1
|
Frances L, Croyal M, Pittet S, Da Costa Fernandes L, Boulaire M, Monbrun L, Blaak EE, Christoffersen C, Moro C, Tavernier G, Viguerie N. The adipocyte apolipoprotein M is negatively associated with inflammation. J Lipid Res 2024; 65:100648. [PMID: 39303980 PMCID: PMC11513530 DOI: 10.1016/j.jlr.2024.100648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
Obesity is associated with the development of local adipose tissue (AT) and systemic inflammation. Most adipokines are upregulated with obesity and have pro-inflammatory properties. Few are downregulated and possess beneficial anti-inflammatory effects. The apolipoprotein M (APOM) is an adipokine whose expression is low during obesity and associated with a metabolically healthy AT. Here, the role of adipose-derived APOM on obesity-associated AT inflammation was investigated by measuring the expression of pro-inflammatory genes in human and mouse models. In 300 individuals with obesity, AT APOM mRNA level was negatively associated with plasma hs-CRP. The inflammatory profile was assessed in Apom-/- and WT mice fed a normal chow diet (NCD), or a high-fat diet (HFD) to induce AT inflammation. After HFD, mice had a higher inflammatory profile in AT and liver, and a 50% lower Apom gene expression compared with NCD-fed mice. Apom deficiency was associated with a higher inflammatory signature in AT compared with WT mice but not in the liver. Adeno-associated viruses encoding human APOM were used to induce APOM overexpression: in vivo, in WT mice AT prior to HFD; in vitro, in human adipocytes which conditioned media was applied to ThP-1 macrophages. The murine AT overexpressing APOM gene had a reduced inflammatory profile. The macrophages treated with APOM-enriched media from adipocytes exhibited lower IL6 and MCP1 gene expression compared with macrophages treated with control media, independently of S1P. Our study highlights the protective role of adipocyte APOM against obesity-induced AT inflammation.
Collapse
Affiliation(s)
- Laurie Frances
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Team MetaDiab, Institut National de la Santé et de la Recherche Médicale (Inserm), Université Toulouse III, Paul Sabatier (UPS), UMR1297, Toulouse, France
| | - Mikael Croyal
- Nantes Université, CNRS, INSERM, Institut du Thorax, Nantes, France; Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, Nantes, France; Mass Spectrometry Core Facility, CRNH-Ouest, Nantes, France
| | - Soline Pittet
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Team MetaDiab, Institut National de la Santé et de la Recherche Médicale (Inserm), Université Toulouse III, Paul Sabatier (UPS), UMR1297, Toulouse, France
| | - Léa Da Costa Fernandes
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Team MetaDiab, Institut National de la Santé et de la Recherche Médicale (Inserm), Université Toulouse III, Paul Sabatier (UPS), UMR1297, Toulouse, France
| | - Milan Boulaire
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Team MetaDiab, Institut National de la Santé et de la Recherche Médicale (Inserm), Université Toulouse III, Paul Sabatier (UPS), UMR1297, Toulouse, France
| | - Laurent Monbrun
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Team MetaDiab, Institut National de la Santé et de la Recherche Médicale (Inserm), Université Toulouse III, Paul Sabatier (UPS), UMR1297, Toulouse, France
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+(MUMC+), Maastricht, The Netherlands
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cédric Moro
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Team MetaDiab, Institut National de la Santé et de la Recherche Médicale (Inserm), Université Toulouse III, Paul Sabatier (UPS), UMR1297, Toulouse, France
| | - Geneviève Tavernier
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Team MetaDiab, Institut National de la Santé et de la Recherche Médicale (Inserm), Université Toulouse III, Paul Sabatier (UPS), UMR1297, Toulouse, France.
| | - Nathalie Viguerie
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Team MetaDiab, Institut National de la Santé et de la Recherche Médicale (Inserm), Université Toulouse III, Paul Sabatier (UPS), UMR1297, Toulouse, France.
| |
Collapse
|
2
|
Liu Y, Sun Y, Hu C, Liu J, Gao A, Han H, Chai M, Zhang J, Zhou Y, Zhao Y. Perivascular Adipose Tissue as an Indication, Contributor to, and Therapeutic Target for Atherosclerosis. Front Physiol 2020; 11:615503. [PMID: 33391033 PMCID: PMC7775482 DOI: 10.3389/fphys.2020.615503] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
Perivascular adipose tissue (PVAT) has been identified to have significant endocrine and paracrine functions, such as releasing bioactive adipokines, cytokines, and chemokines, rather than a non-physiological structural tissue. Considering the contiguity with the vascular wall, PVAT could play a crucial role in the pathogenic microenvironment of atherosclerosis. Growing clinical evidence has shown an association between PVAT and atherosclerosis. Moreover, based on computed tomography, the fat attenuation index of PVAT was verified as an indication of vulnerable atherosclerotic plaques. Under pathological conditions, such as obesity and diabetes, PVAT shows a proatherogenic phenotype by increasing the release of factors that induce endothelial dysfunction and inflammatory cell infiltration, thus contributing to atherosclerosis. Growing animal and human studies have investigated the mechanism of the above process, which has yet to be fully elucidated. Furthermore, traditional treatments for atherosclerosis have been proven to act on PVAT, and we found several studies focused on novel drugs that target PVAT for the prevention of atherosclerosis. Emerging as an indication, contributor to, and therapeutic target for atherosclerosis, PVAT warrants further investigation.
Collapse
Affiliation(s)
- Yan Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Yan Sun
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Chengping Hu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Jinxing Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Ang Gao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Hongya Han
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Meng Chai
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Jianwei Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Yujie Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Yingxin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| |
Collapse
|
3
|
Zhang Y, Cao H. Monomeric C-reactive protein affects cell injury and apoptosis through activation of p38 mitogen-activated protein kinase in human coronary artery endothelial cells. Bosn J Basic Med Sci 2020; 20:487-494. [PMID: 32358950 PMCID: PMC7664785 DOI: 10.17305/bjbms.2020.4711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 03/31/2020] [Indexed: 01/08/2023] Open
Abstract
C-reactive protein (CRP) is an important predictor of cardiovascular events and plays a role in vascular inflammation and vessel damage. The aim of this study was to investigate the effect of pentameric CRP (pCRP) and monomeric CRP (mCRP) on the production of atherosclerosis-re-lated factors in cultured human coronary artery endothelial cells (HCAECs). HCAECs were treated with pCRP, mCRP, p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580, or transfected with p38 MAPK siRNA. Western blotting was performed to detect the expression of vascular endothelial growth factor (VEGF), cyclooxygenase-2 (COX-2), intercellular adhesion molecule-2 (ICAM-2) and vascular cell adhe-sion molecule-1 (VCAM-1). Proliferation, damage, and apoptosis of HCAECs were examined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, lactate dehydrogenase (LDH), and flow cytometry, respectively. mCRP suppressed VEGF and COX-2 expression and enhanced ICAM-2 and VCAM-1 expression in HCAECs, in both dose-dependent and time-dependent manner. Except at 100 μg/ml concen-tration and 20-hour or 24-hour incubation, pCRP had no apparent effects. mCRP but not pCRP induced HCAEC injury and phosphorylation of p38 MAPK, and the inhibitor SB203580 reversed the effects of mCRP. mCRP promotes injury and apoptosis of HCAECs through a p38 MAPK-dependent mechanism, which provides a new therapy for the injury of HCAECs in atherosclerosis.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Vasculocardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hongxia Cao
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Chang L, Garcia-Barrio MT, Chen YE. Perivascular Adipose Tissue Regulates Vascular Function by Targeting Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2020; 40:1094-1109. [PMID: 32188271 DOI: 10.1161/atvbaha.120.312464] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adipose tissues are present at multiple locations in the body. Most blood vessels are surrounded with adipose tissue which is referred to as perivascular adipose tissue (PVAT). Similarly to adipose tissues at other locations, PVAT harbors many types of cells which produce and secrete adipokines and other undetermined factors which locally modulate PVAT metabolism and vascular function. Uncoupling protein-1, which is considered as a brown fat marker, is also expressed in PVAT of rodents and humans. Thus, compared with other adipose tissues in the visceral area, PVAT displays brown-like characteristics. PVAT shows a distinct function in the cardiovascular system compared with adipose tissues in other depots which are not adjacent to the vascular tree. Growing and extensive studies have demonstrated that presence of normal PVAT is required to maintain the vasculature in a functional status. However, excessive accumulation of dysfunctional PVAT leads to vascular disorders, partially through alteration of its secretome which, in turn, affects vascular smooth muscle cells and endothelial cells. In this review, we highlight the cross talk between PVAT and vascular smooth muscle cells and its roles in vascular remodeling and blood pressure regulation.
Collapse
Affiliation(s)
- Lin Chang
- From the Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical School, Ann Arbor
| | - Minerva T Garcia-Barrio
- From the Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical School, Ann Arbor
| | - Y Eugene Chen
- From the Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical School, Ann Arbor
| |
Collapse
|
5
|
Chen JY, Zhu XL, Liu WH, Xie Y, Zhang HF, Wang X, Ying R, Chen ZT, Wu MX, Qiu Q, Wang JF, Chen YX. C-reactive protein derived from perivascular adipose tissue accelerates injury-induced neointimal hyperplasia. J Transl Med 2020; 18:68. [PMID: 32046736 PMCID: PMC7011279 DOI: 10.1186/s12967-020-02226-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/12/2020] [Indexed: 01/24/2023] Open
Abstract
AIM Inflammation within the perivascular adipose tissue (PVAT) in obesity plays an important role in cardiovascular disorders. C-reactive protein (CRP) level in obesity patients is significantly increased and associated with the occurrence and progression of cardiovascular disease. We tested the hypothesis CRP derived from PVAT in obesity contributes to vascular remodeling after injury. METHODS A high-fat diet (HFD) significantly increased CRP expression in PVAT. We transplanted thoracic aortic PVAT from wild-type (WT) or transgenic CRP-expressing (CRPTG) mice to the injured femoral artery in WT mice. RESULTS At 4 weeks after femoral artery injury, the neointimal/media ratio was increased significantly in WT mice that received PVAT from CRPTG mice compared with that in WT mice that received WT PVAT. Transplanted CRPTG PVAT also significantly accelerated adventitial macrophage infiltration and vasa vasorum proliferation. It was revealed greater macrophage infiltration in CRPTG adipose tissue than in WT adipose tissue and CRP significantly increased the adhesion rate of monocytes through receptor Fcγ RI. Proteome profiling showed CRP over-expression promoted the expression of chemokine (C-X-C motif) ligand 7 (CXCL7) in adipose tissue, transwell assay showed CRP increased monocyte migration indirectly via the induction of CXCL7 expression in adipocytes. CONCLUSION CRP derived from PVAT was significantly increased in HFD mice and promoted neointimal hyperplasia after vascular injury.
Collapse
Affiliation(s)
- Jia-Yuan Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, People's Republic of China.,Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People's Republic of China
| | - Xiao-Lin Zhu
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Wen-Hao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Yong Xie
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Hai-Feng Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - XiaoQiao Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People's Republic of China
| | - Ru Ying
- Department of Cardiology, The First Affiliated Hospital of NanChang University, Nanchang, 330006, People's Republic of China
| | - Zhi-Teng Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Mao-Xiong Wu
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Qiong Qiu
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Jing-Feng Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, People's Republic of China.
| | - Yang-Xin Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, People's Republic of China.
| |
Collapse
|
6
|
Taylor LE, Ramirez LA, Musall JB, Sullivan JC. Tipping the scales: Are females more at risk for obesity- and high-fat diet-induced hypertension and vascular dysfunction? Br J Pharmacol 2019; 176:4226-4242. [PMID: 31271650 DOI: 10.1111/bph.14783] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/04/2019] [Accepted: 06/08/2019] [Indexed: 12/17/2022] Open
Abstract
Obesity is a common metabolic disorder that has become a widespread epidemic in several countries. Sex and gender disparities in the prevalence of cardiovascular disease (CVD) have been well documented with premenopausal women having a lower incidence of CVD than age-matched men. However, women are more likely than men to suffer from obesity, which can predispose them to a greater risk of CVD. The mechanisms underlying high-fat diet (HFD)- or obesity-induced hypertension are not well defined, although immune system activation and inflammation have been implicated in several studies. Further, the sex of the subject can have a profound influence on the immune response to hypertensive stimuli. Therefore, the purpose of this review is to examine the effects of sex and gender on the role of the immune system in HFD-induced hypertension and vascular dysfunction. LINKED ARTICLES: This article is part of a themed section on The Importance of Sex Differences in Pharmacology Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.21/issuetoc.
Collapse
Affiliation(s)
- Lia E Taylor
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Lindsey A Ramirez
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Jacqueline B Musall
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Jennifer C Sullivan
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| |
Collapse
|
7
|
Abstract
Perivascular adipose tissue (PVAT) refers to the local aggregate of adipose tissue surrounding the vascular tree, exhibiting phenotypes from white to brown and beige adipocytes. Although PVAT has long been regarded as simply a structural unit providing mechanical support to vasculature, it is now gaining reputation as an integral endocrine/paracrine component, in addition to the well-established modulator endothelium, in regulating vascular tone. Since the discovery of anti-contractile effect of PVAT in 1991, the use of multiple rodent models of reduced amounts of PVAT has revealed its regulatory role in vascular remodeling and cardiovascular implications, including atherosclerosis. PVAT does not only release PVAT-derived relaxing factors (PVRFs) to activate multiple subsets of endothelial and vascular smooth muscle potassium channels and anti-inflammatory signals in the vasculature, but it does also provide an interface for neuron-adipocyte interactions in the vascular wall to regulate arterial vascular tone. In this review, we outline our current understanding towards PVAT and attempt to provide hints about future studies that can sharpen the therapeutic potential of PVAT against cardiovascular diseases and their complications.
Collapse
Affiliation(s)
- Chak Kwong Cheng
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
- Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Hamidah Abu Bakar
- Health Sciences Department, Universiti Selangor, 40000, Shah Alam, Selangor, Malaysia
| | - Maik Gollasch
- Experimental and Clinical Research Center (ECRC)-a joint cooperation between the Charité-University Medicine Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.
- Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Yu Huang
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China.
- Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
8
|
Yang H, Zhou J, Huang K, Yu T, Wang Z, Chen H, Yu W, Lin X, Zhang Y, Zhu G. Preoperative proteinuria and clinical outcomes in type B aortic dissection after thoracic endovascular aortic repair. ACTA ACUST UNITED AC 2019; 57:752-758. [DOI: 10.1515/cclm-2018-0765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/01/2018] [Indexed: 01/17/2023]
Abstract
Abstract
Background
Proteinuria is a marker of poor outcomes in several diseases; however, few studies have been conducted to explore the prognostic value of proteinuria, assessed by urine dipstick test, for clinical outcomes in patients with type B acute aortic dissection (TBAD) undergoing thoracic endovascular aortic repair (TEVAR).
Methods
Consecutive patients with TBAD undergoing TEVAR were enrolled from January 2010 to July 2015. Proteinuria was defined as trace or higher, according to the results of urine dipstick testing. Associations among proteinuria and adverse events were evaluated.
Results
In total, 671 patients with a mean age of 44±15 years were included in the analysis. Proteinuria was detected in 281 patients (41.9%) before TEVAR. Multivariate logistic regression analysis showed that C-reactive protein and impaired renal function were independent predictors for proteinuria. During hospitalization, 21 patients died. In-hospital mortality was higher in patients with proteinuria (1.5% vs. 5.3%, p=0.005). After a median 3.4 years follow up, the post-TEVAR death rate was 10.4% (85 patients were lost to follow-up). The long-term cumulative mortality was significantly higher in patients with proteinuria (17.2% vs. 8.2%, log-rank=11.36, p=0.001). Multivariate Cox survival modeling indicated that proteinuria was significantly associated with long-term death, after adjustment for potential confounding risk factors (HR=1.92, p=0.012).
Conclusions
Pre-TEVAR proteinuria was identified as a prognostic marker in patients with TBAD and has potential for application as a convenient and simple risk assessment method before TEVAR.
Collapse
|
9
|
The atheroprotective role of lipoxin A 4 prevents oxLDL-induced apoptotic signaling in macrophages via JNK pathway. Atherosclerosis 2018; 278:259-268. [PMID: 30340110 DOI: 10.1016/j.atherosclerosis.2018.09.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/18/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS We examined whether the inflammation resolution mediator lipoxin A4 (LXA4) inhibits foam cell formation and oxidized low-density lipoprotein (oxLDL)-induced apoptotic signaling in macrophages and the role of circulating/local LXA4 biosynthesis in atherogenesis. METHODS LXA4 levels were measured by enzyme-linked immunosorbent assay. Dil-oxLDL and Dil-acLDL binding to and uptake by macrophages were evaluated by flow cytometry. Apoptosis was evaluated by TUNEL and Annexin V/PI assays. RESULTS Circulating LXA4 levels in patients with coronary artery disease were much higher than those in respective controls. Local LXA4 levels were much lower in rabbit atherosclerotic vessel walls. Interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α) were elevated in atherosclerotic vessels. After the inflammatory stimulus (IFN-γ, TNF-α, and C-reactive protein), LXA4 synthesis decreased significantly in foam cells. LXA4 dose-dependently suppressed the expression of the cholesterol uptake genes CD36 and SR-A in macrophages, which was blocked by the LXA4 receptor antagonist BOC-2. LXA4 also inhibited oxLDL-induced CD36 upregulation, Dil-oxLDL uptake, and foam cell formation. Furthermore, LXA4 inhibited the oxLDL-activated c-Jun N-terminal kinase pathway and reduced oxLDL-induced macrophage apoptosis by inhibiting caspase-3 activation and restoring the mitochondrial membrane potential. CONCLUSIONS We found that LXA4 inhibited foam cell formation, oxLDL-induced inflammation, and apoptotic signaling in macrophages. Insufficient levels of the anti-inflammatory pro-resolution molecule LXA4 were found in rabbit atherosclerotic arteries, which might contribute to preventing inflammation resolution during atherogenesis.
Collapse
|
10
|
Fernández-Alfonso MS, Somoza B, Tsvetkov D, Kuczmanski A, Dashwood M, Gil-Ortega M. Role of Perivascular Adipose Tissue in Health and Disease. Compr Physiol 2017; 8:23-59. [PMID: 29357124 DOI: 10.1002/cphy.c170004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Perivascular adipose tissue (PVAT) is cushion of fat tissue surrounding blood vessels, which is phenotypically different from other adipose tissue depots. PVAT is composed of adipocytes and stromal vascular fraction, constituted by different populations of immune cells, endothelial cells, and adipose-derived stromal cells. It expresses and releases an important number of vasoactive factors with paracrine effects on vascular structure and function. In healthy individuals, these factors elicit a net anticontractile and anti-inflammatory paracrine effect aimed at meeting hemodynamic and metabolic demands of specific organs and regions of the body. Pathophysiological situations, such as obesity, diabetes or hypertension, induce changes in its amount and in the expression pattern of vasoactive factors leading to a PVAT dysfunction in which the beneficial paracrine influence of PVAT is shifted to a pro-oxidant, proinflammatory, contractile, and trophic environment leading to functional and structural cardiovascular alterations and cardiovascular disease. Many different PVATs surrounding a variety of blood vessels have been described and exhibit regional differences. Both protective and deleterious influence of PVAT differs regionally depending on the specific vascular bed contributing to variations in the susceptibility of arteries and veins to vascular disease. PVAT therefore, might represent a novel target for pharmacological intervention in cardiovascular disease. © 2018 American Physiological Society. Compr Physiol 8:23-59, 2018.
Collapse
Affiliation(s)
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| | - Dmitry Tsvetkov
- Department of Anestesiology, Perioperative and Pain Medicine, HELIOS Klinikum, Berlin-Buch GmbH, Germany.,Institute of Experimental and Clinical Pharmacology and Toxicology, Department of Pharmacology and Experimental Therapy, Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Drug Research, Tübingen, Germany
| | - Artur Kuczmanski
- Department of Anestesiology, Perioperative and Pain Medicine, HELIOS Klinikum, Berlin-Buch GmbH, Germany
| | - Mick Dashwood
- Royal Free Hospital Campus, University College Medical School, London, United Kingdom
| | - Marta Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| |
Collapse
|
11
|
Huang Cao ZF, Stoffel E, Cohen P. Role of Perivascular Adipose Tissue in Vascular Physiology and Pathology. Hypertension 2017; 69:770-777. [PMID: 28320849 DOI: 10.1161/hypertensionaha.116.08451] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhen Fang Huang Cao
- From the Rockefeller University, Laboratory of Molecular Metabolism, New York, NY
| | - Elina Stoffel
- From the Rockefeller University, Laboratory of Molecular Metabolism, New York, NY
| | - Paul Cohen
- From the Rockefeller University, Laboratory of Molecular Metabolism, New York, NY.
| |
Collapse
|
12
|
Chen J, Gu Z, Wu M, Yang Y, Zhang J, Ou J, Zuo Z, Wang J, Chen Y. C-reactive protein can upregulate VEGF expression to promote ADSC-induced angiogenesis by activating HIF-1α via CD64/PI3k/Akt and MAPK/ERK signaling pathways. Stem Cell Res Ther 2016; 7:114. [PMID: 27526687 PMCID: PMC4986362 DOI: 10.1186/s13287-016-0377-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/04/2016] [Accepted: 07/26/2016] [Indexed: 12/31/2022] Open
Abstract
Background Proliferation of the vasa vasorum has been implicated in the pathogenesis of atherosclerosis, and the vasa vasorum is closely associated with resident stem cells within the vasculature. C-reactive protein (CRP) is positively correlated with cardiovascular disease risk, and our previous study demonstrated that it induces inflammatory reactions of perivascular adipose tissue by targeting adipocytes. Methods Here we investigated whether CRP affected the proliferation and proangiogenic paracrine activity of adipose-derived stem cells (ADSCs), which may contribute to vasa vasorum angiogenesis. Results We found that CRP did not affect ADSC apoptosis, cell cycle, or proliferation but did increase their migration by activating the PI3K/Akt pathway. Our results demonstrated that CRP can upregulate vascular endothelial growth factor-A (VEGF-A) expression by activating hypoxia inducible factor-1α (HIF-1α) in ADSCs, which significantly increased tube formation on Matrigel and functional vessels in the Matrigel plug angiogenesis assay. The inhibition of CRP-activated phosphorylation of ERK and Akt can suppress CRP-stimulated HIF-1α activation and VEGF-A expression. CRP can also stimulate proteolytic activity of matrix metalloproteinase-2 in ADSCs. Furthermore, CRP binds activating CD64 on ADSCs, rather than CD16/32. Conclusion Our findings implicate that CRP might play a role in vasa vasorum growth by activating the proangiogenic activity of ADSCs. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0377-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- JiaYuan Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, People's Republic of China.,Laboratory of RNA and Major Disease of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - ZhenJie Gu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, People's Republic of China.,Laboratory of RNA and Major Disease of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - MaoXiong Wu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, People's Republic of China.,Laboratory of RNA and Major Disease of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - Ying Yang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, People's Republic of China.,Laboratory of RNA and Major Disease of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - JianHua Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, People's Republic of China.,Laboratory of RNA and Major Disease of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - JingSong Ou
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Guangdong Province Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, People's Republic of China
| | - ZhiYi Zuo
- Laboratory of RNA and Major Disease of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.,Department of Anesthesiology, University of Virginia, Health Science Center, Charlottesville, VA, USA
| | - JingFeng Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China. .,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, People's Republic of China. .,Laboratory of RNA and Major Disease of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.
| | - YangXin Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China. .,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, People's Republic of China. .,Laboratory of RNA and Major Disease of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.
| |
Collapse
|
13
|
Pelham CJ, Drews EM, Agrawal DK. Vitamin D controls resistance artery function through regulation of perivascular adipose tissue hypoxia and inflammation. J Mol Cell Cardiol 2016; 98:1-10. [PMID: 27374117 DOI: 10.1016/j.yjmcc.2016.06.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 06/11/2016] [Accepted: 06/29/2016] [Indexed: 12/19/2022]
Abstract
Vitamin D deficiency in human subjects is associated with hypertension, metabolic syndrome and related risk factors of cardiovascular diseases. Serum 25-hydroxyvitamin D levels correlate inversely with adiposity in obese and lean individuals. Bioactive vitamin D, or calcitriol, exerts anti-inflammatory effects on adipocytes, preadipocytes and macrophages in vitro. We tested the hypothesis that vitamin D deficiency alters the phenotype of perivascular adipose tissue (PVAT) leading to impaired function in resistance artery. To examine the effects of vitamin D and PVAT on vascular reactivity, myograph experiments were performed on arteries, with or without intact PVAT, from mice maintained on vitamin D-deficient, vitamin D-sufficient or vitamin D-supplemented diet. Systolic blood pressure was significantly increased in mice on vitamin D-deficient diet. Importantly, vitamin D deficiency enhanced angiotensin II-induced vasoconstriction and impaired the normal ability of PVAT to suppress contractile responses of the underlying mesenteric resistance artery to angiotensin II and serotonin. Furthermore, vitamin D deficiency caused upregulation of the mRNA expression of tumor necrosis factor-α, hypoxia-inducible factor-1α and its downstream target lysyl oxidase in mesenteric PVAT. Incubation of mesenteric arteries under hypoxic conditions impaired the anti-contractile effects of intact PVAT on those arteries from mice on vitamin D-sufficient diet. Vitamin D supplementation protected arteries against hypoxia-induced impairment of PVAT function. The protective effects of vitamin D against vascular dysfunction, hypertension and cardiovascular diseases may be mediated, at least in part, through regulation of inflammatory and hypoxia signaling pathways in PVAT.
Collapse
Affiliation(s)
- Christopher J Pelham
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Elizabeth M Drews
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Devendra K Agrawal
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA.
| |
Collapse
|
14
|
Villacorta L, Chang L. The role of perivascular adipose tissue in vasoconstriction, arterial stiffness, and aneurysm. Horm Mol Biol Clin Investig 2015; 21:137-47. [PMID: 25719334 DOI: 10.1515/hmbci-2014-0048] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/14/2015] [Indexed: 12/12/2022]
Abstract
Since the "rediscovery" of brown adipose tissue in adult humans, significant scientific efforts are being pursued to identify the molecular mechanisms to promote a phenotypic change of white adipocytes into brown-like cells, a process called "browning". It is well documented that white adipose tissue (WAT) mass and factors released from WAT influence the vascular function and positively correlate with cardiac arrest, stroke, and other cardiovascular complications. Similar to other fat depots, perivascular adipose tissue (PVAT) is an active endocrine organ and anatomically surrounds vessels. Both brown-like and white-like PVAT secrete various adipokines, cytokines, and growth factors that either prevent or promote the development of cardiovascular diseases (CVDs) depending on the relative abundance of each type and their bioactivity in the neighboring vasculature. Notably, pathophysiological conditions, such as obesity, hypertension, or diabetes, induce the imbalance of PVAT-derived vasoactive products that promote the infiltration of inflammatory cells. This then triggers derangements in vascular smooth muscle cells and endothelial cell dysfunction, resulting in the development of vascular diseases. In this review, we discuss the recent advances on the contribution of PVAT in CVDs. Specifically, we summarize the current proposed roles of PVAT in relationship with vascular contractility, endothelial dysfunction, neointimal formation, arterial stiffness, and aneurysm.
Collapse
|
15
|
Hung MJ, Mao CT, Hung MY, Chen TH. Impact of Asthma on the Development of Coronary Vasospastic Angina: A Population-Based Cohort Study. Medicine (Baltimore) 2015; 94:e1880. [PMID: 26496346 PMCID: PMC4620748 DOI: 10.1097/md.0000000000001880] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Although asthma increases the risk of cardiovascular disease, little is known about the relation of asthma and its severity to coronary vasospastic angina (CVsA). We hypothesized that asthma contributed to the development of CVsA.Patients in this population-based cohort study were retrospectively collected from the Taiwan National Health Insurance database. Using propensity score matching, subjects were stratified at a 1 : 4 ratio into a study group comprising 3087 patients with a diagnosis of CVsA, and a control group consisting of 12,348 patients who underwent coronary intervention for obstructive coronary artery disease (CAD) during the period 2000 to 2011.Asthma significantly increased the risk of new-onset CVsA independent of other comorbidities [adjusted odds ratio (OR) = 1.85, 95% confidence interval (95% CI) = 1.47-2.32, P < 0.001]. In addition, the risk of new-onset CVsA was significantly higher in previous users of oral or inhaled corticosteroids (oral corticosteroids: OR = 1.22, 95% CI = 1.01-1.49, P = 0.04; inhaled corticosteroids: OR = 1.89, 95% CI = 1.28-2.79, P = 0.001). In addition, the prevalence of asthma was highest among patients with CVsA alone, followed by patients with CAD and CVsA and patients who underwent coronary intervention for CAD alone (P trend < 0.001).Our study suggests that asthma is independently associated with CVsA and prior steroid use increases the risk of CVsA development.
Collapse
Affiliation(s)
- Ming-Jui Hung
- From the Division of Cardiology, Department of Medicine, Chang Gung Memorial Hospital, Keelung, Chang Gung University College of Medicine, Keelung City, Taiwan (MJH, CTM, THC); Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan (MYH); Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan (MYH); and Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan (MYH)
| | | | | | | |
Collapse
|
16
|
Du B, Ouyang A, Eng JS, Fleenor BS. Aortic perivascular adipose-derived interleukin-6 contributes to arterial stiffness in low-density lipoprotein receptor deficient mice. Am J Physiol Heart Circ Physiol 2015; 308:H1382-90. [PMID: 25840831 DOI: 10.1152/ajpheart.00712.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 03/30/2015] [Indexed: 01/22/2023]
Abstract
We tested the hypothesis that aortic perivascular adipose tissue (PVAT) from young low-density lipoprotein receptor-deficient (LDLr(-/-)) mice promotes aortic stiffness and remodeling, which would be mediated by greater PVAT-derived IL-6 secretion. Arterial stiffness was assessed by aortic pulse wave velocity and with ex vivo intrinsic mechanical properties testing in young (4-6 mo old) wild-type (WT) and LDLr(-/-) chow-fed mice. Compared with WT mice, LDLr(-/-) mice had increased aortic pulse wave velocity (407 ± 18 vs. 353 ± 13 cm/s) and intrinsic mechanical stiffness (5,308 ± 623 vs. 3,355 ± 330 kPa) that was associated with greater aortic protein expression of collagen type I and advanced glycation end products (all P < 0.05 vs. WT mice). Aortic segments from LDLr(-/-) compared with WT mice cultured in the presence of PVAT had greater intrinsic mechanical stiffness (6,092 ± 480 vs. 3,710 ± 316 kPa), and this was reversed in LDLr(-/-) mouse arteries cultured without PVAT (3,473 ± 577 kPa, both P < 0.05). Collagen type I and advanced glycation end products were increased in LDLr(-/-) mouse arteries cultured with PVAT (P < 0.05 vs. WT mouse arteries), which was attenuated when arteries were cultured in the absence of PVAT (P < 0.05). PVAT from LDLr(-/-) mice secreted larger amounts of IL-6 (3.4 ± 0.1 vs. 2.3 ± 0.7 ng/ml, P < 0.05), and IL-6 neutralizing antibody decreased intrinsic mechanical stiffness in LDLr(-/-) aortic segments cultured with PVAT (P < 0.05). Collectively, these data provide evidence for a role of PVAT-derived IL-6 in the pathogenesis of aortic stiffness and remodeling in chow-fed LDLr(-/-) mice.
Collapse
Affiliation(s)
- Bing Du
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - An Ouyang
- Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky
| | - Jason S Eng
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado; and
| | - Bradley S Fleenor
- Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
17
|
Dal Moro F, Zattoni F. Inflammation and prostate cancer. Urol Oncol 2013; 31:712. [PMID: 23582283 DOI: 10.1016/j.urolonc.2013.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 03/09/2013] [Indexed: 10/26/2022]
|