1
|
Stasek S, Zaucke F, Hoyer-Kuhn H, Etich J, Reincke S, Arndt I, Rehberg M, Semler O. Osteogenesis imperfecta: shifting paradigms in pathophysiology and care in children. J Pediatr Endocrinol Metab 2025; 38:1-15. [PMID: 39670712 DOI: 10.1515/jpem-2024-0512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024]
Abstract
The formation of functional bone requires a delicate interplay between osteogenesis and osteolysis. Disturbances in this subtle balance result in an increased risk for fractures. Besides its mechanical function, bone tissue represents a key player in the regulation of calcium homeostasis. Impaired bone formation results in bone fragility, which is especially pronounced in osteogenesis imperfecta (OI). This rare genetic disorder is characterized by frequent fractures as well as extraskeletal manifestations. The current classification of OI includes 23 distinct types. In recent years, several new mutations in different genes have been identified, although the exact pathomechanisms leading to the clinical presentation of OI often remain unclear. While bisphosphonates are still the standard of care, novel therapeutic approaches are emerging. Especially, targeted antibody therapies, originally developed for osteoporosis, are increasingly being investigated in children with OI and represent a promising approach to alleviate the consequences of impaired osteogenesis and improve quality of life in OI patients. This review aims to provide insight into the pathophysiology of OI and the consequences of distinct disease-causing mutations affecting the regulation of bone homeostasis. In this context, we describe the four most recently identified OI-causing genes and provide an update on current approaches for diagnosis and treatment.
Collapse
Affiliation(s)
- Stefanie Stasek
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Frank Zaucke
- Department of Trauma Surgery and Orthopedics, Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Heike Hoyer-Kuhn
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Julia Etich
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Susanna Reincke
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Isabell Arndt
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mirko Rehberg
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Oliver Semler
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Anderesen CK, Al-Najami I, Liu W, Orwoll E, Folkestad L. Risk of Gastrointestinal Diseases in Osteogenesis Imperfecta: A Nationwide, Register-Based Cohort Study. Calcif Tissue Int 2025; 116:15. [PMID: 39751887 DOI: 10.1007/s00223-024-01311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025]
Abstract
Osteogenesis imperfecta (OI) is a group of rare genetic disorders most commonly caused by reduced amount of biologically normal collagen type I, a structural component of the gastrointestinal tract and abdominal wall. The risk of gastrointestinal (GI) disease in individuals with OI is not well understood, despite GI complaints being frequently reported by the OI population. To investigate the risk of GI diseases in individuals with OI. A Danish nationwide register-based cohort study utilizing data from the Danish National Patient Register and the Danish National Prescription Register. All individuals registered with an OI diagnosis in Denmark from 1995 through 2018, along with a reference population matched 1:5 based on sex, birth year, and month. Sub-hazard ratios (SHR) for peptic ulcer disease, diverticular disease, gastrointestinal cancers, intestinal obstruction with ileus, constipation, abdominal wall hernia, and other reasons for abdominal discomfort. The study included 864 individuals with OI (472 women) and 4,276 in the reference population (2,332 women). The SHR was significantly increased for ulcer (3.28 [95% CI 2.21-4.28]), constipation (2.67 [1.91-3.74]), and hernia (among women: 1.85 [1.22-2.80]). Higher SHRs were also observed for inflammatory bowel disease, biliary and pancreatic diseases, appendicitis, and unspecified abdominal pain. SHRs were not statistically significantly increased for diverticular disease, gastrointestinal cancers, intestinal obstruction with ileus, kidney stones or hemorrhoid disease. Individuals with OI have a higher risk of peptic ulcer disease, constipation, hernia among women, inflammatory bowel diseases, biliary and pancreatic diseases, appendicitis, and unspecified abdominal pain, compared with the general population.
Collapse
Affiliation(s)
| | - Issam Al-Najami
- Department of Surgery, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Winnie Liu
- Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Eric Orwoll
- Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Lars Folkestad
- Department of Endocrinology, Odense University Hospital, Odense, Denmark.
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
3
|
Verdonk SJE, Storoni S, Zhytnik L, Micha D, van den Aardweg JG, Kamp O, Eekhoff EMW, Bugiani M. Case Series of 6 Fetuses With Osteogenesis Imperfecta Type II: A Retrospective Study of Heart Pathology. Pediatr Dev Pathol 2025; 28:24-30. [PMID: 39189102 PMCID: PMC11762339 DOI: 10.1177/10935266241272511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
INTRODUCTION Osteogenesis imperfecta (OI) is a rare genetic disorder characterized by bone fragility. While skeletal manifestations are well documented, few studies have explored the effect of OI on the fetal heart. This retrospective case series investigates cardiac pathology in OI type II fetuses, aiming to address this gap. METHODS Medical records and autopsy reports of 6 genetically confirmed OI type II cases were examined. Fetuses had pathogenic variants in COL1A1 or PPIB, inducing structural defects in collagen type I. In addition to hematoxylin and eosin and Elastic van Gieson staining, the expression of collagen type I, COL1A1 and COL1A2 chains was examined by immunohistochemistry. RESULTS Immunohistochemistry confirmed robust expression of collagen type I throughout the heart. Five fetuses had normal heart weight, while 1 had a low heart weight in the context of generalized growth retardation. None displayed structural heart anomalies. CONCLUSION This study reveals robust collagen type I expression in the hearts of OI type II fetuses without structural anomalies. We hypothesize that collagen type I abnormalities may not be causative factors for heart anomalies during early embryonic development. Instead, their impact may be conceivably related to an increased susceptibility to degenerative changes later in life.
Collapse
Affiliation(s)
- Sara J. E. Verdonk
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Rare Bone Disease Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Silvia Storoni
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Rare Bone Disease Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Lidiia Zhytnik
- Rare Bone Disease Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, The Netherlands
- Department of Traumatology and Orthopaedics, The University of Tartu, Tartu, Estonia
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | - Dimitra Micha
- Rare Bone Disease Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | - Joost G. van den Aardweg
- Department of Respiratory Medicine, Amsterdam University Medical Center, Academic Medical Center, Amsterdam, The Netherlands
| | - Otto Kamp
- Department of Cardiology, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands
| | - Elisabeth M. W. Eekhoff
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Rare Bone Disease Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam University Medical Center, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Misof BM, Fratzl-Zelman N. Bone Quality and Mineralization and Effects of Treatment in Osteogenesis Imperfecta. Calcif Tissue Int 2024; 115:777-804. [PMID: 39231826 DOI: 10.1007/s00223-024-01263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/10/2024] [Indexed: 09/06/2024]
Abstract
Osteogenesis imperfecta (OI) is a rare congenital bone dysplasia characterized by high fracture rates and broad variations in clinical manifestations ranging from mild to increasingly severe and perinatal lethal forms. The underlying mutations affect either the synthesis or processing of the type I procollagen molecule itself or proteins that are involved in the formation and mineralization of the collagen matrix. Consequently, the collagen forming cells, the osteoblasts, become broadly dysfunctional in OI. Strikingly, hypermineralized bone matrix seems to be a frequent feature in OI, despite the variability in clinical severity and mutations in the so far studied different forms of human OI. While the causes of the increased mineral content of the bone matrix are not fully understood yet, there is evidence that the descendants of the osteoblasts, the osteocytes, which play a critical role not only in bone remodeling, but also in mineralization and sensing of mechanical loads, are also highly dysregulated and might be of major importance in the pathogenesis of OI. In this review article, we firstly summarize findings of cellular abnormalities in osteoblasts and osteocytes, alterations of the organic matrix, as well as of the microstructural organization of bone. Secondly, we focus on the hypermineralization of the bone matrix in OI as observed in several different forms of human OI as well as in animal models, its measurement and potential mechanical implications and its effect on the bone mineral density measured by dual X-ray absorptiometry. Thirdly, we give an overview of established medication treatments of OI and new approaches with a focus of their known or possible effects on the bone material, particularly on bone matrix mineralization.
Collapse
Affiliation(s)
- Barbara M Misof
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
- Vienna Bone and Growth Center, Vienna, Austria
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria.
- Vienna Bone and Growth Center, Vienna, Austria.
| |
Collapse
|
5
|
Hald JD, Langdahl B, Folkestad L, Wekre LL, Johnson R, Nagamani SCS, Raggio C, Ralston SH, Semler O, Tosi L, Orwoll E. Osteogenesis Imperfecta: Skeletal and Non-skeletal Challenges in Adulthood. Calcif Tissue Int 2024; 115:863-872. [PMID: 38836890 PMCID: PMC11606788 DOI: 10.1007/s00223-024-01236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
Osteogenesis imperfecta (OI) is a Mendelian connective tissue disorder associated with increased bone fragility and other clinical manifestations most commonly due to abnormalities in production, structure, or post-translational modification of type I collagen. Until recently, most research in OI has focused on the pediatric population and much less attention has been directed at the effects of OI in the adult population. This is a narrative review of the literature focusing on the skeletal as well as non-skeletal manifestations in adults with OI that may affect the aging individual. We found evidence to suggest that OI is a systemic disease which involves not only the skeleton, but also the cardiopulmonary and gastrointestinal system, soft tissues, tendons, muscle, and joints, hearing, eyesight, dental health, and women's health in OI and potentially adds negative affect to health-related quality of life. We aim to guide clinicians as well as draw attention to obvious knowledge gaps and the need for further research in adult OI.
Collapse
Affiliation(s)
- Jannie Dahl Hald
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.
- Centre for Rare Diseases, Pediatric and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Bente Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lars Folkestad
- Bone and Mineral Unit, Department of Endocrinology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lena Lande Wekre
- TRS National Resource Center for Rare Disorders, Sunnaas Rehabilitation Hospital, Oslo, Norway
| | - Riley Johnson
- Bone and Mineral Research Unit, Department of Medicine, Oregon Health & Science University, Portland, USA
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas Children's Hospital, Houston, TX, 77030, USA
| | - Cathleen Raggio
- Department of Orthopedics, Hospital for Special Surgery, New York, NY, USA
| | - Stuart H Ralston
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh, EH 2XU, UK
| | - Oliver Semler
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Laura Tosi
- Division of Orthopaedics & Sports Medicine, Children's National Hospital, Washington, DC, 20010, USA
| | - Eric Orwoll
- Bone and Mineral Research Unit, Department of Medicine, Oregon Health & Science University, Portland, USA
| |
Collapse
|
6
|
Jovanovic M, Marini JC. Update on the Genetics of Osteogenesis Imperfecta. Calcif Tissue Int 2024; 115:891-914. [PMID: 39127989 PMCID: PMC11607015 DOI: 10.1007/s00223-024-01266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Osteogenesis imperfecta (OI) is a heterogeneous heritable skeletal dysplasia characterized by bone fragility and deformity, growth deficiency, and other secondary connective tissue defects. OI is now understood as a collagen-related disorder caused by defects of genes whose protein products interact with collagen for folding, post-translational modification, processing and trafficking, affecting bone mineralization and osteoblast differentiation. This review provides the latest updates on genetics of OI, including new developments in both dominant and rare OI forms, as well as the signaling pathways involved in OI pathophysiology. There is a special emphasis on discoveries of recessive mutations in TENT5A, MESD, KDELR2 and CCDC134 whose causality of OI types XIX, XX, XXI and XXI, respectively, is now established and expends the complexity of mechanisms underlying OI to overlap LRP5/6 and MAPK/ERK pathways. We also review in detail new discoveries connecting the known OI types to each other, which may underlie an eventual understanding of a final common pathway in OI cellular and bone biology.
Collapse
Affiliation(s)
- Milena Jovanovic
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Section on Adolescent Bone and Body Composition, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Folkestad L, Ralston SH. Osteogenesis Imperfecta from Bench to Bedside and from Cradle to Grave. Calcif Tissue Int 2024; 115:775-776. [PMID: 39565402 DOI: 10.1007/s00223-024-01304-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 11/21/2024]
Affiliation(s)
- Lars Folkestad
- Department of Endocrinology, Odense University Hospital, Odense, Denmark.
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Stuart H Ralston
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| |
Collapse
|
8
|
Nielsen C, Reichenbach R, Merrell D, Irwin C, Hamdy RC, Belthur MV. National Trends in Inpatient Hospital Outcomes of Children with Osteogenesis Imperfecta and the Importance of Extraskeletal Manifestations: A Kids' Inpatient Database Study. J Pediatr 2024; 274:114174. [PMID: 38945443 DOI: 10.1016/j.jpeds.2024.114174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/09/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
OBJECTIVE To investigate the extent of extraskeletal manifestations along with inpatient outcomes and complications associated with osteogenesis imperfecta (OI). STUDY DESIGN This cross-sectional study utilized the Kids' Inpatient Database as a part of the Healthcare Cost and Utilization Project to investigate inpatient hospital outcomes and management in patients with OI from 1997 through 2016. Data regarding hospital characteristics, cost of treatment, inpatient outcomes, and procedures were collected and analyzed. RESULTS There were 7291 admissions that listed OI as a diagnosis in the Kids' Inpatient Database from 1997 through 2016. Unexpectedly, more than one-third of all admissions in these children with OI presented with an extraskeletal manifestation. The rate of major complications was 3.85%. The rate of minor complications was 19.4%, most commonly respiratory problems. The mortality rate was 18.2% in the neonatal period and 1.0% in all other admissions. Total charges of hospital stay increased over the years. CONCLUSIONS We identified a striking prevalence of extraskeletal manifestations in OI along with inpatient outcomes and complications associated with OI, of which respiratory complications were predominant. We observed a significant financial burden for patients with OI and identified additional risks for financial crisis, in addition to disparities in care identified among socioeconomic groups. These data contribute to a more holistic understanding of OI from diagnosis to management.
Collapse
Affiliation(s)
- Colby Nielsen
- University of Arizona College of Medicine, Phoenix, AZ
| | - R Reichenbach
- University of Arizona College of Medicine, Phoenix, AZ
| | | | - Chase Irwin
- University of Arizona College of Medicine, Phoenix, AZ
| | - Reggie C Hamdy
- Department of Pediatric Surgery, Shriners and Montreal Children Hospital, McGill University, Montreal, QC, Canada
| | - Mohan V Belthur
- Department of Orthopedics, Phoenix Children's Hospital, Phoenix, AZ; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ; Department of Endocrinology, Phoenix Children's Hospital, Phoenix, AZ.
| |
Collapse
|
9
|
Labelle-Dumais C, Mazur C, Kaya S, Obata Y, Lee B, Acevedo C, Alliston T, Gould DB. Skeletal pathology in mouse models of Gould syndrome is partially alleviated by genetically reducing TGFβ signaling. Matrix Biol 2024; 133:1-13. [PMID: 39097038 DOI: 10.1016/j.matbio.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Skeletal defects are hallmark features of many extracellular matrix (ECM) and collagen-related disorders. However, a biological function in bone has never been defined for the highly evolutionarily conserved type IV collagen. Collagen type IV alpha 1 (COL4A1) and alpha 2 (COL4A2) form α1α1α2 (IV) heterotrimers that represent a fundamental basement membrane constituent present in every organ of the body, including the skeleton. COL4A1 and COL4A2 mutations cause Gould syndrome, a variable and clinically heterogenous multisystem disorder generally characterized by the presence of cerebrovascular disease with ocular, renal, and muscular manifestations. We have previously identified elevated TGFβ signaling as a pathological insult resulting from Col4a1 mutations and demonstrated that reducing TGFβ signaling ameliorate ocular and cerebrovascular phenotypes in Col4a1 mutant mouse models of Gould syndrome. In this study, we describe the first characterization of skeletal defects in Col4a1 mutant mice that include a developmental delay in osteogenesis and structural, biomechanical and vascular alterations of mature bones. Using distinct mouse models, we show that allelic heterogeneity influences the presentation of skeletal pathology resulting from Col4a1 mutations. Importantly, we found that TGFβ target gene expression is elevated in developing bones from Col4a1 mutant mice and show that genetically reducing TGFβ signaling partially ameliorates skeletal manifestations. Collectively, these findings identify a novel and unsuspected role for type IV collagen in bone biology, expand the spectrum of manifestations associated with Gould syndrome to include skeletal abnormalities, and implicate elevated TGFβ signaling in skeletal pathogenesis in Col4a1 mutant mice.
Collapse
Affiliation(s)
- Cassandre Labelle-Dumais
- Departments of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Courtney Mazur
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, 94143, USA; UC Berkeley/UCSF Graduate Program in Bioengineering, San Francisco, CA 94143, USA
| | - Serra Kaya
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Yoshihiro Obata
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA 92093, USA
| | - Bryson Lee
- Departments of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Claire Acevedo
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, 94143, USA; Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA 92093, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, 94143, USA; UC Berkeley/UCSF Graduate Program in Bioengineering, San Francisco, CA 94143, USA
| | - Douglas B Gould
- Departments of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, Institute for Human Genetics, Bakar Aging Research Institute, and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
10
|
Andersen JD, Lyster ML, Holst MK, Henriksen DP, Christensen A, Laursen CB, Forlino A, Folkestad L. Risk of Pulmonary Diseases in Osteogenesis Imperfecta in Denmark: A Register-Based Cohort Study. Chest 2024:S0012-3692(24)05153-5. [PMID: 39299390 DOI: 10.1016/j.chest.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a rare hereditary disease mainly resulting in reduced or altered collagen type I. Collagen type I is a major constituent of the respiratory system, and normal collagen type I is vital for pulmonary tissue function. RESEARCH QUESTION Do patients with OI have increased admission rates resulting from pulmonary diseases compared with the general population? STUDY DESIGN AND METHODS This was a register-based nationwide cohort study including all patients with OI in Denmark and a reference population. From January 1, 1995, through December 31, 2018, we evaluated the rates of admissions resulting from asthma, COPD, and pneumonia as well as the use of bronchodilator drugs and antibiotics comparing individuals with OI with the reference population. RESULTS We included 862 individuals with OI and 4,283 people from the reference population covering 15,952 and 79,471 person-years of observation, respectively, in the two cohorts. The admissions rate (incidence rate [IR]) was highest in female patients with OI aged 65 years or older, with 56.3 admissions per 1,000 person-years and 29.4 admissions per 1,000 person-years in the reference population (amounting to an admissions incident rate ratio [IRR] of 1.91 [95% CI, 1.38-2.70]). The highest admission rate in male patients with OI was found among participants aged 0 to 18 years, with an IR of 30.4 per 1,000 person-years compared with an IR of 7.7 per 1,000 person-years in the reference population (IRR, 4.92 [95% CI, 3.79-6.38]). We found a higher proportion of long-acting and short-acting bronchodilator drug users in the OI cohort, but no increased use of antibiotics. INTERPRETATION Overall, the admission rates for respiratory diseases were low in the OI cohort, but a higher relative risk of hospitalizations resulting from respiratory disease compared with the general population. Timely diagnosis and treatment of respiratory complications in individuals with OI is warranted.
Collapse
Affiliation(s)
| | | | | | | | - Anders Christensen
- Department of Internal Medicine, Hospital of Southern Denmark, Sønderborg, Denmark
| | - Christian B Laursen
- Department of Respiratory Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Lars Folkestad
- Department of Endocrinology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
11
|
Shih CA, Li CC, Chang YF, Hwang JS, Tsai MC, Chou YY, Lin CJ, Huang MT, Hong CK, Tai TW, Wu CH. Demographics and medical burden of osteogenesis imperfecta: a nationwide database analysis. Osteoporos Int 2024; 35:1185-1193. [PMID: 38563961 DOI: 10.1007/s00198-024-07051-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
The epidemiological data on osteogenesis imperfecta (OI) in Asia is limited. This study, representing the first comprehensive epidemiological investigation on OI in Taiwan, reveals high medical resource utilization and underscores the importance of early diagnosis to enhance care quality. INTRODUCTION This study examines osteogenesis imperfecta, a hereditary connective tissue disorder causing pediatric fractures and limb deformities, using a nationwide database from Taiwan to analyze clinical features and medical burden. METHODS The study identified validated OI patients from the Catastrophic Illness Registry in the National Health Insurance Research Database from 2008 to 2019. Demographic data and medical resource utilization were analyzed. A multivariate Cox model assessed the influence of sex, validation age, and comorbidities. RESULTS 319 OI patients (M/F = 153/166) were identified, with 58% validated before age 20. Prevalence and incidence were 0.8-1.3/100,000 and 0.02-0.09/100,000, respectively, with higher rates in the pediatric demographic. In the study period, 69.6% of the patients had admission history, primarily to pediatric and orthopedic wards. The median admission number was 3, with a median length of stay of 12 days and a median inpatient cost of approximately 3,163 USD during the period. Lower limb fractures were the main reason for hospitalization. 57% of OI patients received bisphosphonate treatment. The leading causes of mortality were OI-related deaths, neurovascular disease, and cardiovascular disease. The median age of validation in the non-survival group was significantly higher compared to the survival group (33 vs. 14 years), and patients validated during childhood required more inpatient fracture surgeries than those validated during adulthood. CONCLUSION This study provides comprehensive real-world evidence on the clinical characteristics and high medical resource utilization of OI patients in a low prevalence region like Taiwan. Early diagnosis is crucial for improving care quality and enhancing health outcomes.
Collapse
Affiliation(s)
- Chien-An Shih
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Medical Device R & D Core Laboratory, National Cheng Kung University Hospital, Tainan, Taiwan
- Department of Orthopedics, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Chun Li
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Family Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yin-Fan Chang
- Department of Family Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Gerontology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jawl-Shan Hwang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Meng-Che Tsai
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Yin Chou
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chii-Jeng Lin
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Medical Device R & D Core Laboratory, National Cheng Kung University Hospital, Tainan, Taiwan
- Department of Orthopedics, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Orthopedics, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Ming-Tung Huang
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Kai Hong
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ta-Wei Tai
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Medical Device R & D Core Laboratory, National Cheng Kung University Hospital, Tainan, Taiwan.
| | - Chih-Hsing Wu
- Department of Family Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Institute of Gerontology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
12
|
Gazzotti S, Sassi R, Aparisi Gómez MP, Moroni A, Brizola E, Miceli M, Bazzocchi A. Imaging in osteogenesis imperfecta: Where we are and where we are going. Eur J Med Genet 2024; 68:104926. [PMID: 38369057 DOI: 10.1016/j.ejmg.2024.104926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/02/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Osteogenesis imperfecta (OI) is a rare phenotypically and genetically heterogeneous group of inherited skeletal dysplasias. The hallmark features of OI include bone fragility and susceptibility to fractures, bone deformity, and diminished growth, along with a plethora of associated secondary features (both skeletal and extraskeletal). The diagnosis of OI is currently made on clinical grounds and may be confirmed by genetic testing. However, imaging remains pivotal in the evaluation of this disease. The aim of this article is to review the current role played by the various radiologic techniques in the diagnosis and monitoring of OI in the postnatal setting as well as to discuss recent advances and future perspectives in OI imaging. Conventional Radiography and Dual-energy X-ray Absorptiometry (DXA) are currently the two most used imaging modalities in OI. The cardinal radiographic features of OI include generalized osteopenia/osteoporosis, bone deformities, and fractures. DXA is currently the most available technique to assess Bone Mineral Density (BMD), specifically areal BMD (aBMD). However, DXA has important limitations and cannot fully characterize bone fragility in OI based on aBMD. Novel DXA-derived parameters, such as Trabecular Bone Score (TBS), may provide further insight into skeletal changes induced by OI, but evidence is still limited. Techniques like Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) can be useful as problem-solvers or in specific settings, including the evaluation of cranio-cervical abnormalities. Recent evidence supports the use of High-Resolution peripheral Quantitative Computed Tomography (HR-pQCT) as a promising tool to improve the characterization of bone fragility in OI. However, HR-pQCT remains a primarily research technique at present. Quantitative Computed Tomography (QCT) is an alternative to DXA for the determination of BMD at central sites, with distinct advantages but considerably higher radiation exposure. Quantitative Ultrasound (QUS) is a portable, inexpensive, and radiation-free modality that may complement DXA evaluation, providing information on bone quality. However, evidence of usefulness of QUS in OI is poor. Radiofrequency Echographic Multi Spectrometry (REMS) is an emerging non-ionizing imaging method that holds promise for the diagnosis of low BMD and for the prediction of fracture risk, but so far only one published study has investigated its role in OI. To conclude, several different radiologic techniques have proven to be effective in the diagnosis and monitoring of OI, each with their own specificities and peculiarities. Clinicians should be aware of the strategic role of the various modalities in the different phases of the patient care process. In this scenario, the development of international guidelines including recommendations on the role of imaging in the diagnosis and monitoring of OI, accompanied by continuous active research in the field, could significantly improve the standardization of patient care.
Collapse
Affiliation(s)
- S Gazzotti
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - R Sassi
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - M P Aparisi Gómez
- Department of Radiology, Te Toka Tumai Auckland (Auckland District Health Board), Auckland, New Zealand; Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, Waipapa Taumata Rau | University of Auckland, Auckland, New Zealand; Department of Radiology, IMSKE, Valencia, Spain
| | - A Moroni
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - E Brizola
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - M Miceli
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - A Bazzocchi
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
13
|
Mei Y, Jiang Y, Shen L, Meng Z, Zhang Z, Zhang H. Echocardiographic abnormalities and joint hypermobility in Chinese patients with Osteogenesis imperfecta. Orphanet J Rare Dis 2024; 19:116. [PMID: 38475860 DOI: 10.1186/s13023-024-03089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Very little is known about the characteristics of echocardiographic abnormalities and joint hypermobility in Chinese patients with osteogenesis imperfecta (OI). The aim of our study was to investigate the characteristics, prevalence and correlation of echocardiographic abnormalities and joint hypermobility in Chinese patients with OI. METHODS A cross-sectional comparative study was conducted in pediatric and adult OI patients who were matched in age and sex with healthy controls. Transthoracic echocardiography was performed in all patients and controls, and parameters were indexed for body surface area (BSA). The Beighton score was used to evaluate the degree of joint hypermobility. RESULTS A total of 48 patients with OI (25 juveniles and 23 adults) and 129 age- and sex-matched healthy controls (79 juveniles and 50 adults) were studied. Four genes (COL1A1, COL1A2, IFITM5, and WNT1) and 39 different mutation loci were identified in our study. Mild valvular regurgitation was the most common cardiac abnormality: mild mitral and tricuspid regurgitation was found in 12% and 36% of pediatric OI patients, respectively; among 23 OI adults, 13% and 17% of patients had mild mitral and tricuspid regurgitation, respectively, and 4% had mild aortic regurgitation. In multiple regression analysis, OI was the key predictor of left atrium diameter (LAD) (β=-3.670, P < 0.001) and fractional shortening (FS) (β = 3.005, P = 0.037) in juveniles, whereas for adults, OI was a significant predictor of LAD (β=-3.621, P < 0.001) and left ventricular mass (LVM) (β = 58.928, P < 0.001). The percentages of generalized joint hypermobility in OI juveniles and adults were 56% and 20%, respectively. Additionally, only in the OI juvenile group did the results of the Mann‒Whitney U test show that the degree of joint hypermobility was significantly different between the echocardiographic normal and abnormal groups (P = 0.004). CONCLUSIONS Mild valvular regurgitation was the most common cardiac abnormality in both OI juveniles and adults. Compared with OI adults, OI juveniles had more prevalent and wider joint hypermobility. Echocardiographic abnormalities may imply that the impairment of type I collagen is more serious in OI. Baseline echocardiography should be performed in OI patients as early as possible.
Collapse
Affiliation(s)
- Yazhao Mei
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Yunyi Jiang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Li Shen
- Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Zheying Meng
- Department of Ultrasound, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
| | - Zhenlin Zhang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
| | - Hao Zhang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
| |
Collapse
|
14
|
Verdonk SJE, Storoni S, Micha D, van den Aardweg JG, Versacci P, Celli L, de Vries R, Zhytnik L, Kamp O, Bugiani M, Eekhoff EMW. Is Osteogenesis Imperfecta Associated with Cardiovascular Abnormalities? A Systematic Review of the Literature. Calcif Tissue Int 2024; 114:210-221. [PMID: 38243143 PMCID: PMC10902066 DOI: 10.1007/s00223-023-01171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/27/2023] [Indexed: 01/21/2024]
Abstract
Osteogenesis imperfecta (OI) is a rare genetic disorder caused by abnormal collagen type I production. While OI is primarily characterized by bone fragility and deformities, patients also have extraskeletal manifestations, including an increased risk of cardiovascular disease. This review provides a comprehensive overview of the literature on cardiovascular diseases in OI patients in order to raise awareness of this understudied clinical aspect of OI and support clinical guidelines. In accordance with the PRISMA guidelines, a systematic literature search in PubMed, Embase, Web of Science and Scopus was conducted that included articles from the inception of these databases to April 2023. Valvular disease, heart failure, atrial fibrillation, and hypertension appear to be more prevalent in OI than in control individuals. Moreover, a larger aortic root was observed in OI compared to controls. Various cardiovascular diseases appear to be more prevalent in OI than in controls. These cardiovascular abnormalities are observed in all types of OI and at all ages, including young children. As there are insufficient longitudinal studies, it is unknown whether these abnormalities are progressive in nature in OI patients. Based on these findings, we would recommend referring individuals with OI to a cardiologist with a low-threshold.
Collapse
Affiliation(s)
- Sara J E Verdonk
- Department of Endocrinology and Metabolism, Amsterdam UMC Location Vrije Universiteit, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Rare Bone Disease Center, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Silvia Storoni
- Department of Endocrinology and Metabolism, Amsterdam UMC Location Vrije Universiteit, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Rare Bone Disease Center, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Dimitra Micha
- Rare Bone Disease Center, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | - Joost G van den Aardweg
- Department of Respiratory Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Paolo Versacci
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Luca Celli
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Ralph de Vries
- Medical Library, Vrije Universiteit, Amsterdam, The Netherlands
| | - Lidiia Zhytnik
- Rare Bone Disease Center, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Department of Traumatology and Orthopeadics, University of Tartu, Tartu, Estonia
| | - Otto Kamp
- Department of Cardiology, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Elisabeth M W Eekhoff
- Department of Endocrinology and Metabolism, Amsterdam UMC Location Vrije Universiteit, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Rare Bone Disease Center, Amsterdam, The Netherlands.
- Amsterdam Movement Sciences, Amsterdam, The Netherlands.
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Mordenti M, Boarini M, Banchelli F, Antonioli D, Corsini S, Gnoli M, Locatelli M, Pedrini E, Staals E, Trisolino G, Lanza M, Sangiorgi L. Osteogenesis imperfecta: a cross-sectional study of skeletal and extraskeletal features in a large cohort of Italian patients. Front Endocrinol (Lausanne) 2024; 14:1299232. [PMID: 38274230 PMCID: PMC10809148 DOI: 10.3389/fendo.2023.1299232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction The present study aims to describe a large cohort of Italian patients affected by osteogenesis imperfecta, providing a picture of the clinical bony and non-bony features and the molecular background to improve knowledge of the disease to inform appropriate management in clinical practice. Methods A total of 568 subjects (from 446 unrelated Italian families) affected by osteogenesis imperfecta who received outpatient care at Istituto Ortopedico Rizzoli from 2006 to 2021 were considered in the present study. Results Skeletal and extraskeletal features were analyzed showing a lower height (mean z-scores equal to -1.54 for male patients and -1.47 for female patients) compared with the general Italian population. Half of the patient population showed one or more deformities, and most of the patients had suffered a relatively low number of fractures (<10). An alteration in the sclera color was identified in 447 patients. Similarly, several extraskeletal features, like deafness, dental abnormalities, and cardiac problems, were investigated. Additionally, inheritance and genetic background were evaluated, showing that most of the patients have a positive family history and the majority of pathogenic variants detected were on collagen genes, as per literature. Conclusion This study supports the definition of a clear picture of the heterogeneous clinical manifestations leading to variable severity in terms of skeletal and extra-skeletal traits and of the genetic background of an Italian population of osteogenesis imperfecta patients. In this perspective, this clearly highlights the crucial role of standardized and structured collection of high-quality data in disease registries particularly in rare disease scenarios, helping clinicians in disease monitoring and follow-up to improve clinical practice.
Collapse
Affiliation(s)
- Marina Mordenti
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Manila Boarini
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Federico Banchelli
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Diego Antonioli
- Unit of Pediatrics Orthopedics and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Serena Corsini
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Maria Gnoli
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Manuela Locatelli
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elena Pedrini
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Eric Staals
- 3Orthopedic and Traumatological Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giovanni Trisolino
- Unit of Pediatrics Orthopedics and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Marcella Lanza
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luca Sangiorgi
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
16
|
Spaziani G, Surace FC, Girolami F, Bianco F, Bucciarelli V, Bonanni F, Bennati E, Arcieri L, Favilli S. Hereditary Thoracic Aortic Diseases. Diagnostics (Basel) 2024; 14:112. [PMID: 38201421 PMCID: PMC10795846 DOI: 10.3390/diagnostics14010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Advances in both imaging techniques and genetics have led to the recognition of a wide variety of aortic anomalies that can be grouped under the term 'hereditary thoracic aortic diseases'. The present review aims to summarize this very heterogeneous population's clinical, genetic, and imaging characteristics and to discuss the implications of the diagnosis for clinical counselling (on sports activity or pregnancy), medical therapies and surgical management.
Collapse
Affiliation(s)
- Gaia Spaziani
- Pediatric and Transition Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (F.G.); (E.B.); (S.F.)
| | - Francesca Chiara Surace
- Cardiovascular Sciences Department, AOU “Ospedali Riuniti”, 60126 Ancona, Italy; (F.C.S.); (F.B.); (V.B.); (L.A.)
| | - Francesca Girolami
- Pediatric and Transition Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (F.G.); (E.B.); (S.F.)
| | - Francesco Bianco
- Cardiovascular Sciences Department, AOU “Ospedali Riuniti”, 60126 Ancona, Italy; (F.C.S.); (F.B.); (V.B.); (L.A.)
| | - Valentina Bucciarelli
- Cardiovascular Sciences Department, AOU “Ospedali Riuniti”, 60126 Ancona, Italy; (F.C.S.); (F.B.); (V.B.); (L.A.)
| | - Francesca Bonanni
- Department of Experimental and Clinical Medicine, School of Cardiology, Faculty of Medicine, University of Study of Florence, 50121 Florence, Italy;
| | - Elena Bennati
- Pediatric and Transition Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (F.G.); (E.B.); (S.F.)
| | - Luigi Arcieri
- Cardiovascular Sciences Department, AOU “Ospedali Riuniti”, 60126 Ancona, Italy; (F.C.S.); (F.B.); (V.B.); (L.A.)
| | - Silvia Favilli
- Pediatric and Transition Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (F.G.); (E.B.); (S.F.)
| |
Collapse
|
17
|
Evin F, Aydın D, Levent E, Özen S, Darcan Ş, Gökşen D. A case-control study of early-stage radiological markers of endothelial dysfunction and cardiovascular findings in patients with osteogenesis imperfecta: genotype-phenotype correlations. J Pediatr Endocrinol Metab 2023; 36:1161-1168. [PMID: 37859607 DOI: 10.1515/jpem-2023-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVES Osteogenesis imperfecta (OI) is a disease caused by defective collagen synthesis. Collagen type 1 is found in many structures in the cardiovascular system. Endothelial dysfunction, which develops prior to the emergence of structural and clinical signs of atherosclerosis, is believed to play a key role in atherogenesis. Endothelial dysfunction may be detected presymptomatically by non-invasive radiologic methods, such as flow-mediated dilatation (FMD) and carotid intima-media thickness (CIMT). These modalities may provide early indicators of endothelial dysfunction. This cross-sectional comparative study aimed to investigate early-stage radiological markers of endothelial dysfunction and cardiovascular diseases in OI patients and healthy controls and to investigate the correlation of findings with OI genotype. METHODS Thirty patients diagnosed with OI were paired with thirty healthy age- and gender-matched controls and echocardiogram findings were compared. RESULTS None of the patients had known underlying cardiovascular disease. The mean age was 13.18 ± 2.91 years. According to Sillence classification, 15 patients had type 1 OI, 10 had type III, and 5 had type IV. Mean CIMT in the OI group was higher in the control group (OI group: 0.42 ± 0.06 vs. healthy controls: 0.34 ± 0.04 mm, p<0.01), and mean FMD percent was lower in the patient group (p<0.01). Left ventricular ejection fraction was 78.97 ± 10.32 vs. 77.56 ± 8.50 %, (OI group: 7.00 ± 3.06 vs. healthy controls: 12.14 ± 1.99, p=0.56), and fractional shortening was 42.68 ± 11.94 vs. 40.23 ± 7.99 %, (p=0.35), in OI patients and controls, respectively. CONCLUSIONS Pediatric patients with OI without clinical signs of cardiovascular abnormality had significantly worse CIMT and FMD findings than healthy controls. However, no difference was determined when comparing left ventricular ejection fraction or fractional shortening. OI patients may need to be screened for cardiovascular system complications starting from an early age.
Collapse
Affiliation(s)
- Ferda Evin
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, Ege University, Izmir, Türkiye
| | - Derya Aydın
- Division of Pediatric Cardiology, Department of Pediatrics, School of Medicine, Ege University, Izmir, Türkiye
| | - Ertürk Levent
- Division of Pediatric Cardiology, Department of Pediatrics, School of Medicine, Ege University, Izmir, Türkiye
| | - Samim Özen
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, Ege University, Izmir, Türkiye
| | - Şükran Darcan
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, Ege University, Izmir, Türkiye
| | - Damla Gökşen
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, Ege University, Izmir, Türkiye
| |
Collapse
|
18
|
Lee BW, Caporizzo MA, Chen CY, Bedi KC, Peyster EG, Prosser BL, Margulies KB, Vite A. Adult human cardiomyocyte mechanics in osteogenesis imperfecta. Am J Physiol Heart Circ Physiol 2023; 325:H814-H821. [PMID: 37566108 PMCID: PMC10659261 DOI: 10.1152/ajpheart.00391.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Osteogenesis imperfecta (OI) is an extracellular matrix disorder characterized by defects in collagen-1 transport or synthesis, resulting in bone abnormalities. Although reduced collagen in OI hearts has been associated with reduced myocardial stiffness and left ventricular remodeling, its impact on cardiomyocyte (CM) function has not been studied. Here, we explore the tissue-level and CM-level properties of a heart from a deceased organ donor with OI type I. Proteomics and histology confirmed strikingly low expression of collagen 1. Trabecular stretch confirmed low stiffness on the tissue level. However, CMs retained normal viscoelastic properties as revealed by nanoindentation. Interestingly, OI CMs were hypercontractile relative to nonfailing controls after 24 h of culture. In response to 48 h of culture on surfaces with physiological (10 kPa) and pathological (50 kPa) stiffness, OI CMs demonstrated a greater reduction in contractility than nonfailing CMs, suggesting that OI CMs may have an impaired stress response. Levels of detyrosinated α-tubulin, known to be responsive to extracellular stiffness, were reduced in OI CMs. Together these data confirm multiple CM-level adaptations to low stiffness that extend our understanding of OI in the heart and how CMs respond to extracellular stiffness.NEW & NOTEWORTHY In a rare donation of a heart from an individual with osteogenesis imperfecta (OI), we explored cardiomyocyte (CM) adaptations to low stiffness. This represents the first assessment of cardiomyocyte mechanics in OI. The data reveal the hypercontractility of OI CMs with rapid rundown when exposed to acute stiffness challenges, extending our understanding of OI. These data demonstrate that the impact of OI on myocardial mechanics includes cardiomyocyte adaptations beyond known direct effects on the extracellular matrix.
Collapse
Affiliation(s)
- Benjamin W Lee
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Matthew A Caporizzo
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Christina Y Chen
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Kenneth C Bedi
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Eliot G Peyster
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Benjamin L Prosser
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Kenneth B Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alexia Vite
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
19
|
Billich N, O'Brien K, Fredwall SO, Lee M, Savarirayan R, Davidson ZE. A scoping review of nutrition issues and management strategies in individuals with skeletal dysplasia. Genet Med 2023; 25:100920. [PMID: 37330695 DOI: 10.1016/j.gim.2023.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023] Open
Abstract
PURPOSE Skeletal dysplasia are heterogeneous conditions affecting the skeleton. Common nutrition issues include feeding difficulties, obesity, and metabolic complications. This systematic scoping review aimed to identify key nutrition issues, management strategies, and gaps in knowledge regarding nutrition in skeletal dysplasia. METHODS The databases Ovid MEDLINE, Ovid EMBASE, Ebsco CINAHL, Scopus, and Cochrane Central Register of Controlled Trials and Database of Systematic Reviews were searched. Reference lists and citing literature for included studies were searched. Eligible studies included participants with skeletal dysplasia and described: anthropometry, body composition, nutrition-related biochemistry, clinical issues, dietary intake, measured energy or nutrition requirements, or nutrition interventions. RESULTS The literature search identified 8509 references from which 138 studies were included (130 observational, 3 intervention, 2 systematic reviews, and 3 clinical guidelines). Across 17 diagnoses identified, most studies described osteogenesis imperfecta (n = 50) and achondroplasia or hypochondroplasia (n = 47). Nutrition-related clinical issues, biochemistry, obesity, and metabolic complications were most commonly reported, and few studies measured energy requirements (n = 5). CONCLUSION Nutrition-related comorbidities are documented in skeletal dysplasia; yet, evidence to guide management is scarce. Evidence describing nutrition in rarer skeletal dysplasia conditions is lacking. Advances in skeletal dysplasia nutrition knowledge is needed to optimize broader health outcomes.
Collapse
Affiliation(s)
- Natassja Billich
- Murdoch Children's Research Institute, Parkville, VIC, Australia; The University of Queensland, St Lucia, QLD, Australia.
| | - Katie O'Brien
- Royal Children's Hospital, Parkville, VIC, Australia; Monash University, Clayton, VIC, Australia
| | - Svein O Fredwall
- Murdoch Children's Research Institute, Parkville, VIC, Australia; TRS National Resource Centre for Rare Disorders, Sunnaas Rehabiliation Hospital, Nesodden, Norway
| | | | - Ravi Savarirayan
- Murdoch Children's Research Institute, Parkville, VIC, Australia; University of Melbourne, Parkville, VIC, Australia
| | - Zoe E Davidson
- Murdoch Children's Research Institute, Parkville, VIC, Australia; Monash University, Clayton, VIC, Australia
| |
Collapse
|
20
|
Rapoport M, Bober MB, Raggio C, Wekre LL, Rauch F, Westerheim I, Hart T, van Welzenis T, Mistry A, Clancy J, Booth L, Prince S, Semler O. The patient clinical journey and socioeconomic impact of osteogenesis imperfecta: a systematic scoping review. Orphanet J Rare Dis 2023; 18:34. [PMID: 36814274 PMCID: PMC9945474 DOI: 10.1186/s13023-023-02627-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a rare heritable connective tissue disorder primarily characterised by skeletal deformity and fragility, and an array of secondary features. The purpose of this review was to capture and quantify the published evidence relating specifically to the clinical, humanistic, and economic impact of OI on individuals, their families, and wider society. METHODS A systematic scoping review of 11 databases (MEDLINE, MEDLINE in-progress, EMBASE, CENTRAL, PsycINFO, NHS EED, CEA Registry, PEDE, ScHARRHUd, Orphanet and Google Scholar), supplemented by hand searches of grey literature, was conducted to identify OI literature published 1st January 1995-18th December 2021. Searches were restricted to English language but without geographical limitations. The quality of included records was assessed using the AGREE II checklist and an adapted version of the JBI cross-sectional study checklist. RESULTS Of the identified 7,850 records, 271 records of 245 unique studies met the inclusion criteria; overall, 168 included records examined clinical aspects of OI, 67 provided humanistic data, 6 reported on the economic impact of OI, and 30 provided data on mixed outcomes. Bone conditions, anthropometric measurements, oral conditions, diagnostic techniques, use of pharmacotherapy, and physical functioning of adults and children with OI were well described. However, few records included current care practice, diagnosis and monitoring, interactions with the healthcare system, or transition of care across life stages. Limited data on wider health concerns beyond bone health, how these concerns may impact health-related quality of life, in particular that of adult men and other family members, were identified. Few records described fatigue in children or adults. Markedly few records provided data on the socioeconomic impact of OI on patients and their caregivers, and associated costs to healthcare systems, and wider society. Most included records had qualitative limitations. CONCLUSION Despite the rarity of OI, the volume of recently published literature highlights the breadth of interest in the OI field from the research community. However, significant data gaps describing the experience of OI for individuals, their families, and wider society warrant further research to capture and quantify the full impact of OI.
Collapse
Affiliation(s)
| | | | | | - Lena Lande Wekre
- TRS National Resource Center for Rare Disorders, Sunnaas Rehabilitation Hospital, Bjørnemyr, Nesodden, Norway
| | | | | | - Tracy Hart
- Osteogenesis Imperfecta Foundation, Gaithersburg, MD, USA
| | | | | | | | - Lucy Booth
- Wickenstones Ltd, Abingdon, Oxfordshire, UK
| | | | | |
Collapse
|
21
|
Liang H, Wang J, Ding Y, Wang C. Anesthetic considerations for inadvertent severe hypertension in a patient with osteogenesis imperfecta during the perioperative period. DIE ANAESTHESIOLOGIE 2022; 71:162-164. [PMID: 35987898 DOI: 10.1007/s00101-022-01191-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Osteogenesis imperfecta is a rare genetic syndrome caused by mutations of bone matrix protein type I collagen coding genes, which is characterized by increased bone fragility and recurrent fractures. We report a patient undergoing general anesthesia with additional nerve block for wrist and hip fracture repair. Preoperatively, we were confronted with an inadvertent severe hypertension without significant triggers and history, which prompted us to be vigilant for hypertensive emergencies due to the fragile vessel regulation capacity in osteogenesis imperfecta patients.
Collapse
Affiliation(s)
- Hao Liang
- Department of Anesthesiology, The No.1 Central Hospital of Baoding City, Northern Greatwall Street 320#, 071000, Baoding, Hebei, China
| | - Jingyan Wang
- Department of ENT, Affiliated Hospital of Hebei University, 071000, Baoding, Hebei, China
| | - Yanling Ding
- Department of Anesthesiology, The No.1 Central Hospital of Baoding City, Northern Greatwall Street 320#, 071000, Baoding, Hebei, China
| | - Chunguang Wang
- Department of Anesthesiology, The No.1 Central Hospital of Baoding City, Northern Greatwall Street 320#, 071000, Baoding, Hebei, China.
| |
Collapse
|
22
|
Takeda R, Yamaguchi T, Hayashi S, Sano S, Kawame H, Kanki S, Taketani T, Yoshimura H, Nakamura Y, Kosho T. Clinical and molecular features of patients with COL1-related disorders: Implications for the wider spectrum and the risk of vascular complications. Am J Med Genet A 2022; 188:2560-2575. [PMID: 35822426 PMCID: PMC9545637 DOI: 10.1002/ajmg.a.62887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/14/2022] [Accepted: 06/19/2022] [Indexed: 01/24/2023]
Abstract
Abnormalities in type I procollagen genes (COL1A1 and COL1A2) are responsible for hereditary connective tissue disorders including osteogenesis imperfecta (OI), specific types of Ehlers-Danlos syndrome (EDS), and COL1-related overlapping disorder (C1ROD). C1ROD is a recently proposed disorder characterized by predominant EDS symptoms of joint and skin laxity and mild OI symptoms of bone fragility and blue sclera. Patients with C1ROD do not carry specific variants for COL1-related EDS, including classical, vascular, cardiac-valvular, and arthrochalasia types. We describe clinical and molecular findings of 23 Japanese patients with pathogenic or likely pathogenic variants of COL1A1 or COL1A2, who had either OI-like or EDS-like phenotypes. The final diagnoses were OI in 17 patients, classical EDS in one, and C1ROD in five. The OI group predominantly experienced recurrent bone fractures, and the EDS group primarily showed joint hypermobility and skin hyperextensibility, though various clinical and molecular overlaps between OI, COL1-related EDS, and C1ROD as well as intrafamilial phenotypic variabilities were present. Notably, life-threatening vascular complications (vascular dissections, arterial aneurysms, subarachnoidal hemorrhages) occurred in seven patients (41% of those aged >20 years) with OI or C1ROD. Careful lifelong surveillance and intervention regarding bone and vascular fragility could be required.
Collapse
Affiliation(s)
- Ryojun Takeda
- Department of Medical GeneticsShinshu University School of MedicineMatsumotoJapan,Division of Medical GeneticsNagano Children's HospitalAzuminoJapan,Life Science Research CenterNagano Children's HospitalAzuminoJapan
| | - Tomomi Yamaguchi
- Department of Medical GeneticsShinshu University School of MedicineMatsumotoJapan,Center for Medical GeneticsShinshu University HospitalMatsumotoJapan,Division of Clinical SequencingShinshu University School of MedicineMatsumotoJapan
| | | | - Shinichirou Sano
- Division of Endocrinology and MetabolismShizuoka Children's HospitalShizuokaJapan
| | - Hiroshi Kawame
- Division of Genomic Medicine Support and Genetic Counseling, Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan,Miyagi Children's HospitalSendaiJapan,Division of Clinical GeneticsJikei University HospitalTokyoJapan
| | - Sachiko Kanki
- Department of Thoracic and Cardiovascular SurgeryOsaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Takeshi Taketani
- Department of PediatricsShimane University Faculty of MedicineIzumoJapan
| | - Hidekane Yoshimura
- Department of OtorhinolaryngologyShinshu University School of MedicineMatsumotoJapan
| | - Yukio Nakamura
- Department of Orthopaedic SurgeryShinshu University School of MedicineMatsumotoJapan
| | - Tomoki Kosho
- Department of Medical GeneticsShinshu University School of MedicineMatsumotoJapan,Division of Medical GeneticsNagano Children's HospitalAzuminoJapan,Center for Medical GeneticsShinshu University HospitalMatsumotoJapan,Division of Clinical SequencingShinshu University School of MedicineMatsumotoJapan,Research Center for Supports to Advanced ScienceShinshu UniversityMatsumotoJapan
| |
Collapse
|
23
|
Zhao D, Liu Y, Liu J, Hu J, Zhang Q, Wang O, Jiang Y, Xia W, Xing X, Li M. Cardiovascular abnormalities and its correlation with genotypes of children with osteogenesis imperfecta. Front Endocrinol (Lausanne) 2022; 13:1004946. [PMID: 36339400 PMCID: PMC9632612 DOI: 10.3389/fendo.2022.1004946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Osteogenesis imperfecta (OI) is a rare disorder of abnormal production or modification of type I collagen, which is caused by mutations in COL1A1, COL1A2 or other genes. We investigate the cardiac abnormalities and its correlation with pathogenic mutations in OI children. METHODS A cross-sectional comparative study was completed in a relatively large sample of OI children, who were matched in body surface area (BSA) with healthy controls. All echocardiography was performed by experienced cardiologists using Vivid 7 equipment (GE Medical Systems, Horton, Norway). The resting standard 12-lead electrocardiogram (ECG) were obtained in OI patients by FX-8600 machine. Skeletal phenotypes of OI patients were evaluated, including information of bone fractures, deformities, motility, and bone mineral density (BMD). Pathogenic mutations of OI were detected by a next-generation sequencing panel and confirmed by Sanger sequencing. RESULTS A total of 69 OI children and 42 healthy children matched in BSA were enrolled. Abnormalities of echocardiography were found in 6 OI children, including enlarged left atrium (n=5), increased internal diameter of the left ventricle (n=1), who all carried the COL1A1 mutation. Mild regurgitation of mitral or tricuspid valves was observed in 26 OI patients. Abnormal ECG manifestations were found in 8 OI children, including deep Q wave, T wave change, premature ventricular complexes, short P-R interval, incomplete bundle branch block and high voltage of left ventricular. Compared with healthy controls, OI children had significant larger values in the main pulmonary artery (1.84 vs 1.60 cm, P < 0.01), left atrial diameter (2.58 vs 2.11 cm, P < 0.001), left ventricular internal dimension at end-diastolic (LVEDd) (3.85 vs 3.50 cm, P < 0.05) and lower left ventricular ejection fraction (LVEF) (68.40% vs 71.74%, P < 0.01). Moreover, OI patients with COL1A1 mutation tended to have greater main pulmonary artery, larger diameters of left atrial and LVEDd, and lower LVEF than healthy controls. COL1A1 mutation was correlated to dilated MPA (β = 1.557, P < 0.01), LAD (β = 3.915, P < 0.001), and LVEDd (β = 2.714, P < 0.01), and decreased LVEF (β = -3.249, P < 0.01). CONCLUSIONS Cardiovascular alterations were identified in OI children, including increased dimensions of the main pulmonary artery and left chamber, and low LVEF. The cardiovascular abnormalities seemed to be correlated to COL1A1 mutation and defects of type I collagen, which expanded our understandings of the cardiac phenotypes of OI children.
Collapse
Affiliation(s)
- Dichen Zhao
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongtai Liu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jidong Liu
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Hu
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Zhang
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ou Wang
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Jiang
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weibo Xia
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoping Xing
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Li
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Mei Li,
| |
Collapse
|
24
|
Andersen JD, Folkestad L, Hald JD, Harsløf T, Langdahl BL, Abrahamsen B. Osteoarthritis in osteogenesis imperfecta: A nationwide register-based cohort study. Bone 2022; 154:116222. [PMID: 34597857 DOI: 10.1016/j.bone.2021.116222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Osteogenesis Imperfecta (OI) is a genetic disease characterized by skeletal fragility. Collagen type 1 is found in many tissues and collagen abnormalities may result in organ specific symptomatology. Musculoskeletal pain is a known issue for patients with OI, osteoarthritis (OA) can be a likely cause. Only few studies have investigated the relationship between OI and OA but demonstrated a greater propensity in OI patients to develop rapidly progressing OA. Therefore, we wanted to investigate if OA is more frequent in patients with OI compared to the general population. OBJECTIVE To evaluate the risk of osteoarthritis in patients with OI. DESIGN A Danish nationwide, population-based and register-based longitudinal open cohort study. PARTICIPANTS From 1977 to 2019, all patients registered with an OI diagnosis and a reference population matched on age and sex 5:1. MEASUREMENTS Sub-hazard ratios for any, hip, and knee osteoarthritis comparing the OI cohort to the reference population. RESULTS We identified 907 patients with OI (493 women) and included 4535 patients in the reference population (2465 women). The Sub Hazard Ratio was 2.20 [95% CI 1.73-2.79] for any osteoarthritis with 11.4% of the OI population and 5.4% of the reference population being registered. We found lower incidences of upper extremity joint OA compared to lower joint OA, but upper extremity joint OA was significantly more frequent in the OI population 2.1% vs 0.6%, SHR 3.19 [95% CI 1.78-5.70]. CONCLUSION Patients with OI have a higher risk of OA than the reference population. MINIABSTRACT Osteogenesis Imperfecta (OI) is a hereditary connective tissue disorder with skeletal fragility and extraskeletal manifestations. Osteoarthritis is a frequent joint disease and the incidence increases with age. In a population-register-based study, the risk of osteoarthritis was higher in patients with OI at an earlier age compared to a reference population.
Collapse
Affiliation(s)
- Jane Dahl Andersen
- Department of Internal Medicine, Lillebaelt Hospital, Kolding, Sygehusvej 24, 6000 Kolding, Denmark
| | - Lars Folkestad
- Department of Endocrinology, Odense University Hospital, Kløvervænget 6, 5000 Odense, Denmark; Department of Clinical Research, University of Southern Denmark, JB Winsløvsvej 19, 5000 Odense C, Denmark.
| | - Jannie Dahl Hald
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
| | - Torben Harsløf
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
| | - Bente Lomholt Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Palle Juul-Jensen Boulevard 82, 8200 Aarhus N, Denmark
| | - Bo Abrahamsen
- Department of Internal Medicine, Lillebaelt Hospital, Kolding, Sygehusvej 24, 6000 Kolding, Denmark; Department of Medicine, Holbæk Hospital, Smedelundsgade 60, 4300 Holbæk, Denmark; Odense Patient Data Explorative Network, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
25
|
Lyster ML, Hald JD, Rasmussen ML, Grauslund J, Folkestad L. Risk of eye diseases in osteogenesis imperfecta - A nationwide, register-based cohort study. Bone 2022; 154:116249. [PMID: 34728432 DOI: 10.1016/j.bone.2021.116249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/11/2021] [Accepted: 10/26/2021] [Indexed: 11/02/2022]
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a hereditary disease caused by affected collagen type 1. Collagen type 1 is an important structural component of the eye. Ocular manifestations in OI are described in literature, but little is known about the risk of eye diseases in OI. OBJECTIVE To investigate the risk of eye diseases in OI. DESIGN A Danish nationwide register-based cohort study based on data from the Danish National Patient Register. PARTICIPANTS All patients registered with an OI diagnosis between January 1977 and December 2018 matched 1:5 with a reference population on gender and birth month and birth year. MEASUREMENTS Incidence rates (IR) per 1000 patient years and sub-hazard ratio (SHR) for any eye disease, corneal diseases, cataract, refraction disorders, vitreous haemorrhage, retinal detachment, retinopathy, angiopathy, retinal haemorrhage, retinal degeneration, retinal changes, optic nerve disorders, and traumatic eye lesions. RESULTS We identified 907 OI patients (493 women) and 4535 persons (2465 women) in the reference population. The IR for any eye disease was 4.07 [95% CI 3.41-4.85] in the OI cohort and 1.96 [95% CI 1.89-2.12] in the reference cohort. The two diseases with highest incidence was cataract (2.41 [95%CI 1.93-3.03] vs 1.29 [95% CI 1.12-1.47], SHR 1.76 [95% CI 1.34-2.33]) and glaucoma (1.08 [95% CI 0.77-1.51] vs 0.42 [95% CI 0.33-0.54], SHR 2.33 [95% CI 1.55-3.53]). The absolute risk of most other eye diseases was low, but the SHR indicated a higher risk in the OI cohort compared to the reference group showing statistically increased risk of refractive disorders, vitreous haemorrhage, retinal detachment or ruptures, other retinal diseases (i.e., retinopathy, angiopathy, retinal haemorrhage, degeneration, retinal changes), and optic nerve disorders. Corneal diseases and traumatic eye lesions were not statistically significantly increased in OI-patients. CONCLUSION Patients with OI have a higher risk of cataract, refractive disorders, glaucoma, vitreous haemorrhages, retinal detachment/ruptures, retinal diseases, and optic nerve disorders.
Collapse
Affiliation(s)
- Marie Louise Lyster
- Faculty of Health, University of Southern Denmark, Denmark; Department of Endocrinology, Odense University Hospital, Denmark
| | - Jannie Dahl Hald
- Department of Internal Medicine and Endocrinology, Aarhus University Hospital, Denmark
| | | | - Jakob Grauslund
- Department of Ophthalmology, Odense University Hospital, Denmark
| | - Lars Folkestad
- Department of Endocrinology, Odense University Hospital, Denmark; Department of Clinical Research, University of Southern Denmark, Denmark.
| |
Collapse
|
26
|
Intracellular and Extracellular Markers of Lethality in Osteogenesis Imperfecta: A Quantitative Proteomic Approach. Int J Mol Sci 2021; 22:ijms22010429. [PMID: 33406681 PMCID: PMC7795927 DOI: 10.3390/ijms22010429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a heritable disorder that mainly affects the skeleton. The inheritance is mostly autosomal dominant and associated to mutations in one of the two genes, COL1A1 and COL1A2, encoding for the type I collagen α chains. According to more than 1500 described mutation sites and to outcome spanning from very mild cases to perinatal-lethality, OI is characterized by a wide genotype/phenotype heterogeneity. In order to identify common affected molecular-pathways and disease biomarkers in OI probands with different mutations and lethal or surviving phenotypes, primary fibroblasts from dominant OI patients, carrying COL1A1 or COL1A2 defects, were investigated by applying a Tandem Mass Tag labeling-Liquid Chromatography-Tandem Mass Spectrometry (TMT LC-MS/MS) proteomics approach and bioinformatic tools for comparative protein-abundance profiling. While no difference in α1 or α2 abundance was detected among lethal (type II) and not-lethal (type III) OI patients, 17 proteins, with key effects on matrix structure and organization, cell signaling, and cell and tissue development and differentiation, were significantly different between type II and type III OI patients. Among them, some non-collagenous extracellular matrix (ECM) proteins (e.g., decorin and fibrillin-1) and proteins modulating cytoskeleton (e.g., nestin and palladin) directly correlate to the severity of the disease. Their defective presence may define proband-failure in balancing aberrances related to mutant collagen.
Collapse
|
27
|
Machol K, Hadley TD, Schmidt J, Cuthbertson D, Traboulsi H, Silva RC, Citron C, Khan S, Citron K, Carter E, Brookler K, Shapiro JR, Steiner RD, Byers PH, Glorieux FH, Durigova M, Smith P, Bober MB, Sutton VR, Lee BH, Nagamani SCS, Raggio C. Hearing loss in individuals with osteogenesis imperfecta in North America: Results from a multicenter study. Am J Med Genet A 2020; 182:697-704. [PMID: 31876392 PMCID: PMC7385724 DOI: 10.1002/ajmg.a.61464] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022]
Abstract
Hearing loss (HL) is an extra-skeletal manifestation of the connective tissue disorder osteogenesis imperfecta (OI). Systematic evaluation of the prevalence and characteristics of HL in COL1A1/COL1A2-related OI will contribute to a better clinical management of individuals with OI. We collected and analyzed pure-tone audiometry data from 312 individuals with OI who were enrolled in the Linked Clinical Research Centers and the Brittle Bone Disorders Consortium. The prevalence, type, and severity of HL in COL1A1/COL1A2-related OI are reported. We show that the prevalence of HL in OI is 28% and increased with age in Type I OI but not in Types III and IV. Individuals with OI Types III and IV are at a higher risk to develop HL in the first decade of life when compared to OI Type I. We also show that the prevalence of SNHL is higher in females with OI compared to males. This study reveals new insights regarding prevalence of HL in OI including a lower general prevalence of HL in COL1A1/COL1A2-related OI than previously reported (28.3 vs. 65%) and high prevalence of SNHL in females. Our data support the need in early routine hearing evaluation in all types of OI that can be adjusted to the severity of the skeletal disease.
Collapse
Affiliation(s)
- Keren Machol
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children's Hospital, Houston, Texas
| | - Trevor D Hadley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Jake Schmidt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Henri Traboulsi
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
- Texas Children's Hospital, Houston, Texas
| | - Rodrigo C Silva
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
- Texas Children's Hospital, Houston, Texas
| | - Chloe Citron
- Department of Pediatric Orthopedic Surgery, Hospital for Special Surgery, New York, New York
| | - Sobiah Khan
- Department of Pediatric Orthopedic Surgery, Hospital for Special Surgery, New York, New York
| | - Kate Citron
- Department of Pediatric Orthopedic Surgery, Hospital for Special Surgery, New York, New York
| | - Erin Carter
- Department of Pediatric Orthopedic Surgery, Hospital for Special Surgery, New York, New York
| | - Kenneth Brookler
- Department of Pediatric Orthopedic Surgery, Hospital for Special Surgery, New York, New York
| | - Jay R Shapiro
- Department of Bone and Osteogenesis Imperfecta, Kennedy Krieger Institute, Baltimore, Maryland
- Department of Medicine at Uniformed Services, University of the Health Sciences, Bethesda, Maryland
| | - Robert D Steiner
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Pediatrics and Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
| | - Peter H Byers
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle
- Department of Pathology, Division of Medical Genetics, University of Washington, Seattle
| | - Francis H Glorieux
- Shriner's Hospital for Children and McGill University, Montreal, Quebec, Canada
| | - Michaela Durigova
- Shriner's Hospital for Children and McGill University, Montreal, Quebec, Canada
| | - Peter Smith
- Motion Analysis Laboratory, Shriners Hospitals for Children, Chicago, Illinois
| | - Michael B Bober
- Division of Orthogenetics, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Vernon R Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children's Hospital, Houston, Texas
| | - Brendan H Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children's Hospital, Houston, Texas
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children's Hospital, Houston, Texas
| | - Cathleen Raggio
- Department of Pediatric Orthopedic Surgery, Hospital for Special Surgery, New York, New York
| |
Collapse
|
28
|
Dimori M, Heard-Lipsmeyer ME, Byrum SD, Mackintosh SG, Kurten RC, Carroll JL, Morello R. Respiratory defects in the CrtapKO mouse model of osteogenesis imperfecta. Am J Physiol Lung Cell Mol Physiol 2020; 318:L592-L605. [PMID: 32022592 PMCID: PMC7191481 DOI: 10.1152/ajplung.00313.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Respiratory disease is a leading cause of mortality in patients with osteogenesis imperfecta (OI), a connective tissue disease that causes severely reduced bone mass and is most commonly caused by dominant mutations in type I collagen genes. Previous studies proposed that impaired respiratory function in OI patients was secondary to skeletal deformities; however, recent evidence suggests the existence of a primary lung defect. Here, we analyzed the lung phenotype of Crtap knockout (KO) mice, a mouse model of recessive OI. While we confirm changes in the lung parenchyma that are reminiscent of emphysema, we show that CrtapKO lung fibroblasts synthesize type I collagen with altered posttranslation modifications consistent with those observed in bone and skin. Unrestrained whole body plethysmography showed a significant decrease in expiratory time, resulting in an increased ratio of inspiratory time over expiratory time and a concomitant increase of the inspiratory duty cycle in CrtapKO compared with WT mice. Closed-chest measurements using the forced oscillation technique showed increased respiratory system elastance, decreased respiratory system compliance, and increased tissue damping and elasticity in CrtapKO mice compared with WT. Pressure-volume curves showed significant differences in lung volumes and in the shape of the curves between CrtapKO mice and WT mice, with and without adjustment for body weight. This is the first evidence that collagen defects in OI cause primary changes in lung parenchyma and several respiratory parameters and thus negatively impact lung function.
Collapse
Affiliation(s)
- Milena Dimori
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Melissa E Heard-Lipsmeyer
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Arkansas Children's Research Institute, Little Rock, Arkansas
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Richard C Kurten
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - John L Carroll
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Roy Morello
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Division of Genetics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
29
|
Chougui K, Addab S, Palomo T, Morin SN, Veilleux LN, Bernstein M, Thorstad K, Hamdy R, Tsimicalis A. Clinical manifestations of osteogenesis imperfecta in adulthood: An integrative review of quantitative studies and case reports. Am J Med Genet A 2020; 182:842-865. [PMID: 32091187 DOI: 10.1002/ajmg.a.61497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/03/2019] [Accepted: 01/03/2020] [Indexed: 12/16/2022]
Abstract
Osteogenesis imperfecta (OI) is a rare genetic disorder of the bones caused by a mutation in Type I collagen genes. As adults with OI are aging, medical concerns secondary to OI may arise. This integrative review sought to review, appraise, and synthesize the clinical manifestations faced by adults with OI. Four electronic bibliographic databases were searched. Published quantitative, qualitative, and mixed-methods studies, as well as case reports from 2000 to March 2019, addressing a clinical manifestation in adulthood, were reviewed. Eligible studies and case reports were subsequently appraised using the Mixed Methods Appraisal Tool and Case Report Checklist, respectively. Twenty quantitative studies and 88 case reports were included for review regardless of the varying methodological quality score. These studies collectively included 2,510 adults with different OI types. Several clinical manifestations were studied, and included: hearing loss, cardiac diseases, pregnancy complications, cerebrovascular manifestations, musculoskeletal manifestations, respiratory manifestations, vision impairment, and other clinical manifestations. Increased awareness may optimize prevention, treatment, and follow-up. Opportunities to enhance the methodological quality of research including better design and methodology, multisite collaborations, and larger and diverse sampling will optimize the generalizability and transferability of findings.
Collapse
Affiliation(s)
- Khadidja Chougui
- Nursing Research, Shriners Hospitals for Children-Canada, Montreal, Quebec, Canada.,Psychology, Universite de Montreal, Montreal, Quebec, Canada
| | - Sofia Addab
- Nursing Research, Shriners Hospitals for Children-Canada, Montreal, Quebec, Canada.,Experimental Surgery, McGill University, Montreal, Quebec, Canada
| | - Telma Palomo
- Bone Densitometry, Fleury Medicina e Saúde, São Paulo, Brazil
| | - Suzanne N Morin
- Department of Medicine, McGill University, Montreal, Quebec, Canada.,General Internal Medicine and Bone Metabolism Center, Montreal General Hospital, Montreal, Quebec, Canada
| | - Louis-Nicolas Veilleux
- Experimental Surgery, McGill University, Montreal, Quebec, Canada.,Motion Analysis Center, Shriners Hospitals for Children-Canada, Montreal, Quebec, Canada
| | - Mitchell Bernstein
- Orthopedic Surgery, Shriners Hospitals for Children-Canada, Montreal, Quebec, Canada.,Department of Pediatric Surgery, McGill University, Montreal, Quebec, Canada
| | - Kelly Thorstad
- Nursing and Patient Services, Shriners Hospitals for Children-Canada, Montreal, Quebec, Canada
| | - Reggie Hamdy
- Orthopedic Surgery, Shriners Hospitals for Children-Canada, Montreal, Quebec, Canada.,Department of Pediatric Surgery, McGill University, Montreal, Quebec, Canada
| | - Argerie Tsimicalis
- Nursing Research, Shriners Hospitals for Children-Canada, Montreal, Quebec, Canada.,Ingram School of Nursing, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
30
|
Lafage-Proust MH, Courtois I. The management of osteogenesis imperfecta in adults: state of the art. Joint Bone Spine 2019; 86:589-593. [DOI: 10.1016/j.jbspin.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2018] [Indexed: 12/16/2022]
|
31
|
Bae IS, Kim JM, Cheong JH, Ryu JI, Han MH. Association between bone mineral density and brain parenchymal atrophy and ventricular enlargement in healthy individuals. Aging (Albany NY) 2019; 11:8217-8238. [PMID: 31575827 PMCID: PMC6814624 DOI: 10.18632/aging.102316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 09/21/2019] [Indexed: 01/01/2023]
Abstract
Bone, vascular smooth muscle, and arachnoid trabeculae are composed of the same type of collagen. However, no studies have investigated the relationship between bone mineral density deterioration and cerebral atrophy, both of which occur in normal, healthy aging. Accordingly, we evaluated whether bone mineral density was associated with brain parenchymal atrophy and ventricular enlargement in healthy individuals. Intracranial cavity, brain parenchyma, and lateral ventricles volumes were measured using brain magnetic resonance imaging (MRI) with a semiautomated tool. We included 267 individuals with no history of dementia or other neurological diseases, who underwent one or more dual-energy X-ray absorptiometry scans and brain MRIs simultaneously (within 3 years of each other) at our hospital over an 11-year period. We found that progression of brain parenchymal atrophy was positively associated with bone mineral density after full adjustment (B, 0.94; P < 0.001). In addition, individuals with osteoporosis showed more parenchymal atrophy among those younger than 80 years. In addition, we observed greater ventricular enlargement in individuals with osteoporosis among those older than 80 years. We believe that osteoporosis may play a role in the acceleration of parenchymal atrophy during the early-stages, and ventricular enlargement in the late-stages, of normal aging-related cerebral atrophy.
Collapse
Affiliation(s)
- In-Suk Bae
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri, Gyonggi-do, Korea
| | - Jae Min Kim
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri, Gyonggi-do, Korea
| | - Jin Hwan Cheong
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri, Gyonggi-do, Korea
| | - Je Il Ryu
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri, Gyonggi-do, Korea
| | - Myung-Hoon Han
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri, Gyonggi-do, Korea
| |
Collapse
|
32
|
Tam A, Chen S, Schauer E, Grafe I, Bandi V, Shapiro JR, Steiner RD, Smith PA, Bober MB, Hart T, Cuthbertson D, Krischer J, Mullins M, Byers PH, Sandhaus RA, Durigova M, Glorieux FH, Rauch F, Sutton VR, Lee B, Rush ET, Nagamani SCS. A multicenter study to evaluate pulmonary function in osteogenesis imperfecta. Clin Genet 2018; 94:502-511. [PMID: 30152014 PMCID: PMC6235719 DOI: 10.1111/cge.13440] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 01/04/2023]
Abstract
Pulmonary complications are a significant cause for morbidity and mortality in osteogenesis imperfecta (OI). However, to date, there have been few studies that have systematically evaluated pulmonary function in individuals with OI. We analyzed spirometry measurements, including forced vital capacity (FVC) and forced expiratory volume in the first second (FEV1 ), in a large cohort of individuals with OI (n = 217) enrolled in a multicenter, observational study. We show that individuals with the more severe form of the disease, OI type III, have significantly reduced FVC and FEV1 which do not follow the expected trends of the normal population. We also show that "normalization" of FVC and FEV1 using general population data to generate percent predicted values underestimates the pulmonary involvement in OI. Within each subtype of OI, we used linear mixed models to find potential correlations between FEV1 and FVC with the clinical variables including mobility, bisphosphonate use, and scoliosis. Our results are an important step in understanding the extent of pulmonary involvement in individuals with OI and for developing pulmonary endpoints for use in the routine patient care as well as in the investigation of new therapies.
Collapse
Affiliation(s)
- Allison Tam
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shan Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Evan Schauer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ingo Grafe
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Venkata Bandi
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jay R Shapiro
- Department of Bone and Osteogenesis Imperfecta, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Medicine at Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Robert D Steiner
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Oregon Health & Science University, and Shriners Hospital for Children, Portland, OR USA
| | | | - Michael B Bober
- Division of Medical Genetics, Alfred I du Pont Hospital for Children, Wilmington, DE, USA
| | - Tracy Hart
- Osteogenesis Imperfecta Foundation, Gaithersburg, MD, USA
| | | | - Jeff Krischer
- College of Medicine, University of South Florida, Tampa, FL, USA
| | - Mary Mullins
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Peter H Byers
- Departments of Medicine and Pathology, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | | | | | | | - Frank Rauch
- Shriner’s Hospital for Children and McGill University, Montreal
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
| | | | - Eric T Rush
- Children’s Mercy Hospital, University of Missouri - Kansas City, Kansas City, MO, USA
| | - Sandesh CS Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
33
|
Kim AJ, Alfieri CM, Yutzey KE. Endothelial Cell Lineage Analysis Does Not Provide Evidence for EMT in Adult Valve Homeostasis and Disease. Anat Rec (Hoboken) 2018; 302:125-135. [PMID: 30306735 DOI: 10.1002/ar.23916] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/27/2018] [Accepted: 03/22/2018] [Indexed: 12/22/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) enables stationary epithelial cells to exhibit migratory behavior and is the key step that initiates heart valve development. Recent studies suggest that EMT is reactivated in the pathogenesis of myxomatous valve disease (MVD), a condition that involves the progressive degeneration and thickening of valve leaflets. These studies have been limited to in vitro experimentation and reliance on histologic costaining of epithelial and mesenchymal markers as evidence of EMT in mouse and sheep models of valve disease. However, longitudinal analysis of cell lineage origins and potential pathogenic or reparative contributions of newly generated mesenchymal cells have not been reported previously. In this study, a genetic lineage tracing strategy was pursued by irreversibly labeling valve endothelial cells in the Osteogenesis imperfecta and Marfan syndrome mouse models to determine whether they undergo EMT during valve disease. Tie2-CreER T2 and Cdh5(PAC)-CreER T2 mouse lines were used in combination with colorimetric and fluorescent reporters for longitudinal assessment of endothelial cells. These lineage tracing experiments showed no evidence of EMT during adult valve homeostasis or valve pathogenesis. Additionally, CD31 and smooth muscle α-actin (αSMA) double-positive cells, used as an indicator of EMT, were not detected, and levels of EMT transcription factors were not altered. Interestingly, contrary to the endothelial cell-specific Cdh5(PAC)-CreER T2 driver line, Tie2-CreER T2 lineage-derived cells in diseased heart valves also included CD45+ leukocytes. Altogether, our data indicate that EMT is not a feature of valve homeostasis and disease but that increased immune cells may contribute to MVD. Anat Rec, 302:125-135, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrew J Kim
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Christina M Alfieri
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | |
Collapse
|
34
|
Aortic valve replacement for aortic regurgitation associated with osteogenesis imperfecta. Cardiovasc Pathol 2018; 36:11-14. [DOI: 10.1016/j.carpath.2018.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 12/19/2022] Open
|
35
|
Abstract
Osteogenesis imperfecta (OI) is the most common inherited form of bone fragility and includes a heterogenous group of genetic disorders which most commonly result from defects associated with type 1 collagen. 85%-90% of cases are inherited in an autosomal dominant manner and are caused by mutations in the COL1A1 and COL1A2 genes, leading to quantitative or qualitative defects in type 1 collagen. In the last decade, defects in several other proteins involved in the normal processing of type 1 collagen have been described. Recent advances in genetics have called for reconsideration of the classification of OI, however, most recent classifications align with the classic clinical classification by Sillence. The hallmark of the disease is bone fragility but other tissues are also affected. Intravenous bisphosphonates (BPs) are the most widely used intervention, having significant favorable effects regarding areal bone mineral density (BMD) and vertebral reshaping following fractures in growing children. BPs have a modest effect in long bone fracture incidence, their effects in adults with OI concerns only BMD, while there are reports of subtrochanteric fractures resembling atypical femoral fractures. Other therapies showing promising results include denosumab, teriparatide, sclerostin inhibition, combination therapy with antiresorptive and anabolic drugs and TGF-β inhibition. Gene targeting approaches are under evaluation. More research is needed to delineate the best therapeutic approach in this heterogeneous disease.
Collapse
Affiliation(s)
- Symeon Tournis
- Laboratory for Research of the Musculoskeletal System 'Th. Garofalidis', KAT Hospital, University of Athens, Athens, Greece.
| | - Anastasia D Dede
- Laboratory for Research of the Musculoskeletal System 'Th. Garofalidis', KAT Hospital, University of Athens, Athens, Greece; Department of Endocrinology and Diabetes, Chelsea and Westminster Hospital, London, UK
| |
Collapse
|
36
|
Melly L, Dincq AS, Hanet C, Rondelet B. Case report: osteogenesis imperfecta, internal mammary artery graft & nitinol clips. J Cardiothorac Surg 2017; 12:117. [PMID: 29258527 PMCID: PMC5735934 DOI: 10.1186/s13019-017-0685-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/07/2017] [Indexed: 11/22/2022] Open
Abstract
Background Osteogenesis imperfecta is a genetic disorder of connective tissue causing mostly left-sided heart valves and aortic root pathologies, but a coronary artery involvement reflecting an increased sensitivity to cardiovascular risk factors is also suspected in this patient population. Case presentation We report a 38-year-old patient with an osteogenesis imperfecta and a typical presentation of an acute myocardial infarction. The coronary angiogram showed a coronary 3-vessel disease. The patient underwent a bypass grafting surgery with the internal mammary artery. The sternum was closed using four nitinol clips and had totally stabilized at 4 months with excellent bone healing. Conclusions With the successful clinical outcome in this patient severely affected by its osteogensis imperfecta, we underline the safe use of the LIMA, if precaution is taken towards the sternal bone, and its closure with nitinol clips.
Collapse
Affiliation(s)
- Ludovic Melly
- Department of Cardiac, Vascular and Thoracic Surgery, CHU UCL Namur, Av. G. Thérasse 1, 5530, Yvoir, Belgium.
| | - Anne-Sophie Dincq
- Department of Anesthesiology, CHU UCL Namur, Av. G. Thérasse 1, 5530, Yvoir, Belgium
| | - Claude Hanet
- Department of Cardiology, CHU UCL Namur, Av. G. Thérasse 1, 5530, Yvoir, Belgium
| | - Benoît Rondelet
- Department of Cardiac, Vascular and Thoracic Surgery, CHU UCL Namur, Av. G. Thérasse 1, 5530, Yvoir, Belgium
| |
Collapse
|
37
|
Gagliardi A, Besio R, Carnemolla C, Landi C, Armini A, Aglan M, Otaify G, Temtamy SA, Forlino A, Bini L, Bianchi L. Cytoskeleton and nuclear lamina affection in recessive osteogenesis imperfecta: A functional proteomics perspective. J Proteomics 2017; 167:46-59. [PMID: 28802583 PMCID: PMC5584732 DOI: 10.1016/j.jprot.2017.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 02/07/2023]
Abstract
Osteogenesis imperfecta (OI) is a collagen-related disorder associated to dominant, recessive or X-linked transmission, mainly caused by mutations in type I collagen genes or in genes involved in type I collagen metabolism. Among the recessive forms, OI types VII, VIII, and IX are due to mutations in CRTAP, P3H1, and PPIB genes, respectively. They code for the three components of the endoplasmic reticulum complex that catalyzes 3-hydroxylation of type I collagen α1Pro986. Under-hydroxylation of this residue leads to collagen structural abnormalities and results in moderate to lethal OI phenotype, despite the exact molecular mechanisms are still not completely clear. To shed light on these recessive forms, primary fibroblasts from OI patients with mutations in CRTAP (n=3), P3H1 (n=3), PPIB (n=1) genes and from controls (n=4) were investigated by a functional proteomic approach. Cytoskeleton and nucleoskeleton asset, protein fate, and metabolism were delineated as mainly affected. While western blot experiments confirmed altered expression of lamin A/C and cofilin-1, immunofluorescence analysis using antibody against lamin A/C and phalloidin showed an aberrant organization of nucleus and cytoskeleton. This is the first report describing an altered organization of intracellular structural proteins in recessive OI and pointing them as possible novel target for OI treatment. SIGNIFICANCE OI is a prototype for skeletal dysplasias. It is a highly heterogeneous collagen-related disorder with dominant, recessive and X-linked transmission. There is no definitive cure for this disease, thus a better understanding of the molecular basis of its pathophysiology is expected to contribute in identifying potential targets to develop new treatments. Based on this concept, we performed a functional proteomic study to delineate affected molecular pathways in primary fibroblasts from recessive OI patients, carrying mutations in CRTAP (OI type VII), P3H1 (OI type VIII), and PPIB (OI type IX) genes. Our analyses demonstrated the occurrence of an altered cytoskeleton and, for the first time in OI, of nuclear lamina organization. Hence, cytoskeleton and nucleoskeleton components may be considered as novel drug targets for clinical management of the disease. Finally, according to our analyses, OI emerged to share similar deregulated pathways and molecular aberrances, as previously described, with other rare disorders caused by different genetic defects. Those aberrances may provide common pharmacological targets to support classical clinical approach in treating different diseases.
Collapse
Affiliation(s)
- Assunta Gagliardi
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Siena, Italy; CIBIO, University of Trento, Trento, Italy
| | - Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Chiara Carnemolla
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Siena, Italy
| | - Claudia Landi
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Siena, Italy
| | - Alessandro Armini
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Siena, Italy
| | - Mona Aglan
- Department of Clinical Genetics, Human Genetics & Genome Research Division, Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| | - Ghada Otaify
- Department of Clinical Genetics, Human Genetics & Genome Research Division, Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| | - Samia A Temtamy
- Department of Clinical Genetics, Human Genetics & Genome Research Division, Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Luca Bini
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Siena, Italy
| | - Laura Bianchi
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Siena, Italy.
| |
Collapse
|