1
|
Huang K, Wen XQ, Zhang W, Wang JX, Liang Y, Li WQ, Wang YH, Liang MM, Jing AR, Ma J, Zhang X, Liu Y, Gao J. Predictive Value of 5-Methoxytryptophan on Long-Term Clinical Outcome after PCI in Patients with Acute Myocardial Infarction-a Prospective Cohort Study. J Cardiovasc Transl Res 2024; 17:1036-1047. [PMID: 38683422 PMCID: PMC11519123 DOI: 10.1007/s12265-024-10518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND In recent years, 5-Methoxytryptophan (5-MTP) has been identified as an endothelial factor with vaso-protective and anti-inflammatory properties. METHODS In this prospective cohort study, a total of 407 patients with acute myocardial infarction (AMI) who underwent percutaneous coronary intervention (PCI) successfully were enrolled. A 1-year follow-up Kaplan-Meier survival analysis was used for evaluating the correlation between 5-MTP and major adverse cardiovascular event (MACE) while Cox proportional-hazards regression was used to identify predictive values of 5-MTP on MACE after AMI. RESULTS Increased 5-MTP level led to a significant downtrend in the incidence of MACE (All Log-rank p < 0.05). Thus, a high baseline 5-MTP could reduce the 1-year incidence of MACE (HR = 0.33, 95%Cl 0.17-0.64, p = 0.001) and heart failure (HF) (HR = 0.28, 95% Cl 0.13-0.62, p = 0.002). Subgroup analysis indicated the predictive value of 5-MTP was more significant in patients aged ≤ 65 years and those with higher baseline NT-proBNP, T2DM, STEMI, and baseline HF with preserved LVEF (HFpEF) characteristics. CONCLUSIONS Plasma 5-MTP is an independent and protective early biomarker for 1-year MACE and HF events in patients with AMI, especially in younger patients and those with T2DM, STEMI, and baseline HFpEF characteristics.
Collapse
Affiliation(s)
- Kui Huang
- Thoracic Clinical College, Tianjin Medical University, No.22 Qi Xiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
- Department of Cardiology, Tianjin Chest Hospital, No.261 Tai Erzhuang Road, Jinnan District, Tianjin, 300222, People's Republic of China
| | - Xiao-Qin Wen
- Department of Cardiology, Tianjin Hospital, Tianjin, People's Republic of China
| | - Wei Zhang
- Department of Cardiology, Tianjin Chest Hospital, No.261 Tai Erzhuang Road, Jinnan District, Tianjin, 300222, People's Republic of China
| | - Jing-Xian Wang
- Thoracic Clinical College, Tianjin Medical University, No.22 Qi Xiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - Yan Liang
- Thoracic Clinical College, Tianjin Medical University, No.22 Qi Xiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - Wen-Qing Li
- Thoracic Clinical College, Tianjin Medical University, No.22 Qi Xiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - Yu-Hang Wang
- Thoracic Clinical College, Tianjin Medical University, No.22 Qi Xiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - Miao-Miao Liang
- Thoracic Clinical College, Tianjin Medical University, No.22 Qi Xiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - An-Ran Jing
- Thoracic Clinical College, Tianjin Medical University, No.22 Qi Xiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - Jing Ma
- Cardiovascular Institute, Tianjin Chest Hospital, No.261 Tai Erzhuang Road, Jinnan District, Tianjin, 300222, People's Republic of China
| | - Xu Zhang
- Cardiovascular Institute, Tianjin Chest Hospital, No.261 Tai Erzhuang Road, Jinnan District, Tianjin, 300222, People's Republic of China
| | - Yin Liu
- Department of Cardiology, Tianjin Chest Hospital, No.261 Tai Erzhuang Road, Jinnan District, Tianjin, 300222, People's Republic of China.
| | - Jing Gao
- Thoracic Clinical College, Tianjin Medical University, No.22 Qi Xiangtai Road, Heping District, Tianjin, 300070, People's Republic of China.
- Cardiovascular Institute, Tianjin Chest Hospital, No.261 Tai Erzhuang Road, Jinnan District, Tianjin, 300222, People's Republic of China.
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin, People's Republic of China.
- Chest Hospital, Tianjin University, No.92 Weijin Road Nankai District, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
2
|
Liu X, Tian X, Qinghong S, Sun H, Jing L, Tang X, Guo Z, Liu Y, Wang Y, Ma J, Na R, He C, Song W, Sun W. Characterization of LC-MS based urine metabolomics in healthy children and adults. PeerJ 2022; 10:e13545. [PMID: 35762019 PMCID: PMC9233480 DOI: 10.7717/peerj.13545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
Previous studies reported that sex and age could influence urine metabolomics, which should be considered in biomarker discovery. As a consequence, for the baseline of urine metabolomics characteristics, it becomes critical to avoid confounding effects in clinical cohort studies. In this study, we provided a comprehensive lifespan characterization of urine metabolomics in a cohort of 348 healthy children and 315 adults, aged 1 to 78 years, using liquid chromatography coupled with high resolution mass spectrometry. Our results suggest that sex-dependent urine metabolites are much greater in adults than in children. The pantothenate and CoA biosynthesis and alanine metabolism pathways were enriched in early life. Androgen and estrogen metabolism showed high activity during adolescence and youth stages. Pyrimidine metabolism was enriched in the geriatric stage. Based on the above analysis, metabolomic characteristics of each age stage were provided. This work could help us understand the baseline of urine metabolism characteristics and contribute to further studies of clinical disease biomarker discovery.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Proteomics Research Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiaoyi Tian
- Department of Clinical Laboratory, National Center for Children’s Health, Beijing Children’s Hospital, Capital Medical University, Beijing, China,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, China
| | - Shi Qinghong
- China-Japan Union Hospital of Jilin University, Jilin, China
| | - Haidan Sun
- Proteomics Research Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Li Jing
- Proteomics Research Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiaoyue Tang
- Proteomics Research Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhengguang Guo
- Proteomics Research Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Ying Liu
- Department of Clinical Laboratory, National Center for Children’s Health, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Yan Wang
- Department of Clinical Laboratory, National Center for Children’s Health, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Jie Ma
- Department of Clinical Laboratory, National Center for Children’s Health, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Ren Na
- Department of Clinical Laboratory, National Center for Children’s Health, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Chengyan He
- China-Japan Union Hospital of Jilin University, Jilin, China
| | - Wenqi Song
- Department of Clinical Laboratory, National Center for Children’s Health, Beijing Children’s Hospital, Capital Medical University, Beijing, China,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, China
| | - Wei Sun
- Proteomics Research Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Lee GL, Liao TL, Wu JY, Wu KK, Kuo CC. Restoration of 5-methoxytryptophan protects against atherosclerotic chondrogenesis and calcification in ApoE -/- mice fed high fat diet. J Biomed Sci 2021; 28:74. [PMID: 34749728 PMCID: PMC8573875 DOI: 10.1186/s12929-021-00771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/28/2021] [Indexed: 11/18/2022] Open
Abstract
Background Toll-like receptor-2 (TLR2) promotes vascular smooth muscle cell (VSMC) transdifferentiation to chondrocytes and calcification in a p38 MAPK-dependent manner. Vascular 5-methoxytryptophan (5-MTP) is a newly identified factor with anti-inflammatory actions. As 5-MTP targets p38 MAPK for its actions, we postulated that 5-MTP protects against vascular chondrogenesis and calcification. Methods High-fat diet-induced advanced atherosclerosis in mice were performed to investigate the effect of 5-MTP on atherosclerotic lesions and calcification. VSMCs were used to determine the role of 5-MTP in VSMC chondrogenic differentiation and calcification. Alizarin red S and Alcian blue staining were used to measure VSMC calcification and chondrogenic differentiation, respectively. Results 5-MTP was detected in aortic tissues of ApoE−/− mice fed control chow. It was reduced in ApoE−/− mice fed high-fat diet (HFD), but was restored in ApoE−/−Tlr2−/− mice, suggesting that HFD reduces vascular 5-MTP production via TLR2. Intraperitoneal injection of 5-MTP or its analog into ApoE−/− mice fed HFD reduced aortic atherosclerotic lesions and calcification which was accompanied by reduction of chondrogenesis and calcium deposition. Pam3CSK4 (Pam3), ligand of TLR2, induced SMC phenotypic switch to chondrocytes. Pretreatment with 5-MTP preserved SMC contractile proteins and blocked Pam3-induced chondrocyte differentiation and calcification. 5-MTP inhibited HFD-induced p38 MAPK activation in vivo and Pam3-induced p38 MAPK activation in SMCs. 5-MTP suppressed HFD-induced CREB activation in aortic tissues and Pam3-induced CREB and NF-κB activation in SMCs. Conclusions These findings suggest that 5-MTP is a vascular arsenal against atherosclerosis and calcification by inhibiting TLR2–mediated SMC phenotypic switch to chondrocytes and the consequent calcification. 5-MTP exerts these effects by blocking p38 MAPK activation and inhibiting CREB and NF-κB transactivation activity. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-021-00771-1.
Collapse
Affiliation(s)
- Guan-Lin Lee
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Tsai-Lien Liao
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Jing-Yiing Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Kenneth K Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan. .,College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| | - Cheng-Chin Kuo
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan. .,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.
| |
Collapse
|
4
|
Cho JY, Cowling RT. 5-Methoxytryptophan: A game changer in the management of post-myocardial infarction? J Mol Cell Cardiol 2021; 160:71-72. [PMID: 34265275 DOI: 10.1016/j.yjmcc.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Jae Yeong Cho
- Department of Cardiovascular Medicine, Chonnam National University Medical School/Hospital, 42 Jebong-ro Dong-gu, Gwangju 61469, Republic of Korea
| | - Randy T Cowling
- Department of Medicine, Division of Cardiovascular Medicine, UC San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA.
| |
Collapse
|
5
|
Hsu WT, Tseng YH, Jui HY, Kuo CC, Wu KK, Lee CM. 5-Methoxytryptophan attenuates postinfarct cardiac injury by controlling oxidative stress and immune activation. J Mol Cell Cardiol 2021; 158:101-114. [PMID: 34087195 DOI: 10.1016/j.yjmcc.2021.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 01/20/2023]
Abstract
AIMS Myocardial infarction (MI) remains a major cause of heart failure. 5-Methoxytryptophan (5-MTP), a 5-methoxyindole metabolite of L-tryptophan, exerts anti-inflammatory and antifibrotic effects, but MI impairs the biosynthesis of cardiac 5-MTP. Therefore, we evaluated the effect of exogenous 5-MTP administration on rescuing post-MI cardiac injury. METHODS AND RESULTS After a detailed pharmacokinetic analysis of 5-MTP, Sprague Dawley rats that had undergone left anterior descending coronary artery ligation received intraperitoneal administration of either 17 mg/kg 5-MTP or saline at 0.5 and 24 h after MI. Cardiac systolic function, infarction size, and fibrosis were evaluated using echocardiography, triphenyltetrazolium chloride staining, and Masson trichrome staining, respectively. Myocardial apoptosis was analyzed by staining for caspase-3 and cardiac troponin I. 5-MTP treatment decreased the infarct area and myocardial apoptosis; attenuated systolic dysfunction and left ventricular dilatation; and reduced cardiomyocyte hypertrophy, myocardial fibrosis, and infarct expansion. Crucially, 5-MTP alleviated oxidative stress by preserving mitochondrial antioxidant enzymes and downregulating reactive oxygen species-generating NADPH oxidase isoforms and endothelin-1. Consequently, 5-MTP-treated MI rat hearts exhibited lower levels of chemokines and cytokines, namely interleukin (IL)-1β, IL-18, IL-6, C-C motif chemokine ligand (CCL)-2, and CCL5, accompanied by reduced infiltration of CD11b+ cells and CD4+ T cells. Notably, 5-MTP protected against H2O2-induced damage in HL-1 cardiomyocytes and human umbilical vein endothelial cells in vitro. CONCLUSION 5-MTP prevented post-MI cardiac injury by promoting mitochondrial stabilization and controlling redox imbalance. This cytoprotective effect ameliorated macrophage and T-cell infiltration, thus reducing the infarct size, attenuating fibrosis, and restoring myocardial function.
Collapse
Affiliation(s)
- Wan-Tseng Hsu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Hsuan Tseng
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiang-Yiang Jui
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chen-Chin Kuo
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Kenneth K Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan; College of Life Sciences, National Tsing Hua University, Hsin-Chu, Taiwan
| | - Chii-Ming Lee
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
6
|
Wu KK, Kuo CC, Yet SF, Lee CM, Liou JY. 5-methoxytryptophan: an arsenal against vascular injury and inflammation. J Biomed Sci 2020; 27:79. [PMID: 32635910 PMCID: PMC7341587 DOI: 10.1186/s12929-020-00671-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/01/2020] [Indexed: 12/21/2022] Open
Abstract
5-methoxytryptophan (5-MTP) is an endothelial factor with anti-inflammatory properties. It is synthesized from L-tryptophan via two enzymatic steps: tryptophan hydroxylase-1 (TPH-1) and hydroxyindole O-methyltransferase. Lipopolysaccharide (LPS) and pro-inflammatory cytokines suppress endothelial 5-MTP production by inhibiting TPH-1 expression. 5-MTP protects endothelial barrier function and promotes endothelial repair, while it blocks vascular smooth muscle cell migration and proliferation by inhibiting p38 MAPK activation. 5-MTP controls macrophage transmigration and activation by inhibiting p38 MAPK and NF-κB activation. 5-MTP administration attenuates arterial intimal hyperplasia, defends against systemic inflammation and prevents renal fibrosis in relevant murine models. Serum 5-MTP level is depressed in human sepsis as well as in mice with sepsis-like disorder. It is reduced in chronic kidney disease and acute myocardial infarction in humans. The reported data suggest that serum 5-MTP may be a theranostic biomarker. In summary, 5-MTP represents a new class of tryptophan metabolite which defends against inflammation and inflammation-mediated tissue damage and fibrosis. It may be a valuable lead compound for developing new drugs to treat complex human inflammatory disorders.
Collapse
Affiliation(s)
- Kenneth K Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County, 35053, Taiwan. .,College of Life Sciences, National Tsing-Hua University, Hsinchu, Taiwan. .,School of Medicine, China Medical University, Taichung, Taiwan. .,College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Cheng-Chin Kuo
- Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County, 35053, Taiwan
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County, 35053, Taiwan
| | - Chii-Ming Lee
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jun-Yang Liou
- Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County, 35053, Taiwan
| |
Collapse
|
7
|
Dou F, Miao H, Wang JW, Chen L, Wang M, Chen H, Wen AD, Zhao YY. An Integrated Lipidomics and Phenotype Study Reveals Protective Effect and Biochemical Mechanism of Traditionally Used Alisma orientale Juzepzuk in Chronic Kidney Disease. Front Pharmacol 2018; 9:53. [PMID: 29472858 PMCID: PMC5809464 DOI: 10.3389/fphar.2018.00053] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 01/15/2018] [Indexed: 01/02/2023] Open
Abstract
Alisma orientale Juzepzuk (AO) is widely used for various diuretic and nephropathic treatments in traditional Chinese medicines (TCM). In a clinical setting, AO is used as both a lipid-lowering and tubular interstitial fibrosis agent. However, the mechanisms of AO for the treatment of renal interstitial fibrosis and abnormal lipid metabolism are not well-understood. In this study, pharmacological and UPLC-HDMS-based lipidomic approaches were employed to investigate the lipid-lowering and tubular interstitial fibrosis effect of AO on rats with adenine-induced chronic kidney disease (CKD). Rats with CKD showed increased serum levels of creatinine and urea, tubular damage, and tubular interstitial fibrosis. Moreover, multiple lipid species were identified in CKD rats. Among these lipids, polyunsaturated fatty acid, eicosapentaenoic acid, 8,9-epoxyeicosatrienoic acid, and docosahexaenoic acid levels were significantly decreased in CKD rats compared to control rats. In CKD rats, up-regulation of the NF-κB pathway may impair polyunsaturated fatty acid metabolism, causing renal fibrosis. In addition, CKD rats showed significantly decreased diglyceride levels and increased triglyceride levels compared to the control group. Pathway over-representation analysis demonstrated that 30 metabolic pathways were associated with lipid species. AO treatment suppressed up-regulation of inflammation, and partly restored the deregulation of polyunsaturated fatty acids and glycerolipids metabolism. Our results indicated that AO treatment attenuated renal fibrosis by down-regulating inflammation, and mitigating lipid metabolism in CKD rats. In conclusion, this study has identified the therapeutic lipid-lowering and anti-fibrosis effects of AO on CKD.
Collapse
Affiliation(s)
- Fang Dou
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua Miao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Jing-Wen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Ming Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Hua Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Ai-Dong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| |
Collapse
|
8
|
Anderson GM, Eighmie JT. The determination of 5-methoxytryptophan in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1074-1075:124-128. [DOI: 10.1016/j.jchromb.2018.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/04/2018] [Indexed: 01/09/2023]
|
9
|
Lin YH, Kuo CC, Wu KK. Reply to letter: “5-Methoxytryptophan: A promising early marker for predicting post-myocardial infarction heart failure”. Int J Cardiol 2017; 234:100. [DOI: 10.1016/j.ijcard.2016.12.154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Yang Y, Huang WL, Yang J, Yang J, Liu XW, Yang CJ, Zeng P. 5-Methoxytryptophan: A promising early marker for predicting post-myocardial infarction heart failure. Int J Cardiol 2016; 234:99. [PMID: 28057365 DOI: 10.1016/j.ijcard.2016.12.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/22/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Ying Yang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Wei-Ling Huang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Jun Yang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443000, Hubei Province, China.
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443000, Hubei Province, China.
| | - Xiao-Wen Liu
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Chao-Jun Yang
- Department of Emergency and Critical Care Medicine, Yichang Central People's Hospital, Yichang 443000, Hubei Province, China
| | - Ping Zeng
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443000, Hubei Province, China
| |
Collapse
|