This confirms the immunomodulatory potential of intrapericardially delivered secretomes and opens new therapeutic perspectives in myocardial infarction treatment.
Collapse
|
15
|
Zhao G, Zhang H, Zhu S, Wang S, Zhu K, Zhao Y, Xu L, Zhang P, Xie J, Sun A, Zou Y, Ge J. Interleukin-18 accelerates cardiac inflammation and dysfunction during ischemia/reperfusion injury by transcriptional activation of CXCL16. Cell Signal 2021; 87:110141. [PMID: 34487815 DOI: 10.1016/j.cellsig.2021.110141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/03/2023]
Abstract
Myocardial ischemia/reperfusion(I/R) injury elicits an inflammatory response that drives tissue damage and cardiac remodeling. The trafficking and recruitment of inflammatory cells are controlled by C-X-C motif chemokine ligands and their receptors. CXCL16, a hallmark of acute coronary syndromes, is responsible for the recruitment of macrophages, monocytes and T lymphocytes. However, its role in cardiac I/R injury remains poorly characterized. Here we reported that CXCL16-mediated cardiac infiltration of CD11b+Ly6C+ cells played a crucial role in IL-18-induced myocardial inflammation, apoptosis and left ventricular(LV) dysfunction during I/R. Treatment with CXCL16 shRNA attenuated I/R-induced cardiac injury, LV remodeling and cardiac inflammation by reducing the recruitment of inflammatory cells and the release of TNFα, IL-17 and IFN-γ in the heart. We found that I/R-mediated NLRP3/IL-18 signaling pathway triggered CXCL16 transcription in cardiac vascular endothelial cells(VECs). Two binding sites of FOXO3 were found at the promoter region of CXCL16. By luciferase report assay and ChIP analysis, we confirmed that FOXO3 was responsible for endothelial CXCL16 transcription. A pronounced reduction of CXCL16 was observed in FOXO3 siRNA pretreated-VECs. Further experiments revealed that IL-18 activated FOXO3 by promoting the phosphorylation of STAT3 but not STAT4. An interaction between FOXO3 and STAT3 enhanced the transcription of CXCL16 induced by FOXO3. Treatment with Anakinra or Stattic either effectively inhibited IL-18-mediated nuclear import of FOXO3 and CXCL16 transcription. Our findings suggested that IL-18 accelerated I/R-induced cardiac damage and dysfunction through activating CXCL-16 and CXCL16-mediated cardiac infiltration of the CD11b+Ly6C+ cells. CXCL16 might be a novel therapeutic target for the treatment of I/R-related ischemic heart diseases.
Collapse
Affiliation(s)
- Gang Zhao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Viral Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Department of Cardiology, Kashgar Prefecture Second People's Hospital, Kashi, China
| | - Hongqiang Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shijie Zhu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Viral Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Kai Zhu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Zhao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Xu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Viral Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Ping Zhang
- Department of Cardiology, Kashgar Prefecture Second People's Hospital, Kashi, China
| | - Jing Xie
- Department of Cardiology, Kashgar Prefecture Second People's Hospital, Kashi, China
| | - Aijun Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Viral Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Viral Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Viral Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
| |
Collapse
|
16
|
Monguió-Tortajada M, Prat-Vidal C, Moron-Font M, Clos-Sansalvador M, Calle A, Gastelurrutia P, Cserkoova A, Morancho A, Ramírez MÁ, Rosell A, Bayes-Genis A, Gálvez-Montón C, Borràs FE, Roura S. Local administration of porcine immunomodulatory, chemotactic and angiogenic extracellular vesicles using engineered cardiac scaffolds for myocardial infarction. Bioact Mater 2021; 6:3314-3327. [PMID: 33778207 PMCID: PMC7973387 DOI: 10.1016/j.bioactmat.2021.02.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
The administration of extracellular vesicles (EV) from mesenchymal stromal cells (MSC) is a promising cell-free nanotherapy for tissue repair after myocardial infarction (MI). However, the optimal EV delivery strategy remains undetermined. Here, we designed a novel MSC-EV delivery, using 3D scaffolds engineered from decellularised cardiac tissue as a cell-free product for cardiac repair. EV from porcine cardiac adipose tissue-derived MSC (cATMSC) were purified by size exclusion chromatography (SEC), functionally analysed and loaded to scaffolds. cATMSC-EV markedly reduced polyclonal proliferation and pro-inflammatory cytokines production (IFNγ, TNFα, IL12p40) of allogeneic PBMC. Moreover, cATMSC-EV recruited outgrowth endothelial cells (OEC) and allogeneic MSC, and promoted angiogenesis. Fluorescently labelled cATMSC-EV were mixed with peptide hydrogel, and were successfully retained in decellularised scaffolds. Then, cATMSC-EV-embedded pericardial scaffolds were administered in vivo over the ischemic myocardium in a pig model of MI. Six days from implantation, the engineered scaffold efficiently integrated into the post-infarcted myocardium. cATMSC-EV were detected within the construct and MI core, and promoted an increase in vascular density and reduction in macrophage and T cell infiltration within the damaged myocardium. The confined administration of multifunctional MSC-EV within an engineered pericardial scaffold ensures local EV dosage and release, and generates a vascularised bioactive niche for cell recruitment, engraftment and modulation of short-term post-ischemic inflammation.
Collapse
Affiliation(s)
- Marta Monguió-Tortajada
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain.,REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Prat-Vidal
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.,Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Miriam Moron-Font
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain
| | - Marta Clos-Sansalvador
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Alexandra Calle
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Paloma Gastelurrutia
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.,Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Adriana Cserkoova
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain
| | - Anna Morancho
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute (VHIR), UAB, Barcelona, Spain
| | - Miguel Ángel Ramírez
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute (VHIR), UAB, Barcelona, Spain
| | - Antoni Bayes-Genis
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.,Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Spain.,Department of Medicine, UAB, Barcelona, Spain
| | - Carolina Gálvez-Montón
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Francesc E Borràs
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,Nephrology Service, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Santiago Roura
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.,Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Barcelona, 08500, Spain
| |
Collapse
|
17
|
Luo X, Wu S, Jiang Y, Wang L, Li G, Qing Y, Liu J, Zhang D. Inhibition of autophagy by geniposide protects against myocardial ischemia/reperfusion injury. Int Immunopharmacol 2020; 85:106609. [PMID: 32446199 DOI: 10.1016/j.intimp.2020.106609] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/14/2022]
Abstract
Geniposide (GP), extracted from a traditional Chinese herb Gardenia jasminoides, has extensive pharmacological effects. But the effects and the potential mechanisms of GP on myocardial ischemia/reperfusion (I/R) injury are poorly understood. In present study, we investigated the effect of GP on myocardial I/R injury in vivo and hypoxia/reoxygenation (H/R) in vitro respectively, and its mechanism. The results showed that GP reduced myocardial infarct size, alleviated acute myocardial injury, improved cardiac function, regulated apoptosis-related proteins and inhibited apoptosis. In vitro experiments revealed that GP enhanced the cell viability, regulated apoptosis-related proteins and prevented cell apoptosis during H/R in H9c2 cells. GP inhibited the expression of autophagy-related proteins and autophagosome accumulation both in vivo and in vitro. The effects of GP were blocked by rapamycin (RAPA) administration. In summary, our results showed that GP protected against myocardial I/R injury and involved inhibition of autophagy, which might be through activating AKT/mTOR signaling pathways.
Collapse
Affiliation(s)
- Xuexiu Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shiyong Wu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Youqing Jiang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Liyou Wang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guoxing Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuhong Qing
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jian Liu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Dongying Zhang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
18
|
CXCL16 silencing alleviates hepatic ischemia reperfusion injury during liver transplantation by inhibiting p38 phosphorylation. Pathol Res Pract 2020; 216:152913. [PMID: 32171552 DOI: 10.1016/j.prp.2020.152913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/17/2020] [Accepted: 03/01/2020] [Indexed: 02/08/2023]
|
19
|
Shi JW, Yang HL, Fan DX, Yang SL, Qiu XM, Wang Y, Lai ZZ, Ha SY, Ruan LY, Shen HH, Zhou WJ, Li MQ. The role of CXC chemokine ligand 16 in physiological and pathological pregnancies. Am J Reprod Immunol 2020; 83:e13223. [PMID: 31972050 DOI: 10.1111/aji.13223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
The survival and development of a semi-allogeneic fetus during pregnancy require the involvement of a series of cytokines and immune cells. Chemokines are a type of special cytokine those were originally described as having a role in leukocyte trafficking. CXC chemokine ligand (CXCL) 16 is a member of the chemokine family, and CXC chemokine receptor (CXCR) 6 is its sole receptor. Emerging evidence has shown that CXCL16/CXCR6 is expressed at the maternal-fetal interface, by cell types that include trophoblast cells, decidual stroma cells, and decidual immune cells (eg, monocytes, γδT cells, and natural killer T (NKT) cells). The regulation of expression of CXCL16 is quite complex, and this process involves a multitude of factors. CXCL16 exerts a critical role in the establishment of a successful pregnancy through a series of molecular interactions at the maternal-fetal interface. However, an abnormal expression of CXCL16 is associated with certain pathological states associated with pregnancy, including recurrent miscarriage, pre-eclampsia, and gestational diabetes mellitus (GDM). In the present review, the expression and pleiotropic roles of CXCL16 under conditions of physiological and pathological pregnancy are systematically discussed.
Collapse
Affiliation(s)
- Jia-Wei Shi
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Hui-Li Yang
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Deng-Xuan Fan
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Shao-Liang Yang
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Xue-Min Qiu
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yan Wang
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Zhen-Zhen Lai
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Si-Yao Ha
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Lu-Yu Ruan
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Hui-Hui Shen
- Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Wen-Jie Zhou
- Center of Reproductive Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Qing Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Huang KY, Wang JN, Zhou YY, Wu SZ, Tao LY, Peng YP, Que JQ, Xue YJ, Ji KT. Antithrombin III Alleviates Myocardial Ischemia/Reperfusion Injury by Inhibiting Excessive Autophagy in a Phosphoinositide 3-Kinase/Akt-Dependent Manner. Front Pharmacol 2019; 10:516. [PMID: 31133861 PMCID: PMC6522837 DOI: 10.3389/fphar.2019.00516] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/24/2019] [Indexed: 01/05/2023] Open
Abstract
Autophagy is fundamental to myocardial ischemia/reperfusion (I/R) injury. Antithrombin III (AT) has been shown to protect cardiomyocytes against I/R injury; however, it is unknown whether it modulates autophagy. The objective of this study was to investigate whether AT regulates autophagy during I/R injury and, if so, to identify the potential mechanism involved. Our study showed that AT attenuated I/R injury in vivo and hypoxia/reoxygenation (H/R) injury in vitro. Autophagy was increased both in H9C2 cardiomyocytes during H/R injury and in mouse hearts following I/R injury. The stimulation of autophagy by rapamycin attenuated the protective effect of AT against H9C2 cell injury, indicating that autophagy is involved in the protective role of AT. Furthermore, the cardioprotective effects of AT were abolished by A6730, a specific Akt inhibitor. This study shows that AT exhibits cardioprotective effects by modulating autophagy during I/R injury in a phosphoinositide 3-kinase/Akt-dependent manner.
Collapse
Affiliation(s)
- Kai-Yu Huang
- Department of Cardiology, The Second Affiliated and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiao-Ni Wang
- Department of Cardiology, The Second Affiliated and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying-Ying Zhou
- Department of Endocrinology, The Second Affiliated and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shao-Ze Wu
- Department of Cardiology, The Second Affiliated and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Cardiology, Zhejiang Hospital, Hangzhou, China
| | - Lu-Yuan Tao
- Department of Cardiology, The Second Affiliated and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Cardiology, Taizhou First People's Hospital, Taizhou, China
| | - Yang-Pei Peng
- Department of Cardiology, The Second Affiliated and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jia-Qun Que
- Department of Cardiology, The Second Affiliated and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yang-Jing Xue
- Department of Cardiology, The Second Affiliated and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kang-Ting Ji
- Department of Cardiology, The Second Affiliated and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
21
|
Dang M, Zeng X, Chen B, Wang H, Li H, Liu Y, Zhang X, Cao X, Du F, Guo C. Soluble receptor for advance glycation end-products inhibits ischemia/reperfusion-induced myocardial autophagy via the STAT3 pathway. Free Radic Biol Med 2019; 130:107-119. [PMID: 30367996 DOI: 10.1016/j.freeradbiomed.2018.10.437] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 11/24/2022]
Abstract
The pathogenesis of myocardial ischemia/reperfusion (I/R) is poorly understood, but recent evidence suggests that autophagy plays crucial roles in I/R injuries. Soluble receptor for advanced glycation end-products (sRAGE) exerts protective effects during I/R by decreasing cardiac apoptosis, which is mediated via increasing the ubiquitin proteasome system (UPS) and signal transducer and activator of transcription 3 (STAT3). The present study examined the effects and mechanisms of sRAGE on I/R-triggered cardiac autophagy. I/R was performed in mice or primary neonatal cardiomyocytes with or without sRAGE administration or overexpression. Cardiac function and infarct size were detected in mouse hearts. Apoptosis, autophagy and autophagy-related signaling pathways were detected in mouse hearts and cardiomyocytes. The results demonstrated that sRAGE significantly improved cardiac function and reduced infarct size during I/R in mice. sRAGE inhibited I/R-induced apoptosis, which correlated with a reduction in autophagy-associated proteins, including ATG7, Beclin-1 and microtubule-associated protein 1 light chain 3 (LC3). sRAGE reduced autophagosome formation during I/R in vivo and in vitro. sRAGE significantly activated STAT3, but not mammalian target of rapamycin (mTOR), during I/R in vivo and in vitro, and suppression of STAT3 abolished the sRAGE inhibition of autophagy during I/R in vitro. Activation of autophagy using ATG7 overexpression with an adenovirus significantly abolished the sRAGE-induced reduction of cardiac apoptosis during I/R. These results suggest that sRAGE inhibits I/R injuries in the heart via a decrease in autophagy, a process that is dependent on STAT3 activation.
Collapse
Affiliation(s)
- Mengqiu Dang
- Department of Cardiology, Beijing Tian Tan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Xiangjun Zeng
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| | - Buxing Chen
- Department of Cardiology, Beijing Tian Tan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Hongxia Wang
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| | - Huihua Li
- Department of Cardiology, Institute of cardiovascular Disease, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Department of Nutrition and Food Hygiene, School of Public Health, Advanced Institute of Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Yu Liu
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| | - Xiuling Zhang
- Department of Cardiology, Beijing Tian Tan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Xianxian Cao
- Department of Cardiology, Beijing Tian Tan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Fenghe Du
- Department of Cardiology, Beijing Tian Tan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, China; Department of Geriatrics, Beijing Tian Tan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Caixia Guo
- Department of Cardiology, Beijing Tian Tan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, China.
| |
Collapse
|
22
|
Liu YY, Sun C, Xue FS, Yang GZ, Li HX, Liu Q, Liao X. Effect of Autophagy Inhibition on the Protection of Ischemia Preconditioning against Myocardial Ischemia/Reperfusion Injury in Diabetic Rats. Chin Med J (Engl) 2018; 131:1702-1709. [PMID: 29998890 PMCID: PMC6048915 DOI: 10.4103/0366-6999.235867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Ischemia preconditioning (IPC) remains the most powerful intervention of protection against myocardial ischemia/reperfusion injury (IRI), but diabetes can weaken or eliminate its cardioprotective effect and detailed mechanisms remain unclear. In this study, we aimed to explore whether changes of autophagy in the diabetic condition are attributable to the decreased cardioprotective effect of IPC. METHODS Sixty diabetic male Sprague-Dawley rats were randomly divided into the control (C), IRI, rapamycin (R), wortmannin (W), rapamycin + IPC (R + IPC), and wortmannin + IPC (W + IPC) groups. The in vivo rat model of myocardial IRI was established by ligaturing and opening the left anterior descending coronary artery via the left thoracotomy. Durations of ischemia and reperfusion are 30 min and 120 min, respectively. Blood samples were taken at 120 min of reperfusion for measuring serum concentrations of troponin I (TnI) and creatine kinase isoenzyme MB (CK-MB) using the enzyme-linked immunosorbent assay. The infarct size was assessed by Evans blue and triphenyltetrazolium chloride staining. The expressions of LC3-II, beclin-1, phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin (mTOR), and P-Akt/Akt ratio in the ischemic myocardium were assessed by Western blotting. RESULTS Compared to the IRI group, infarct size (56.1% ± 6.1% vs. 75.4 ± 7.1%, P < 0.05), serum cTnI (0.61 ± 0.21 vs. 0.95 ± 0.26 ng/ml, P < 0.05), and CK-MB levels (6.70 ± 1.25 vs. 11.51 ± 2.35 ng/ml, P < 0.05) obviously decreased in the W + IPC group. Compared with the C group, myocardial expressions of LC3-II (0.46 ± 0.04 and 0.56 ± 0.04 vs. 0.36 ± 0.04, P < 0.05) and beclin-1 (0.34 ± 0.08 and 0.38 ± 0.07 vs. 0.24 ± 0.03, P < 0.05) evidently increased, and myocardial expressions of mTOR (0.26 ± 0.08 and 0.25 ± 0.07 vs. 0.38 ± 0.06, P < 0.05), PI3K (0.29 ± 0.04 and 0.30 ± 0.03 vs. 0.38 ± 0.02, P < 0.05), and P-Akt/Akt ratio (0.49 ± 0.10 and 0.48 ± 0.06 vs. 0.72 ± 0.07, P < 0.05) markedly decreased in the IRI and R groups, indicating an increased autophagy. Compared with the IRI group, myocardial expression of beclin-1 (0.26 ± 0.03 vs. 0.34 ± 0.08, P < 0.05) significantly decreased, and myocardial expressions of mTOR (0.36 ± 0.04 vs. 0.26 ± 0.08, P < 0.05), PI3K (0.37 ± 0.03 vs. 0.29 ± 0.04, P < 0.05), and P-Akt/Akt ratio (0.68 ± 0.05 vs. 0.49 ± 0.10, P < 0.05) increased obviously in the W + IPC group, indicating a decreased autophagy. CONCLUSIONS Increased autophagy in the diabetic myocardium is attributable to decreased cardioprotection of IPC, and autophagy inhibited by activating the PI3K-Akt-mTOR signaling pathway can result in an improved protection of IPC against diabetic myocardial IRI.
Collapse
Affiliation(s)
- Ya-Yang Liu
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100041, China
| | - Chao Sun
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100041, China
| | - Fu-Shan Xue
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100041, China
| | - Gui-Zhen Yang
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100041, China
| | - Hui-Xian Li
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100041, China
| | - Qing Liu
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100041, China
| | - Xu Liao
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100041, China
| |
Collapse
|
23
|
Effect of Endoplasmic Reticulum Stress and Autophagy in the Regulation of Post-infarct Cardiac Repair. Arch Med Res 2018; 49:576-582. [PMID: 30017234 DOI: 10.1016/j.arcmed.2018.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 07/02/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Acute myocardial infarction (AMI) is reported to be accompanied by endoplasmic reticulum (ER) stress and autophagy induction. Nevertheless, the roles of ER stress and autophagy in post-infarct reparative fibrosis remain to be elucidated. AIM To investigate the effects of ER stress and autophagy on the regulation of post-infarct reparative fibrosis. METHODS The expression of GRP78 and LC3 in cardiac fibroblasts in human heart tissues obtained from patients with or without AMI was assessed by immunofluorescence. In vitro, human cardiac fibroblasts (HCFs) were stimulated by various agents, the expression of GRP78, LC3 and fibronectin in these was evaluated by immunoblot and/or immunofluorescence. RESULTS After AMI, HCFs expressed significantly higher levels of GRP78 and LC3. ER stress inducer, tunicamycin (200 ng/mL) significantly increased the level of autophagy and reduced expression of fibronectin in HCFs, both of which were reversed by 4 Phenylbutyric acid. Under the condition of ER stress, the expression of fibronectin in HCFs was regulated by different levels of autophagy. LC3 co-localized with fibronectin when stimulated HCFs with tunicamycin. CONCLUSION AMI induces ER stress in cardiac fibroblasts, down-regulating fibronectin via enhanced autophagy. These findings suggest that ER stress and autophagy may be a therapeutic target to improve prognosis of patients with AMI.
Collapse
|
24
|
Gao Y, Wang N, Li RH, Xiao YZ. The Role of Autophagy and the Chemokine (C-X-C Motif) Ligand 16 During Acute Lung Injury in Mice. Med Sci Monit 2018; 24:2404-2412. [PMID: 29677174 PMCID: PMC5928852 DOI: 10.12659/msm.906016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Acute lung injury (ALI) is responsible for mortality in hospitalized patients. Autophagy can negatively regulate inflammatory response, and CXCL16 (chemokine (C-X-C motif) ligand 16) is a kind of chemokine, which is closely related to the inflammatory response. However, the relationship between autophagy and CXCL16 in ALI is still unclear. This study aimed to investigate the role of autophagy and chemokine CXCL16 in ALI in mice. Material/Methods Thirty-two male C57BL/6 mice were divided into four groups. The control group (C group) was given normal saline through intraperitoneal injection. The L group was given LPS (lipopolysaccharide) at 30 mg/kg to construct an ALI model. The 3-MA group received an intraperitoneal injection of inhibitor of autophagy 3-methyladenine at 15 mg/kg, 30 minutes before LPS injection. The anti-CXCL16 group was given 20 mg/kg of CXCL16 monoclonal antibody 30 minutes before the LPS injection. Results In the 3-MA Group, the level of histological analysis, lung wet/dry ratio, total protein of BAL (bronchoalveolar lavage fluid) and TNF-α level were higher than the L group (p<0.05), the level of autophagy was lower than the L group (p<0.05), and the level of CXCL16 was higher than the L group (p<0.05). In the anti-CXCL16 group, the level of histological analysis, lung wet/dry ratio, BAL protein, and TNF-α level were declined compared to the L group (p<0.05), but there was no statistically significant difference in expression of CXCL16 detected by ELISA between the anti-CXCL16 group and the L group (p>0.05). Conclusions Autophagy played a protective role in ALI induced by LPS in mice. Autophagy could regulate the level of CXCL16. The chemokine CXCL16 could exacerbate ALI.
Collapse
Affiliation(s)
- Ye Gao
- Department of Emergency Anesthesia, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Ni Wang
- Department of Emergency Anesthesia, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Rui H Li
- Department of Emergency Anesthesia, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Yang Z Xiao
- Department of Emergency Anesthesia, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| |
Collapse
|
25
|
Gran S, Honold L, Fehler O, Zenker S, Eligehausen S, Kuhlmann MT, Geven E, den Bosch MV, van Lent P, Spiekermann C, Hermann S, Vogl T, Schäfers M, Roth J. Imaging, myeloid precursor immortalization, and genome editing for defining mechanisms of leukocyte recruitment in vivo. Theranostics 2018; 8:2407-2423. [PMID: 29721088 PMCID: PMC5928898 DOI: 10.7150/thno.23632] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/18/2018] [Indexed: 12/20/2022] Open
Abstract
Recruitment of leukocytes from the blood to sites of inflammation poses a promising target for new diagnostic and therapeutic approaches. We aimed to develop a novel method to non-invasively analyze molecular mechanisms of leukocyte migration in pre-clinical models of inflammation in vivo. Methods: We used the ER-HoxB8 system to transiently immortalize murine myeloid precursors from wildtype and CD18- as well as MRP14-deficient mice. A VLA4α-/- cell line was generated by CRISPR/Cas9-mediated gene editing. We analyzed the migration of wildtype and knockout leukocytes in vivo by optical and nuclear imaging in mice with irritant contact dermatitis, cutaneous granuloma, experimental arthritis and myocardial infarction. Results: Transient immortalization, gene editing and in vivo imaging can be combined to analyze migratory mechanisms of murine leukocytes, even for gene deletions resulting in lethal phenotypes in mice. We reliably confirmed known migratory defects of leukocytes deficient for the adhesion molecules CD18 or VLA4α. Also, using our new method we identified a new role of the most abundant calcium-binding proteins in phagocytes and major alarmins in many inflammatory diseases, MRP8 and MRP14, for transmigration in vivo. Conclusion: We provide a combinatorial approach to rapidly characterize molecular mechanisms of leukocyte recruitment in vivo, with the potential to aid in identification of diagnostic and therapeutic targets in inflammatory pathologies.
Collapse
|
26
|
Guo J, Zhang S, Ma L, Shi H, Zhu J, Wu J, An Y, Ge J. Cardioprotection by Mild Hypothermia Is Abolished in Aged Mice. Ther Hypothermia Temp Manag 2017; 7:193-198. [PMID: 28445087 DOI: 10.1089/ther.2017.0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Junjie Guo
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Shandong, China
| | - Shuning Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Leilei Ma
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongtao Shi
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianbing Zhu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi An
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Shandong, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Santos SMD, Blankenbach K, Scholich K, Dörr A, Monsefi N, Keese M, Linke B, Deckmyn H, Nelson K, Harder S. Platelets from flowing blood attach to the inflammatory chemokine CXCL16 expressed in the endothelium of the human vessel wall. Thromb Haemost 2017; 114:297-312. [DOI: 10.1160/th14-11-0911] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/03/2015] [Indexed: 02/07/2023]
Abstract
SummaryEndothelial chemokine CXC motif ligand 16 (CXCL16) expression is associated with atherosclerosis, while platelets, particularly those attaching to atherosclerotic plaque, contribute to all stages of athero-sclerotic disease. This investigation was designed to examine the role of CXCL16 in capturing platelets from flowing blood. CXCL16 was expressed in human atherosclerotic plaques, and lesion severity in human carotid endarterectomy specimens was positively correlated with CXCL16 levels. CXCL16 expression in plaques was co-localised with platelets deposited to the endothelium. Immobilised CXCL16 promoted CXCR6-dependent platelet adhesion to the human vessel wall, endothelial cells and von Willebrand factor during physiologic flow. At low shear, immobilised CXCL16 captured platelets from flowing blood. It also induced irreversible platelet aggregation and a rise in intra-platelet calcium levels. These results demonstrate that endothelial CXCL16’s action on platelets is not only limited to platelet activation, but that immobilised CXCL16 also acts as a potent novel platelet adhesion ligand, inducing platelet adhesion to the human vessel wall.
Collapse
|
28
|
Guo JJ, Xu FQ, Li YH, Li J, Liu X, Wang XF, Hu LG, An Y. Alginate oligosaccharide alleviates myocardial reperfusion injury by inhibiting nitrative and oxidative stress and endoplasmic reticulum stress-mediated apoptosis. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2387-2397. [PMID: 28860710 PMCID: PMC5571823 DOI: 10.2147/dddt.s142118] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Alginate oligosaccharide (AOS) has recently demonstrated the ability to protect against acute doxorubicin cardiotoxicity and neurodegenerative disorders by inhibiting oxidative stress and endoplasmic reticulum (ER) stress-mediated apoptosis, which are both involved in myocardial ischemia/reperfusion (I/R) injury. In the present study, we investigated whether pretreatment with AOS protects against myocardial I/R injury in mice and explored potential cardioprotective mechanisms. AOS pretreatment significantly decreased the infarct size, reduced the cardiac troponin-I concentration, and ameliorated the cardiac dysfunction. Accompanied with the reduced cardiac injury, AOS pretreatment clearly decreased I/R-induced myocardial apoptosis. With regard to mechanism, AOS pretreatment markedly attenuated nitrative/oxidative stress, as evidenced by decreases in 3-nitrotyrosine content and superoxide generation, and downregulated inducible nitric oxide synthase, NADPH oxidase2, and 4-hydroxynonenal. Moreover, AOS pretreatment decreased myocardial apoptosis by inhibiting the ER stress-mediated apoptosis pathway, which is reflected by the downregulation of C/EBP homologous protein, glucose-regulated protein 78, caspase-12, and Bcl-2-associated X protein, and by the upregulation of the anti-apoptotic protein B-cell lymphoma-2. Collectively, these findings demonstrate that AOS renders the heart resistant to I/R injury, at least in part, by inhibiting nitrative/oxidative stress and ER stress-mediated apoptosis.
Collapse
Affiliation(s)
- Jun-Jie Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University
| | - Feng-Qiang Xu
- Department of Cardiology, Qingdao Municipal Hospital
| | - Yong-Hong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University
| | - Jian Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University
| | - Xin Liu
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University
| | - Xiao-Fan Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University
| | - Long-Gang Hu
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yi An
- Department of Cardiology, The Affiliated Hospital of Qingdao University
| |
Collapse
|
29
|
Coptisine protects cardiomyocyte against hypoxia/reoxygenation-induced damage via inhibition of autophagy. Biochem Biophys Res Commun 2017; 490:231-238. [DOI: 10.1016/j.bbrc.2017.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/08/2017] [Indexed: 12/19/2022]
|
30
|
Chen J, Hong T, Ding S, Deng L, Abudupataer M, Zhang W, Tong M, Jia J, Gong H, Zou Y, Wang TC, Ge J, Yang X. Aggravated myocardial infarction-induced cardiac remodeling and heart failure in histamine-deficient mice. Sci Rep 2017; 7:44007. [PMID: 28272448 PMCID: PMC5341031 DOI: 10.1038/srep44007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 02/02/2017] [Indexed: 11/09/2022] Open
Abstract
Histamine has pleiotropic pathophysiological effects, but its role in myocardial infarction (MI)-induced cardiac remodeling remains unclear. Histidine decarboxylase (HDC) is the main enzyme involved in histamine production. Here, we clarified the roles of HDC-expressing cells and histamine in heart failure post-MI using HDC-EGFP transgenic mice and HDC-knockout (HDC-/-) mice. HDC+CD11b+ myeloid cell numbers markedly increased in the injured hearts, and histamine levels were up-regulated in the circulation post-MI. HDC-/- mice exhibited more adverse cardiac remodeling, poorer left ventricular function and higher mortality by increasing cardiac fibrogenesis post-MI. In vitro assays further confirmed that histamine inhibited heart fibroblast proliferation. Furthermore, histamine enhanced the signal transducer and activator of transcription (STAT)-6 phosphorylation level in murine heart fibroblasts, and the inhibitive effects of histamine on fibroblast proliferation could be blocked by JAK3/STAT6 signaling selective antagonist. STAT6-knockout (STAT6-/-) mice had a phenotype similar to that of HDC-/- mice post-MI; however, in contrast to HDC-/- mice, the beneficial effects of exogenous histamine injections were abrogated in STAT6-/- mice. These data suggest that histamine exerts protective effects by modulating cardiac fibrosis and remodeling post-MI, in part through the STAT6-dependent signaling pathway.
Collapse
Affiliation(s)
- Jinmiao Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Tao Hong
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Suling Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Long Deng
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Mieradilijiang Abudupataer
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Weiwei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Minghong Tong
- Department of Clinical Medicine, TongRen Hospital Affiliated with Shanghai Jiao Tong University, Shanghai, 200000, China
| | - Jianguo Jia
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Hui Gong
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Timothy C Wang
- Department of Medicine and Irving Cancer Research Center, Columbia University, New York, NY 10032, USA
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiangdong Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
31
|
Wang S, Zhang F, Zhao G, Cheng Y, Wu T, Wu B, Zhang YE. Mitochondrial PKC-ε deficiency promotes I/R-mediated myocardial injury via GSK3β-dependent mitochondrial permeability transition pore opening. J Cell Mol Med 2017; 21:2009-2021. [PMID: 28266127 PMCID: PMC5571523 DOI: 10.1111/jcmm.13121] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 01/05/2017] [Indexed: 11/29/2022] Open
Abstract
Mitochondrial fission is critically involved in cardiomyocyte apoptosis, which has been considered as one of the leading causes of ischaemia/reperfusion (I/R)‐induced myocardial injury. In our previous works, we demonstrate that aldehyde dehydrogenase‐2 (ALDH2) deficiency aggravates cardiomyocyte apoptosis and cardiac dysfunction. The aim of this study was to elucidate whether ALDH2 deficiency promotes mitochondrial injury and cardiomyocyte death in response to I/R stress and the underlying mechanism. I/R injury was induced by aortic cross‐clamping for 45 min. followed by unclamping for 24 hrs in ALDH2 knockout (ALDH2−/−) and wild‐type (WT) mice. Then myocardial infarct size, cell apoptosis and cardiac function were examined. The protein kinase C (PKC) isoform expressions and their mitochondrial translocation, the activity of dynamin‐related protein 1 (Drp1), caspase9 and caspase3 were determined by Western blot. The effects of N‐acetylcysteine (NAC) or PKC‐δ shRNA treatment on glycogen synthase kinase‐3β (GSK‐3β) activity and mitochondrial permeability transition pore (mPTP) opening were also detected. The results showed that ALDH2−/− mice exhibited increased myocardial infarct size and cardiomyocyte apoptosis, enhanced levels of cleaved caspase9, caspase3 and phosphorylated Drp1. Mitochondrial PKC‐ε translocation was lower in ALDH2−/− mice than in WT mice, and PKC‐δ was the opposite. Further data showed that mitochondrial PKC isoform ratio was regulated by cellular reactive oxygen species (ROS) level, which could be reversed by NAC pre‐treatment under I/R injury. In addition, PKC‐ε inhibition caused activation of caspase9, caspase3 and Drp1Ser616 in response to I/R stress. Importantly, expression of phosphorylated GSK‐3β (inactive form) was lower in ALDH2−/− mice than in WT mice, and both were increased by NAC pre‐treatment. I/R‐induced mitochondrial translocation of GSK‐3β was inhibited by PKC‐δ shRNA or NAC pre‐treatment. In addition, mitochondrial membrane potential (∆Ψm) was reduced in ALDH2−/− mice after I/R, which was partly reversed by the GSK‐3β inhibitor (SB216763) or PKC‐δ shRNA. Collectively, our data provide the evidence that abnormal PKC‐ε/PKC‐δ ratio promotes the activation of Drp1 signalling, caspase cascades and GSK‐3β‐dependent mPTP opening, which results in mitochondrial injury‐triggered cardiomyocyte apoptosis and myocardial dysfuction in ALDH2−/− mice following I/R stress.
Collapse
Affiliation(s)
- Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feng Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gang Zhao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Cheng
- Heart Centre of Zhengzhou Ninth People's Hospital, Zhengzhou, Henan, China
| | - Ting Wu
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Bing Wu
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - You-En Zhang
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
32
|
Gombozhapova A, Rogovskaya Y, Shurupov V, Rebenkova M, Kzhyshkowska J, Popov SV, Karpov RS, Ryabov V. Macrophage activation and polarization in post-infarction cardiac remodeling. J Biomed Sci 2017; 24:13. [PMID: 28173864 PMCID: PMC5297120 DOI: 10.1186/s12929-017-0322-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/31/2017] [Indexed: 02/07/2023] Open
Abstract
Adverse cardiac remodeling leads to impaired ventricular function and heart failure, remaining a major cause of mortality and morbidity in patients with acute myocardial infarction. It have been shown that, even if all the recommended therapies for ST-segment elevation myocardial infarction are performed, one third of patients undergoes progressive cardiac remodeling that represents morphological basis for following heart failure. The need to extend our knowledge about factors leading to different clinical scenarios of myocardial infarction and following complications has resulted in a research of immuno-inflammatory pathways and molecular activities as the basis for post-infarction remodeling. Recently, macrophages (cells of the innate immune system) have become a subject of scientific interest under both normal and pathological conditions. Macrophages, besides their role in host protection and tissue homeostasis, play an important role in pathophysiological processes induced by myocardial infarction. In this article we summarize data about the function of monocytes and macrophages plasticity in myocardial infarction and outline potential role of these cells as effective targets to control processes of inflammation, cardiac remodeling and healing following acute coronary event.
Collapse
Affiliation(s)
- Aleksandra Gombozhapova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 111a Kievskaya Street, 634012, Tomsk, Russian Federation. .,National Research Tomsk State University, 36 Lenin Avenue, 634050, Tomsk, Russian Federation.
| | - Yuliya Rogovskaya
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 111a Kievskaya Street, 634012, Tomsk, Russian Federation.,National Research Tomsk State University, 36 Lenin Avenue, 634050, Tomsk, Russian Federation
| | - Vladimir Shurupov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 111a Kievskaya Street, 634012, Tomsk, Russian Federation
| | - Mariya Rebenkova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 111a Kievskaya Street, 634012, Tomsk, Russian Federation.,National Research Tomsk State University, 36 Lenin Avenue, 634050, Tomsk, Russian Federation
| | - Julia Kzhyshkowska
- National Research Tomsk State University, 36 Lenin Avenue, 634050, Tomsk, Russian Federation.,University of Heidelberg, 1-3 Theodor-Kutzer Ufer, 68167, Mannheim, Germany
| | - Sergey V Popov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 111a Kievskaya Street, 634012, Tomsk, Russian Federation
| | - Rostislav S Karpov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 111a Kievskaya Street, 634012, Tomsk, Russian Federation.,Siberian State Medical University, 2 Moscovsky trakt, 634055, Tomsk, Russian Federation
| | - Vyacheslav Ryabov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 111a Kievskaya Street, 634012, Tomsk, Russian Federation.,National Research Tomsk State University, 36 Lenin Avenue, 634050, Tomsk, Russian Federation.,Siberian State Medical University, 2 Moscovsky trakt, 634055, Tomsk, Russian Federation
| |
Collapse
|
33
|
Predictive prognostic value of neutrophil-lymphocytes ratio in acute coronary syndrome. Indian Heart J 2017; 69 Suppl 1:S46-S50. [PMID: 28400038 PMCID: PMC5388019 DOI: 10.1016/j.ihj.2017.01.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/19/2016] [Accepted: 01/31/2017] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To assess the relationship between neutrophil-lymphocytes ratio (NLR) at admission and patient outcome over a period of six month in subjects with acute coronary syndrome (ACS). METHODS A total of 435 consecutive patients presenting with ACS were enrolled and 400 patients completed the study. Patients were categorized into 2 groups: the NLR group 1 (NLR≤5.25; n=265, 66.25%) and the NLR group 2 (NLR>5.25; n=135, 33.75%). The primary outcomes were in-hospital and 6 months mortality. RESULTS Forty-seven (11.8%) patients died during 6 months follow up. Higher mortality was seen in NLR group 2 (42/135, 34.1%) compared to NLR group 1 (5/265, 1.9%) with p value <0.001. CONCLUSION Our study suggest that elevated NLR (>5.25) is independently associated with higher all-cause mortality rate up to 6 months period irrespective of ACS type.
Collapse
|
34
|
The Role of Cardiac Tissue Macrophages in Homeostasis and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1003:105-118. [DOI: 10.1007/978-3-319-57613-8_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Sandanger Ø, Gao E, Ranheim T, Bliksøen M, Kaasbøll OJ, Alfsnes K, Nymo SH, Rashidi A, Ohm IK, Attramadal H, Aukrust P, Vinge LE, Yndestad A. NLRP3 inflammasome activation during myocardial ischemia reperfusion is cardioprotective. Biochem Biophys Res Commun 2015; 469:1012-20. [PMID: 26706279 DOI: 10.1016/j.bbrc.2015.12.051] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 12/13/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND The innate immune receptor NLRP3 recognizes tissue damage and initiates inflammatory processes through formation multiprotein complexes with the adaptor protein ASC and caspase-1, i.e. NLRP3 inflammasomes, which through cleavage of pro-IL-1β mediates release of bioactive IL-1β. We hypothesized that NLRP3 mediates tissue damage during acute myocardial infarction (MI) and sought to investigate the mechanisms herein in an experimental MI model in mice. METHODS AND RESULTS The left coronary artery (LCA) of WT, NLRP3(-/-) and ASC(-/-) mice of both genders was ligated for 30 min followed by 3 or 24 h reperfusion. For pre-conditioning studies, the TLR2 agonist Pam3CSK4 or PBS was injected intraperitoneally 60 min prior to LCA ligation. For mechanistic investigations, blood plasmas and left ventricle tissues were collected, and a hypothesis-driven selection of protein or mRNA targets was investigated. Surprisingly, hearts from NLRP3-deficient mice featured larger infarct size than WT mice (p = 0.0048). In general, there were only modest changes with no significant pattern in myocardial infiltration of neutrophils and macrophages and systemic and myocardial cytokine expression between the three genotypes. Preconditioning with the TLR2 agonist Pam3CSK4 induced Akt phosphorylation and reduced infarct size in WT but not NLRP3 -or ASC -deficient hearts. CONCLUSION Absence of NLRP3 results in increased myocardial infarct size after in vivo ischemia reperfusion, seemingly due to dysfunction of the cardioprotective RISK pathway. Our data imply that NLRP3 contributes to cardio-protection during I/R and do not support a role for NLRP3 or ASC inhibition in the management of acute MI including revascularization therapy.
Collapse
Affiliation(s)
- Ø Sandanger
- Research institute for internal medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Centre for Heart Failure Research, University of Oslo, Oslo, Norway; K.G.Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway.
| | - E Gao
- Temple University School of Medicine, Philadelphia, United States
| | - T Ranheim
- Research institute for internal medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Centre for Heart Failure Research, University of Oslo, Oslo, Norway; K.G.Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
| | - M Bliksøen
- Institute of Basic Medical Sciences, Department of Physiology, University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - O J Kaasbøll
- Centre for Heart Failure Research, University of Oslo, Oslo, Norway; Institute for Surgical Research, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - K Alfsnes
- Research institute for internal medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Centre for Heart Failure Research, University of Oslo, Oslo, Norway; K.G.Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
| | - Ståle H Nymo
- Research institute for internal medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Centre for Heart Failure Research, University of Oslo, Oslo, Norway; K.G.Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
| | - A Rashidi
- Research institute for internal medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; K.G.Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
| | - I K Ohm
- Research institute for internal medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Centre for Heart Failure Research, University of Oslo, Oslo, Norway
| | | | - P Aukrust
- Research institute for internal medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; K.G.Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - L E Vinge
- Research institute for internal medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Centre for Heart Failure Research, University of Oslo, Oslo, Norway
| | - A Yndestad
- Research institute for internal medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Centre for Heart Failure Research, University of Oslo, Oslo, Norway; K.G.Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
36
|
Ren M, Wang X, Du G, Tian J, Liu Y. Calycosin‑7‑O‑β‑D‑glucoside attenuates ischemia‑reperfusion injury in vivo via activation of the PI3K/Akt pathway. Mol Med Rep 2015; 13:633-40. [PMID: 26648122 PMCID: PMC4686071 DOI: 10.3892/mmr.2015.4611] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 08/22/2015] [Indexed: 01/01/2023] Open
Abstract
The aim of the present study was to investigate the effects and mechanisms of calycosin‑7‑O‑β‑D‑glucoside (CG) on ischemia‑reperfusion (I/R) injury in vivo. Hemodynamic parameters, including ejection fraction (EF), fractional shortening (FS), left ventricular end‑systolic pressure (LVESP) and left ventricular end‑diastolic pressure (LVEDP) were monitored using an ultrasound system, and infarct size was measured using Evans blue/tetrazolium chloride double staining. The activities of serum creatine kinase (CK), lactate dehydrogenase (LDH) and superoxide dismutase (SOD), and the levels of malondialdehyde (MDA) were determined to assess the degree of myocardial injury and oxidative stress‑induced damage. The protein expression levels of cleaved‑caspase‑3, cleaved‑caspase‑9, phosphorylated (p)‑phosphatidylinositol 3‑kinase (PI3K) p85, PI3K p85, p‑Akt and Akt were determined using western blotting. The results demonstrated that pretreatment with high dose (H)‑CG markedly improved cardiac function, as evidenced by upregulated EF, FS and LVESP, and downregulated LVEDP. In addition, administration of CG resulted in significant decreases in infarct size in the I/R+low dose‑CG and I/R+H‑CG groups, compared with the I/R group. The activities of CK and LDH, and the levels of MDA in the I/R+H‑CG group were reduced, compared with those in the I/R group, whereas SOD activity was elevated. Treatment with CG inhibited the cleavage and activity of caspase‑3 and caspase‑9, and enhanced the phosphorylation of PI3K p85 and Akt. Notably, administration of the PI3K inhibitor, LY294002, markedly lowered the levels of p‑PI3K p85/p‑Akt, and eradicated the inhibitory effects of H‑CG on infarct size, myocardial injury and oxidative stress‑induced damage. Taken together, the results suggested that CG may alleviate I/R injury by activating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Min Ren
- Department of Medical Ultrasonics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xudong Wang
- Department of Medical Ultrasonics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Guoqing Du
- Department of Medical Ultrasonics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jiawei Tian
- Department of Medical Ultrasonics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yujie Liu
- Department of Medical Ultrasonics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
37
|
Dreymueller D, Goetzenich A, Emontzpohl C, Soppert J, Ludwig A, Stoppe C. The perioperative time course and clinical significance of the chemokine CXCL16 in patients undergoing cardiac surgery. J Cell Mol Med 2015; 20:104-15. [PMID: 26499307 PMCID: PMC4717864 DOI: 10.1111/jcmm.12708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/01/2015] [Indexed: 02/03/2023] Open
Abstract
The chemokine CXCL16 and its receptor CXCR6 have been linked to the pathogenesis of acute and chronic cardiovascular disease. However, data on the clinical significance of CXCL16 in patients undergoing cardiac surgery with acute myocardial ischemia/reperfusion (I/R) are still lacking. Therefore, we determined CXCL16 in the serum of cardiac surgery patients and investigated its kinetics and association with the extent of organ dysfunction. 48 patients underwent conventional cardiac surgery with myocardial I/R and the use of cardiopulmonary bypass (CPB) were consecutively enrolled in the present study. We investigated the peri‐ and post‐operative profile of CXCL16. Clinical relevant data were assessed and documented throughout the entire observation period. To identify the influence of myocardial I/R and CPB on CXCL16 release data were compared to those received from patients that underwent off‐pump procedure. Pre‐operative serum CXCL16 levels were comparable to those obtained from healthy volunteers (1174 ± 55.64 pg/ml versus 1225 ± 70.94). However, CXCL16 levels significantly increased during surgery (1174 ± 55.64 versus 1442 ± 75.42 pg/ml; P = 0.0057) and reached maximum levels 6 hrs after termination of surgery (1174 ± 55.64 versus 1648 ± 74.71 pg/ml; P < 0.001). We revealed a positive correlation between the intraoperative serum levels of CXCL16 and the extent of organ dysfunction (r2 = 0.356; P = 0.031). Patients with high CXCL16 release showed an increased extent of organ dysfunction compared to patients with low CXCL16 release. Our study shows that CXCL16 is released into the circulation as a result of cardiac surgery and that high post‐operative CXCL16 levels are associated with an increased severity of post‐operative organ dysfunctions.
Collapse
Affiliation(s)
- Daniela Dreymueller
- Institute of Pharmacology and Toxicology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Andreas Goetzenich
- Department for Thoracic and Cardiovascular Surgery, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Christoph Emontzpohl
- Institute of Biochemistry and Molecular Cell Biology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Josefin Soppert
- Department for Thoracic and Cardiovascular Surgery, University Hospital, RWTH Aachen University, Aachen, Germany.,Institute of Biochemistry and Molecular Cell Biology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Andreas Ludwig
- Institute of Pharmacology and Toxicology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Christian Stoppe
- Institute of Biochemistry and Molecular Cell Biology, University Hospital, RWTH Aachen University, Aachen, Germany.,Department of Intensive Care Medicine, University Hospital, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
38
|
Wang B, Zhong S, Zheng F, Zhang Y, Gao F, Chen Y, Lu B, Xu H, Shi G. N-n-butyl haloperidol iodide protects cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy. Oncotarget 2015; 6:24709-21. [PMID: 26359352 PMCID: PMC4694790 DOI: 10.18632/oncotarget.5077] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/20/2015] [Indexed: 02/05/2023] Open
Abstract
N-n-butyl haloperidol iodide (F2), a novel compound derived from haloperidol, protects against the damaging effects of ischemia/reperfusion (I/R) injury in vitro and in vivo. In this study, we hypothesized the myocardial protection of F2 on cardiomyocyte hypoxia/reoxygenation (H/R) injury is mediated by inhibiting autophagy in H9c2 cells. The degree of autophagy by treatment with F2 exposed to H/R in H9c2 cell was characterized by monodansylcadaverine, transmission electron microscopy, and expression of autophagy marker protein LC3. Our results indicated that treatment with F2 inhibited autophagy in H9c2 cells exposed to H/R. 3-methyladenine, an inhibitor of autophagy, suppressed H/R-induced autophagy, and decreased apoptosis, whereas rapamycin, a classical autophagy sensitizer, increased autophagy and apoptosis. Mechanistically, macrophage migration inhibitory factor (MIF) was inhibited by F2 treatment after H/R. Accordingly, small interfering RNA (siRNA)-mediated MIF knockdown decreased H/R-induced autophagy. In summary, F2 protects cardiomyocytes during H/R injury through suppressing autophagy activation. Our results provide a new mechanistic insight into a functional role of F2 against H/R-induced cardiomyocyte injury and death.
Collapse
Affiliation(s)
- Bin Wang
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041 Guangdong, China
| | - Shuping Zhong
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Fuchun Zheng
- Department of Pharmacy, The First Affiliated Hospital, Shantou University Medical College, Shantou, 515041 Guangdong, China
| | - Yanmei Zhang
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041 Guangdong, China
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041 Guangdong, China
| | - Yicun Chen
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041 Guangdong, China
| | - Binger Lu
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041 Guangdong, China
| | - Han Xu
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041 Guangdong, China
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041 Guangdong, China
- Department of Cardiovascular Diseases, The First Affiliated Hospital, Shantou University Medical College, Shantou, 515041 Guangdong, China
| |
Collapse
|
39
|
Histamine deficiency exacerbates myocardial injury in acute myocardial infarction through impaired macrophage infiltration and increased cardiomyocyte apoptosis. Sci Rep 2015; 5:13131. [PMID: 26278136 PMCID: PMC4642534 DOI: 10.1038/srep13131] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 07/20/2015] [Indexed: 11/08/2022] Open
Abstract
Histamine is a biogenic amine that is widely distributed and has multiple functions, but the role it plays in acute myocardial infarction (AMI) remains unclear. In this study, we investigated the origin and contribution of endogenous histamine to AMI. Histidine decarboxylase (HDC) is the unique enzyme responsible for histamine generation. Using HDC-EGFP bacterial artificial chromosome (BAC) transgenic mice in which EGFP expression is controlled by the HDC promoter, we identified HDC expression primarily in CD11b(+)Gr-1(+) immature myeloid cells (IMCs) that markedly increase in the early stages of AMI. Deficiency of histamine in HDC knockout mice (HDC(-/-)) reduced cardiac function and exacerbated the injury of infarcted heart. Furthermore, administering either an H1 receptor antagonist (pyrilamine) or an H2 receptor antagonist (cimetidine) demonstrated a protective effect of histamine against myocardial injury. The results of in vivo and in vitro assays showed that histamine deficiency promotes the apoptosis of cardiomyocytes and inhibits macrophage infiltration. In conclusion, CD11b(+)Gr-1(+) IMCs are the predominant HDC-expressing sites in AMI, and histamine plays a protective role in the process of AMI through inhibition of cardiomyocyte apoptosis and facilitation of macrophage infiltration.
Collapse
|
40
|
Hydrogen sulfide suppresses transforming growth factor-β1-induced differentiation of human cardiac fibroblasts into myofibroblasts. SCIENCE CHINA-LIFE SCIENCES 2015; 58:1126-34. [PMID: 26246380 DOI: 10.1007/s11427-015-4904-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
Abstract
In heart disease, transforming growth factor-β1 (TGF-β1) converts fibroblasts into myofibroblasts, which synthesize and secrete fibrillar type I and III collagens. The purpose of the present study was to investigate how hydrogen sulfide (H2S) suppresses TGF-β1-induced differentiation of human cardiac fibroblasts to myofibroblasts. Human cardiac fibroblasts were serum-starved in fibroblast medium for 16 h before exposure to TGF-β1 (10 ng mL(-1)) for 24 h with or without sodium hydrosulfide (NaHS, 100 µmol L(-1), 30 min pretreatment) treatment. NaHS, an exogenous H2S donor, potently inhibited the proliferation and migration of TGF-β1-induced human cardiac fibroblasts and regulated their cell cycle progression. Furthermore, NaHS treatment led to suppression of fibroblast differentiation into myofibroblasts, and reduced the levels of collagen, TGF-β1, and activated Smad3 in TGF-β1-induced human cardiac fibroblasts in vitro. We therefore conclude that H2S suppresses TGF-β1-stimulated conversion of fibroblasts to myofibroblasts by inhibiting the TGF-β1/Smad3 signaling pathway, as well as by inhibiting the proliferation, migration, and cell cycle progression of human cardiac myofibroblasts. These effects of H2S may play significant roles in cardiac remodeling associated with heart failure.
Collapse
|
41
|
Xu Q, Li X, Lu Y, Shen L, Zhang J, Cao S, Huang X, Bin J, Liao Y. Pharmacological modulation of autophagy to protect cardiomyocytes according to the time windows of ischaemia/reperfusion. Br J Pharmacol 2015; 172:3072-85. [PMID: 25660104 DOI: 10.1111/bph.13111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 01/29/2015] [Accepted: 02/04/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND PURPOSE Targeted modulation of autophagy induced by myocardial ischaemia/reperfusion has been the subject of intensive investigation, but it is debatable whether autophagy is beneficial or harmful. Hence, we evaluated the effects of pharmacological manipulation of autophagy on the survival of cardiomyocytes in different time windows of ischaemia/reperfusion. EXPERIMENTAL APPROACH We examined the autophagy and apoptosis in cardiomyocytes subjected to different durations of anoxia/re-oxygenation or ischaemia/reperfusion, and evaluated the effects of the autophagic enhancer rapamycin and inhibitor wortmannin on cell survival. KEY RESULTS In neonatal rat cardiomyocytes (NRCs) or murine hearts, autophagy was increased in response to anoxia/reoxygenation or ischaemia/reperfusion in a time-dependent manner. Rapamycin-enhanced autophagy in NRCs led to higher cell viability and less apoptosis when anoxia was sustained for ≦ 6 h. When anoxia was prolonged to 12 h, rapamycin did not increase cell viability, induced less apoptosis and more autophagic cell death. When anoxia was prolonged to 24 h, rapamycin increased autophagic cell death, while wortmannin reduced autophagic cell death and apoptosis. Similar results were obtained in mice subjected to ischaemia/reperfusion. Rapamycin inhibited the opening of mitochondrial transition pore in NRCs exposed to 6 h anoxia/4 h re-oxygenation but did not exert any effect when anoxia was extended to 24 h. Similarly, rapamycin reduced the myocardial expression of Bax in mice subjected to short-time ischaemia, but this effect disappeared when ischaemia was extended to 24 h. CONCLUSIONS AND IMPLICATIONS The cardioprotection of autophagy is context-dependent and therapies involving the modification of autophagy should be determined according to the duration of ischaemia/reperfusion.
Collapse
Affiliation(s)
- Qiulin Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xixian Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongkang Lu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Liang Shen
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jingwen Zhang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shiping Cao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaobo Huang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianping Bin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yulin Liao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
42
|
Weinberger T, Schulz C. Myocardial infarction: a critical role of macrophages in cardiac remodeling. Front Physiol 2015; 6:107. [PMID: 25904868 PMCID: PMC4387471 DOI: 10.3389/fphys.2015.00107] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/17/2015] [Indexed: 12/13/2022] Open
Abstract
Ischemic heart disease is a common condition and a leading cause of mortality and morbidity. Macrophages, besides their role in host defense and tissue homeostasis, are critical players in the pathophysiological processes induced by myocardial infarction. In this article we will summarize the current understanding of the role of monocytes and macrophages in myocardial damage and cardiac remodeling in relation to their origin and developmental paths. Furthermore, we describe their potential implications in therapeutic strategies to modulate myocardial healing and regeneration.
Collapse
Affiliation(s)
- Tobias Weinberger
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig Maximilians-Universität Munich, Germany ; Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research) Munich, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig Maximilians-Universität Munich, Germany ; Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research) Munich, Germany
| |
Collapse
|
43
|
Wang ZG, Wang Y, Huang Y, Lu Q, Zheng L, Hu D, Feng WK, Liu YL, Ji KT, Zhang HY, Fu XB, Li XK, Chu MP, Xiao J. bFGF regulates autophagy and ubiquitinated protein accumulation induced by myocardial ischemia/reperfusion via the activation of the PI3K/Akt/mTOR pathway. Sci Rep 2015; 5:9287. [PMID: 25787015 PMCID: PMC4365411 DOI: 10.1038/srep09287] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 02/17/2015] [Indexed: 01/13/2023] Open
Abstract
Autophagy is involved in the development and/or progression of many diseases, including myocardial ischemia/reperfusion (I/R). In this study, we hypothesized a protective role of basic fibroblast growth factor (bFGF) both in vivo and in vitro and demonstrated that excessive autophagy and ubiquitinated protein accumulation is involved in the myocardial I/R model. Our results showed that bFGF improved heart function recovery and increased the survival of cardiomyocytes in myocardial I/R model. The protective effect of bFGF is related to the inhibition of LC3II levels. Additionally, bFGF enhances the clearance of Ub by p62 and increases the survival of H9C2 cells. Moreover, silencing of p62 partially blocks the clearance of Ub and abolishes the anti-apoptosis effect of bFGF. An shRNA against the autophagic machinery Atg7 increased the survival of H9C2 cells co-treated with bFGF and rapamycin. bFGF activates the downstream signaling of the PI3K/Akt/mTOR pathway. These results indicate that the role of bFGF in myocardial I/R recovery is related to the inhibition of excessive autophagy and increased ubiquitinated protein clearance via the activation of PI3K/Akt/mTOR signaling. Overall, our study suggests a new direction for bFGF drug development for heart disease and identifies protein signaling pathways involved in bFGF action.
Collapse
Affiliation(s)
- Zhou-Guang Wang
- 1] School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China [2] Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, 130012, China
| | - Yue Wang
- 1] School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China [2] Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, 130012, China
| | - Yan Huang
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Qin Lu
- Department of Pediatric Cardiology, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Lei Zheng
- Department of Ultrasound, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Dong Hu
- Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan 232001, China
| | - Wen-Ke Feng
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Yan-Long Liu
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Kang-Ting Ji
- Department of Pediatric Cardiology, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Hong-Yu Zhang
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiao-Bing Fu
- Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiao-Kun Li
- 1] School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China [2] Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, 130012, China
| | - Mao-Ping Chu
- Department of Pediatric Cardiology, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Jian Xiao
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
44
|
Yu XH, Zhang J, Zheng XL, Yang YH, Tang CK. Interferon-γ in foam cell formation and progression of atherosclerosis. Clin Chim Acta 2015; 441:33-43. [DOI: 10.1016/j.cca.2014.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 11/28/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
|
45
|
Cogle CR, Wise E, Meacham AM, Zierold C, Traverse JH, Henry TD, Perin EC, Willerson JT, Ellis SG, Carlson M, Zhao DXM, Bolli R, Cooke JP, Anwaruddin S, Bhatnagar A, da Graca Cabreira-Hansen M, Grant MB, Lai D, Moyé L, Ebert RF, Olson RE, Sayre SL, Schulman IH, Bosse RC, Scott EW, Simari RD, Pepine CJ, Taylor DA. Detailed analysis of bone marrow from patients with ischemic heart disease and left ventricular dysfunction: BM CD34, CD11b, and clonogenic capacity as biomarkers for clinical outcomes. Circ Res 2014; 115:867-74. [PMID: 25136078 DOI: 10.1161/circresaha.115.304353] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RATIONALE Bone marrow (BM) cell therapy for ischemic heart disease (IHD) has shown mixed results. Before the full potency of BM cell therapy can be realized, it is essential to understand the BM niche after acute myocardial infarction (AMI). OBJECTIVE To study the BM composition in patients with IHD and severe left ventricular (LV) dysfunction. METHODS AND RESULTS BM from 280 patients with IHD and LV dysfunction were analyzed for cell subsets by flow cytometry and colony assays. BM CD34(+) cell percentage was decreased 7 days after AMI (mean of 1.9% versus 2.3%-2.7% in other cohorts; P<0.05). BM-derived endothelial colonies were significantly decreased (P<0.05). Increased BM CD11b(+) cells associated with worse LV ejection fraction (LVEF) after AMI (P<0.05). Increased BM CD34(+) percentage associated with greater improvement in LVEF (+9.9% versus +2.3%; P=0.03, for patients with AMI and +6.6% versus -0.02%; P=0.021 for patients with chronic IHD). In addition, decreased BM CD34(+) percentage in patients with chronic IHD correlated with decrement in LVEF (-2.9% versus +0.7%; P=0.0355). CONCLUSIONS In this study, we show a heterogeneous mixture of BM cell subsets, decreased endothelial colony capacity, a CD34+ cell nadir 7 days after AMI, a negative correlation between CD11b percentage and postinfarct LVEF, and positive correlation of CD34 percentage with change in LVEF after cell therapy. These results serve as a possible basis for the small clinical improvement seen in autologous BM cell therapy trials and support selection of potent cell subsets and reversal of comorbid BM impairment. CLINICAL TRIAL REGISTRATIONS URL http://www.clinicaltrials.gov. Unique identifiers: NCT00684021, NCT00684060, and NCT00824005.
Collapse
Affiliation(s)
- Christopher R Cogle
- From the University of Florida College of Medicine, Gainesville (C.R.C., E.W., A.M.M., M.B.G., R.C.B., E.W.S., C.J.P.); University of Minnesota School of Medicine, Minneapolis (C.Z., M.C.); Minneapolis Heart Institute Foundation at Abbott, MN (J.H.T., T.D.H., R.E.O.); Texas Heart Institute, Houston (E.C.P., J.T.W., M.d.G.C.-H., D.A.T.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest Baptist Health, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (R.B., A.B.); Houston Methodist Research Institute, TX (J.P.C.); University of Pennsylvania School of Medicine, Philadelphia (S.A.); University of Texas School of Public Health, Houston (D.L., L.M., S.L.S.); National Heart, Lung and Blood Institute, Bethesda, MD (R.F.E.); University of Miami School of Medicine, FL (I.H.S.), and Mayo Clinic College of Medicine, Rochester, MN (R.D.S.)
| | - Elizabeth Wise
- From the University of Florida College of Medicine, Gainesville (C.R.C., E.W., A.M.M., M.B.G., R.C.B., E.W.S., C.J.P.); University of Minnesota School of Medicine, Minneapolis (C.Z., M.C.); Minneapolis Heart Institute Foundation at Abbott, MN (J.H.T., T.D.H., R.E.O.); Texas Heart Institute, Houston (E.C.P., J.T.W., M.d.G.C.-H., D.A.T.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest Baptist Health, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (R.B., A.B.); Houston Methodist Research Institute, TX (J.P.C.); University of Pennsylvania School of Medicine, Philadelphia (S.A.); University of Texas School of Public Health, Houston (D.L., L.M., S.L.S.); National Heart, Lung and Blood Institute, Bethesda, MD (R.F.E.); University of Miami School of Medicine, FL (I.H.S.), and Mayo Clinic College of Medicine, Rochester, MN (R.D.S.)
| | - Amy M Meacham
- From the University of Florida College of Medicine, Gainesville (C.R.C., E.W., A.M.M., M.B.G., R.C.B., E.W.S., C.J.P.); University of Minnesota School of Medicine, Minneapolis (C.Z., M.C.); Minneapolis Heart Institute Foundation at Abbott, MN (J.H.T., T.D.H., R.E.O.); Texas Heart Institute, Houston (E.C.P., J.T.W., M.d.G.C.-H., D.A.T.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest Baptist Health, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (R.B., A.B.); Houston Methodist Research Institute, TX (J.P.C.); University of Pennsylvania School of Medicine, Philadelphia (S.A.); University of Texas School of Public Health, Houston (D.L., L.M., S.L.S.); National Heart, Lung and Blood Institute, Bethesda, MD (R.F.E.); University of Miami School of Medicine, FL (I.H.S.), and Mayo Clinic College of Medicine, Rochester, MN (R.D.S.)
| | - Claudia Zierold
- From the University of Florida College of Medicine, Gainesville (C.R.C., E.W., A.M.M., M.B.G., R.C.B., E.W.S., C.J.P.); University of Minnesota School of Medicine, Minneapolis (C.Z., M.C.); Minneapolis Heart Institute Foundation at Abbott, MN (J.H.T., T.D.H., R.E.O.); Texas Heart Institute, Houston (E.C.P., J.T.W., M.d.G.C.-H., D.A.T.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest Baptist Health, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (R.B., A.B.); Houston Methodist Research Institute, TX (J.P.C.); University of Pennsylvania School of Medicine, Philadelphia (S.A.); University of Texas School of Public Health, Houston (D.L., L.M., S.L.S.); National Heart, Lung and Blood Institute, Bethesda, MD (R.F.E.); University of Miami School of Medicine, FL (I.H.S.), and Mayo Clinic College of Medicine, Rochester, MN (R.D.S.)
| | - Jay H Traverse
- From the University of Florida College of Medicine, Gainesville (C.R.C., E.W., A.M.M., M.B.G., R.C.B., E.W.S., C.J.P.); University of Minnesota School of Medicine, Minneapolis (C.Z., M.C.); Minneapolis Heart Institute Foundation at Abbott, MN (J.H.T., T.D.H., R.E.O.); Texas Heart Institute, Houston (E.C.P., J.T.W., M.d.G.C.-H., D.A.T.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest Baptist Health, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (R.B., A.B.); Houston Methodist Research Institute, TX (J.P.C.); University of Pennsylvania School of Medicine, Philadelphia (S.A.); University of Texas School of Public Health, Houston (D.L., L.M., S.L.S.); National Heart, Lung and Blood Institute, Bethesda, MD (R.F.E.); University of Miami School of Medicine, FL (I.H.S.), and Mayo Clinic College of Medicine, Rochester, MN (R.D.S.)
| | - Timothy D Henry
- From the University of Florida College of Medicine, Gainesville (C.R.C., E.W., A.M.M., M.B.G., R.C.B., E.W.S., C.J.P.); University of Minnesota School of Medicine, Minneapolis (C.Z., M.C.); Minneapolis Heart Institute Foundation at Abbott, MN (J.H.T., T.D.H., R.E.O.); Texas Heart Institute, Houston (E.C.P., J.T.W., M.d.G.C.-H., D.A.T.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest Baptist Health, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (R.B., A.B.); Houston Methodist Research Institute, TX (J.P.C.); University of Pennsylvania School of Medicine, Philadelphia (S.A.); University of Texas School of Public Health, Houston (D.L., L.M., S.L.S.); National Heart, Lung and Blood Institute, Bethesda, MD (R.F.E.); University of Miami School of Medicine, FL (I.H.S.), and Mayo Clinic College of Medicine, Rochester, MN (R.D.S.)
| | - Emerson C Perin
- From the University of Florida College of Medicine, Gainesville (C.R.C., E.W., A.M.M., M.B.G., R.C.B., E.W.S., C.J.P.); University of Minnesota School of Medicine, Minneapolis (C.Z., M.C.); Minneapolis Heart Institute Foundation at Abbott, MN (J.H.T., T.D.H., R.E.O.); Texas Heart Institute, Houston (E.C.P., J.T.W., M.d.G.C.-H., D.A.T.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest Baptist Health, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (R.B., A.B.); Houston Methodist Research Institute, TX (J.P.C.); University of Pennsylvania School of Medicine, Philadelphia (S.A.); University of Texas School of Public Health, Houston (D.L., L.M., S.L.S.); National Heart, Lung and Blood Institute, Bethesda, MD (R.F.E.); University of Miami School of Medicine, FL (I.H.S.), and Mayo Clinic College of Medicine, Rochester, MN (R.D.S.)
| | - James T Willerson
- From the University of Florida College of Medicine, Gainesville (C.R.C., E.W., A.M.M., M.B.G., R.C.B., E.W.S., C.J.P.); University of Minnesota School of Medicine, Minneapolis (C.Z., M.C.); Minneapolis Heart Institute Foundation at Abbott, MN (J.H.T., T.D.H., R.E.O.); Texas Heart Institute, Houston (E.C.P., J.T.W., M.d.G.C.-H., D.A.T.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest Baptist Health, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (R.B., A.B.); Houston Methodist Research Institute, TX (J.P.C.); University of Pennsylvania School of Medicine, Philadelphia (S.A.); University of Texas School of Public Health, Houston (D.L., L.M., S.L.S.); National Heart, Lung and Blood Institute, Bethesda, MD (R.F.E.); University of Miami School of Medicine, FL (I.H.S.), and Mayo Clinic College of Medicine, Rochester, MN (R.D.S.)
| | - Stephen G Ellis
- From the University of Florida College of Medicine, Gainesville (C.R.C., E.W., A.M.M., M.B.G., R.C.B., E.W.S., C.J.P.); University of Minnesota School of Medicine, Minneapolis (C.Z., M.C.); Minneapolis Heart Institute Foundation at Abbott, MN (J.H.T., T.D.H., R.E.O.); Texas Heart Institute, Houston (E.C.P., J.T.W., M.d.G.C.-H., D.A.T.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest Baptist Health, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (R.B., A.B.); Houston Methodist Research Institute, TX (J.P.C.); University of Pennsylvania School of Medicine, Philadelphia (S.A.); University of Texas School of Public Health, Houston (D.L., L.M., S.L.S.); National Heart, Lung and Blood Institute, Bethesda, MD (R.F.E.); University of Miami School of Medicine, FL (I.H.S.), and Mayo Clinic College of Medicine, Rochester, MN (R.D.S.)
| | - Marjorie Carlson
- From the University of Florida College of Medicine, Gainesville (C.R.C., E.W., A.M.M., M.B.G., R.C.B., E.W.S., C.J.P.); University of Minnesota School of Medicine, Minneapolis (C.Z., M.C.); Minneapolis Heart Institute Foundation at Abbott, MN (J.H.T., T.D.H., R.E.O.); Texas Heart Institute, Houston (E.C.P., J.T.W., M.d.G.C.-H., D.A.T.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest Baptist Health, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (R.B., A.B.); Houston Methodist Research Institute, TX (J.P.C.); University of Pennsylvania School of Medicine, Philadelphia (S.A.); University of Texas School of Public Health, Houston (D.L., L.M., S.L.S.); National Heart, Lung and Blood Institute, Bethesda, MD (R.F.E.); University of Miami School of Medicine, FL (I.H.S.), and Mayo Clinic College of Medicine, Rochester, MN (R.D.S.)
| | - David X M Zhao
- From the University of Florida College of Medicine, Gainesville (C.R.C., E.W., A.M.M., M.B.G., R.C.B., E.W.S., C.J.P.); University of Minnesota School of Medicine, Minneapolis (C.Z., M.C.); Minneapolis Heart Institute Foundation at Abbott, MN (J.H.T., T.D.H., R.E.O.); Texas Heart Institute, Houston (E.C.P., J.T.W., M.d.G.C.-H., D.A.T.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest Baptist Health, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (R.B., A.B.); Houston Methodist Research Institute, TX (J.P.C.); University of Pennsylvania School of Medicine, Philadelphia (S.A.); University of Texas School of Public Health, Houston (D.L., L.M., S.L.S.); National Heart, Lung and Blood Institute, Bethesda, MD (R.F.E.); University of Miami School of Medicine, FL (I.H.S.), and Mayo Clinic College of Medicine, Rochester, MN (R.D.S.)
| | - Roberto Bolli
- From the University of Florida College of Medicine, Gainesville (C.R.C., E.W., A.M.M., M.B.G., R.C.B., E.W.S., C.J.P.); University of Minnesota School of Medicine, Minneapolis (C.Z., M.C.); Minneapolis Heart Institute Foundation at Abbott, MN (J.H.T., T.D.H., R.E.O.); Texas Heart Institute, Houston (E.C.P., J.T.W., M.d.G.C.-H., D.A.T.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest Baptist Health, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (R.B., A.B.); Houston Methodist Research Institute, TX (J.P.C.); University of Pennsylvania School of Medicine, Philadelphia (S.A.); University of Texas School of Public Health, Houston (D.L., L.M., S.L.S.); National Heart, Lung and Blood Institute, Bethesda, MD (R.F.E.); University of Miami School of Medicine, FL (I.H.S.), and Mayo Clinic College of Medicine, Rochester, MN (R.D.S.)
| | - John P Cooke
- From the University of Florida College of Medicine, Gainesville (C.R.C., E.W., A.M.M., M.B.G., R.C.B., E.W.S., C.J.P.); University of Minnesota School of Medicine, Minneapolis (C.Z., M.C.); Minneapolis Heart Institute Foundation at Abbott, MN (J.H.T., T.D.H., R.E.O.); Texas Heart Institute, Houston (E.C.P., J.T.W., M.d.G.C.-H., D.A.T.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest Baptist Health, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (R.B., A.B.); Houston Methodist Research Institute, TX (J.P.C.); University of Pennsylvania School of Medicine, Philadelphia (S.A.); University of Texas School of Public Health, Houston (D.L., L.M., S.L.S.); National Heart, Lung and Blood Institute, Bethesda, MD (R.F.E.); University of Miami School of Medicine, FL (I.H.S.), and Mayo Clinic College of Medicine, Rochester, MN (R.D.S.)
| | - Saif Anwaruddin
- From the University of Florida College of Medicine, Gainesville (C.R.C., E.W., A.M.M., M.B.G., R.C.B., E.W.S., C.J.P.); University of Minnesota School of Medicine, Minneapolis (C.Z., M.C.); Minneapolis Heart Institute Foundation at Abbott, MN (J.H.T., T.D.H., R.E.O.); Texas Heart Institute, Houston (E.C.P., J.T.W., M.d.G.C.-H., D.A.T.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest Baptist Health, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (R.B., A.B.); Houston Methodist Research Institute, TX (J.P.C.); University of Pennsylvania School of Medicine, Philadelphia (S.A.); University of Texas School of Public Health, Houston (D.L., L.M., S.L.S.); National Heart, Lung and Blood Institute, Bethesda, MD (R.F.E.); University of Miami School of Medicine, FL (I.H.S.), and Mayo Clinic College of Medicine, Rochester, MN (R.D.S.)
| | - Aruni Bhatnagar
- From the University of Florida College of Medicine, Gainesville (C.R.C., E.W., A.M.M., M.B.G., R.C.B., E.W.S., C.J.P.); University of Minnesota School of Medicine, Minneapolis (C.Z., M.C.); Minneapolis Heart Institute Foundation at Abbott, MN (J.H.T., T.D.H., R.E.O.); Texas Heart Institute, Houston (E.C.P., J.T.W., M.d.G.C.-H., D.A.T.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest Baptist Health, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (R.B., A.B.); Houston Methodist Research Institute, TX (J.P.C.); University of Pennsylvania School of Medicine, Philadelphia (S.A.); University of Texas School of Public Health, Houston (D.L., L.M., S.L.S.); National Heart, Lung and Blood Institute, Bethesda, MD (R.F.E.); University of Miami School of Medicine, FL (I.H.S.), and Mayo Clinic College of Medicine, Rochester, MN (R.D.S.)
| | - Maria da Graca Cabreira-Hansen
- From the University of Florida College of Medicine, Gainesville (C.R.C., E.W., A.M.M., M.B.G., R.C.B., E.W.S., C.J.P.); University of Minnesota School of Medicine, Minneapolis (C.Z., M.C.); Minneapolis Heart Institute Foundation at Abbott, MN (J.H.T., T.D.H., R.E.O.); Texas Heart Institute, Houston (E.C.P., J.T.W., M.d.G.C.-H., D.A.T.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest Baptist Health, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (R.B., A.B.); Houston Methodist Research Institute, TX (J.P.C.); University of Pennsylvania School of Medicine, Philadelphia (S.A.); University of Texas School of Public Health, Houston (D.L., L.M., S.L.S.); National Heart, Lung and Blood Institute, Bethesda, MD (R.F.E.); University of Miami School of Medicine, FL (I.H.S.), and Mayo Clinic College of Medicine, Rochester, MN (R.D.S.)
| | - Maria B Grant
- From the University of Florida College of Medicine, Gainesville (C.R.C., E.W., A.M.M., M.B.G., R.C.B., E.W.S., C.J.P.); University of Minnesota School of Medicine, Minneapolis (C.Z., M.C.); Minneapolis Heart Institute Foundation at Abbott, MN (J.H.T., T.D.H., R.E.O.); Texas Heart Institute, Houston (E.C.P., J.T.W., M.d.G.C.-H., D.A.T.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest Baptist Health, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (R.B., A.B.); Houston Methodist Research Institute, TX (J.P.C.); University of Pennsylvania School of Medicine, Philadelphia (S.A.); University of Texas School of Public Health, Houston (D.L., L.M., S.L.S.); National Heart, Lung and Blood Institute, Bethesda, MD (R.F.E.); University of Miami School of Medicine, FL (I.H.S.), and Mayo Clinic College of Medicine, Rochester, MN (R.D.S.)
| | - Dejian Lai
- From the University of Florida College of Medicine, Gainesville (C.R.C., E.W., A.M.M., M.B.G., R.C.B., E.W.S., C.J.P.); University of Minnesota School of Medicine, Minneapolis (C.Z., M.C.); Minneapolis Heart Institute Foundation at Abbott, MN (J.H.T., T.D.H., R.E.O.); Texas Heart Institute, Houston (E.C.P., J.T.W., M.d.G.C.-H., D.A.T.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest Baptist Health, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (R.B., A.B.); Houston Methodist Research Institute, TX (J.P.C.); University of Pennsylvania School of Medicine, Philadelphia (S.A.); University of Texas School of Public Health, Houston (D.L., L.M., S.L.S.); National Heart, Lung and Blood Institute, Bethesda, MD (R.F.E.); University of Miami School of Medicine, FL (I.H.S.), and Mayo Clinic College of Medicine, Rochester, MN (R.D.S.)
| | - Lem Moyé
- From the University of Florida College of Medicine, Gainesville (C.R.C., E.W., A.M.M., M.B.G., R.C.B., E.W.S., C.J.P.); University of Minnesota School of Medicine, Minneapolis (C.Z., M.C.); Minneapolis Heart Institute Foundation at Abbott, MN (J.H.T., T.D.H., R.E.O.); Texas Heart Institute, Houston (E.C.P., J.T.W., M.d.G.C.-H., D.A.T.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest Baptist Health, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (R.B., A.B.); Houston Methodist Research Institute, TX (J.P.C.); University of Pennsylvania School of Medicine, Philadelphia (S.A.); University of Texas School of Public Health, Houston (D.L., L.M., S.L.S.); National Heart, Lung and Blood Institute, Bethesda, MD (R.F.E.); University of Miami School of Medicine, FL (I.H.S.), and Mayo Clinic College of Medicine, Rochester, MN (R.D.S.).
| | - Ray F Ebert
- From the University of Florida College of Medicine, Gainesville (C.R.C., E.W., A.M.M., M.B.G., R.C.B., E.W.S., C.J.P.); University of Minnesota School of Medicine, Minneapolis (C.Z., M.C.); Minneapolis Heart Institute Foundation at Abbott, MN (J.H.T., T.D.H., R.E.O.); Texas Heart Institute, Houston (E.C.P., J.T.W., M.d.G.C.-H., D.A.T.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest Baptist Health, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (R.B., A.B.); Houston Methodist Research Institute, TX (J.P.C.); University of Pennsylvania School of Medicine, Philadelphia (S.A.); University of Texas School of Public Health, Houston (D.L., L.M., S.L.S.); National Heart, Lung and Blood Institute, Bethesda, MD (R.F.E.); University of Miami School of Medicine, FL (I.H.S.), and Mayo Clinic College of Medicine, Rochester, MN (R.D.S.)
| | - Rachel E Olson
- From the University of Florida College of Medicine, Gainesville (C.R.C., E.W., A.M.M., M.B.G., R.C.B., E.W.S., C.J.P.); University of Minnesota School of Medicine, Minneapolis (C.Z., M.C.); Minneapolis Heart Institute Foundation at Abbott, MN (J.H.T., T.D.H., R.E.O.); Texas Heart Institute, Houston (E.C.P., J.T.W., M.d.G.C.-H., D.A.T.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest Baptist Health, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (R.B., A.B.); Houston Methodist Research Institute, TX (J.P.C.); University of Pennsylvania School of Medicine, Philadelphia (S.A.); University of Texas School of Public Health, Houston (D.L., L.M., S.L.S.); National Heart, Lung and Blood Institute, Bethesda, MD (R.F.E.); University of Miami School of Medicine, FL (I.H.S.), and Mayo Clinic College of Medicine, Rochester, MN (R.D.S.)
| | - Shelly L Sayre
- From the University of Florida College of Medicine, Gainesville (C.R.C., E.W., A.M.M., M.B.G., R.C.B., E.W.S., C.J.P.); University of Minnesota School of Medicine, Minneapolis (C.Z., M.C.); Minneapolis Heart Institute Foundation at Abbott, MN (J.H.T., T.D.H., R.E.O.); Texas Heart Institute, Houston (E.C.P., J.T.W., M.d.G.C.-H., D.A.T.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest Baptist Health, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (R.B., A.B.); Houston Methodist Research Institute, TX (J.P.C.); University of Pennsylvania School of Medicine, Philadelphia (S.A.); University of Texas School of Public Health, Houston (D.L., L.M., S.L.S.); National Heart, Lung and Blood Institute, Bethesda, MD (R.F.E.); University of Miami School of Medicine, FL (I.H.S.), and Mayo Clinic College of Medicine, Rochester, MN (R.D.S.)
| | - Ivonne H Schulman
- From the University of Florida College of Medicine, Gainesville (C.R.C., E.W., A.M.M., M.B.G., R.C.B., E.W.S., C.J.P.); University of Minnesota School of Medicine, Minneapolis (C.Z., M.C.); Minneapolis Heart Institute Foundation at Abbott, MN (J.H.T., T.D.H., R.E.O.); Texas Heart Institute, Houston (E.C.P., J.T.W., M.d.G.C.-H., D.A.T.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest Baptist Health, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (R.B., A.B.); Houston Methodist Research Institute, TX (J.P.C.); University of Pennsylvania School of Medicine, Philadelphia (S.A.); University of Texas School of Public Health, Houston (D.L., L.M., S.L.S.); National Heart, Lung and Blood Institute, Bethesda, MD (R.F.E.); University of Miami School of Medicine, FL (I.H.S.), and Mayo Clinic College of Medicine, Rochester, MN (R.D.S.)
| | - Raphael C Bosse
- From the University of Florida College of Medicine, Gainesville (C.R.C., E.W., A.M.M., M.B.G., R.C.B., E.W.S., C.J.P.); University of Minnesota School of Medicine, Minneapolis (C.Z., M.C.); Minneapolis Heart Institute Foundation at Abbott, MN (J.H.T., T.D.H., R.E.O.); Texas Heart Institute, Houston (E.C.P., J.T.W., M.d.G.C.-H., D.A.T.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest Baptist Health, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (R.B., A.B.); Houston Methodist Research Institute, TX (J.P.C.); University of Pennsylvania School of Medicine, Philadelphia (S.A.); University of Texas School of Public Health, Houston (D.L., L.M., S.L.S.); National Heart, Lung and Blood Institute, Bethesda, MD (R.F.E.); University of Miami School of Medicine, FL (I.H.S.), and Mayo Clinic College of Medicine, Rochester, MN (R.D.S.)
| | - Edward W Scott
- From the University of Florida College of Medicine, Gainesville (C.R.C., E.W., A.M.M., M.B.G., R.C.B., E.W.S., C.J.P.); University of Minnesota School of Medicine, Minneapolis (C.Z., M.C.); Minneapolis Heart Institute Foundation at Abbott, MN (J.H.T., T.D.H., R.E.O.); Texas Heart Institute, Houston (E.C.P., J.T.W., M.d.G.C.-H., D.A.T.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest Baptist Health, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (R.B., A.B.); Houston Methodist Research Institute, TX (J.P.C.); University of Pennsylvania School of Medicine, Philadelphia (S.A.); University of Texas School of Public Health, Houston (D.L., L.M., S.L.S.); National Heart, Lung and Blood Institute, Bethesda, MD (R.F.E.); University of Miami School of Medicine, FL (I.H.S.), and Mayo Clinic College of Medicine, Rochester, MN (R.D.S.)
| | - Robert D Simari
- From the University of Florida College of Medicine, Gainesville (C.R.C., E.W., A.M.M., M.B.G., R.C.B., E.W.S., C.J.P.); University of Minnesota School of Medicine, Minneapolis (C.Z., M.C.); Minneapolis Heart Institute Foundation at Abbott, MN (J.H.T., T.D.H., R.E.O.); Texas Heart Institute, Houston (E.C.P., J.T.W., M.d.G.C.-H., D.A.T.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest Baptist Health, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (R.B., A.B.); Houston Methodist Research Institute, TX (J.P.C.); University of Pennsylvania School of Medicine, Philadelphia (S.A.); University of Texas School of Public Health, Houston (D.L., L.M., S.L.S.); National Heart, Lung and Blood Institute, Bethesda, MD (R.F.E.); University of Miami School of Medicine, FL (I.H.S.), and Mayo Clinic College of Medicine, Rochester, MN (R.D.S.)
| | - Carl J Pepine
- From the University of Florida College of Medicine, Gainesville (C.R.C., E.W., A.M.M., M.B.G., R.C.B., E.W.S., C.J.P.); University of Minnesota School of Medicine, Minneapolis (C.Z., M.C.); Minneapolis Heart Institute Foundation at Abbott, MN (J.H.T., T.D.H., R.E.O.); Texas Heart Institute, Houston (E.C.P., J.T.W., M.d.G.C.-H., D.A.T.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest Baptist Health, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (R.B., A.B.); Houston Methodist Research Institute, TX (J.P.C.); University of Pennsylvania School of Medicine, Philadelphia (S.A.); University of Texas School of Public Health, Houston (D.L., L.M., S.L.S.); National Heart, Lung and Blood Institute, Bethesda, MD (R.F.E.); University of Miami School of Medicine, FL (I.H.S.), and Mayo Clinic College of Medicine, Rochester, MN (R.D.S.)
| | - Doris A Taylor
- From the University of Florida College of Medicine, Gainesville (C.R.C., E.W., A.M.M., M.B.G., R.C.B., E.W.S., C.J.P.); University of Minnesota School of Medicine, Minneapolis (C.Z., M.C.); Minneapolis Heart Institute Foundation at Abbott, MN (J.H.T., T.D.H., R.E.O.); Texas Heart Institute, Houston (E.C.P., J.T.W., M.d.G.C.-H., D.A.T.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest Baptist Health, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (R.B., A.B.); Houston Methodist Research Institute, TX (J.P.C.); University of Pennsylvania School of Medicine, Philadelphia (S.A.); University of Texas School of Public Health, Houston (D.L., L.M., S.L.S.); National Heart, Lung and Blood Institute, Bethesda, MD (R.F.E.); University of Miami School of Medicine, FL (I.H.S.), and Mayo Clinic College of Medicine, Rochester, MN (R.D.S.)
| | | |
Collapse
|
46
|
Izquierdo MC, Martin-Cleary C, Fernandez-Fernandez B, Elewa U, Sanchez-Niño MD, Carrero JJ, Ortiz A. CXCL16 in kidney and cardiovascular injury. Cytokine Growth Factor Rev 2014; 25:317-25. [PMID: 24861945 DOI: 10.1016/j.cytogfr.2014.04.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 04/04/2014] [Indexed: 12/20/2022]
Abstract
CXC chemokine ligand 16 (CXCL16) is a CXC soluble chemokine, an adhesion molecule and a cell surface scavenger receptor. CXCL16 regulates inflammation, tissue injury and fibrosis. Parenchymal renal cells, vascular wall cells, leukocytes and platelets express and/or release CXCL16 under the regulation of inflammatory mediators. CXCL16 expression is increased in experimental and human nephropathies. Targeting CXCL16 protected from experimental glomerular injury or interstitial fibrosis. Conflicting results were reported for experimental cardiovascular injury. High circulating CXCL16 levels are associated to human kidney and cardiovascular disease and urinary CXCL16 may increase in kidney injury. In conclusion, mounting evidence suggests a role of CXCL16 in kidney and cardiovascular disease. However, a better understanding is still required before exploring CXCL16 targeting in the clinic.
Collapse
Affiliation(s)
| | | | | | - Usama Elewa
- IIS-Fundacion Jimenez Diaz, Madrid, Spain; REDINREN, Madrid, Spain.
| | | | | | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz, Madrid, Spain; REDINREN, Madrid, Spain; Universidad Autonoma de Madrid and FRIAT/IRSIN, Madrid, Spain.
| |
Collapse
|
47
|
Hydrogen sulfide attenuates the recruitment of CD11b⁺Gr-1⁺ myeloid cells and regulates Bax/Bcl-2 signaling in myocardial ischemia injury. Sci Rep 2014; 4:4774. [PMID: 24758901 PMCID: PMC3998019 DOI: 10.1038/srep04774] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 04/04/2014] [Indexed: 12/24/2022] Open
Abstract
Hydrogen sulfide, an endogenous signaling molecule, plays an important role in the physiology and pathophysiology of the cardiovascular system. Using a mouse model of myocardial infarction, we investigated the anti-inflammatory and anti-apoptotic effects of the H2S donor sodium hydrosulfide (NaHS). The results demonstrated that the administration of NaHS improved survival, preserved left ventricular function, limited infarct size, and improved H2S levels in cardiac tissue to attenuate the recruitment of CD11b+Gr-1+ myeloid cells and to regulate the Bax/Bcl-2 pathway. Furthermore, the cardioprotective effects of NaHS were enhanced by inhibiting the migration of CD11b+Gr-1+ myeloid cells from the spleen into the blood and by attenuating post-infarction inflammation. These observations suggest that the novel mechanism underlying the cardioprotective function of H2S is secondary to a combination of attenuation the recruitment of CD11b+Gr-1+ myeloid cells and regulation of the Bax/Bcl-2 apoptotic signaling.
Collapse
|
48
|
Zhang W, Zhao G, Hu X, Wang M, Li H, Ye Y, Du Q, Yao J, Bao Z, Hong W, Fu G, Ge J, Qiu Z. Aliskiren-attenuated myocardium apoptosis via regulation of autophagy and connexin-43 in aged spontaneously hypertensive rats. J Cell Mol Med 2014; 18:1247-56. [PMID: 24702827 PMCID: PMC4124010 DOI: 10.1111/jcmm.12273] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/07/2014] [Indexed: 11/26/2022] Open
Abstract
There are controversies about the mechanism of myocardium apoptosis in hypertensive heart disease. The aim of this study was to investigate the relationship among autophagy, Cx43 and apoptosis in aged spontaneously hypertensive rats (SHRs) and establish whether Aliskiren is effective or not for the treatment of myocardium apoptosis. Twenty-one SHRs aged 52 weeks were randomly divided into three groups, the first two receiving Aliskiren at a dose of 10 and 25 mg/kg/day respectively; the third, placebo for comparison with seven Wistar-Kyoto (WKY) as controls. After a 2-month treatment, systolic blood pressure (SBP), heart to bw ratios (HW/BW%) and angiotensin II (AngII) concentration were significantly enhanced in SHRs respectively. Apoptotic cardiomyocytes detected with TUNEL and immunofluorescent labelling for active caspase-3 increased nearly fourfolds in SHRs, with a decline in the expression of survivin and AKT activation, and an increase in caspase-3 activation and the ratio of Bax/Bcl-2. Myocardium autophagy, detected with immunofluorescent labelling for LC3-II, increased nearly threefolds in SHRs, with the up-regulation of Atg5, Atg16L1, Beclin-1 and LC3-II. The expression of Cx43 plaque was found to be down-regulated in SHRs. Aliskiren significantly reduced SBP, HW/BW%, AngII concentration and the expression of AT(1)R. Thus, Aliskiren protects myocardium against apoptosis by decreasing autophagy, up-regulating Cx43. These effects showed a dose-dependent tendency, but no significance. In conclusion, the myocardium apoptosis developed during the hypertensive end-stage of SHRs could be ameliorated by Aliskiren via the regulation of myocardium autophagy and maladaptive remodelling of Cx43.
Collapse
Affiliation(s)
- Wenbin Zhang
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Gang Zhao
- Shanghai Institute of Cardiovascular Diseases of Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Xiaona Hu
- Gastroenterology Department, Huadong Hospital, Fudan UniversityShanghai, China
- Shanghai Key Laboratory of Clinical Geriatric MedicineShanghai, China
| | - Min Wang
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Hua Li
- Shanghai Institute of Cardiovascular Diseases of Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Yong Ye
- Shanghai Institute of Cardiovascular Diseases of Zhongshan Hospital, Fudan UniversityShanghai, China
- Institute of Biomedical Science, Fudan UniversityShanghai, China
| | - Qijun Du
- Shanghai Institute of Cardiovascular Diseases of Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Jin Yao
- Cardiovascular Department, Huadong Hospital, Fudan UniversityShanghai, China
| | - Zhijun Bao
- Gastroenterology Department, Huadong Hospital, Fudan UniversityShanghai, China
- Shanghai Key Laboratory of Clinical Geriatric MedicineShanghai, China
| | - Wei Hong
- Shanghai Key Laboratory of Clinical Geriatric MedicineShanghai, China
- Geriatrics Department, Huadong Hospital, Fudan UniversityShanghai, China
| | - Guosheng Fu
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
- *Correspondence to: Zhaohui QIU, Ph.D., Junbo GE, M.D., Guosheng FU, M.D., Cardiovascular department, Huadong Hospital, Fudan University, 221 Yananxi Road, Shanghai 200040, China. Tel.: +86 21 62483180 (ext. 1919) Fax: +86 21 62484879 E-mail: (or) (or)
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases of Zhongshan Hospital, Fudan UniversityShanghai, China
- Institute of Biomedical Science, Fudan UniversityShanghai, China
- *Correspondence to: Zhaohui QIU, Ph.D., Junbo GE, M.D., Guosheng FU, M.D., Cardiovascular department, Huadong Hospital, Fudan University, 221 Yananxi Road, Shanghai 200040, China. Tel.: +86 21 62483180 (ext. 1919) Fax: +86 21 62484879 E-mail: (or) (or)
| | - Zhaohui Qiu
- Shanghai Key Laboratory of Clinical Geriatric MedicineShanghai, China
- Cardiovascular Department, Huadong Hospital, Fudan UniversityShanghai, China
- *Correspondence to: Zhaohui QIU, Ph.D., Junbo GE, M.D., Guosheng FU, M.D., Cardiovascular department, Huadong Hospital, Fudan University, 221 Yananxi Road, Shanghai 200040, China. Tel.: +86 21 62483180 (ext. 1919) Fax: +86 21 62484879 E-mail: (or) (or)
| |
Collapse
|
49
|
Ghaffari S, Nadiri M, Pourafkari L, Sepehrvand N, Movasagpoor A, Rahmatvand N, Rezazadeh Saatloo M, Ahmadi M, Nader ND. The predictive Value of Total Neutrophil Count and Neutrophil/Lymphocyte Ratio in Predicting In-hospital Mortality and Complications after STEMI. J Cardiovasc Thorac Res 2014; 6:35-41. [PMID: 24753830 PMCID: PMC3992730 DOI: 10.5681/jcvtr.2014.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 01/02/2014] [Indexed: 11/17/2022] Open
Abstract
Introduction:
Leukocytosis, predominantly neutrophilia, has previously been described following ST elevation myocardial infarction (STEMI). The exact
contribution of this phenomenon to the clinical outcome of STEMI is yet to be shown. We examined cellular inflammatory response to STEMI
in the blood and its association with in-hospital mortality and/or adverse clinical events.
Methods: In this cross-sectional study, 404
patients who were admitted with the diagnosis of acute STEMI at Madani Heart Hospital from March 2010 to March 2012 were studied. The
complete blood cell count (CBC) was obtained from all patientswithin12-24 hours of the onset of symptoms. Total leukocytes were
counted and differential count was obtained for neutrophils, lymphocytes and neutrophil/lymphocyte ratio (NLR) were evaluated.
Association of cellular response with the incidence of post-MI mortality/complications was assessed by multiple logistic regression
analyses.
Results: In-hospital mortality and post-STEMI complication rate were 3.7% and 43.6%, respectively. Higher age (P=0.04),
female gender (0.002), lower ejection fraction (P<0.001) and absolute neutrophil count (P=0.04) were predictors of mortality.
Pump failure in the form of acute pulmonary edema or cardiogenic shock occurred in 35 (8.9%) of patients. Higher leukocyte (P<0.03)
and neutrophil counts (P<0.03) and higher NLR (P=0.01) were predictors of failure. The frequency of ventricular tachyarrhythmias
(VT/VF) at the first day was associated with higher neutrophil count (P<0.001) and higher NLR level (P<0.001). In multivariate
analysis neutrophil count was an independent predictor of mortality (OR=2.94; 1.1-8.4, P=0.04), and neutrophil count
[OR=1.1, CI (1.01-1.20), P=0.02], female gender [OR=2.34, CI (1.02-4.88), P=0.04] and diabetes [OR=2.52, CI (1.21-5.2), P=0.003] were
independent predictors of heart failure.
Conclusion: A single CBC analysis may help to identify STEMI patients at risk for mortality
and heart failure, and total neutrophil count is the most valuable in predicting both.
Collapse
Affiliation(s)
- Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Leili Pourafkari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nariman Sepehrvand
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Movasagpoor
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Rahmatvand
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mona Ahmadi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader D Nader
- VA Western New York Healthcare System, University of Buffalo, Buffalo, USA
| |
Collapse
|