1
|
Bai N, Wang J, Liang W, Gao L, Cui W, Wu Q, Li F, Ji L, Cai Y. A Multicenter, Randomized, Double-Blind, Placebo-Controlled, and Dose-Increasing Study on the Safety, Tolerability and PK/PD of Multiple Doses of HSK7653 by Oral Administration in Patients with Type 2 Diabetes Mellitus in China. Diabetes Ther 2024; 15:183-199. [PMID: 37930584 PMCID: PMC10786778 DOI: 10.1007/s13300-023-01496-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
INTRODUCTION This study assessed the safety, tolerability, and PK/PD of HSK7653 tablets in Chinese patients with type 2 diabetes mellitus (T2DM). METHODS This was a Phase IIa, multicenter, randomized, double-blind, placebo-controlled, and dose-increasing study with 48 Chinese diabetes patients. Subjects were randomly assigned to placebo and 10/25/50 mg dose groups, and they received oral administration once every two weeks for a total of six times. Safety and tolerability were assessed throughout this study, and PK/PD parameters were analyzed using non-compartment model with WinNonlin. RESULTS The three doses of HSK7653 were well tolerated, and the incidence of TEAE and ADR was not significantly increased compared with the placebo group. Cmax increased linearly with the increasing dose, and the mean t1/2 was 64.0-87.0 h. The first dose and last dose PK parameters were similar. After oral administration of 10-50 mg HSK7653 every two weeks, the average Rac_Cmax and Rac_AUC were 0.9-1.0 and 1.0-1.1 respectively; therefore, HSK7653 was not accumulated in vivo. All three doses significantly inhibited DPP-4 activity and increased plasma GLP-1 level and serum insulin levels. When the plasma concentration of HSK7653 was ≥ 20.0 ng/mL, the DPP-4 inhibition rate in all subjects was maintained at > 80.0%. In 10 and 25 mg dose groups, the HbA1c levels maintained a downward trend compared with the placebo group. DISCUSSION HSK7653 showed desirable pharmacokinetic and pharmacodynamic properties with good safety and tolerability in Chinese T2DM patients. DPP-4 inhibition rate and plasma GLP-1 levels were higher in each dose group than in placebo group. TRIAL REGISTRATION NUMBER CTR20182505 (Drug Clinical Trial Registration and Information Disclosure Platform, www.chinadrugtrials.org.cn ).
Collapse
Affiliation(s)
- Nan Bai
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Jin Wang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Wenxin Liang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Leili Gao
- Department of Endocrinology, Peking University People's Hospital, Beijing, 100044, China
| | - Wei Cui
- Phase I Clinical Research Department, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Qinghe Wu
- Clinical Research Department, Haisco Pharmaceutical Group, Chengdu, 611130, China
| | - Fangqiong Li
- Clinical Research Department, Haisco Pharmaceutical Group, Chengdu, 611130, China
| | - Linong Ji
- Department of Endocrinology, Peking University People's Hospital, Beijing, 100044, China.
| | - Yun Cai
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
2
|
Durak A, Akkus E, Canpolat AG, Tuncay E, Corapcioglu D, Turan B. Glucagon-like peptide-1 receptor agonist treatment of high carbohydrate intake-induced metabolic syndrome provides pleiotropic effects on cardiac dysfunction through alleviations in electrical and intracellular Ca 2+ abnormalities and mitochondrial dysfunction. Clin Exp Pharmacol Physiol 2021; 49:46-59. [PMID: 34519087 DOI: 10.1111/1440-1681.13590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023]
Abstract
The pleiotropic effects of glucagon-like peptide-1 receptor (GLP-1R) agonists on the heart have been recognised in obese or diabetic patients. However, little is known regarding the molecular mechanisms of these agonists in cardioprotective actions under metabolic disturbances. We evaluated the effects of GLP-1R agonist liraglutide treatment on left ventricular cardiomyocytes from high-carbohydrate induced metabolic syndrome rats (MetS rats), characterised with insulin resistance and cardiac dysfunction with a long-QT. Liraglutide (0.3 mg/kg for 4 weeks) treatment of MetS rats significantly reversed long-QT, through a shortening the prolonged action potential duration and recovering inhibited K+ -currents. We also determined a significant recovery in the leaky sarcoplasmic reticulum (SR) and high cytosolic Ca2+ -level, which are confirmed with a full recovery in activated Na+ /Ca2+ -exchanger currents (INCX ). Moreover, the liraglutide treatment significantly reversed the depolarised mitochondrial membrane potential (MMP), increased production of oxidant markers, and cellular acidification together with the depressed ATP production. Our light microscopy analysis of isolated cardiomyocytes showed marked recoveries in the liraglutide-treated MetS group such as marked reverses in highly dilated T-tubules and SR-mitochondria junctions. Moreover, we determined a significant increase in depressed GLUT4 protein level in liraglutide-treated MetS group, possibly associated with recovery in casein kinase 2α. Overall, the study demonstrated a molecular mechanism of liraglutide-induced cardioprotection in MetS rats, at most, via its pleiotropic effects, such as alleviation in the electrical abnormalities, Ca2+ -homeostasis, and mitochondrial dysfunction in ventricular cardiomyocytes.
Collapse
Affiliation(s)
- Aysegul Durak
- Faculty of Medicine, Department of Biophysics, Ankara University, Ankara, Turkey
| | - Erman Akkus
- Faculty of Medicine, Department of Internal Medicine, Ankara University, Ankara, Turkey
| | - Asena Gokcay Canpolat
- Faculty of Medicine, Department of Endocrinology and Metabolism, Ankara University, Ankara, Turkey
| | - Erkan Tuncay
- Faculty of Medicine, Department of Biophysics, Ankara University, Ankara, Turkey
| | - Demet Corapcioglu
- Faculty of Medicine, Department of Endocrinology and Metabolism, Ankara University, Ankara, Turkey
| | - Belma Turan
- Faculty of Medicine, Department of Biophysics, Ankara University, Ankara, Turkey.,Faculty of Medicine, Department of Biophysics, Lokman Hekim University, Ankara, Turkey
| |
Collapse
|
3
|
Russo G, Monami M, Perseghin G, Avogaro A, Perrone Filardi P, Senni M, Borghi C, Maggioni AP. The "Early Treatment" Approach Reducing Cardiovascular Risk in Patients with Type 2 Diabetes: A Consensus From an Expert Panel Using the Delphi Technique. Diabetes Ther 2021; 12:1445-1461. [PMID: 33768493 PMCID: PMC8099991 DOI: 10.1007/s13300-021-01045-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/02/2021] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION There is no consensus on the optimal therapeutic approach to adopt in patients with newly diagnosed type 2 diabetes mellitus (T2DM) to prevent cardiovascular disease (CVD). The study aimed to gather an expert consensus on the hypoglycemic treatment and CV risk management in patients with newly diagnosed T2DM through the Delphi methodology. METHODS To address this issue, a list of 30 statements concerning the definition of "early T2DM patient", early treatment, CV risk in T2DM, treat-to-benefit approach, and indications for treatment with glucagon-like peptide 1 receptor agonists (GLP-1RAs) and sodium-glucose co-transporter 2 (SGLT2) inhibitors was developed. Using a two-round Delphi methodology, the survey was distributed to 80 Italian diabetes specialists who rated their level of agreement with each statement on a 5-point Likert scale. Consensus was predefined as more than 66% of the panel agreeing/disagreeing with any given statement. RESULTS A total of 27/30 statements achieved consensus. A patient was defined as "early" according to pathophysiological or clinical interpretation, and/or the timing of the diagnosis. There was agreement on the importance to reach the lowest possible HbA1c level, since diagnosis, also using combination therapy with hypoglycemic drugs with a proven CV benefit. There was a consensus that a treat-to-benefit approach involves the addition of a glucose-lowering agent with proven CV benefits to metformin since diagnosis. The use of GLP-1RAs and SGLT2 inhibitors was considered a key strategy in this approach and the benefits were recognized also for patients with T2DM without established CVD. GLP-1RAs should be used at an earlier stage than SGLT2 inhibitors to prevent CVD, especially in patients with evidence of subclinical atherosclerotic disease. CONCLUSION This Delphi consensus recognized the importance to adopt a tailored hypoglycemic treatment of patients with T2DM according to their CVD risk and the key role of glucose-lowering agents with proven CV efficacy, GLP-1RAs and SGLT2 inhibitors, in the context of an early treat-to-benefit approach.
Collapse
Affiliation(s)
- Giuseppina Russo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| | - Matteo Monami
- Unit of Diabetology and Metabolic Disease, Careggi Teaching Hospital and University of Florence, Florence, Italy
| | - Gianluca Perseghin
- Department of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
- Department of Medicine and Rehabilitation, Policlinico di Monza, Monza, Italy
| | - Angelo Avogaro
- Department of Medicine, Section of Diabetes and Metabolic Diseases, University of Padova, Padova, Italy
| | - Pasquale Perrone Filardi
- Department of Advanced Biomedical Sciences, Federico II University of Naples and Mediterranea Cardio Center Clinic of Naples, Naples, Italy
| | - Michele Senni
- Division of Cardiology, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Claudio Borghi
- Medical and Surgery Sciences Department, Dyslipidemia and Atherosclerosis Research Unit, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | | |
Collapse
|
4
|
De Nigris V, Prattichizzo F, Iijima H, Ceriello A. DPP-4 Inhibitors Have Different Effects on Endothelial Low-Grade Inflammation and on the M1-M2 Macrophage Polarization Under Hyperglycemic Conditions. Diabetes Metab Syndr Obes 2021; 14:1519-1531. [PMID: 33854350 PMCID: PMC8040089 DOI: 10.2147/dmso.s302621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/13/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE We explored the anti-inflammatory role of the DPP-4 inhibitor teneligliptin, using sitagliptin as comparator, in different in vitro models of low-grade inflammation (LGI), evaluating the hyperglycemia-induced endothelial inflammation, the macrophage polarization, and the endothelium-macrophage interaction. METHODS The effects of DPP-4 and its inhibitors on macrophage polarization were evaluated in THP-1 cells by measuring mRNA expression of M1-M2 markers. HUVEC cells were used to analyze the effects of DPP-4 inhibitors on endothelial inflammation under normal and high glucose conditions. To evaluate the link between eNO and M1-M2 polarization, HUVECs were transfected with eNOS siRNA and co-cultured with THP-1 cells. The effects of DPP-4 inhibitors on macrophage polarization and eNO content were evaluated in a co-culture model of differentiated THP-1 cells + HUVECs under normal glucose (NG), high glucose (HG) and high metabolic memory (HM) conditions. RESULTS DPP-4 regulated M1/M2 macrophage polarization. Teneligliptin reduced M1 and enhanced M2 macrophage phenotype under DPP-4 stimulation, and attenuated hyperglycemia-induced endothelial inflammation. In THP-1 cells co-cultured with eNOS depleted HUVECs, M1 markers were enhanced, while M2 reduced, indicating an important role of eNO in polarization to M2 phenotype. In the co-culture model with HUVECs exposed to HG and HM, teneligliptin reduced M1 and enhanced M2 population, by increasing eNO levels. The anti-inflammatory effects of sitagliptin were not observed in these LGI models. CONCLUSION Teneligliptin, but not sitagliptin, has anti-inflammatory effects in the various LGI models, by promoting a switch from M1 toward M2 phenotype and by decreasing hyperglycaemia-induced endothelial inflammation, suggesting that effects for LGI are different among DPP-4 inhibitors.
Collapse
Affiliation(s)
- Valeria De Nigris
- Institut d’Investigación Biomédiques August Pi i Sunyer, Barcelona, Spain
- Correspondence: Valeria De Nigris Insititut d’Investigacions Biomèdiques August Pi i Sunyer, C/Rosselló, 149-153, Barcelona, 08036, SpainTel +34932275400 Ext. 4562Fax +34932279240 Email
| | | | - Hiroaki Iijima
- Medical Affairs Department, Ikuyaku. Integrated Value Development Division, Mitsubishi Tanabe Pharma Corporation, Tokyo, Japan
| | | |
Collapse
|
5
|
Elumalai S, Karunakaran U, Moon JS, Won KC. High glucose-induced PRDX3 acetylation contributes to glucotoxicity in pancreatic β-cells: Prevention by Teneligliptin. Free Radic Biol Med 2020; 160:618-629. [PMID: 32763411 DOI: 10.1016/j.freeradbiomed.2020.07.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/25/2022]
Abstract
Chronic hyperglycemia has deleterious effects on pancreatic β-cell function and survival in type 2 diabetes (T2D) due to the low expression level of endogenous antioxidants in the β-cells. Peroxiredoxin-3 (PRDX3) is a mitochondria specific H202 scavenger and protects the cell from mitochondrial damage. However, nothing is known about how glucotoxicity influences PRDX3 function in the pancreatic beta cells. Exposure of rat insulinoma INS-1 cells and human beta cells (1.1B4) to high glucose conditions (30mM) stimulated acetylation of PRDX3 which facilitates its hyper-oxidation causing mitochondrial dysfunction by SIRT1 degradation. SIRT1 deficiency induces beta cell apoptosis via NOX-JNK-p66Shc signalosome activation. Herein we investigated the direct effect of Teneligliptin, a newer DPP-4 inhibitor on beta-cell function and survival in response to high glucose conditions. Teneligliptin treatment enhances SIRT1 protein levels and activity by USP22, an ubiquitin specific peptidase. Activated SIRT1 prevents high glucose-induced PRDX3 acetylation by SIRT3 resulted in inhibition of PRDX3 hyper-oxidation thereby strengthening the mitochondrial antioxidant defense. Notably, we identify PRDX3 as a novel SIRT3 target and show their physical interaction. Intriguingly, inhibition of SIRT1 activity by EX-527 or SIRT1 siRNA knockdown exacerbated the SIRT3 mediated PRDX3 deacetylation which leads to peroxiredoxin-3 hyper-oxidation and beta-cell apoptosis by the activation of NOX-JNK-p66Shc signalosome. Collectively, our results unveil a novel and first direct effect of high glucose on PRDX3 acetylation on beta-cell dysfunction by impaired antioxidant defense and SIRT1 mediated SIRT3-PRDX3 activation by Teneligliptin suppresses high glucose-mediated mitochondrial dysfunction.
Collapse
Affiliation(s)
- Suma Elumalai
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Udayakumar Karunakaran
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Jun Sung Moon
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Kyu Chang Won
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
6
|
Glucagon-Like Peptide-1 Analog Liraglutide Attenuates Pressure-Overload Induced Cardiac Hypertrophy and Apoptosis through Activating ATP Sensitive Potassium Channels. Cardiovasc Drugs Ther 2020; 35:87-101. [PMID: 33057968 DOI: 10.1007/s10557-020-07088-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE This study aimed to investigate whether inhibition of glucagon-like peptide-1 (GLP-1) on pressure overload induced cardiac hypertrophy and apoptosis is related to activation of ATP sensitive potassium (KATP) channels. METHODS Male SD rats were randomly divided into five groups: sham, control (abdominal aortic constriction), GLP-1 analog liraglutide (0.3 mg/kg/twice day), KATP channel blocker glibenclamide (5 mg/kg/day), and liraglutide plus glibenclamide. RESULTS Relative to the control on week 16, liraglutide upregulated protein and mRNA levels of KATP channel subunits Kir6.2/SUR2 and their expression in the myocardium, vascular smooth muscle, aortic endothelium, and cardiac microvasculature. Consistent with a reduction in aortic wall thickness (61.4 ± 7.6 vs. 75.0 ± 7.6 μm, p < 0.05), liraglutide enhanced maximal aortic endothelium-dependent relaxation in response to acetylcholine (71.9 ± 8.7 vs. 38.6 ± 4.8%, p < 0.05). Along with a reduction in heart to body weight ratio (2.6 ± 0.1 vs. 3.4 ± 0.4, mg/g, p < 0.05) by liraglutide, hypertrophied cardiomyocytes (371.0 ± 34.4 vs. 933.6 ± 156.6 μm2, p < 0.05) and apoptotic cells (17.5 ± 8.2 vs. 44.7 ± 7.9%, p < 0.05) were reduced. Expression of anti-apoptotic protein BCL-2 and contents of myocardial ATP were augmented, and expression of cleaved-caspase 3 and levels of serum Tn-I/-T were reduced. Echocardiography and hemodynamic measurement showed that cardiac systolic function was enhanced as evidenced by increased ejection fraction (88.4 ± 4.8 vs. 73.8 ± 5.1%, p < 0.05) and left ventricular systolic pressure (105.2 ± 10.8 vs. 82.7 ± 7.9 mmHg, p < 0.05), and diastolic function was preserved as shown by a reduction of ventricular end-diastolic pressure (-3.1 ± 2.9 vs. 6.7 ± 2.8 mmHg, p < 0.05). Furthermore, left ventricular internal diameter at end-diastole (5.8 ± 0.5 vs. 7.7 ± 0.6 mm, p < 0.05) and left ventricular internal diameter at end-systole (3.0 ± 0.6 vs. 4.7 ± 0.4 mm, p < 0.05) were improved. Dietary administration of glibenclamide alone did not alter all the parameters measured but significantly blocked liraglutide-exerted cardioprotection. CONCLUSION Liraglutide ameliorates cardiac hypertrophy and apoptosis, potentially via activating KATP channel-mediated signaling pathway. These data suggest that liraglutide might be considered as an adjuvant therapy to treat patients with heart failure.
Collapse
|
7
|
Paschou SA, Siasos G, Bletsa E, Stampouloglou PK, Oikonomou E, Antonopoulos AS, Batzias K, Tsigkou V, Mourouzis K, Vryonidou A, Tentolouris N, Vavouranakis M, Tousoulis D. The Effect of DPP-4i on Endothelial Function and Arterial Stiffness in Patients with Type 2 Diabetes: A Systematic Review of Randomized Placebo-controlled Trials. Curr Pharm Des 2020; 26:5980-5987. [PMID: 32303166 DOI: 10.2174/1381612826666200417153241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/25/2020] [Indexed: 12/31/2022]
Abstract
We systematically reviewed the literature regarding the impact of dipeptidyl peptidase-4 inhibitors (DPP-4i) on vascular function, including endothelial function and arterial stiffness, as predictors of atherosclerosis progression and cardiovascular disease in patients with type 2 diabetes mellitus (T2DM). We searched PubMed in order to identify clinical trials that investigated the effect of DPP-4i on vascular function in patients with T2DM when compared with placebo. Although 168 articles were initially found, only 6 studies (total 324 patients) investigated the effect of DPP-4i in comparison with placebo, specifically linagliptin and sitagliptin, and satisfied the inclusion criteria. There are scarce data to indicate that linagliptin may enhance endothelial function and exert a slight beneficial effect on arterial wall properties. Sitagliptin seems to have a neutral effect on these variables. Further trials are needed to elucidate the topic. The standards of reporting were in accordance with the PRISMA guidelines.
Collapse
Affiliation(s)
- Stavroula A Paschou
- First Department of Cardiology, "Hippokration" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos Siasos
- First Department of Cardiology, "Hippokration" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evanthia Bletsa
- First Department of Cardiology, "Hippokration" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiota K Stampouloglou
- First Department of Cardiology, "Hippokration" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Oikonomou
- First Department of Cardiology, "Hippokration" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexios S Antonopoulos
- First Department of Cardiology, "Hippokration" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Batzias
- First Department of Cardiology, "Hippokration" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasiliki Tsigkou
- First Department of Cardiology, "Hippokration" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Mourouzis
- First Department of Cardiology, "Hippokration" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Andromachi Vryonidou
- Department of Endocrinology and Diabetes, Hellenic Red Cross Hospital, Athens, Greece
| | - Nikolaos Tentolouris
- First Department of Propaedeutic and Internal Medicine, Diabetes Center, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Manolis Vavouranakis
- First Department of Cardiology, "Hippokration" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Tousoulis
- First Department of Cardiology, "Hippokration" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
8
|
Shah SR, Iqbal SM, Alweis R, Roark S. A closer look at heart failure in patients with concurrent diabetes mellitus using glucose lowering drugs. Expert Rev Clin Pharmacol 2018; 12:45-52. [PMID: 30488734 DOI: 10.1080/17512433.2019.1552830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Type 2 diabetes (T2D) is an independent risk factor for heart failure (HF). With concomitant T2D and HF, recent data suggests an incremental risk of cardiovascular death and hospitalization for HF, as compared to patients with HF without T2D. Areas covered: Management of these two diseases has been a challenge for physicians. The treatment goals for HF patients in T2D are very important. They serve as the endpoint in using a specific treatment for management and treatment of T2D patients hence, decreasing mortality rates. In this review, we examine the effects of oral antidiabetic drugs on HF patients, discussing current evidence-based up-to-date management strategies and guidelines in the general population with HF and T2D. Expert commentary: Future in the management of T2D in HF patients looks bright. Augmenting data on potential cardiovascular side effects of antidiabetic drugs is valuable since millions of people are treated over many years. Newer novel drugs targeting specific signaling pathways are approaching the stages of clinical investigation. They have been a highly attractive concept for the future in the management of these patients. However, while advances in technology elucidated many aspects of these diseases, many mysteries still remain.
Collapse
Affiliation(s)
- Syed Raza Shah
- a North Florida Regional Medical Center , University of Central Florida (Gainesville) , Gainesville , FL , USA
| | - Sana Muhammad Iqbal
- b Department of Medicine , Dow University of Health Sciences (DUHS) , Karachi , Pakistan
| | - Richard Alweis
- c Department of Medicine , Rochester Regional Health System , Rochester , NY , USA
| | - Steven Roark
- d North Florida Regional Medical Center, The Cardiac and Vascular Institute , University of Central Florida (Gainesville) , Gainesville , FL , USA
| |
Collapse
|
9
|
Borghetti G, von Lewinski D, Eaton DM, Sourij H, Houser SR, Wallner M. Diabetic Cardiomyopathy: Current and Future Therapies. Beyond Glycemic Control. Front Physiol 2018; 9:1514. [PMID: 30425649 PMCID: PMC6218509 DOI: 10.3389/fphys.2018.01514] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/09/2018] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus and the associated complications represent a global burden on human health and economics. Cardiovascular diseases are the leading cause of death in diabetic patients, who have a 2–5 times higher risk of developing heart failure than age-matched non-diabetic patients, independent of other comorbidities. Diabetic cardiomyopathy is defined as the presence of abnormal cardiac structure and performance in the absence of other cardiac risk factors, such coronary artery disease, hypertension, and significant valvular disease. Hyperglycemia, hyperinsulinemia, and insulin resistance mediate the pathological remodeling of the heart, characterized by left ventricle concentric hypertrophy and perivascular and interstitial fibrosis leading to diastolic dysfunction. A change in the metabolic status, impaired calcium homeostasis and energy production, increased inflammation and oxidative stress, as well as an accumulation of advanced glycation end products are among the mechanisms implicated in the pathogenesis of diabetic cardiomyopathy. Despite a growing interest in the pathophysiology of diabetic cardiomyopathy, there are no specific guidelines for diagnosing patients or structuring a treatment strategy in clinical practice. Anti-hyperglycemic drugs are crucial in the management of diabetes by effectively reducing microvascular complications, preventing renal failure, retinopathy, and nerve damage. Interestingly, several drugs currently in use can improve cardiac health beyond their ability to control glycemia. GLP-1 receptor agonists and sodium-glucose co-transporter 2 inhibitors have been shown to have a beneficial effect on the cardiovascular system through a direct effect on myocardium, beyond their ability to lower blood glucose levels. In recent years, great improvements have been made toward the possibility of modulating the expression of specific cardiac genes or non-coding RNAs in vivo for therapeutic purpose, opening up the possibility to regulate the expression of key players in the development/progression of diabetic cardiomyopathy. This review summarizes the pathogenesis of diabetic cardiomyopathy, with particular focus on structural and molecular abnormalities occurring during its progression, as well as both current and potential future therapies.
Collapse
Affiliation(s)
- Giulia Borghetti
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Dirk von Lewinski
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Deborah M Eaton
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Steven R Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Markus Wallner
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
10
|
Abstract
PURPOSE OF THE REVIEW To summarize current clinical data investigating the link between diabetes and heart failure pathophysiology, the association of glucose control with heart failure, and the impact of current antihyperglycemic drugs on heart failure. RECENT FINDINGS Although heart failure is one of the most prevalent outcomes occurring in real life and cardiovascular outcome trials, insufficient attention was given to this condition in diabetes research over the last decades. With both beneficial and detrimental findings for heart failure hospitalization in the health authority-mandated outcome trials for new antihyperglycemic agents, research on heart failure and its interplay with diabetes mellitus gained momentum. Diabetes mellitus and heart failure are both prevalent and intertwined conditions. While currently available heart failure therapies have a similar degree of effectiveness in patients with and without diabetes, the choice of glucose-lowering agents can substantially affect heart failure-related outcome.
Collapse
Affiliation(s)
- Markus Wallner
- 0000 0000 8988 2476grid.11598.34Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- 0000 0001 2248 3398grid.264727.2Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA USA
- Center for Biomarker Research in Medicine, CBmed, Graz, Austria
| | - Deborah M. Eaton
- 0000 0001 2248 3398grid.264727.2Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA USA
| | - Dirk von Lewinski
- 0000 0000 8988 2476grid.11598.34Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Center for Biomarker Research in Medicine, CBmed, Graz, Austria
- 0000 0000 8988 2476grid.11598.34Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| |
Collapse
|
11
|
McHugh KR, DeVore AD, Mentz RJ, Edmonston D, Green JB, Hernandez AF. The emerging role of novel antihyperglycemic agents in the treatment of heart failure and diabetes: A focus on cardiorenal outcomes. Clin Cardiol 2018; 41:1259-1267. [PMID: 30125365 DOI: 10.1002/clc.23054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/10/2018] [Accepted: 08/15/2018] [Indexed: 12/25/2022] Open
Abstract
Heart failure (HF) and type 2 diabetes mellitus (T2DM) are two global pandemics, affecting over 25 and 420 million people, respectively. The prevalence of comorbid HF and T2DM is rising, and the prognosis remains poor. One central area of overlap of these two disease processes is renal dysfunction, which contributes to poor cardiovascular outcomes and mortality. As such, there is a growing need for antihyperglycemic agents with cardio- and renoprotective effects. Three classes of novel antihyperglycemic agents, sodium-glucose cotransporter-2 (SGLT2) inhibitors, glucagon-like peptide-1 receptor agonists (GLP-1RA), and dipeptidyl peptidase-4 (DPP4) inhibitors have demonstrated varied cardiorenal outcomes in recent cardiovascular outcomes trials. Understanding the differential effects of these agents, together with their proposed mechanisms, is crucial for the development of safe and effective treatment regimens and future pharmacologic targets for HF and T2DM. In this review, we discuss the overlapping pathophysiology of HF and T2DM, summarize outcomes data for the novel antihyperglycemic agents and proposed mechanisms of action, and review how the current evidence informs future management of comorbid HF and T2DM.
Collapse
Affiliation(s)
- Kelly R McHugh
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Adam D DeVore
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina.,Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| | - Robert J Mentz
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina.,Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| | - Daniel Edmonston
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Jennifer B Green
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina.,Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| | - Adrian F Hernandez
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina.,Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
12
|
De Nigris V, Prattichizzo F, Mancuso E, Spiga R, Pujadas G, Ceriello A. Teneligliptin enhances the beneficial effects of GLP-1 in endothelial cells exposed to hyperglycemic conditions. Oncotarget 2018; 9:8898-8910. [PMID: 29507662 PMCID: PMC5823668 DOI: 10.18632/oncotarget.22849] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/10/2017] [Indexed: 12/16/2022] Open
Abstract
High-glucose-induced oxidative stress contributes to cardiovascular endothelial damage in diabetes. Glucagon-like peptide 1 (GLP-1) is beneficial to endothelial cells, but its effects are diminished when cells are continuously exposed to high glucose. Teneligliptin is a dipeptidyl peptidase-4 (DPP-4) inhibitor that prevents oxidative stress, apoptosis and the metabolic memory effect. We explored the potential additive effects of Teneligliptin and GLP-1 in hyperglycemia-damaged endothelial cells. Human umbilical vein endothelial cells (HUVECs) were exposed to normal-glucose (5 mmol/L) or high-glucose (HG, 25 mmol/L) for 21 days, or to HG for 14 days followed by normal-glucose for 7 days (HM). These cells were continually treated with Teneligliptin 3.0 μmol/L, alone or in combination with an acute dose of GLP-1 50 nmol/L. DPP-4 was upregulated under hyperglycemic conditions, but Teneligliptin reduced DPP-4 expression and activity. Simultaneous Teneligliptin and GLP-1 synergistically increased the antioxidant response and reduced ROS levels in HG- and HM-exposed HUVECs. Concurrent treatment also enhanced cell proliferation, reduced apoptotic gene expression and ameliorated endoplasmic reticulum stress in HG- and HM-exposed HUVECs. Thus, long-term Teneligliptin treatment reduced DPP-4 levels and activity in HUVECs exposed to chronic hyperglycemia. Moreover, Teneligliptin enhanced the beneficial effects of GLP-1 on oxidative stress, proliferation, apoptosis and endoplasmic reticulum homeostasis.
Collapse
Affiliation(s)
- Valeria De Nigris
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Elettra Mancuso
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Medical and Surgical Sciences, University Magna Grǽcia of Catanzaro, Catanzaro, Italy
| | - Rosangela Spiga
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Medical and Surgical Sciences, University Magna Grǽcia of Catanzaro, Catanzaro, Italy
| | - Gemma Pujadas
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Antonio Ceriello
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
13
|
Prattichizzo F, De Nigris V, Spiga R, Mancuso E, La Sala L, Antonicelli R, Testa R, Procopio AD, Olivieri F, Ceriello A. Inflammageing and metaflammation: The yin and yang of type 2 diabetes. Ageing Res Rev 2018; 41:1-17. [PMID: 29081381 DOI: 10.1016/j.arr.2017.10.003] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/21/2017] [Accepted: 10/23/2017] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is characterised by chronic low-grade inflammation, recently referred to as 'metaflammation', a relevant factor contributing to the development of both diabetes and its complications. Nonetheless, 'canonical' anti-inflammatory drugs do not yield satisfactory results in terms of prevention of diabetes progression and of cardiovascular events, suggesting that the causal mechanisms fostering metaflammation deserve further research to identify new druggable targets. Metaflammation resembles ageing-induced low-grade inflammation, previously referred to as inflammageing, in terms of clinical presentation and the molecular profile, pointing to a common aetiology for both conditions. Along with the mechanisms proposed to fuel inflammageing, here we dissect a plethora of pathological cascades triggered by gluco- and lipotoxicity, converging on candidate phenomena possibly explaining the enduring pro-inflammatory program observed in diabetic tissues, i.e. persistent immune-system stimulation, accumulation of senescent cells, epigenetic rearrangements, and alterations in microbiota composition. We discuss the possibility of harnessing these recent discoveries in future therapies for T2DM. Moreover, we review recent evidence regarding the ability of diets and physical exercise to modulate selected inflammatory pathways relevant for the diabetic pathology. Finally, we examine the latest findings showing putative anti-inflammatory mechanisms of anti-hyperglycaemic agents with proven efficacy against T2DM-induced cardiovascular complications, in order to gain insights into quickly translatable therapeutic approaches.
Collapse
|
14
|
Jeong IK. Cardiovascular Outcome Trials of Incretin Therapy (Dipeptidyl Peptidase-4 Inhibitors/Glucagon-Like Peptide-1 Receptor Agonist). J Lipid Atheroscler 2018. [DOI: 10.12997/jla.2018.7.1.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- In-Kyung Jeong
- Department of Endocrinology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
von Lewinski D, Kolesnik E, Wallner M, Resl M, Sourij H. New Antihyperglycemic Drugs and Heart Failure: Synopsis of Basic and Clinical Data. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1253425. [PMID: 28894748 PMCID: PMC5574229 DOI: 10.1155/2017/1253425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/12/2017] [Indexed: 12/24/2022]
Abstract
The assessment of the cardiovascular safety profile of any newly developed antihyperglycemic drug is mandatory before registration, as a meta-analysis raised alarm describing a significant increase in myocardial infarction with the thiazolidinedione rosiglitazone. The first results from completed cardiovascular outcome trials are already available: TECOS, SAVOR-TIMI, and EXAMINE investigated dipeptidyl peptidase 4 (DPP-4) inhibitors, ELIXA, LEADER, and SUSTAIN-6 investigated glucagon-like peptide 1 (GLP-1) receptor agonists, and EMPA-REG OUTCOME and CANVAS investigated sodium-dependent glucose transporter 2 (SGLT-2) inhibitors. LEADER, SUSTAIN-6, EMPA-REG OUTCOME, and CANVAS showed potential beneficial results, while the SAVOR-TIMI trial had an increased rate of hospitalization for heart failure. Meanwhile, the same drugs are investigated in preclinical experiments mainly using various animal models, which aim to find interactions and elucidate the underlying downstream mechanisms between the antihyperglycemic drugs and the cardiovascular system. Yet the direct link for observed effects, especially for DPP-4 and SGLT-2 inhibitors, is still unknown. Further inquiry into these mechanisms is crucial for the interpretation of the clinical trials' outcome and, vice versa, the clinical trials provide hints for an involvement of the cardiovascular system. The synopsis of preclinical and clinical data is essential for a detailed understanding of benefits and risks of new antihyperglycemic drugs.
Collapse
Affiliation(s)
- Dirk von Lewinski
- Department of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Ewald Kolesnik
- Department of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Markus Wallner
- Department of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Michael Resl
- Department of Endocrinology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Department of Internal Medicine, Hospital Barmherzige Brüder Linz, Seilerstätte 2, 4021 Linz, Austria
| | - Harald Sourij
- Department of Endocrinology and Diabetology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| |
Collapse
|
16
|
Effects of glucagon-like peptide-1 receptor agonists on mortality and cardiovascular events: A comprehensive meta-analysis of randomized controlled trials. Int J Cardiol 2017; 240:414-421. [DOI: 10.1016/j.ijcard.2017.03.163] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/04/2017] [Accepted: 03/29/2017] [Indexed: 11/23/2022]
|
17
|
Plasma dipeptidyl-peptidase-4 activity is associated with left ventricular systolic function in patients with ST-segment elevation myocardial infarction. Sci Rep 2017; 7:6097. [PMID: 28733630 PMCID: PMC5522492 DOI: 10.1038/s41598-017-06514-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022] Open
Abstract
Plasma dipeptidyl-peptidase-4 activity (DPP4a) is inversely associated with left ventricular function in patients with heart failure (HF) or diabetes. However, the association between DPP4a and left ventricular function in ST-segment elevation myocardial infarction (STEMI) patients has not been reported. We studied this association in 584 consecutive STEMI patients at a tertiary referral center from July 2014 to October 2015. DPP4a and plasma N-terminal prohormone of B-type natriuretic peptide (NT-proBNP) levels were quantified by enzymatic assays. The median serum NT-proBNP levels were highest in patients of the lowest tertile (T1) of DPP4a compared with that of the highest tertile (T3) (p = 0.028). The STEMI patients in T1 exhibited lower left ventricular systolic function (T1 vs. T3: left ventricular ejection fraction (LVEF): 50.13 ± 9.12 vs. 52.85 ± 6.82%, p = 0.001). Multivariate logistic-regression analyses (adjusted for confounding variables) showed that a 1 U/L increase in DPP4a was associated with a decreased incidence of left ventricular systolic dysfunction (LVSD) (adjusted odds ratio: 0.90; 95% CI: 0.87–0.94; p < 0.01). In conclusion, low DPP4a is independently associated with LVSD in STEMI patients, which suggests that DPP4 may be involved in the mechanisms of LVSD in STEMI patients.
Collapse
|
18
|
Altara R, Giordano M, Nordén ES, Cataliotti A, Kurdi M, Bajestani SN, Booz GW. Targeting Obesity and Diabetes to Treat Heart Failure with Preserved Ejection Fraction. Front Endocrinol (Lausanne) 2017; 8:160. [PMID: 28769873 PMCID: PMC5512012 DOI: 10.3389/fendo.2017.00160] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/23/2017] [Indexed: 12/12/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major unmet medical need that is characterized by the presence of multiple cardiovascular and non-cardiovascular comorbidities. Foremost among these comorbidities are obesity and diabetes, which are not only risk factors for the development of HFpEF, but worsen symptoms and outcome. Coronary microvascular inflammation with endothelial dysfunction is a common denominator among HFpEF, obesity, and diabetes that likely explains at least in part the etiology of HFpEF and its synergistic relationship with obesity and diabetes. Thus, pharmacological strategies to supplement nitric oxide and subsequent cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) signaling may have therapeutic promise. Other potential approaches include exercise and lifestyle modifications, as well as targeting endothelial cell mineralocorticoid receptors, non-coding RNAs, sodium glucose transporter 2 inhibitors, and enhancers of natriuretic peptide protective NO-independent cGMP-initiated and alternative signaling, such as LCZ696 and phosphodiesterase-9 inhibitors. Additionally, understanding the role of adipokines in HFpEF may lead to new treatments. Identifying novel drug targets based on the shared underlying microvascular disease process may improve the quality of life and lifespan of those afflicted with both HFpEF and obesity or diabetes, or even prevent its occurrence.
Collapse
Affiliation(s)
- Raffaele Altara
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, Oslo, Norway
- Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
- *Correspondence: Raffaele Altara,
| | - Mauro Giordano
- Department of Medical, Surgical, Neurological, Metabolic and Geriatrics Sciences, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Einar S. Nordén
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, Oslo, Norway
- Bjørknes College, Oslo, Norway
| | - Alessandro Cataliotti
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, Oslo, Norway
| | - Mazen Kurdi
- Faculty of Sciences, Department of Chemistry and Biochemistry, Lebanese University, Hadath, Lebanon
| | - Saeed N. Bajestani
- Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
- Department of Ophthalmology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|