1
|
Renzelmann J, Heene S, Jonczyk R, Krüger J, Alnajjar S, Blume C. Sustainability of shear stress conditioning in endothelial colony-forming cells compared to human aortic endothelial cells to underline suitability for tissue-engineered vascular grafts. Microvasc Res 2025; 157:104746. [PMID: 39278537 DOI: 10.1016/j.mvr.2024.104746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
The endothelialization of cardiovascular implants is supposed to improve the long-term patency of these implants. In addition, in previous studies, it has been shown, that the conditioning of endothelial cells by dynamic cultivation leads to the expression of an anti-thrombogenic phenotype. For the creation of a tissue-engineered vascular graft (TEVG), these two strategies were combined to achieve optimal hemocompatibility. In a clinical setup, this would require the transfer of the already endothelialized construct from the conditioning bioreactor to the patient. Therefore, the reversibility of the dynamic conditioning of the endothelial cells with arterial-like high shear stress (20 dyn/cm2) was investigated to define the timeframe (tested in a range of up to 24 h) for the perseverance of dynamically induced phenotypical changes. Two types of endothelial cells were compared: endothelial colony-forming cells (ECFCs) and human aortic endothelial cells (HAECs). The results showed that ECFCs respond far more sensitively and rapidly to flow than HAECs. The resulting cell alignment and increased protein expression of KLF-2, Notch-4, Thrombomodulin, Tie2 and eNOS monomer was paralleled by increased eNOS and unaltered KLF-2 mRNA levels even under stopped-flow conditions. VCAM-1 mRNA and protein expression was downregulated under flow and did not recover under stopped flow. From these time kinetic results, we concluded, that the maximum time gap between the TEVG cultivated with autologous ECFCs in future reactor cultivations and the transfer to the potential TEVG recipient should be limited to ∼6 h.
Collapse
Affiliation(s)
- Jannis Renzelmann
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany.
| | - Sebastian Heene
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany.
| | - Rebecca Jonczyk
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany.
| | - Jana Krüger
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany.
| | - Suhayla Alnajjar
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany.
| | - Cornelia Blume
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany.
| |
Collapse
|
2
|
Broer T, Tsintolas N, Purkey K, Hammond S, DeLuca S, Wu T, Gupta I, Khodabukus A, Bursac N. Engineered myovascular tissues for studies of endothelial/satellite cell interactions. Acta Biomater 2024; 188:65-78. [PMID: 39299621 PMCID: PMC11486565 DOI: 10.1016/j.actbio.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
In native skeletal muscle, capillaries reside in close proximity to muscle stem cells (satellite cells, SCs) and regulate SC numbers and quiescence through partially understood mechanisms that are difficult to study in vivo. This challenge could be addressed by the development of a 3-dimensional (3D) in vitro model of vascularized skeletal muscle harboring both a pool of quiescent SCs and a robust network of capillaries. Still, studying interactions between SCs and endothelial cells (ECs) within a tissue-engineered muscle environment has been hampered by the incompatibility of commercially available EC media with skeletal muscle differentiation. In this study, we first optimized co-culture media and cellular ratios to generate highly functional vascularized human skeletal muscle tissues ("myovascular bundles") with contractile properties (∼10 mN/mm2) equaling those of avascular, muscle-only tissues ("myobundles"). Within one week of muscle differentiation, ECs in these tissues formed a dense network of capillaries that co-aligned with muscle fibers and underwent initial lumenization. Incorporating vasculature within myobundles increased the total SC number by 82%, with SC density and quiescent signature being increased proximal (≤20μm) to EC networks. In vivo, at two weeks post-implantation into dorsal window chambers in nude mice, vascularized myobundles exhibited improved calcium handling compared to avascular implants. In summary, we engineered highly functional myovascular tissues that enable studies of the roles of EC-SC crosstalk in human muscle development, physiology, and disease. STATEMENT OF SIGNIFICANCE: In native skeletal muscle, intricate relationships between vascular cells and muscle stem cells ("satellite cells") play critical roles in muscle growth and regeneration. Current methods for in vitro engineering of contractile skeletal muscle do not recreate capillary networks present in vivo. Our study for the first time generates in vitro robustly vascularized, highly functional engineered human skeletal muscle tissues. Within these tissues, satellite cells are more abundant and, similar to in vivo, they are more dense and less proliferative proximal to endothelial cells. Upon implantation in mice, vascularized engineered muscles show improved calcium handling compared to muscle-only implants. We expect that this versatile in vitro system will enable studies of muscle-vasculature crosstalk in human development and disease.
Collapse
Affiliation(s)
- Torie Broer
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Nick Tsintolas
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Karly Purkey
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Stewart Hammond
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Sophia DeLuca
- Department of Cell Biology, Duke University, Durham, NC 27708, USA
| | - Tianyu Wu
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Ishika Gupta
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA.
| |
Collapse
|
3
|
Liu Y, Lyons CJ, Ayu C, O'Brien T. Recent advances in endothelial colony-forming cells: from the transcriptomic perspective. J Transl Med 2024; 22:313. [PMID: 38532420 PMCID: PMC10967123 DOI: 10.1186/s12967-024-05108-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
Endothelial colony-forming cells (ECFCs) are progenitors of endothelial cells with significant proliferative and angiogenic ability. ECFCs are a promising treatment option for various diseases, such as ischemic heart disease and peripheral artery disease. However, some barriers hinder the clinical application of ECFC therapeutics. One of the current obstacles is that ECFCs are dysfunctional due to the underlying disease states. ECFCs exhibit dysfunctional phenotypes in pathologic states, which include but are not limited to the following: premature neonates and pregnancy-related diseases, diabetes mellitus, cancers, haematological system diseases, hypoxia, pulmonary arterial hypertension, coronary artery diseases, and other vascular diseases. Besides, ECFCs are heterogeneous among donors, tissue sources, and within cell subpopulations. Therefore, it is important to elucidate the underlying mechanisms of ECFC dysfunction and characterize their heterogeneity to enable clinical application. In this review, we summarize the current and potential application of transcriptomic analysis in the field of ECFC biology. Transcriptomic analysis is a powerful tool for exploring the key molecules and pathways involved in health and disease and can be used to characterize ECFC heterogeneity.
Collapse
Affiliation(s)
- Yaqiong Liu
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Caomhán J Lyons
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Christine Ayu
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland.
| |
Collapse
|
4
|
Hall E, Alderfer L, Neu E, Saha S, Johandes E, Haas DM, Haneline LS, Hanjaya-Putra D. The Effects of Preeclamptic Milieu on Cord Blood Derived Endothelial Colony-Forming Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.03.569585. [PMID: 38105991 PMCID: PMC10723349 DOI: 10.1101/2023.12.03.569585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Preeclampsia is one of the leading causes of infant and maternal mortality worldwide. Many infants born from preeclamptic pregnancies are born prematurely with higher risk of developing cardiovascular later in their life. A key mechanism by which these complications occur is through stress-induced dysfunction of endothelial progenitor cells (EPCs), including endothelial colony-forming cells (ECFCs). To gain insight into this, cord blood derived ECFCs isolated from preeclamptic pregnancies (PRECs) were analyzed and compared to their healthy counterparts. While PRECs preserve key endothelial markers, they upregulate several markers associated with oxidative stress and inflammatory response. Compared to ECFCs, PRECs also exhibit lower migratory behaviors and impaired angiogenic potential. Interestingly, treatment of neuropilin-1 can improve tube formation in vitro. Collectively, this study reports that preeclamptic milieu influence phenotypes and functionality of PRECs, which can be rejuvenated using exogenous molecules. Promising results from this study warrant future investigations on the prospect of the rejuvenated PRECs to improve lung function of infants born from preeclamptic pregnancies.
Collapse
Affiliation(s)
- Eva Hall
- Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame
| | - Laura Alderfer
- Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame
| | - Erin Neu
- Department of Obstetrics & Gynecology, Indiana University School of Medicine, Indianapolis, IN
| | - Sanjoy Saha
- Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame
| | - Ellie Johandes
- Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame
| | - David M. Haas
- Department of Obstetrics & Gynecology, Indiana University School of Medicine, Indianapolis, IN
| | - Laura S. Haneline
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Donny Hanjaya-Putra
- Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame
- Department of Obstetrics & Gynecology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
5
|
Ellistasari EY, Kariosentono H, Purwanto B, Wasita B, Riswiyant RCA, Pamungkasari EP, Soetrisno S. Exosomes Derived from Secretome Human Umbilical Vein Endothelial Cells (Exo-HUVEC) Ameliorate the Photo-Aging of Skin Fibroblast. Clin Cosmet Investig Dermatol 2022; 15:1583-1591. [PMID: 35967916 PMCID: PMC9374532 DOI: 10.2147/ccid.s371330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022]
Abstract
Purpose This is an in-vitro experimental study to analyze the effect of Exo-HUVEC on endothelial cell (CD31), cell proliferation, matrix metalloproteinase 1 (MMP-1) and collagen type 1 on irradiated fibroblast with UVB as photo-aging model. Patients and Methods Fibroblast cultures were divided into 5 groups, namely without UVB exposure, UVB exposure 600mJ/cm2 for 80 seconds as photo-aging model, and UVB exposure +Exo-HUVEC exposure 0.1%, 0.5% and 1%. The endothelial cell was stained with a CD31 marker, MMP-1 were examined with ELISA, cell proliferation is detected using an MTT assay; meanwhile, collagen type 1 deposition and endothelial cell were measured using flowcytometry. Results This study found positive endothelial cell marker CD31. Significant difference was found in cell proliferation, MMP-1 and collagen type 1 level between the control group with UVB irradiation and the treatment group with Exo-HUVEC (p < 0.05). Conclusion Exo-HUVEC significantly increases cell proliferation and collagen type 1 level, while decrease MMP-1 levels on irradiated fibroblast; therefore, Exo-HUVEC ameliorate the photo-aging of skin fibroblast.
Collapse
Affiliation(s)
| | - Harijono Kariosentono
- Dermatology and Venereology Department, Sebelas Maret University, Surakarta, Indonesia
| | - Bambang Purwanto
- Internal Medicine Department, Sebelas Maret University, Surakarta, Indonesia
| | - Brian Wasita
- Anatomical Pathology Department, Sebelas Maret University, Surakarta, Indonesia
| | | | | | - Soetrisno Soetrisno
- Obstetric and Gynecology Department, Sebelas Maret University, Surakarta, Indonesia
| |
Collapse
|
6
|
Shi H, Zhao Z, Jiang W, Zhu P, Zhou N, Huang X. A Review Into the Insights of the Role of Endothelial Progenitor Cells on Bone Biology. Front Cell Dev Biol 2022; 10:878697. [PMID: 35686054 PMCID: PMC9173585 DOI: 10.3389/fcell.2022.878697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
In addition to its important transport functions, the skeletal system is involved in complex biological activities for the regulation of blood vessels. Endothelial progenitor cells (EPCs), as stem cells of endothelial cells (ECs), possess an effective proliferative capacity and a powerful angiogenic capacity prior to their differentiation. They demonstrate synergistic effects to promote bone regeneration and vascularization more effectively by co-culturing with multiple cells. EPCs demonstrate a significant therapeutic potential for the treatment of various bone diseases by secreting a combination of growth factors, regulating cellular functions, and promoting bone regeneration. In this review, we retrospect the definition and properties of EPCs, their interaction with mesenchymal stem cells, ECs, smooth muscle cells, and immune cells in bone regeneration, vascularization, and immunity, summarizing their mechanism of action and contribution to bone biology. Additionally, we generalized their role and potential mechanisms in the treatment of various bone diseases, possibly indicating their clinical application.
Collapse
Affiliation(s)
- Henglei Shi
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| | - Zhenchen Zhao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| | - Weidong Jiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| | - Peiqi Zhu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| | - Nuo Zhou
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| | - Xuanping Huang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| |
Collapse
|
7
|
Haefliger JA, Meda P, Alonso F. Endothelial Connexins in Developmental and Pathological Angiogenesis. Cold Spring Harb Perspect Med 2022; 12:a041158. [PMID: 35074793 PMCID: PMC9159259 DOI: 10.1101/cshperspect.a041158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Connexins (Cxs) constitute a large family of transmembrane proteins that form gap junction channels, which enable the direct transfer of small signaling molecules from cell to cell. In blood vessels, Cx channels allow the endothelial cells (ECs) to respond to external and internal cues as a whole and, thus, contribute to the maintenance of vascular homeostasis. While the role of Cxs has been extensively studied in large arteries, a growing body of evidence suggests that they also play a role in the formation of microvascular networks. Since the formation of new blood vessels requires the coordinated response of ECs to external stimuli, endothelial Cxs may play an important role there. Recent studies in developmental and pathologic models reveal that EC Cxs regulate physiological and pathological angiogenesis through canonical and noncanonical functions, making these proteins potential therapeutic targets for the development of new strategies aimed at a better control of angiogenesis.
Collapse
Affiliation(s)
| | - Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva, Medical Center, 1211 Geneva, Switzerland
| | - Florian Alonso
- Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, 33076 Bordeaux, France
| |
Collapse
|
8
|
Meyer N, Brodowski L, Richter K, von Kaisenberg CS, Schröder-Heurich B, von Versen-Höynck F. Pravastatin Promotes Endothelial Colony-Forming Cell Function, Angiogenic Signaling and Protein Expression In Vitro. J Clin Med 2021; 10:E183. [PMID: 33419165 PMCID: PMC7825508 DOI: 10.3390/jcm10020183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 12/15/2022] Open
Abstract
Endothelial dysfunction is a primary feature of several cardiovascular diseases. Endothelial colony-forming cells (ECFCs) represent a highly proliferative subtype of endothelial progenitor cells (EPCs), which are involved in neovascularization and vascular repair. Statins are known to improve the outcome of cardiovascular diseases via pleiotropic effects. We hypothesized that treatment with the 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitor pravastatin increases ECFCs' functional capacities and regulates the expression of proteins which modulate endothelial health in a favourable manner. Umbilical cord blood derived ECFCs were incubated with different concentrations of pravastatin with or without mevalonate, a key intermediate in cholesterol synthesis. Functional capacities such as migration, proliferation and tube formation were addressed in corresponding in vitro assays. mRNA and protein levels or phosphorylation of protein kinase B (AKT), endothelial nitric oxide synthase (eNOS), heme oxygenase-1 (HO-1), vascular endothelial growth factor A (VEGF-A), placental growth factor (PlGF), soluble fms-like tyrosine kinase-1 (sFlt-1) and endoglin (Eng) were analyzed by real time PCR or immunoblot, respectively. Proliferation, migration and tube formation of ECFCs were enhanced after pravastatin treatment, and AKT- and eNOS-phosphorylation were augmented. Further, expression levels of HO-1, VEGF-A and PlGF were increased, whereas expression levels of sFlt-1 and Eng were decreased. Pravastatin induced effects were reversible by the addition of mevalonate. Pravastatin induces beneficial effects on ECFC function, angiogenic signaling and protein expression. These effects may contribute to understand the pleiotropic function of statins as well as to provide a promising option to improve ECFCs' condition in cell therapy in order to ameliorate endothelial dysfunction.
Collapse
Affiliation(s)
- Nadia Meyer
- Gynecology Research Unit, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany; (N.M.); (L.B.); (K.R.); (B.S.-H.)
| | - Lars Brodowski
- Gynecology Research Unit, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany; (N.M.); (L.B.); (K.R.); (B.S.-H.)
- Department of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany;
| | - Katja Richter
- Gynecology Research Unit, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany; (N.M.); (L.B.); (K.R.); (B.S.-H.)
| | - Constantin S. von Kaisenberg
- Department of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany;
| | - Bianca Schröder-Heurich
- Gynecology Research Unit, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany; (N.M.); (L.B.); (K.R.); (B.S.-H.)
| | - Frauke von Versen-Höynck
- Gynecology Research Unit, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany; (N.M.); (L.B.); (K.R.); (B.S.-H.)
- Department of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany;
| |
Collapse
|
9
|
Kong Z, Chen M, Jiang J, Zhu J, Liu Y. A new method of culturing rat bone marrow endothelial progenitor cells in vitro. Cardiovasc Diagn Ther 2020; 10:1270-1279. [PMID: 33224751 DOI: 10.21037/cdt-20-536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background Endothelial progenitor cells (EPCs) play an important role in the re-endothelialization of ischemic cerebrovascular disease. However, the current acquisition method has some deficiencies. This study aimed to design a new and practical method for obtaining EPCs. Methods Bone marrow was obtained autologously from the right tibia of living rats. Briefly, the right tibia bone was carefully exposed and two holes (1 mm in diameter) were made in the tuberosity and lower one-third of the tibia, respectively. A PE-50 catheter and syringe (5 mL) were inserted through the holes to aspirate the bone marrow. Bone marrow mononuclear cells (BMMCs) were isolated by density-gradient centrifugation with Ficoll and counted. Adherent cell culture continued for 2 weeks, and the medium was replaced every 3 days. Results During the first days of culture, adherent cells formed a monolayer, consisting predominantly of small-sized cells. Single large cells with endothelial morphology were observed. On day 4, the nonadherent cells were removed, and the adherent cells were left for further culture. On day 6-7, a proliferating population of round cells formed clusters in the culture chamber, and morphological analysis revealed a homogeneous population of colony-forming units (CFUs). Large, flat cells with endothelial morphology sprouted from the CFUs, which had nearly disappeared by day 14 of culture. The adherent cells were positive for CD133 and vascular endothelial growth factor receptor 2 (VEGFR2), internalized acetylated low-density lipoprotein, and bound ulex europaeus-agglutinin-I, but were negative for CD45, which correlated with the endothelial morphology and ability to form capillaries of EPCs. Conclusions Our results are direct evidence that mononuclear cells (MCS) from living rat bone marrow can be used to culture EPCs in vitro under certain culture conditions, providing a new method for the further study of autologous EPC transplantation.
Collapse
Affiliation(s)
- Zhaohong Kong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Meixin Chen
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jian Jiang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiang Zhu
- Department of Neurology, The First Hospital of Yulin, Yulin, China
| | - Yumin Liu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Komici K, Faris P, Negri S, Rosti V, García-Carrasco M, Mendoza-Pinto C, Berra-Romani R, Cervera R, Guerra G, Moccia F. Systemic lupus erythematosus, endothelial progenitor cells and intracellular Ca2+ signaling: A novel approach for an old disease. J Autoimmun 2020; 112:102486. [DOI: 10.1016/j.jaut.2020.102486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 02/07/2023]
|
11
|
Negri S, Faris P, Rosti V, Antognazza MR, Lodola F, Moccia F. Endothelial TRPV1 as an Emerging Molecular Target to Promote Therapeutic Angiogenesis. Cells 2020; 9:cells9061341. [PMID: 32471282 PMCID: PMC7349285 DOI: 10.3390/cells9061341] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Therapeutic angiogenesis represents an emerging strategy to treat ischemic diseases by stimulating blood vessel growth to rescue local blood perfusion. Therefore, injured microvasculature may be repaired by stimulating resident endothelial cells or circulating endothelial colony forming cells (ECFCs) or by autologous cell-based therapy. Endothelial Ca2+ signals represent a crucial player in angiogenesis and vasculogenesis; indeed, several angiogenic stimuli induce neovessel formation through an increase in intracellular Ca2+ concentration. Several members of the Transient Receptor Potential (TRP) channel superfamily are expressed and mediate Ca2+-dependent functions in vascular endothelial cells and in ECFCs, the only known truly endothelial precursor. TRP Vanilloid 1 (TRPV1), a polymodal cation channel, is emerging as an important player in endothelial cell migration, proliferation, and tubulogenesis, through the integration of several chemical stimuli. Herein, we first summarize TRPV1 structure and gating mechanisms. Next, we illustrate the physiological roles of TRPV1 in vascular endothelium, focusing our attention on how endothelial TRPV1 promotes angiogenesis. In particular, we describe a recent strategy to stimulate TRPV1-mediated pro-angiogenic activity in ECFCs, in the presence of a photosensitive conjugated polymer. Taken together, these observations suggest that TRPV1 represents a useful target in the treatment of ischemic diseases.
Collapse
Affiliation(s)
- Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (S.N.); (P.F.)
| | - Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (S.N.); (P.F.)
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy; (M.R.A.); (F.L.)
| | - Francesco Lodola
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy; (M.R.A.); (F.L.)
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (S.N.); (P.F.)
- Correspondence:
| |
Collapse
|
12
|
Farkas S, Simara P, Rehakova D, Veverkova L, Koutna I. Endothelial Progenitor Cells Produced From Human Pluripotent Stem Cells by a Synergistic Combination of Cytokines, Small Compounds, and Serum-Free Medium. Front Cell Dev Biol 2020; 8:309. [PMID: 32509776 PMCID: PMC7249886 DOI: 10.3389/fcell.2020.00309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/07/2020] [Indexed: 12/31/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are a promising source of autologous endothelial progenitor cells (EPCs) that can be used for the treatment of vascular diseases. However, this kind of treatment requires a large amount of EPCs. Therefore, a highly efficient, robust, and easily reproducible differentiation protocol is necessary. We present a novel serum-free differentiation protocol that exploits the synergy of multiple powerful differentiation effectors. Our protocol follows the proper physiological pathway by differentiating EPCs from hPSCs in three phases that mimic in vivo embryonic vascular development. Specifically, hPSCs are differentiated into (i) primitive streak, which is subsequently turned into (ii) mesoderm, which finally differentiates into (iii) EPCs. This differentiation process yields up to 15 differentiated cells per seeded hPSC in 5 days. Endothelial progenitor cells constitute up to 97% of these derived cells. The experiments were performed on the human embryonic stem cell line H9 and six human induced pluripotent stem cell lines generated in our laboratory. Therefore, robustness was verified using many hPSC lines. Two previously established protocols were also adapted and compared to our synergistic three-phase protocol. Increased efficiency and decreased variability were observed for our differentiation protocol in comparison to the other tested protocols. Furthermore, EPCs derived from hPSCs by our protocol expressed the high-proliferative-potential EPC marker CD157 on their surface in addition to the standard EPC surface markers CD31, CD144, CD34, KDR, and CXCR4. Our protocol enables efficient fully defined production of autologous endothelial progenitors for research and clinical applications.
Collapse
Affiliation(s)
- Simon Farkas
- Department of Histology and Embryology, Theoretical Departments, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Pavel Simara
- Department of Histology and Embryology, Theoretical Departments, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Daniela Rehakova
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Lenka Veverkova
- I. Surgery Department, St. Anne's University Hospital Brno, Brno, Czechia
| | - Irena Koutna
- Department of Histology and Embryology, Theoretical Departments, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| |
Collapse
|
13
|
Kutikhin AG, Tupikin AE, Matveeva VG, Shishkova DK, Antonova LV, Kabilov MR, Velikanova EA. Human Peripheral Blood-Derived Endothelial Colony-Forming Cells Are Highly Similar to Mature Vascular Endothelial Cells yet Demonstrate a Transitional Transcriptomic Signature. Cells 2020; 9:cells9040876. [PMID: 32260159 PMCID: PMC7226818 DOI: 10.3390/cells9040876] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
Endothelial colony-forming cells (ECFC) are currently considered as a promising cell population for the pre-endothelialization or pre-vascularization of tissue-engineered constructs, including small-diameter biodegradable vascular grafts. However, the extent of heterogeneity between ECFC and mature vascular endothelial cells (EC) is unclear. Here, we performed a transcriptome-wide study to compare gene expression profiles of ECFC, human coronary artery endothelial cells (HCAEC), and human umbilical vein endothelial cells (HUVEC). Characterization of the abovementioned cell populations was carried out by immunophenotyping, tube formation assay, and evaluation of proliferation capability while global gene expression profiling was conducted by means of RNA-seq. ECFC were similar to HUVEC in terms of immunophenotype (CD31+vWF+KDR+CD146+CD34-CD133-CD45-CD90-) and tube formation activity yet had expectedly higher proliferative potential. HCAEC and HUVEC were generally similar to ECFC with regards to their global gene expression profile; nevertheless, ECFC overexpressed specific markers of all endothelial lineages (NRP2, NOTCH4, LYVE1), in particular lymphatic EC (LYVE1), and had upregulated extracellular matrix and basement membrane genes (COL1A1, COL1A2, COL4A1, COL4A2). Proteomic profiling for endothelial lineage markers and angiogenic molecules generally confirmed RNA-seq results, indicating ECFC as an intermediate population between HCAEC and HUVEC. Therefore, gene expression profile and behavior of ECFC suggest their potential to be applied for a pre-endothelialization of bioartificial vascular grafts, whereas in terms of endothelial hierarchy they differ from HCAEC and HUVEC, having a transitional phenotype.
Collapse
Affiliation(s)
- Anton G. Kutikhin
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (V.G.M.); (D.K.S.); (L.V.A.); (E.A.V.)
- Correspondence: ; Tel.: +7-960-907-70-67
| | - Alexey E. Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia; (A.E.T.); (M.R.K.)
| | - Vera G. Matveeva
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (V.G.M.); (D.K.S.); (L.V.A.); (E.A.V.)
| | - Daria K. Shishkova
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (V.G.M.); (D.K.S.); (L.V.A.); (E.A.V.)
| | - Larisa V. Antonova
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (V.G.M.); (D.K.S.); (L.V.A.); (E.A.V.)
| | - Marsel R. Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia; (A.E.T.); (M.R.K.)
| | - Elena A. Velikanova
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (V.G.M.); (D.K.S.); (L.V.A.); (E.A.V.)
| |
Collapse
|
14
|
Thymosin β4-Enhancing Therapeutic Efficacy of Human Adipose-Derived Stem Cells in Mouse Ischemic Hindlimb Model. Int J Mol Sci 2020; 21:ijms21062166. [PMID: 32245208 PMCID: PMC7139370 DOI: 10.3390/ijms21062166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 01/19/2023] Open
Abstract
Thymosin β4 (Tβ4) is a G-actin sequestering protein that contributes to diverse cellular activities, such as migration and angiogenesis. In this study, the beneficial effects of combined cell therapy with Tβ4 and human adipose-derived stem cells (hASCs) in a mouse ischemic hindlimb model were investigated. We observed that exogenous treatment with Tβ4 enhanced endogenous TMSB4X mRNA expression and promoted morphological changes (increased cell length) in hASCs. Interestingly, Tβ4 induced the active state of hASCs by up-regulating intracellular signaling pathways including the PI3K/AKT/mTOR and MAPK/ERK pathways. Treatment with Tβ4 significantly increased cell migration and sprouting from microbeads. Moreover, additional treatment with Tβ4 promoted the endothelial differentiation potential of hASCs by up-regulating various angiogenic genes. To evaluate the in vivo effects of the Tβ4-hASCs combination on vessel recruitment, dorsal window chambers were transplanted, and the co-treated mice were found to have a significantly increased number of microvessel branches. Transplantation of hASCs in combination with Tβ4 was found to improve blood flow and attenuate limb or foot loss post-ischemia compared to transplantation with hASCs alone. Taken together, the therapeutic application of hASCs combined with Tβ4 could be effective in enhancing endothelial differentiation and vascularization for treating hindlimb ischemia.
Collapse
|
15
|
Calcium Signaling in Endothelial Colony Forming Cells in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:1013-1030. [PMID: 31646543 DOI: 10.1007/978-3-030-12457-1_40] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endothelial colony forming cells (ECFCs) represent the only known truly endothelial precursors. ECFCs are released in peripheral circulation to restore the vascular networks dismantled by an ischemic insult or to sustain the early phases of the angiogenic switch in solid tumors. A growing number of studies demonstrated that intracellular Ca2+ signaling plays a crucial role in driving ECFC proliferation, migration, homing and neovessel formation. For instance, vascular endothelial growth factor (VEGF) triggers intracellular Ca2+ oscillations and stimulates angiogenesis in healthy ECFCs, whereas stromal derived factor-1α promotes ECFC migration through a biphasic Ca2+ signal. The Ca2+ toolkit endowed to circulating ECFCs is extremely plastic and shows striking differences depending on the physiological background of the donor. For instance, inositol-1,4,5-trisphosphate-induced Ca2+ release from the endoplasmic reticulum is downregulated in tumor-derived ECFCs, while agonists-induced store-operated Ca2+ entry is up-regulated in renal cellular carcinoma and is unaltered in breast cancer and reduced in infantile hemangioma. This remodeling of the Ca2+ toolkit prevents VEGF-induced pro-angiogenic Ca2+ oscillations in tumor-derived ECFCs. An emerging theme of research is the dysregulation of the Ca2+ toolkit in primary myelofibrosis-derived ECFCs, as this myeloproliferative disorder may depend on a driver mutation in the calreticulin gene. In this chapter, I provide a comprehensive, but succinct, description on the architecture and role of the intracellular Ca2+ signaling toolkit in ECFCs derived from umbilical cord blood and from peripheral blood of healthy donors, cancer patients and subjects affected by primary myelofibrosis.
Collapse
|
16
|
Endothelial Ca 2+ Signaling, Angiogenesis and Vasculogenesis: just What It Takes to Make a Blood Vessel. Int J Mol Sci 2019; 20:ijms20163962. [PMID: 31416282 PMCID: PMC6721072 DOI: 10.3390/ijms20163962] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022] Open
Abstract
It has long been known that endothelial Ca2+ signals drive angiogenesis by recruiting multiple Ca2+-sensitive decoders in response to pro-angiogenic cues, such as vascular endothelial growth factor, basic fibroblast growth factor, stromal derived factor-1α and angiopoietins. Recently, it was shown that intracellular Ca2+ signaling also drives vasculogenesis by stimulation proliferation, tube formation and neovessel formation in endothelial progenitor cells. Herein, we survey how growth factors, chemokines and angiogenic modulators use endothelial Ca2+ signaling to regulate angiogenesis and vasculogenesis. The endothelial Ca2+ response to pro-angiogenic cues may adopt different waveforms, ranging from Ca2+ transients or biphasic Ca2+ signals to repetitive Ca2+ oscillations, and is mainly driven by endogenous Ca2+ release through inositol-1,4,5-trisphosphate receptors and by store-operated Ca2+ entry through Orai1 channels. Lysosomal Ca2+ release through nicotinic acid adenine dinucleotide phosphate-gated two-pore channels is, however, emerging as a crucial pro-angiogenic pathway, which sustains intracellular Ca2+ mobilization. Understanding how endothelial Ca2+ signaling regulates angiogenesis and vasculogenesis could shed light on alternative strategies to induce therapeutic angiogenesis or interfere with the aberrant vascularization featuring cancer and intraocular disorders.
Collapse
|
17
|
Munisso MC, Yamaoka T. Circulating endothelial progenitor cells in small-diameter artificial blood vessel. J Artif Organs 2019; 23:6-13. [DOI: 10.1007/s10047-019-01114-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/06/2019] [Indexed: 01/19/2023]
|
18
|
Regulating response and leukocyte adhesion of human endothelial cell by gradient nanohole substrate. Sci Rep 2019; 9:7272. [PMID: 31086227 PMCID: PMC6514209 DOI: 10.1038/s41598-019-43573-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
Understanding signals in the microenvironment that regulate endothelial cell behavior are important in tissue engineering. Although many studies have examined the cellular effects of nanotopography, no study has investigated the functional regulation of human endothelial cells grown on nano-sized gradient hole substrate. We examined the cellular response of human umbilical vein endothelial cells (HUVECs) by using a gradient nanohole substrate (GHS) with three different types of nanohole patterns (HP): which diameters were described in HP1, 120-200 nm; HP2, 200-280 nm; HP3, 280-360 nm. In results, HP2 GHS increased the attachment and proliferation of HUVECs. Also, gene expression of focal adhesion markers in HUVECs was significantly increased on HP2 GHS. In vitro tube formation assay showed the enhancement of tubular network formation of HUVECs after priming on GHS compared to Flat. Furthermore, leukocyte adhesion was also reduced in the HUVECs in a hole-diameter dependent manner. To summarize, optimal proliferations with reduced leukocyte adhesion of HUVECs were achieved by gradient nanohole substrate with 200-280 nm-sized holes.
Collapse
|
19
|
Usuba R, Pauty J, Soncin F, Matsunaga YT. EGFL7 regulates sprouting angiogenesis and endothelial integrity in a human blood vessel model. Biomaterials 2019; 197:305-316. [PMID: 30684886 DOI: 10.1016/j.biomaterials.2019.01.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/28/2018] [Accepted: 01/12/2019] [Indexed: 12/17/2022]
Abstract
Elucidating the mechanisms underlying sprouting angiogenesis and permeability should enable the development of more effective therapies for various diseases, including retinopathy, cancer, and other vascular disorders. We focused on epidermal growth factor-like domain 7 (EGFL7) which plays an important role in NOTCH signaling and in the organization of angiogenic sprouts. We developed an EGFL7-knockdown in vitro microvessel model and investigated the effect of EGFL7 at a tissue level. We found EGFL7 knockdown suppressed VEGF-A-induced sprouting angiogenesis accompanied by an overproduction of endothelial filopodia and reduced collagen IV deposition at the basal side of endothelial cells. We also observed impaired barrier function which reflected an inflammatory condition. Furthermore, our results showed that proper formation of adherens junctions and phosphorylation of VE-cadherin was disturbed. In conclusion, by using a 3D microvessel model we identified novel roles for EGFL7 in endothelial function during sprouting angiogenesis.
Collapse
Affiliation(s)
- Ryo Usuba
- Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Joris Pauty
- Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; LIMMS/CNRS-IIS (UMI 2820), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Fabrice Soncin
- LIMMS/CNRS-IIS (UMI 2820), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; CNRS/IIS/COL/Lille University SMMiL-E Project, CNRS Délégation Nord-Pas de Calais et Picardie, 2 rue de Canonniers, Lille, Cedex 59046, France; Université de Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T, F-59000 Lille, France.
| | - Yukiko T Matsunaga
- Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; LIMMS/CNRS-IIS (UMI 2820), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; CNRS/IIS/COL/Lille University SMMiL-E Project, CNRS Délégation Nord-Pas de Calais et Picardie, 2 rue de Canonniers, Lille, Cedex 59046, France.
| |
Collapse
|
20
|
Poletto V, Rosti V, Biggiogera M, Guerra G, Moccia F, Porta C. The role of endothelial colony forming cells in kidney cancer's pathogenesis, and in resistance to anti-VEGFR agents and mTOR inhibitors: A speculative review. Crit Rev Oncol Hematol 2018; 132:89-99. [PMID: 30447930 DOI: 10.1016/j.critrevonc.2018.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 08/07/2018] [Accepted: 09/08/2018] [Indexed: 12/22/2022] Open
Abstract
Renal cell carcinoma (RCC) is highly dependent on angiogenesis, due to the overactivation of the VHL/HIF/VEGF/VEGFRs axis; this justifies the marked sensitivity of this neoplasm to antiangiogenic agents which, however, ultimately fail to control tumor growth. RCC also frequently shows alterations in the mTOR signaling pathway, and mTOR inhibitors have shown a similar pattern of initial activity/late failure as pure antiangiogenic agents. Understanding mechanisms of resistance to these agents would be key to improve the outcome of our patients. Circulating endothelial cells are a family of mainly bone marrow-derived progenitors, which have been postulated to be responsible of the reactivation of angiogenesis in different tumors. In this review, we shall discuss the complex nature and function of these cells, the evidence pro and contra their contribution to tumor vascularization, especially as far as RCC is concerned, and their possible role in determining resistance to presently available treatments.
Collapse
Affiliation(s)
- Valentina Poletto
- Center for the Study of Myelofibrosis, Research and Experimental Biotechnology Laboratory Area, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Piazzale Golgi 19, 27100, Pavia, Italy.
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Research and Experimental Biotechnology Laboratory Area, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Piazzale Golgi 19, 27100, Pavia, Italy.
| | - Marco Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Italy.
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy.
| | - Francesco Moccia
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, via Forlanini 6, 27100, Pavia, Italy.
| | - Camillo Porta
- Medical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Piazzale Golgi 19, 27100, Pavia, Italy; present address: Department of Internal Medicine, University of Pavia, and Division of Translational Oncology, IRCCS Istituti Clinici Scientifici Maugeri, via S. Maugeri 10, 27100 Pavia, Italy.
| |
Collapse
|
21
|
Essaadi A, Nollet M, Moyon A, Stalin J, Simoncini S, Balasse L, Bertaud A, Bachelier R, Leroyer AS, Sarlon G, Guillet B, Dignat-George F, Bardin N, Blot-Chabaud M. Stem cell properties of peripheral blood endothelial progenitors are stimulated by soluble CD146 via miR-21: potential use in autologous cell therapy. Sci Rep 2018; 8:9387. [PMID: 29925894 PMCID: PMC6010456 DOI: 10.1038/s41598-018-27715-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/21/2018] [Indexed: 12/27/2022] Open
Abstract
Cell-based therapies constitute a real hope for the treatment of ischaemic diseases. One of the sources of endothelial progenitors for autologous cell therapy is Endothelial Colony Forming Cells (ECFC) that can be isolated from peripheral blood. However, their use is limited by their low number in the bloodstream and the loss of their stem cell phenotype associated with the acquisition of a senescent phenotype in culture. We hypothesized that adding soluble CD146, a novel endothelial growth factor with angiogenic properties, during the isolation and growth procedures could improve their number and therapeutic potential. Soluble CD146 increased the number of isolated peripheral blood ECFC colonies and lowered their onset time. It prevented cellular senescence, induced a partial mesenchymal phenotype and maintained a stem cell phenotype by stimulating the expression of embryonic transcription factors. These different effects were mediated through the induction of mature miR-21. When injected in an animal model of hindlimb ischaemia, sCD146-primed ECFC isolated from 40 ml of blood from patients with peripheral arterial disease were able to generate new blood vessels and restore blood flow. Treatment with sCD146 could thus constitute a promising strategy to improve the use of autologous cells for the treatment of ischaemic diseases.
Collapse
Affiliation(s)
- Amel Essaadi
- Aix Marseille Univ, INSERM 1263, INRA 1260, C2VN, Marseille, France
| | - Marie Nollet
- Aix Marseille Univ, INSERM 1263, INRA 1260, C2VN, Marseille, France
| | - Anaïs Moyon
- Aix Marseille Univ, INSERM 1263, INRA 1260, C2VN, Marseille, France.,CERIMED (European Center of Research in Medical Imaging), Aix-Marseille University, Marseille, France
| | - Jimmy Stalin
- Aix Marseille Univ, INSERM 1263, INRA 1260, C2VN, Marseille, France
| | | | - Laure Balasse
- CERIMED (European Center of Research in Medical Imaging), Aix-Marseille University, Marseille, France
| | | | | | | | - Gabrielle Sarlon
- Service of Vascular Surgery, La Timone Hospital, Marseille, France
| | - Benjamin Guillet
- Aix Marseille Univ, INSERM 1263, INRA 1260, C2VN, Marseille, France.,CERIMED (European Center of Research in Medical Imaging), Aix-Marseille University, Marseille, France
| | | | - Nathalie Bardin
- Aix Marseille Univ, INSERM 1263, INRA 1260, C2VN, Marseille, France
| | | |
Collapse
|
22
|
Cui LH, Joo HJ, Kim DH, Seo HR, Kim JS, Choi SC, Huang LH, Na JE, Lim IR, Kim JH, Rhyu IJ, Hong SJ, Lee KB, Lim DS. Manipulation of the response of human endothelial colony-forming cells by focal adhesion assembly using gradient nanopattern plates. Acta Biomater 2018; 65:272-282. [PMID: 29037896 DOI: 10.1016/j.actbio.2017.10.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/12/2017] [Accepted: 10/12/2017] [Indexed: 12/18/2022]
Abstract
Nanotopography plays a pivotal role in the regulation of cellular responses. Nonetheless, little is known about how the gradient size of nanostructural stimuli alters the responses of endothelial progenitor cells without chemical factors. Herein, the fabrication of gradient nanopattern plates intended to mimic microenvironment nanotopography is described. The gradient nanopattern plates consist of nanopillars of increasing diameter ranges [120-200 nm (GP 120/200), 200-280 nm (GP 200/280), and 280-360 nm (GP 280/360)] that were used to screen the responses of human endothelial colony-forming cells (hECFCs). Nanopillars with a smaller nanopillar diameter caused the cell area and perimeter of hECFCs to decrease and their filopodial outgrowth to increase. The structure of vinculin (a focal adhesion marker in hECFCs) was also modulated by nanostructural stimuli of the gradient nanopattern plates. Moreover, Rho-associated protein kinase (ROCK) gene expression was significantly higher in hECFCs cultured on GP 120/200 than in those on flat plates (no nanopillars), and ROCK suppression impaired the nanostructural-stimuli-induced vinculin assembly. These results suggest that the gradient nanopattern plates generate size-specific nanostructural stimuli suitable for manipulation of the response of hECFCs, in a process dependent on ROCK signaling. This is the first evidence of size-specific nanostructure-sensing behavior of hECFCs. SIGNIFICANCE Nano feature surfaces are of growing interest as materials for a controlled response of various cells. In this study, we successfully fabricated gradient nanopattern plates to manipulate the response of blood-derived hECFCs without any chemical stimulation. Interestingly, we find that the sensitive nanopillar size for manipulation of hECFCs is range between 120 nm and 200 nm, which decreased the area and increased the filopodial outgrowth of hECFCs. Furthermore, we only modulate the nanopillar size to increase ROCK expression can be an attractive method for modulating the cytoskeletal integrity and focal adhesion of hECFCs.
Collapse
Affiliation(s)
- Long-Hui Cui
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyung Joon Joo
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Dae Hwan Kim
- School of Biomedical Engineering, College of Health Science, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ha-Rim Seo
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jung Suk Kim
- School of Biomedical Engineering, College of Health Science, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seung-Cheol Choi
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Li-Hua Huang
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ji Eun Na
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - I-Rang Lim
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jong-Ho Kim
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Im Joo Rhyu
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Soon Jun Hong
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kyu Back Lee
- School of Biomedical Engineering, College of Health Science, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | - Do-Sun Lim
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
23
|
Haefliger JA, Allagnat F, Hamard L, Le Gal L, Meda P, Nardelli-Haefliger D, Génot E, Alonso F. Targeting Cx40 (Connexin40) Expression or Function Reduces Angiogenesis in the Developing Mouse Retina. Arterioscler Thromb Vasc Biol 2017; 37:2136-2146. [PMID: 28982669 DOI: 10.1161/atvbaha.117.310072] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/20/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Cx40 (Connexin40) forms intercellular channels that coordinate the electric conduction in the heart and the vasomotor tone in large vessels. The protein was shown to regulate tumoral angiogenesis; however, whether Cx40 also contributes to physiological angiogenesis is still unknown. APPROACH AND RESULTS Here, we show that Cx40 contributes to physiological angiogenesis. Genetic deletion of Cx40 leads to a reduction in vascular growth and capillary density in the neovascularization model of the mouse neonatal retina. At the angiogenic front, vessel sprouting is reduced, and the mural cells recruited along the sprouts display an altered phenotype. These alterations can be attributed to disturbed endothelial cell functions as selective reexpression of Cx40 in these cells restores normal angiogenesis. In vitro, targeting Cx40 in microvascular endothelial cells, by silencing its expression or by blocking gap junction channels, decreases their proliferation. Moreover, loss of Cx40 in these cells also increases their release of PDGF (platelet-derived growth factor) and promotes the chemoattraction of mural cells. In vivo, an intravitreal injection of a Cx40 inhibitory peptide, phenocopies the loss of Cx40 in the retinal vasculature of wild-type mice. CONCLUSIONS Collectively, our data show that endothelial Cx40 contributes to the early stages of physiological angiogenesis in the developing retina, by regulating vessel growth and maturation. Cx40 thus represents a novel therapeutic target for treating pathological ocular angiogenesis.
Collapse
Affiliation(s)
- Jacques-Antoine Haefliger
- From the Department of Medicine (J.-A.H., F.A., L.H., L.L.G., F.A.) and Department of Urology (D.N.H.), Lausanne University Hospital, Switzerland; Department of Cell Physiology and Metabolism, University of Geneva Medical Center, Switzerland (P.M.); and Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, France (E.G., F.A.).
| | - Florent Allagnat
- From the Department of Medicine (J.-A.H., F.A., L.H., L.L.G., F.A.) and Department of Urology (D.N.H.), Lausanne University Hospital, Switzerland; Department of Cell Physiology and Metabolism, University of Geneva Medical Center, Switzerland (P.M.); and Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, France (E.G., F.A.)
| | - Lauriane Hamard
- From the Department of Medicine (J.-A.H., F.A., L.H., L.L.G., F.A.) and Department of Urology (D.N.H.), Lausanne University Hospital, Switzerland; Department of Cell Physiology and Metabolism, University of Geneva Medical Center, Switzerland (P.M.); and Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, France (E.G., F.A.)
| | - Loïc Le Gal
- From the Department of Medicine (J.-A.H., F.A., L.H., L.L.G., F.A.) and Department of Urology (D.N.H.), Lausanne University Hospital, Switzerland; Department of Cell Physiology and Metabolism, University of Geneva Medical Center, Switzerland (P.M.); and Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, France (E.G., F.A.)
| | - Paolo Meda
- From the Department of Medicine (J.-A.H., F.A., L.H., L.L.G., F.A.) and Department of Urology (D.N.H.), Lausanne University Hospital, Switzerland; Department of Cell Physiology and Metabolism, University of Geneva Medical Center, Switzerland (P.M.); and Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, France (E.G., F.A.)
| | - Denise Nardelli-Haefliger
- From the Department of Medicine (J.-A.H., F.A., L.H., L.L.G., F.A.) and Department of Urology (D.N.H.), Lausanne University Hospital, Switzerland; Department of Cell Physiology and Metabolism, University of Geneva Medical Center, Switzerland (P.M.); and Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, France (E.G., F.A.)
| | - Elisabeth Génot
- From the Department of Medicine (J.-A.H., F.A., L.H., L.L.G., F.A.) and Department of Urology (D.N.H.), Lausanne University Hospital, Switzerland; Department of Cell Physiology and Metabolism, University of Geneva Medical Center, Switzerland (P.M.); and Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, France (E.G., F.A.)
| | - Florian Alonso
- From the Department of Medicine (J.-A.H., F.A., L.H., L.L.G., F.A.) and Department of Urology (D.N.H.), Lausanne University Hospital, Switzerland; Department of Cell Physiology and Metabolism, University of Geneva Medical Center, Switzerland (P.M.); and Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, France (E.G., F.A.).
| |
Collapse
|
24
|
Moccia F, Lucariello A, Guerra G. TRPC3-mediated Ca 2+ signals as a promising strategy to boost therapeutic angiogenesis in failing hearts: The role of autologous endothelial colony forming cells. J Cell Physiol 2017; 233:3901-3917. [PMID: 28816358 DOI: 10.1002/jcp.26152] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022]
Abstract
Endothelial progenitor cells (EPCs) are a sub-population of bone marrow-derived mononuclear cells that are released in circulation to restore damaged endothelium during its physiological turnover or rescue blood perfusion after an ischemic insult. Additionally, they may be mobilized from perivascular niches located within larger arteries' wall in response to hypoxic conditions. For this reason, EPCs have been regarded as an effective tool to promote revascularization and functional recovery of ischemic hearts, but clinical application failed to exploit the full potential of patients-derived cells. Indeed, the frequency and biological activity of EPCs are compromised in aging individuals or in subjects suffering from severe cardiovascular risk factors. Rejuvenating the reparative phenotype of autologous EPCs through a gene transfer approach has, therefore, been put forward as an alternative approach to enhance their therapeutic potential in cardiovascular patients. An increase in intracellular Ca2+ concentration constitutes a pivotal signal for the activation of the so-called endothelial colony forming cells (ECFCs), the only known truly endothelial EPC subset. Studies from our group showed that the Ca2+ toolkit differs between peripheral blood- and umbilical cord blood (UCB)-derived ECFCs. In the present article, we first discuss how VEGF uses repetitive Ca2+ spikes to regulate angiogenesis in ECFCs and outline how VEGF-induced intracellular Ca2+ oscillations differ between the two ECFC subtypes. We then hypothesize about the possibility to rejuvenate the biological activity of autologous ECFCs by transfecting the cell with the Ca2+ -permeable channel Transient Receptor Potential Canonical 3, which selectively drives the Ca2+ response to VEGF in UCB-derived ECFCs.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Angela Lucariello
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, Universy of Campania "L. Vanvitelli", Naples, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
25
|
Lodola F, Laforenza U, Cattaneo F, Ruffinatti FA, Poletto V, Massa M, Tancredi R, Zuccolo E, Khdar DA, Riccardi A, Biggiogera M, Rosti V, Guerra G, Moccia F. VEGF-induced intracellular Ca 2+ oscillations are down-regulated and do not stimulate angiogenesis in breast cancer-derived endothelial colony forming cells. Oncotarget 2017; 8:95223-95246. [PMID: 29221123 PMCID: PMC5707017 DOI: 10.18632/oncotarget.20255] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/12/2017] [Indexed: 01/08/2023] Open
Abstract
Endothelial colony forming cells (ECFCs) represent a population of truly endothelial precursors that promote the angiogenic switch in solid tumors, such as breast cancer (BC). The intracellular Ca2+ toolkit, which drives the pro-angiogenic response to VEGF, is remodelled in tumor-associated ECFCs such that they are seemingly insensitive to this growth factor. This feature could underlie the relative failure of anti-VEGF therapies in cancer patients. Herein, we investigated whether and how VEGF uses Ca2+ signalling to control angiogenesis in BC-derived ECFCs (BC-ECFCs). Although VEGFR-2 was normally expressed, VEGF failed to induce proliferation and in vitro tubulogenesis in BC-ECFCs. Likewise, VEGF did not trigger robust Ca2+ oscillations in these cells. Similar to normal cells, VEGF-induced intracellular Ca2+ oscillations were triggered by inositol-1,4,5-trisphosphate-dependent Ca2+ release from the endoplasmic reticulum (ER) and maintained by store-operated Ca2+ entry (SOCE). However, InsP3-dependent Ca2+ release was significantly lower in BC-ECFCs due to the down-regulation of ER Ca2+ levels, while there was no remarkable difference in the amplitude, pharmacological profile and molecular composition of SOCE. Thus, the attenuation of the pro-angiogenic Ca2+ response to VEGF was seemingly due to the reduction in ER Ca2+ concentration, which prevents VEGF from triggering robust intracellular Ca2+ oscillations. However, the pharmacological inhibition of SOCE prevented BC-ECFC proliferation and in vitro tubulogenesis. These findings demonstrate for the first time that BC-ECFCs are insensitive to VEGF, which might explain at cellular and molecular levels the failure of anti-VEGF therapies in BC patients, and hint at SOCE as a novel molecular target for this disease.
Collapse
Affiliation(s)
- Francesco Lodola
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy.,Current address: Italian Institute of Technology, Center for Nano Science and Technology, Milano 20133, Italy
| | - Umberto Laforenza
- Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | | | - Valentina Poletto
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, Foundation IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Margherita Massa
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Richard Tancredi
- Medical Oncology Unit, Foundation IRCCS Salvatore Maugeri, Pavia 27100, Italy
| | - Estella Zuccolo
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Dlzar Alì Khdar
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Alberto Riccardi
- Medical Oncology Unit, Foundation IRCCS Salvatore Maugeri, Pavia 27100, Italy.,Department of Internal Medicine, University of Pavia, Pavia 27100, Italy
| | - Marco Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Vittorio Rosti
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, Foundation IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso 86100, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy
| |
Collapse
|
26
|
Munisso MC, Yamaoka T. Novel peptides for small-caliber graft functionalization selected by a phage display of endothelial-positive/platelet-negative combined selection. J Mater Chem B 2017; 5:9354-9364. [DOI: 10.1039/c7tb02652h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A new protocol to identify peptides with EPCs high affinity and at the same time the ability to suppress the interaction with platelets was presented.
Collapse
Affiliation(s)
- Maria Chiara Munisso
- Department of Biomedical Engineering
- National Cerebral and Cardiovascular Center Research Institute
- Suita
- Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering
- National Cerebral and Cardiovascular Center Research Institute
- Suita
- Japan
| |
Collapse
|
27
|
Chen RA, Sun XM, Yan CY, Liu L, Hao MW, Liu Q, Jiao XY, Liang YM. Hyperglycemia-induced PATZ1 negatively modulates endothelial vasculogenesis via repression of FABP4 signaling. Biochem Biophys Res Commun 2016; 477:548-555. [DOI: 10.1016/j.bbrc.2016.06.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 12/11/2022]
|
28
|
Castelli G, Parolini I, Cerio AM, D'Angiò A, Pasquini L, Carollo M, Sargiacomo M, Testa U, Pelosi E. Conditioned medium from human umbilical vein endothelial cells markedly improves the proliferation and differentiation of circulating endothelial progenitors. Blood Cells Mol Dis 2016; 61:58-65. [PMID: 27667168 DOI: 10.1016/j.bcmd.2016.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 01/01/2023]
Abstract
Circulating endothelial progenitor cells (EPCs) have been suggested as a precious source for generating functionally competent endothelial cells (ECs), candidate for various clinical applications. However, the paucity of these progenitor cells and the technical difficulties for their in vitro growth represent a main limitation to their use. In the present study we hypothesized that the paracrine effects of human umbilical vein endothelial cells (HUVECs) may improve endothelial cell generation from cord blood (CB) EPCs. In line with this hypothesis we showed that HUVEC conditioned medium (CM) or co-culture with HUVECs markedly improved the proliferation and differentiation and delayed the senescence of CB EPCs. The endothelial-promoting effect of CM seems to be related to smaller vesicles including exosomes (sEV/exo) contained in this medium and transferred to CB CD34(+) EPCs: in fact, purified preparations of sEV/exo isolated from CM mimicked the effect of CM to sustain endothelial formation. These observations provided the interesting indication that mature ECs exert a stimulatory effect on endothelial cell differentiation from CD34(+) cells.
Collapse
Affiliation(s)
- Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 200, 00161 Rome, Italy
| | - Isabella Parolini
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 200, 00161 Rome, Italy
| | - Anna Maria Cerio
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 200, 00161 Rome, Italy
| | - Agnese D'Angiò
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 200, 00161 Rome, Italy
| | - Luca Pasquini
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 200, 00161 Rome, Italy
| | - Maria Carollo
- Department of Infectious, Parasitic and Immune-mediates Diseases, Istituto Superiore di Sanità, Viale Regina Elena 200, 00161 Rome, Italy
| | - Massimo Sargiacomo
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 200, 00161 Rome, Italy
| | - Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 200, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 200, 00161 Rome, Italy
| |
Collapse
|
29
|
Gui J, Potthast A, Rohrbach A, Borns K, Das AM, von Versen-Höynck F. Gestational diabetes induces alterations of sirtuins in fetal endothelial cells. Pediatr Res 2016; 79:788-98. [PMID: 26717002 DOI: 10.1038/pr.2015.269] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 10/16/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Gestational diabetes (GDM) has long-term consequences for the offspring. Sirtuins (SIRTs) are associated with vascular and metabolic functions. We studied the impact of GDM on SIRT activity and expression in fetal endothelial colony-forming cells (ECFCs) and human umbilical vein endothelial cells (HUVECs) from pregnancies complicated by GDM. METHODS ECFCs and HUVECs were isolated from cord and cord blood of 10 uncomplicated pregnancies (NPs) and 10 GDM pregnancies. Nicotinamidadenindinukleotid (NAD(+)) concentration, SIRT1 and SIRT3 activity, transcription levels of SIRT1, SIRT3, and SIRT4, and protein levels of SIRT1, SIRT3, and SIRT4 were determined in vitro with or without SIRT activators resveratrol (RSV) and paeonol. RESULTS Fetal ECFCs from GDM pregnancies showed a decreased NAD(+) concentration, reduced SIRT1 and SIRT3 activity, and lower transcription levels of SIRT1, SIRT3, and SIRT4. HUVECs from GDM pregnancies had decreased NAD(+) concentrations and transcription levels of SIRT1 and SIRT4. RSV markedly enhanced the expression and activity of SIRTs in ECFCs and HUVECs, while paeonol was active only in ECFCs. CONCLUSION A reduction of SIRT activity and expression in fetal endothelial cells provides potential mechanistic insights into the pathophysiology of long-term cardiovascular complications observed in the offspring of GDM pregnancies. SIRT activators can increase SIRT activity in ECFCs, which opens perspectives for new therapeutic targets.
Collapse
Affiliation(s)
- Juan Gui
- Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Arne Potthast
- Department of Pediatrics, Hannover Medical School, Hannover, Germany
| | - Anne Rohrbach
- Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| | - Katja Borns
- Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| | - Anibh M Das
- Department of Pediatrics, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
30
|
Murphy KC, Stilhano RS, Mitra D, Zhou D, Batarni S, Silva EA, Leach JK. Hydrogel biophysical properties instruct coculture-mediated osteogenic potential. FASEB J 2015; 30:477-86. [PMID: 26443826 DOI: 10.1096/fj.15-279984] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/21/2015] [Indexed: 12/23/2022]
Abstract
Cell-based approaches for bone formation require instructional cues from the surrounding environment. As an alternative to pharmacological strategies or transplanting single cell populations, one approach is to coimplant populations that can establish a new vasculature and differentiate to bone-forming osteoblasts. Mesenchymal stem/stromal cells (MSCs) possess osteogenic potential and produce numerous angiogenic growth factors. Endothelial colony-forming cells (ECFCs) are a subpopulation of endothelial progenitor cells capable of vasculogenesis in vivo and may provide endogenous cues to support MSC function. We investigated the contribution of the carrier biophysical properties to instruct entrapped human MSCs and ECFCs to simultaneously promote their osteogenic and proangiogenic potential. Compared with gels containing MSCs alone, fibrin gels engineered with increased compressive stiffness simultaneously increased the osteogenic and proangiogenic potential of entrapped cocultured cells. ECFCs produced bone morphogenetic protein-2 (BMP-2), a potent osteoinductive molecule, and increases in BMP-2 secretion correlated with gel stiffness. Coculture of MSCs with ECFCs transduced to knockdown BMP-2 production abrogated the osteogenic response to levels observed with MSCs alone. These results demonstrate that physical properties of engineered hydrogels modulate the function of cocultured cells in the absence of inductive cues, thus increasing the translational potential of coimplantation to speed bone formation and repair.
Collapse
Affiliation(s)
- Kaitlin C Murphy
- *Department of Biomedical Engineering and Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Davis, California, USA; and Department of Biophysics, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Roberta S Stilhano
- *Department of Biomedical Engineering and Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Davis, California, USA; and Department of Biophysics, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Debika Mitra
- *Department of Biomedical Engineering and Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Davis, California, USA; and Department of Biophysics, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Dejie Zhou
- *Department of Biomedical Engineering and Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Davis, California, USA; and Department of Biophysics, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Samir Batarni
- *Department of Biomedical Engineering and Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Davis, California, USA; and Department of Biophysics, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Eduardo A Silva
- *Department of Biomedical Engineering and Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Davis, California, USA; and Department of Biophysics, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - J Kent Leach
- *Department of Biomedical Engineering and Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Davis, California, USA; and Department of Biophysics, Federal University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|