1
|
Sun J, Li J, He Y, Kang W, Ye X. Identification and validation of protein biomarkers for predicting gastrointestinal stromal tumor recurrence. Comput Struct Biotechnol J 2024; 23:1065-1075. [PMID: 38455069 PMCID: PMC10918489 DOI: 10.1016/j.csbj.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024] Open
Abstract
We conducted a proteomic analysis using mass spectrometry to identify and validate protein biomarkers for accurately predicting recurrence risk in gastrointestinal stromal tumors (GIST) patients, focusing on differentially expressed proteins in metastatic versus primary GIST tissues. We selected five biomarkers-GPX4, RBM4, TPM3, PFKFB2, and PGAM5-and validated their expressions in primary tumors of recurrent and non-recurrent GIST patients via immunohistochemistry. Our analysis of the association between these biomarkers with recurrence-free survival (RFS) and overall survival (OS), along with their interrelationships, revealed that immunohistochemistry confirmed significantly higher expressions of these biomarkers in primary GIST tissues of recurrent patients. Kaplan-Meier survival analysis showed that high expressions of GPX4, RBM4, TPM3, PFKFB2, and PGAM5 correlated with lower RFS, and GPX4 and RBM4 with lower OS. All biomarker pairs showed positive associations, with high expressions correlating with increased recurrence rates, and GPX4 and RBM4 with higher mortality rates. In conclusion, the biomarkers GPX4, RBM4, TPM3, PFKFB2, and PGAM5 are clinically relevant for predicting GIST recurrence, with their high expressions in primary tumors linked to poorer RFS and OS. They serve as potential prognostic indicators, enabling early treatment and improved outcomes. The observed interrelationships among these biomarkers further validate their accuracy in predicting GIST recurrence.
Collapse
Affiliation(s)
| | | | - Yixuan He
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weiming Kang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Ye
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Zhao B, Liang Z, Zhang L, Jiang L, Xu Y, Zhang Y, Zhang R, Wang C, Liu Z. Ponicidin Promotes Hepatocellular Carcinoma Mitochondrial Apoptosis by Stabilizing Keap1-PGAM5 Complex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406080. [PMID: 39116422 PMCID: PMC11481384 DOI: 10.1002/advs.202406080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/09/2024] [Indexed: 08/10/2024]
Abstract
Ponicidin is a diterpenoid with demonstrated antitumor activity in clinical trials. However, the specific function and mechanism of action against hepatocellular carcinoma (HCC) remain unknown. In this study, it is found that ponicidin significantly inhibited the proliferation and migration of HCC cells. It is shown that ponicidin targets Keap1 and promotes the formation of the Keap1-PGAM5 complex, leading to the ubiquitination of PGAM5, using biotin-labeled ponicidin for target fishing and the HuProtTM Human Proteome Microarray V4.0. Ponicidin is found to activate the cysteine-dependent mitochondrial pathway via PGAM5, resulting in mitochondrial damage and ROS production, thereby promoting mitochondrial apoptosis in HepG2 cells. The first in vitro cocrystal structure of the PGAM5 IE 12-mer peptide and the Keap1 Kelch domain is obtained. Using molecular dynamics simulations to confirm the binding of ponicidin to the Keap1-PGAM5 complex. Based on the depth-based dynamic simulation, it is found that ponicidin can induce the tightening of the Keap1-PGAM5 interaction pocket, thereby stabilizing the formation of the protein complex. Finally, it is observed that ponicidin effectively inhibited tumor growth and promoted tumor cell apoptosis in a BALB/c nude mouse xenograft tumor model. The results provide insight into the anti-HCC properties of ponicidin based on a mechanism involving the Keap1-PGAM5 complex.
Collapse
Affiliation(s)
- Bixin Zhao
- State Key Laboratory of Traditional Chinese Medicine SyndromeInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Zuhui Liang
- State Key Laboratory of Traditional Chinese Medicine SyndromeInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Lisheng Zhang
- Research Center of Integrative MedicineSchool of Basic Medical ScienceGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Lin Jiang
- State Key Laboratory of Traditional Chinese Medicine SyndromeInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Yuanhang Xu
- State Key Laboratory of Traditional Chinese Medicine SyndromeInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Ying Zhang
- State Key Laboratory of Traditional Chinese Medicine SyndromeInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Rong Zhang
- State Key Laboratory of Traditional Chinese Medicine SyndromeInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Caiyan Wang
- State Key Laboratory of Traditional Chinese Medicine SyndromeInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Zhongqiu Liu
- State Key Laboratory of Traditional Chinese Medicine SyndromeInternational Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhou510006China
| |
Collapse
|
3
|
Wang A, Song Q, Li Y, Fang H, Ma X, Li Y, Wei B, Pan C. Effect of traditional Chinese medicine on metabolism disturbance in ischemic heart diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118143. [PMID: 38583735 DOI: 10.1016/j.jep.2024.118143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic heart diseases (IHD), characterized by metabolic dysregulation, contributes majorly to the global morbidity and mortality. Glucose, lipid and amino acid metabolism are critical energy production for cardiomyocytes, and disturbances of these metabolism lead to the cardiac injury. Traditional Chinese medicine (TCM), widely used for treating IHD, have been demonstrated to effectively and safely regulate the cardiac metabolism reprogramming. AIM OF THE REVIEW This study discussed and analyzed the disturbed cardiac metabolism induced by IHD and development of formulas, extracts, single herb, bioactive compounds of TCM ameliorating IHD injury via metabolism regulation, with the aim of providing a basis for the development of clinical application of therapeutic strategies for TCM in IHD. MATERIALS AND METHODS With "ischemic heart disease", "myocardial infarction", "myocardial ischemia", "metabolomics", "Chinese medicine", "herb", "extracts" "medicinal plants", "glucose", "lipid metabolism", "amino acid" as the main keywords, PubMed, Web of Science, and other online search engines were used for literature retrieval. RESULTS IHD exhibits a close association with metabolism disorders, including but not limited to glycolysis, the TCA cycle, oxidative phosphorylation, branched-chain amino acids, fatty acid β-oxidation, ketone body metabolism, sphingolipid and glycerol-phospholipid metabolism. The therapeutic potential of TCM lies in its ability to regulate these disturbed cardiac metabolisms. Additionally, the active ingredients of TCM have depicted wonderful effects in cardiac metabolism reprogramming in IHD. CONCLUSION Drawing from the principles of TCM, we have pinpointed specific herbal remedies for the treatment of IHD, and leveraged advanced metabolomics technologies to uncover the effect of these TCMs on metabolomics alteration. In the future, further clinical experimental studies should be included to explore whether more TCM medicines can play a therapeutic role in IHD by reversing cardiac metabolism disorders; multi-omics would be conducted to explore more pathways and genes targeting such metabolism reprogramming by TCMs, and to seek more TCM therapies for IHD.
Collapse
Affiliation(s)
- Anpei Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Qiubin Song
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Yi Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Hai Fang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Xiaoji Ma
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Yunxia Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Bo Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China.
| | - Chengxue Pan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
4
|
Fasipe B, Laher I. Nrf2 modulates the benefits of evening exercise in type 2 diabetes. SPORTS MEDICINE AND HEALTH SCIENCE 2023; 5:251-258. [PMID: 38314046 PMCID: PMC10831386 DOI: 10.1016/j.smhs.2023.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 02/06/2024] Open
Abstract
Exercise has well-characterized therapeutic benefits in the management of type 2 diabetes mellitus (T2DM). Most of the beneficial effects of exercise arise from the impact of nuclear factor erythroid 2 related factor-2 (Nrf2) activation of glucose metabolism. Nrf2 is an essential controller of cellular anti-oxidative capacity and circadian rhythms. The circadian rhythm of Nrf2 is influenced by circadian genes on its expression, where the timing of exercise effects the activation of Nrf2 and the rhythmicity of Nrf2 and signaling, such that the timing of exercise has differential physiological effects. Exercise in the evening has beneficial effects on diabetes management, such as lowering of blood glucose and weight. The mechanisms responsible for these effects have not yet been associated with the influence of exercise on the circadian rhythm of Nrf2 activity. A better understanding of exercise-induced Nrf2 activation on Nrf2 rhythm and signaling can improve our appreciation of the distinct effects of morning and evening exercise. This review hypothesizes that activation of Nrf2 by exercise in the morning, when Nrf2 level is already at high levels, leads to hyperactivation and decrease in Nrf2 signaling, while activation of Nrf2 in the evening, when Nrf2 levels are at nadir levels, improves Nrf2 signaling and lowers blood glucose levels and increases fatty acid oxidation. Exploring the effects of Nrf2 activators on rhythmic signaling could also provide valuable insights into the optimal timing of their application, while also holding promise for timed treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Babatunde Fasipe
- Faculty of Basic Clinical Sciences, Department of Pharmacology and Therapeutics, Bowen University, Iwo, Nigeria
| | - Ismail Laher
- Faculty of Medicine, Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
5
|
Muthusamy G, Liu CC, Johnston AN. Deletion of PGAM5 Downregulates FABP1 and Attenuates Long-Chain Fatty Acid Uptake in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:4796. [PMID: 37835490 PMCID: PMC10571733 DOI: 10.3390/cancers15194796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Phosphoglycerate mutase 5 (PGAM5) is a Ser/His/Thr phosphatase responsible for regulating mitochondrial homeostasis. Overexpression of PGAM5 is correlated with a poor prognosis in hepatocellular carcinoma, colon cancer, and melanoma. In hepatocellular carcinoma, silencing of PGAM5 reduces growth, which has been attributed to decreased mitophagy and enhanced apoptosis. Yet in colon cancer, PGAM5's pro-tumor survival effect is correlated to lipid metabolism. We sought to identify whether deletion of PGAM5 modulated lipid droplet accrual in hepatocellular carcinoma. HepG2 and Huh7 PGAM5 knockout cell lines generated using CRISPR/Cas9 technology were used to measure cell growth, cellular ATP, and long-chain fatty acid uptake. Expression of hepatocellular fatty acid transporters, cluster of differentiation 36 (CD36), solute carrier family 27 member 2 (SLC27A2), solute carrier family 27 member 5 (SLC27A5), and fatty acid binding protein 1 (FABP1) was measured by quantitative PCR and Western blot. We found that deletion of PGAM5 attenuates hepatocellular carcinoma cell growth and ATP production. Further, PGAM5 knockout ameliorates palmitate-induced steatosis and reduces expression of FABP1 in HepG2 and Huh7 cell lines. PGAM5's role in hepatocellular carcinoma includes regulation of fatty acid metabolism, which may be related to expression of the fatty acid transporter, FABP1.
Collapse
Affiliation(s)
| | | | - Andrea N. Johnston
- Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA; (G.M.); (C.-C.L.)
| |
Collapse
|
6
|
Kamiya M, Kimura N, Umezawa N, Hasegawa H, Yasuda S. Muscle fiber necroptosis in pathophysiology of idiopathic inflammatory myopathies and its potential as target of novel treatment strategy. Front Immunol 2023; 14:1191815. [PMID: 37483632 PMCID: PMC10361824 DOI: 10.3389/fimmu.2023.1191815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Idiopathic inflammatory myopathies (IIMs), which are a group of chronic and diverse inflammatory diseases, are primarily characterized by weakness in the proximal muscles that progressively leads to persistent disability. Current treatments of IIMs depend on nonspecific immunosuppressive agents (including glucocorticoids and immunosuppressants). However, these therapies sometimes fail to regulate muscle inflammation, and some patients suffer from infectious diseases and other adverse effects related to the treatment. Furthermore, even after inflammation has subsided, muscle weakness persists in a significant proportion of the patients. Therefore, the elucidation of pathophysiology of IIMs and development of a better therapeutic strategy that not only alleviates muscle inflammation but also improves muscle weakness without increment of opportunistic infection is awaited. Muscle fiber death, which has been formerly postulated as "necrosis", is a key histological feature of all subtypes of IIMs, however, its detailed mechanisms and contribution to the pathophysiology remained to be elucidated. Recent studies have revealed that muscle fibers of IIMs undergo necroptosis, a newly recognized form of regulated cell death, and promote muscle inflammation and dysfunction through releasing inflammatory mediators such as damage-associated molecular patterns (DAMPs). The research on murine model of polymyositis, a subtype of IIM, revealed that the inhibition of necroptosis or HMGB1, one of major DAMPs released from muscle fibers undergoing necroptosis, ameliorated muscle inflammation and recovered muscle weakness. Furthermore, not only the necroptosis-associated molecules but also PGAM5, a mitochondrial protein, and reactive oxygen species have been shown to be involved in muscle fiber necroptosis, indicating the multiple target candidates for the treatment of IIMs acting through necroptosis regulation. This article overviews the research on muscle injury mechanisms in IIMs focusing on the contribution of necroptosis in their pathophysiology and discusses the potential treatment strategy targeting muscle fiber necroptosis.
Collapse
|
7
|
Dai C, Qu B, Peng B, Liu B, Li Y, Niu C, Peng B, Li D. Phosphoglycerate mutase 5 facilitates mitochondrial dysfunction and neuroinflammation in spinal tissues after spinal cord injury. Int Immunopharmacol 2023; 116:109773. [PMID: 36773566 DOI: 10.1016/j.intimp.2023.109773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/27/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023]
Abstract
Spinal cord injury (SCI) is a high incidence worldwide that causes a heavy physical and psychological burden to patients. It is urgent to further reveal the pathological mechanism and effective treatment of SCI. Mitochondrial dysfunction plays an important role in the disease progression of SCI. As a mitochondrial membrane protein, phosphoglycerate mutase 5 (PGAM5) is mainly involved in mitochondrial function and mitosis to modulate cellular physiological functions, but the roles of PGAM5 in spinal tissues remain to be unreported after SCI. The purpose of this study was to evaluate the role of PGAM5 in SCI mice and its relationship with neuroinflammation. The results showed that the mitochondrial membrane protein PGAM5 was involved in microglia activation after SCI, and PGAM5 deletion could improve mitochondrial dysfunction (including abnormal mtDNA, ATP synthases, and ATP levels, Cyt C expression, and ROS and rGSH levels) in spinal cord tissue after SCI, Arg1/iNOS mRNA level, iNOS expression, and pro-inflammatory cytokines TNF-α, IL-1β, and IL-18 levels. In vitro, H2O2 increased TNF-α, IL-1β, and IL-18 levels in BV2 cells, and PGAM5-sh and Nrf2 activators significantly reversed H2O2-induced iNOS expression and proinflammatory cytokine production. Furthermore, IP/Western blotting results revealed that PGAM5-sh treatment significantly reduced the interaction of PGAM5 with Nrf2 and enhanced the nuclear translocation of Nrf2 in BV2 cells. The data suggested that PGAM5 was involved in the cascade of oxidative stress and inflammatory response in microglia via facilitating the expression level of Nrf2 in the nucleus after SCI. It provided a reference for clarifying the pathological mechanism and therapeutic target of SCI.
Collapse
Affiliation(s)
- Chen Dai
- Orthopedics and Trauma Department, The 963rd (224th) Hospital of People's Liberation Army, 963rd Hospital of Joint Logistics Support Force of PLA, Jiamusi, Heilongjiang 154007, China; Department of Orthopedics, The Third Medical Center, General Hospital of the Chinese People's Liberation Army, Beijing 100039, China
| | - Bo Qu
- Tianjin University, Tianjin Key Laboratory for Disaster and Emergency Medicine Technology, Tianjin 300072, China
| | - Bibo Peng
- Outpatient Department, The Third Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100039, China
| | - Bin Liu
- Department of Orthopaedics, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yongchao Li
- Department of Orthopedics, The Third Medical Center, General Hospital of the Chinese People's Liberation Army, Beijing 100039, China
| | - Chunlei Niu
- Department of Orthopedics, The Third Medical Center, General Hospital of the Chinese People's Liberation Army, Beijing 100039, China
| | - Baogan Peng
- Department of Orthopedics, The Third Medical Center, General Hospital of the Chinese People's Liberation Army, Beijing 100039, China.
| | - Duanming Li
- Department of Orthopedics, The Third Medical Center, General Hospital of the Chinese People's Liberation Army, Beijing 100039, China.
| |
Collapse
|
8
|
Zhang L, Cui T, Wang X. The Interplay Between Autophagy and Regulated Necrosis. Antioxid Redox Signal 2023; 38:550-580. [PMID: 36053716 PMCID: PMC10025850 DOI: 10.1089/ars.2022.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022]
Abstract
Significance: Autophagy is critical to cellular homeostasis. Emergence of the concept of regulated necrosis, such as necroptosis, ferroptosis, pyroptosis, and mitochondrial membrane-permeability transition (MPT)-derived necrosis, has revolutionized the research into necrosis. Both altered autophagy and regulated necrosis contribute to major human diseases. Recent studies reveal an intricate interplay between autophagy and regulated necrosis. Understanding the interplay at the molecular level will provide new insights into the pathophysiology of related diseases. Recent Advances: Among the three forms of autophagy, macroautophagy is better studied for its crosstalk with regulated necrosis. Macroautophagy seemingly can either antagonize or promote regulated necrosis, depending upon the form of regulated necrosis, the type of cells or stimuli, and other cellular contexts. This review will critically analyze recent advances in the molecular mechanisms governing the intricate dialogues between macroautophagy and main forms of regulated necrosis. Critical Issues: The dual roles of autophagy, either pro-survival or pro-death characteristics, intricate the mechanistic relationship between autophagy and regulated necrosis at molecular level in various pathological conditions. Meanwhile, key components of regulated necrosis are also involved in the regulation of autophagy, which further complicates the interrelationship. Future Directions: Resolving the controversies over causation between altered autophagy and a specific form of regulated necrosis requires approaches that are more definitive, where rigorous evaluation of autophagic flux and the development of more reliable and specific methods to quantify each form of necrosis will be essential. The relationship between chaperone-mediated autophagy or microautophagy and regulated necrosis remains largely unstudied. Antioxid. Redox Signal. 38, 550-580.
Collapse
Affiliation(s)
- Lei Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, South Dakota, USA
| |
Collapse
|
9
|
Peng J, Wang T, Yue C, Luo X, Xiao P. PGAM5: A necroptosis gene associated with poor tumor prognosis that promotes cutaneous melanoma progression. Front Oncol 2022; 12:1004511. [PMID: 36523972 PMCID: PMC9745120 DOI: 10.3389/fonc.2022.1004511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/26/2022] [Indexed: 09/08/2023] Open
Abstract
Cutaneous melanoma is the deadliest type of skin cancer, and its highly aggressive and metastatic nature leads to an extremely poor prognosis. Necrotizing apoptosis, a specific form of programmed cell death, has been extensively studied in recent years. In this study, we analyzed the relationship between necroptosis-related functional genes and cutaneous melanoma in order to identify the biomarkers associated with the prognosis and progression of cutaneous melanoma. Cutaneous melanoma samples were classified into three subgroups on the basis of a necroptosis gene set. These subgroups were subjected to a prognostic survival analysis, and the greatest differences were observed between subgroups C1 and C3. Between these subgroups, 28 necrotizing apoptosis-related genes were significantly differently expressed. Among these, 16 necrotizing apoptosis-related genes were associated with cutaneous melanoma prognosis. Downscaling analysis and prognostic modeling using the least absolute shrinkage and selection operator analysis yielded nine pivotal genes and revealed phosphoglycerate translocase 5 (PGAM5) as the key gene. Then, qRT-PCR was used to verify the expression level of PGAM5. The results showed that PGAM5 was highly expressed in cutaneous melanoma tissues. In this study, a bioinformatics approach was used to identify PGAM5, a biomarker whose high expression is associated with the poor prognosis of cutaneous melanoma.
Collapse
Affiliation(s)
- Jianzhong Peng
- Department of Dermatologic Surgery, Hangzhou Third People’s Hospital, Hangzhou, Zhejiang, China
| | - Tao Wang
- Department of Dermatologic Surgery, Hangzhou Third People’s Hospital, Hangzhou, Zhejiang, China
| | - Chao Yue
- Department of Dermatologic Surgery, Hangzhou Third People’s Hospital, Hangzhou, Zhejiang, China
| | - Xianyan Luo
- Department of Dermatologic Surgery, Hangzhou Third People’s Hospital, Hangzhou, Zhejiang, China
| | - Peng Xiao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Role of AMPK in Myocardial Ischemia-Reperfusion Injury-Induced Cell Death in the Presence and Absence of Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7346699. [PMID: 36267813 PMCID: PMC9578802 DOI: 10.1155/2022/7346699] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/29/2022] [Indexed: 11/26/2022]
Abstract
Recent studies indicate cell death is the hallmark of cardiac pathology in myocardial infarction and diabetes. The AMP-activated protein kinase (AMPK) signalling pathway is considered a putative salvaging phenomenon, plays a decisive role in almost all cellular, metabolic, and survival functions, and therefore entails precise regulation of its activity. AMPK regulates various programmed cell death depending on the stimuli and context, including autophagy, apoptosis, necroptosis, and ferroptosis. There is substantial evidence suggesting that AMPK is down-regulated in cardiac tissues of animals and humans with type 2 diabetes or metabolic syndrome compared to non-diabetic control and that stimulation of AMPK (physiological or pharmacological) can ameliorate diabetes-associated cardiovascular complications, such as myocardial ischemia-reperfusion injury. Furthermore, AMPK is an exciting therapeutic target for developing novel drug candidates to treat cell death in diabetes-associated myocardial ischemia-reperfusion injury. Therefore, in this review, we summarized how AMPK regulates autophagic, apoptotic, necroptotic, and ferroptosis pathways in the context of myocardial ischemia-reperfusion injury in the presence and absence of diabetes.
Collapse
|
11
|
Bu Y, Peng M, Tang X, Xu X, Wu Y, Chen AF, Yang X. Protective effects of metformin in various cardiovascular diseases: Clinical evidence and AMPK-dependent mechanisms. J Cell Mol Med 2022; 26:4886-4903. [PMID: 36052760 PMCID: PMC9549498 DOI: 10.1111/jcmm.17519] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Metformin, a well-known AMPK agonist, has been widely used as the first-line drug for treating type 2 diabetes. There had been a significant concern regarding the use of metformin in people with cardiovascular diseases (CVDs) due to its potential lactic acidosis side effect. Currently growing clinical and preclinical evidence indicates that metformin can lower the incidence of cardiovascular events in diabetic patients or even non-diabetic patients beyond its hypoglycaemic effects. The underlying mechanisms of cardiovascular benefits of metformin largely involve the cellular energy sensor, AMPK, of which activation corrects endothelial dysfunction, reduces oxidative stress and improves inflammatory response. In this minireview, we summarized the clinical evidence of metformin benefits in several widely studied cardiovascular diseases, such as atherosclerosis, ischaemic/reperfusion injury and arrhythmia, both in patients with or without diabetes. Meanwhile, we highlighted the potential AMPK-dependent mechanisms in in vitro and/or in vivo models.
Collapse
Affiliation(s)
- Yizhi Bu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Mei Peng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xinyi Tang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xu Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yifeng Wu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Alex F Chen
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.,Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
12
|
The regulation of necroptosis and perspectives for the development of new drugs preventing ischemic/reperfusion of cardiac injury. Apoptosis 2022; 27:697-719. [DOI: 10.1007/s10495-022-01760-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 12/11/2022]
|
13
|
Morin offsets PTZ-induced neuronal degeneration and cognitive decrements in rats: The modulation of TNF-α/TNFR-1/RIPK1,3/MLKL/PGAM5/Drp-1, IL-6/JAK2/STAT3/GFAP and Keap-1/Nrf-2/HO-1 trajectories. Eur J Pharmacol 2022; 931:175213. [PMID: 35981604 DOI: 10.1016/j.ejphar.2022.175213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
Morin is a bioactive flavonoid with prominent neuroprotective potentials, however, its impact on epilepsy-provoked cognitive dysregulations has not been revealed. Hence, the present investigation aims to divulge the potential anticonvulsant/neuroprotective effects of morin in rats using a pentylenetetrazole (PTZ)-induced kindling model with an emphasis on the possible signaling trajectories involved. Kindling was induced using a sub-convulsive dose of PTZ (35 mg/kg, i.p.), once every other day for 25 days (12 injections). The expression of targeted biomarkers and molecular signals were examined in hippocampal tissues by ELISA, Western blotting, immunohistochemistry, and histopathology. Contrary to PTZ effects, administration of morin (10 mg/kg, i.p., from day 15 of PTZ injection to the end of the experiment) significantly reduced the severity of seizures coupled with a delay in kindling acquisition. It also preserved hippocampal neurons, and diminished astrogliosis to counteract cognitive deficits, exhibited by the enhanced performance in MWM and PA tests. These favorable impacts of morin were mediated via the abrogation of the PTZ-induced necroptotic changes and mitochondrial fragmentation proven by the suppression of p-RIPK-1/p-RIPK-3/p-MLKL and PGAM5/Drp-1 cues alongside the enhancement of caspase-8. Besides, morin inhibited the inflammatory cascade documented by the attenuation of the pro-convulsant receptor/cytokines TNFR-1, TNF-α, I L-1β, and IL-6 and the marked reduction of hippocampal IL-6/p-JAK2/p-STAT3/GFAP cue. In tandem, morin signified its anti-oxidant capacity by lowering the hippocampal contents of MDA, NOX-1, and Keap-1 with the restoration of the impaired Nrf-2/HO-1 pathway. Together, these versatile neuro-modulatory effects highlight the promising role of morin in the management of epilepsy.
Collapse
|
14
|
Kamiya M, Mizoguchi F, Yasuda S. Amelioration of inflammatory myopathies by glucagon-like peptide-1 receptor agonist via suppressing muscle fibre necroptosis. J Cachexia Sarcopenia Muscle 2022; 13:2118-2131. [PMID: 35775116 PMCID: PMC9397554 DOI: 10.1002/jcsm.13025] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/23/2022] [Accepted: 05/09/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND As glucocorticoids induce muscle atrophy during the treatment course of polymyositis (PM), novel therapeutic strategy is awaited that suppresses muscle inflammation but retains muscle strength. We recently found that injured muscle fibres in PM undergo FASLG-mediated necroptosis, a form of regulated cell death accompanied by release of pro-inflammatory mediators, contributes to accelerate muscle inflammation and muscle weakness. Glucagon-like peptide-1 receptor (GLP-1R) agonists have pleiotropic actions including anti-inflammatory effects, prevention of muscle atrophy, and inhibition of cell death, in addition to anti-diabetic effect. We aimed in this study to examine the role of GLP-1R in PM and the effect of a GLP-1R agonist on in vivo and in vitro models of PM. METHODS Muscle specimens of PM patients and a murine model of PM, C protein-induced myositis (CIM), were examined for the expression of GLP-1R. The effect of PF1801, a GLP-1R agonist, on CIM was evaluated in monotherapy or in combination with prednisolone (PSL). As an in vitro model of PM, C2C12-derived myotubes were treated with FASLG to induce necroptosis. The effect of PF1801 on this model was analysed. RESULTS GLP-1R was expressed on the inflamed muscle fibres of PM and CIM. The treatment of CIM with PF1801 in monotherapy (PF) or in combination with PSL (PF + PSL) suppressed CIM-induced muscle weakness (grip strength, mean ± SD (g); PF 227 ± 6.0 (P < 0.01), PF + PSL 224 ± 8.5 (P < 0.01), Vehicle 162 ± 6.0) and decrease in cross-sectional area of muscle fibres (mean ± SD (μm2 ); PF 1896 ± 144 (P < 0.05), PF + PSL 2018 ± 445 (P < 0.01), Vehicle 1349 ± 199) as well as the severity of histological inflammation scores (median, interquartile range; PF 0.0, 0.0-0.5 (P < 0.05), PF + PSL 0.0, 0.0-0.0 (P < 0.01), Vehicle 1.9, 1.3-3.3). PF1801 decreased the levels of inflammatory mediators such as TNFα, IL-6, and HMGB1 in the serum of CIM. PF1801 inhibited necroptosis of the myotubes in an AMP-activated protein kinase (AMPK)-dependent manner. PF1801 activated AMPK and decreased the expression of PGAM5, a mitochondrial protein, which was crucial for necroptosis of the myotubes. PF1801 promoted the degradation of PGAM5 through ubiquitin-proteasome activity. Furthermore, PF1801 suppressed FASLG-induced reactive oxygen species (ROS) accumulation in myotubes, also crucial for the execution of necroptosis, thorough up-regulating the antioxidant molecules including Nfe2l2, Hmox1, Gclm, and Nqo1. CONCLUSIONS GLP-1R agonist could be a novel therapy for PM that recovers muscle weakness and suppresses muscle inflammation through inhi biting muscle fibre necroptosis.
Collapse
Affiliation(s)
- Mari Kamiya
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Fumitaka Mizoguchi
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shinsuke Yasuda
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
15
|
Chen DQ, Guo Y, Li X, Zhang GQ, Li P. Small molecules as modulators of regulated cell death against ischemia/reperfusion injury. Med Res Rev 2022; 42:2067-2101. [PMID: 35730121 DOI: 10.1002/med.21917] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 11/11/2021] [Accepted: 06/07/2022] [Indexed: 12/13/2022]
Abstract
Ischemia/reperfusion (IR) injury contributes to disability and mortality worldwide. Due to the complicated mechanisms and lack of proper therapeutic targets, few interventions are available that specifically target the pathogenesis of IR injury. Regulated cell death (RCD) of endothelial and parenchymal cells is recognized as the promising intervening target. Recent advances in IR injury suggest that small molecules exhibit beneficial effects on various RCD against IR injury, including apoptosis, necroptosis, autophagy, ferroptosis, pyroptosis, and parthanatos. Here, we describe the mechanisms behind these novel promising therapeutic targets and explain the machinery powering the small molecules. These small molecules exert protection by targeting endothelial or parenchymal cells to alleviate IR injury. Therapies of the ideal combination of small molecules targeting multiple cell types have shown potent synergetic therapeutic effects, laying the foundation for novel strategies to attenuate IR injury.
Collapse
Affiliation(s)
- Dan-Qian Chen
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China.,Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Yan Guo
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Xin Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Guo-Qiang Zhang
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
16
|
Shi Q, Xia F, Wang Q, Liao F, Guo Q, Xu C, Wang J. Discovery and repurposing of artemisinin. Front Med 2022; 16:1-9. [PMID: 35290595 PMCID: PMC8922983 DOI: 10.1007/s11684-021-0898-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022]
Abstract
Malaria is an ancient infectious disease that threatens millions of lives globally even today. The discovery of artemisinin, inspired by traditional Chinese medicine (TCM), has brought in a paradigm shift and been recognized as the “best hope for the treatment of malaria” by World Health Organization. With its high potency and low toxicity, the wide use of artemisinin effectively treats the otherwise drug-resistant parasites and helps many countries, including China, to eventually eradicate malaria. Here, we will first review the initial discovery of artemisinin, an extraordinary journey that was in stark contrast with many drugs in western medicine. We will then discuss how artemisinin and its derivatives could be repurposed to treat cancer, inflammation, immunoregulation-related diseases, and COVID-19. Finally, we will discuss the implications of the “artemisinin story” and how that can better guide the development of TCM today. We believe that artemisinin is just a starting point and TCM will play an even bigger role in healthcare in the 21st century.
Collapse
Affiliation(s)
- Qiaoli Shi
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fei Xia
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qixin Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fulong Liao
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiuyan Guo
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chengchao Xu
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China. .,Department of Geriatrics, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, 518020, China.
| | - Jigang Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China. .,Central People's Hospital of Zhanjiang, Zhanjiang, 524045, China. .,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Department of Geriatrics, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, 518020, China.
| |
Collapse
|
17
|
Zhang XJ, Liu X, Hu M, Zhao GJ, Sun D, Cheng X, Xiang H, Huang YP, Tian RF, Shen LJ, Ma JP, Wang HP, Tian S, Gan S, Xu H, Liao R, Zou T, Ji YX, Zhang P, Cai J, Wang ZV, Meng G, Xu Q, Wang Y, Ma XL, Liu PP, Huang Z, Zhu L, She ZG, Zhang X, Bai L, Yang H, Lu Z, Li H. Pharmacological inhibition of arachidonate 12-lipoxygenase ameliorates myocardial ischemia-reperfusion injury in multiple species. Cell Metab 2021; 33:2059-2075.e10. [PMID: 34536344 DOI: 10.1016/j.cmet.2021.08.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/01/2020] [Accepted: 08/25/2021] [Indexed: 12/18/2022]
Abstract
Myocardial ischemia-reperfusion (MIR) injury is a major cause of adverse outcomes of revascularization after myocardial infarction. To identify the fundamental regulator of reperfusion injury, we performed metabolomics profiling in plasma of individuals before and after revascularization and identified a marked accumulation of arachidonate 12-lipoxygenase (ALOX12)-dependent 12-HETE following revascularization. The potent induction of 12-HETE proceeded by reperfusion was conserved in post-MIR in mice, pigs, and monkeys. While genetic inhibition of Alox12 protected mouse hearts from reperfusion injury and remodeling, Alox12 overexpression exacerbated MIR injury. Remarkably, pharmacological inhibition of ALOX12 significantly reduced cardiac injury in mice, pigs, and monkeys. Unexpectedly, ALOX12 promotes cardiomyocyte injury beyond its enzymatic activity and production of 12-HETE but also by its suppression of AMPK activity via a direct interaction with its upstream kinase TAK1. Taken together, our study demonstrates that ALOX12 is a novel AMPK upstream regulator in the post-MIR heart and that it represents a conserved therapeutic target for the treatment of myocardial reperfusion injury.
Collapse
Affiliation(s)
- Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Xiaolan Liu
- Institute of Model Animal of Wuhan University, Wuhan 430071, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Manli Hu
- Institute of Model Animal of Wuhan University, Wuhan 430071, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Guo-Jun Zhao
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Dating Sun
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Xu Cheng
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Hui Xiang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Yong-Ping Huang
- Institute of Model Animal of Wuhan University, Wuhan 430071, China; College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Rui-Feng Tian
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Li-Jun Shen
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Jun-Peng Ma
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Hai-Ping Wang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Song Tian
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Shanyu Gan
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Rufang Liao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Toujun Zou
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Yan-Xiao Ji
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Peng Zhang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Jingjing Cai
- Department of Cardiology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zhao V Wang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guannan Meng
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China
| | - Qingbo Xu
- Centre for Clinic Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Yibin Wang
- Department of Anesthesiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19004, USA
| | - Peter P Liu
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| | - Zan Huang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lihua Zhu
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Xin Zhang
- Gannan Institute of Translational Medicine, Ganzhou 341000, China
| | - Lan Bai
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China.
| | - Hailong Yang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China.
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430060, China.
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
18
|
Lin C, Yang K, Zhang G, Yu J. Metformin ameliorates neuronal necroptosis after intracerebral hemorrhage by activating AMPK. Curr Neurovasc Res 2021; 18:351-359. [PMID: 34561980 DOI: 10.2174/1567202618666210923150251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a major cause of death and disability globally. As a type of secondary injury after ICH, treatment for cell death can promote the recovery of neurological function. METHODS Among all the cell death, neuronal necroptosis has recently been demonstrated of significance in the pathogenesis of ICH. However, the administration of drugs against necroptosis has many limitations. RESULTS In the present study, we found that metformin, a first-line medication for the treatment of type 2 diabetes, can effectively inhibit neuronal necroptosis after ICH through activating AMPK related pathway, thereby significantly improving neurological function scores and reducing brain edema. CONCLUSION These results will provide a new perspective for future research in necroptosis.
Collapse
Affiliation(s)
- Chenhan Lin
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kaichuang Yang
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Guoqiang Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Yu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
A novel PGAM5 inhibitor LFHP-1c protects blood-brain barrier integrity in ischemic stroke. Acta Pharm Sin B 2021; 11:1867-1884. [PMID: 34386325 PMCID: PMC8343116 DOI: 10.1016/j.apsb.2021.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/15/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Blood–brain barrier (BBB) damage after ischemia significantly influences stroke outcome. Compound LFHP-1c was previously discovered with neuroprotective role in stroke model, but its mechanism of action on protection of BBB disruption after stroke remains unknown. Here, we show that LFHP-1c, as a direct PGAM5 inhibitor, prevented BBB disruption after transient middle cerebral artery occlusion (tMCAO) in rats. Mechanistically, LFHP-1c binding with endothelial PGAM5 not only inhibited the PGAM5 phosphatase activity, but also reduced the interaction of PGAM5 with NRF2, which facilitated nuclear translocation of NRF2 to prevent BBB disruption from ischemia. Furthermore, LFHP-1c administration by targeting PGAM5 shows a trend toward reduced infarct volume, brain edema and neurological deficits in nonhuman primate Macaca fascicularis model with tMCAO. Thus, our study identifies compound LFHP-1c as a firstly direct PGAM5 inhibitor showing amelioration of ischemia-induced BBB disruption in vitro and in vivo, and provides a potentially therapeutics for brain ischemic stroke.
Collapse
|
20
|
Mou SQ, Zhou ZY, Feng H, Zhang N, Lin Z, Aiyasiding X, Li WJ, Ding W, Liao HH, Bian ZY, Tang QZ. Liquiritin Attenuates Lipopolysaccharides-Induced Cardiomyocyte Injury via an AMP-Activated Protein Kinase-Dependent Signaling Pathway. Front Pharmacol 2021; 12:648688. [PMID: 34054527 PMCID: PMC8162655 DOI: 10.3389/fphar.2021.648688] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/26/2021] [Indexed: 01/13/2023] Open
Abstract
Background: Liquiritin (LIQ) is a traditional Chinese medicine that has been reported to regulate inflammation, oxidative stress and cell apoptosis. However, the beneficial effects of LIQ in lipopolysaccharides (LPS)-induced septic cardiomyopathy (SCM) has not been reported. The primary goal of this study was to investigate the effects of LIQ in LPS-induced SCM model. Methods: Mice were pre-treated with LIQ for 7 days before they were injected with LPS (10 mg/kg) for inducing SCM model. Echocardiographic analysis was used to evaluate cardiac function after 12 h of LPS injection. Thereafter, mice were sacrificed to collect hearts for molecular and histopathologic assays by RT-PCR, western-blots, immunohistochemical and terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) staining analysis respectively. AMPKα2 knockout (AMPKα2−/−) mice were used to elucidate the mechanism of LIQ Neonatal rat cardiomyocytes (NRCMs) treated with or without LPS were used to further investigate the roles and mechanisms of LIQ in vitro experiments. Results: LIQ administration attenuated LPS-induced mouse cardiac dysfunction and reduced mortality, based upon the restoration of EF, FS, LVEDs, heart rate, dp/dt max and dp/dt min deteriorated by LPS treatment. LIQ treatment also reduced mRNA expression of TNFα, IL-6 and IL-1β, inhibited inflammatory cell migration, suppressed cardiac oxidative stress and apoptosis, and improved metabolism. Mechanistically, LIQ enhanced the phosphorylation of AMP-activated protein kinase α2 (AMPKα2) and decreased the phosphorylation of mTORC1, IκBα and NFκB/p65. Importantly, the beneficial roles of LIQ were not observed in AMPKα2 knockout model, nor were they observed in vitro model after inhibiting AMPK activity with an AMPK inhibitor. Conclusion: We have demonstrated that LIQ exerts its protective effects in an SCM model induced by LPS administration. LIQ reduced inflammation, oxidative stress, apoptosis and metabolic alterations via regulating AMPKα2 dependent signaling pathway. Thus, LIQ might be a potential treatment or adjuvant for SCM treatment.
Collapse
Affiliation(s)
- Shan-Qi Mou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zi-Ying Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Hong Feng
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Nan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zheng Lin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Xiahenazi Aiyasiding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Wen-Jing Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Hai-Han Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zhou-Yan Bian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| |
Collapse
|
21
|
Wu W, Wang X, Sun Y, Berleth N, Deitersen J, Schlütermann D, Stuhldreier F, Wallot-Hieke N, José Mendiburo M, Cox J, Peter C, Bergmann AK, Stork B. TNF-induced necroptosis initiates early autophagy events via RIPK3-dependent AMPK activation, but inhibits late autophagy. Autophagy 2021; 17:3992-4009. [PMID: 33779513 PMCID: PMC8726653 DOI: 10.1080/15548627.2021.1899667] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Macroautophagy/autophagy and necroptosis represent two opposing cellular s tress responses. Whereas autophagy primarily fulfills a cyto-protective function, necroptosis is a form of regulated cell death induced via death receptors. Here, we aimed at investigating the molecular crosstalk between these two pathways. We observed that RIPK3 directly associates with AMPK and phosphorylates its catalytic subunit PRKAA1/2 at T183/T172. Activated AMPK then phosphorylates the autophagy-regulating proteins ULK1 and BECN1. However, the lysosomal degradation of autophagosomes is blocked by TNF-induced necroptosis. Specifically, we observed dysregulated SNARE complexes upon TNF treatment; e.g., reduced levels of full-length STX17. In summary, we identified RIPK3 as an AMPK-activating kinase and thus a direct link between autophagy- and necroptosis-regulating kinases. Abbreviations: ACACA/ACC: acetyl-CoA carboxylase alpha; AMPK: AMP-activated protein kinase; ATG: autophagy-related; BECN1: beclin 1; GFP: green fluorescent protein; EBSS: Earle’s balanced salt solution; Hs: Homo sapiens; KO: knockout; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; MLKL: mixed lineage kinase domain like pseudokinase; Mm: Mus musculus; MTOR: mechanistic target of rapamycin kinase; MVB: multivesicular body; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4/VPS15: phosphoinositide-3-kinase regulatory subunit 4; PLA: proximity ligation assay; PRKAA1: protein kinase AMP-activated catalytic subunit alpha 1; PRKAA2: protein kinase AMP-activated catalytic subunit alpha 2; PRKAB2: protein kinase AMP-activated non-catalytic subunit beta 2; PRKAG1: protein kinase AMP-activated non-catalytic subunit gamma 1; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; RIPK1: receptor interacting serine/threonine kinase 1; RIPK3: receptor interacting serine/threonine kinase 3; SNAP29: synaptosome associated protein 29; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SQSTM1/p62: sequestosome 1; STK11/LKB1: serine/threonine kinase 11; STX7: syntaxin 7; STX17: syntaxin 17; TAX1BP1: Tax1 binding protein 1; TNF: tumor necrosis factor; ULK1: unc-51 like autophagy activating kinase 1; VAMP8: vesicle associated membrane protein 8; WT: wild-type.
Collapse
Affiliation(s)
- Wenxian Wu
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Xiaojing Wang
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Yadong Sun
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Niklas Berleth
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jana Deitersen
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - David Schlütermann
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Fabian Stuhldreier
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - María José Mendiburo
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jan Cox
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christoph Peter
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ann Kathrin Bergmann
- Core Facility for Electron Microscopy, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Björn Stork
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
22
|
Ying L, Benjanuwattra J, Chattipakorn SC, Chattipakorn N. The role of RIPK3-regulated cell death pathways and necroptosis in the pathogenesis of cardiac ischaemia-reperfusion injury. Acta Physiol (Oxf) 2021; 231:e13541. [PMID: 32687661 DOI: 10.1111/apha.13541] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022]
Abstract
Despite advancements in management of acute myocardial infarction, this disease remains one of the leading causes of death. Timely reestablishment of epicardial coronary blood flow is the cornerstone of therapy; however, substantial amount of damage can occur as a consequence of cardiac ischaemia/reperfusion (I/R) injury. It has been previously proposed that the pathway leading to major cell death, apoptosis, is responsible for cardiac I/R injury. Nevertheless, there is compelling evidence to suggest that necroptosis, a programmed necrosis, contributes remarkably to both myocardial injury and microcirculatory dysfunction following cardiac I/R injury. Receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed-lineage kinase domain-like pseudokinase (MLKL) are shown as the major mediators of necroptosis. In addition to the traditional perception that RIPK1/RIPK3/MLKL-dependent plasma membrane rupture is fundamental to this process, several RIPK3-related pathways such as endoplasmic reticulum stress and mitochondrial fragmentation have also been implicated in cardiac I/R injury. In this review, reports from both in vitro and in vivo studies regarding the roles of necroptosis and RIPK3-regulated necrosis in cardiac I/R injury have been collectively summarized and discussed. Furthermore, reports on potential interventions targeting these processes to attenuate cardiac I/R insults to the heart have been presented in this review. Future investigations adding to the knowledge obtained from these previous studies are needed in the pursuit of discovering the most effective pharmacological agent to improve cardiac I/R outcomes.
Collapse
Affiliation(s)
- Luo Ying
- Cardiac Electrophysiology Research and Training Center Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research Chiang Mai University Chiang Mai Thailand
- Cardiac Electrophysiology Unit Department of Physiology Faculty of Medicine Chiang Mai University Chiang Mai Thailand
| | - Juthipong Benjanuwattra
- Cardiac Electrophysiology Research and Training Center Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research Chiang Mai University Chiang Mai Thailand
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training Center Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research Chiang Mai University Chiang Mai Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research Chiang Mai University Chiang Mai Thailand
- Cardiac Electrophysiology Unit Department of Physiology Faculty of Medicine Chiang Mai University Chiang Mai Thailand
| |
Collapse
|
23
|
Lu LQ, Tian J, Luo XJ, Peng J. Targeting the pathways of regulated necrosis: a potential strategy for alleviation of cardio-cerebrovascular injury. Cell Mol Life Sci 2021; 78:63-78. [PMID: 32596778 PMCID: PMC11072340 DOI: 10.1007/s00018-020-03587-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 12/31/2022]
Abstract
Apoptosis, necrosis and autophagy-dependent cell death are the three major types of cell death. Traditionally, necrosis is thought as a passive and unregulated form of cell death. However, certain necrosis can also occur in a highly regulated manner, referring to regulated necrosis. Depending on the signaling pathways, regulated necrosis can be further classified as necroptosis, pyroptosis, ferroptosis, parthanatos and CypD-mediated necrosis. Numerous studies have reported that regulated necrosis contributes to the progression of multiple injury-relevant diseases. For example, necroptosis contributes to the development of myocardial infarction, atherosclerosis, heart failure and stroke; pyroptosis is involved in the progression of myocardial or cerebral infarction, atherosclerosis and diabetic cardiomyopathy; while ferroptosis, parthanatos and CypD-mediated necrosis participate in the pathological process of myocardial and/or cerebral ischemia/reperfusion injury. Thereby, targeting the pathways of regulated necrosis pharmacologically or genetically could be an efficient strategy for reducing cardio-cerebrovascular injury. Further study needs to focus on the crosstalk and interplay among different types of regulated necrosis. Pharmacological intervention of two or more types of regulated necrosis simultaneously may have advantages in clinic to treat injury-relevant diseases.
Collapse
Affiliation(s)
- Li-Qun Lu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Jing Tian
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
24
|
Cheng M, Lin N, Dong D, Ma J, Su J, Sun L. PGAM5: A crucial role in mitochondrial dynamics and programmed cell death. Eur J Cell Biol 2020; 100:151144. [PMID: 33370650 DOI: 10.1016/j.ejcb.2020.151144] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
In response to mitochondrial damage, mitochondria activate mitochondrial dynamics to maintain normal functions, and an imbalance in mitochondrial dynamics triggers multiple programmed cell death processes. Recent studies have shown that phosphoglycerate mutase 5 (PGAM5) is associated with mitochondrial damage. PGAM5 activates mitochondrial biogenesis and mitophagy to promote a cellular compensatory response when mitochondria are mildly damaged, whereas severe damage to mitochondria leads to PGAM5 inducing excessive mitochondria fission, disruption to mitochondrial movement, and amplification of apoptosis, necroptosis and mitophagic death signals, which eventually evoke cell death. PGAM5 functions mainly through protein-protein interactions and specific Ser/Thr/His protein phosphatase activity. PGAM5 is also regulated by mitochondrial proteases. Detection of PGAM5 and its interacting protein partners should enable a more accurate evaluation of mitochondrial damage and a more precise method for the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Meiyu Cheng
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130021, China
| | - Nan Lin
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130021, China
| | - Delu Dong
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130021, China
| | - Jiaoyan Ma
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130021, China
| | - Jing Su
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130021, China.
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, Jilin, 130021, China.
| |
Collapse
|
25
|
Zhang J, Huang L, Shi X, Yang L, Hua F, Ma J, Zhu W, Liu X, Xuan R, Shen Y, Liu J, Lai X, Yu P. Metformin protects against myocardial ischemia-reperfusion injury and cell pyroptosis via AMPK/NLRP3 inflammasome pathway. Aging (Albany NY) 2020; 12:24270-24287. [PMID: 33232283 PMCID: PMC7762510 DOI: 10.18632/aging.202143] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/29/2020] [Indexed: 01/15/2023]
Abstract
Ischemia/reperfusion (I/R) injury is a life-threatening vascular emergency following myocardial infarction. Our previous study showed cardioprotective effects of metformin against myocardial I/R injury. In this study, we further examined the involvement of AMPK mediated activation of NLRP3 inflammasome in this cardioprotective effect of metformin. Myocardial I/R injury was simulated in a rat heart Langendorff model and neonatal rat ventricle myocytes (NRVMs) were subjected to hypoxi/reoxygenation (H/R) to establish an in vitro model. Outcome measures included myocardial infarct size, hemodynamic monitoring, myocardial tissue injury, myocardial apoptotic index and the inflammatory response. myocardial infarct size and cardiac enzyme activities. First, we found that metformin postconditioning can not only significantly alleviated myocardial infarct size, attenuated cell apoptosis, and inhibited myocardial fibrosis. Furthermore, metformin activated phosphorylated AMPK, decreased pro-inflammatory cytokines, TNF-α, IL-6 and IL-1β, and decreased NLRP3 inflammasome activation. In isolated NRVMs metformin increased cellular viability, decreased LDH activity and inhibited cellular apoptosis and inflammation. Importantly, inhibition of AMPK phosphorylation by Compound C (CC) resulted in decreased survival of cardiomyocytes mainly by inducing the release of inflammatory cytokines and increasing NLRP3 inflammasome activation. Finally, in vitro studies revealed that the NLRP3 activator nigericin abolished the anti-inflammatory effects of metformin in NRVMs, but it had little effect on AMPK phosphorylation. Collectively, our study confirmed that metformin exerts cardioprotective effects by regulating myocardial I/R injury-induced inflammatory response, which was largely dependent on the enhancement of the AMPK pathway, thereby suppressing NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi 3300063, Nanchang, China
| | - Lelin Huang
- Department of Anesthesiology, Lushan Rehabilitation and Recuperation Center, PLA Joint Service Forces, Jiujiang 3320000, China
| | - Xing Shi
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi 330006, Nanchang, China
| | - Liu Yang
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi 330006, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi 3300063, Nanchang, China
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Wengen Zhu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Xiao Liu
- Department of Cardiology, The Second Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Rui Xuan
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi 330006, Nanchang, China
| | - Yunfeng Shen
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi 330006, Nanchang, China
| | - Jianping Liu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi 330006, Nanchang, China
| | - Xiaoyang Lai
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi 330006, Nanchang, China
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi 330006, Nanchang, China
| |
Collapse
|
26
|
Upregulation of programmed death ligand 1 by liver kinase B1 and its implication in programmed death 1 blockade therapy in non-small cell lung cancer. Life Sci 2020; 256:117923. [DOI: 10.1016/j.lfs.2020.117923] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 12/25/2022]
|
27
|
Techno-Economic Assessment of Three Modes of Large-Scale Crop Residue Utilization Projects in China. ENERGIES 2020. [DOI: 10.3390/en13143729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In China, the non-exploitation of bioenergy poses major problems and challenges. To solve bioenergy problems, considerable efforts have been made to expedite the construction of large-scale crop residue utilization projects. In this study, three principal supported modes of large-scale crop residue utilization projects were taken as empirical cases in Hubei province bioenergy planning. In terms of the overall benefit and sustainable development, a third-grade evaluation index system was established. The analysis was carried out using the analytical hierarchy process, principal component projection, and grey relational analysis. The conclusion indicates that according to the evaluation values, the sequence from best to worst was crop residue biogas project, crop residue briquette fuel project, and crop residue gasification project. Nevertheless, there was no remarkable difference in the overall evaluation values. The biogas project had certain advantages in terms of the production cost, soil improvement, and expenditure saving, whereas the gasification project was comparatively insufficient in environmental efficiency, product benefit, by-product disposal, and technical rationality. According to actual evaluation results, the unilateral determination approach of the single weight index can be seen as being overcome through the unified adaptation of the evaluation methods. The research results can serve as a reference for making investment decisions to build large-scale crop residue utilization projects.
Collapse
|
28
|
Zhang Y, Shi Z, Zhou Y, Xiao Q, Wang H, Peng Y. Emerging Substrate Proteins of Kelch-like ECH Associated Protein 1 (Keap1) and Potential Challenges for the Development of Small-Molecule Inhibitors of the Keap1-Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Protein–Protein Interaction. J Med Chem 2020; 63:7986-8002. [DOI: 10.1021/acs.jmedchem.9b01865] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Xiannongtan Street, Xicheng
District, Beijing 100050, China
| | - Zeyu Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Xiannongtan Street, Xicheng
District, Beijing 100050, China
- Department of Medicinal Chemistry, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yujun Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Xiannongtan Street, Xicheng
District, Beijing 100050, China
| | - Qiong Xiao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Xiannongtan Street, Xicheng
District, Beijing 100050, China
- Department of Medicinal Chemistry, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hongyue Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Xiannongtan Street, Xicheng
District, Beijing 100050, China
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Xiannongtan Street, Xicheng
District, Beijing 100050, China
| |
Collapse
|
29
|
BAD sensitizes breast cancer cells to docetaxel with increased mitotic arrest and necroptosis. Sci Rep 2020; 10:355. [PMID: 31942016 PMCID: PMC6962214 DOI: 10.1038/s41598-019-57282-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023] Open
Abstract
Breast cancer patients are commonly treated with taxane (e.g. docetaxel) chemotherapy, despite poor outcomes and eventual disease relapse. We previously identified the Bcl-2-associated death promoter (BAD) as a prognostic indicator of good outcome in taxane-treated breast cancer patients. We also demonstrated that BAD expression in human breast carcinoma cells generated larger tumors in mouse xenograft models. These paradoxical results suggest that BAD-expressing tumors are differentially sensitive to taxane treatment. We validated this here and show that docetaxel therapy preferentially reduced growth of BAD-expressing xenograft tumors. We next explored the cellular mechanism whereby BAD sensitizes cells to docetaxel. Taxanes are microtubule inhibiting agents that cause cell cycle arrest in mitosis whereupon the cells either die in mitosis or aberrantly exit (mitotic slippage) and survive as polyploid cells. In response to docetaxel, BAD-expressing cells had lengthened mitotic arrest with a higher proportion of cells undergoing death in mitosis with decreased mitotic slippage. Death in mitosis was non-apoptotic and not dependent on Bcl-XL interaction or caspase activation. Instead, cell death was necroptotic, and dependent on ROS. These results suggest that BAD is prognostic for favourable outcome in response to taxane chemotherapy by enhancing necroptotic cell death and inhibiting the production of potentially chemoresistant polyploid cells.
Collapse
|
30
|
Choi MJ, Kang H, Lee YY, Choo OS, Jang JH, Park SH, Moon JS, Choi SJ, Choung YH. Cisplatin-Induced Ototoxicity in Rats Is Driven by RIP3-Dependent Necroptosis. Cells 2019; 8:E409. [PMID: 31052605 PMCID: PMC6562419 DOI: 10.3390/cells8050409] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022] Open
Abstract
Cisplatin-induced early-onset ototoxicity is linked to hearing loss. The mechanism by which cisplatin causes ototoxicity remains unclear. The purpose of this study was to identify the involvement of receptor-interacting protein kinase (RIP)3-dependent necroptosis in cisplatin-induced ototoxicity in vitro and in vivo. Sprague-Dawley rats (SD, 8 week) were treated via intraperitoneal (i.p.) injection with cisplatin (16 mg/kg for 1 day), and their hearing thresholds were measured by the auditory brainstem response (ABR) method. Hematoxylin and eosin (H & E) staining, immunohistochemistry, and western blots were performed to determine the effect of cisplatin-induced ototoxicity on cochlear morphology. Inhibitor experiments with necrostatin 1 (Nec-1) and Z-VAD were also performed in HEI-OC1 cell line. H&E stains revealed that the necroptotic changes were increased in the organ of Corti (OC) and spiral ganglion neurons (SGNs). Moreover, immunohistochemistry and western blot analysis showed that cisplatin treatment increased the protein levels of RIP3 in both OCs and SGNs. The treatment of Nec-1, a selective RIP1 inhibitor, resulted in markedly suppression of cisplatin-induced cell death in HEI-OC1 cells, whereas Z-VAD treatment did not change the cisplatin-induced cell death. Our results suggest that RIP3-dependent necroptosis was substantial in cisplatin-induced ototoxicity; inner cochlear regions, the OCs, and SGNs were especially sensitive to necroptosis.
Collapse
Affiliation(s)
- Mi-Jin Choi
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea.
- Bk21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| | - Hyunsook Kang
- Department of Otolaryngology-Head and Neck Surgery, Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan 31151, Korea.
| | - Yun Yeong Lee
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea.
- Bk21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| | - Oak-Sung Choo
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea.
- Bk21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| | - Jeong Hun Jang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea.
- Bk21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| | - Sung-Hee Park
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea.
- Bk21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| | - Jong-Seok Moon
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea.
| | - Seong Jun Choi
- Department of Otolaryngology-Head and Neck Surgery, Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan 31151, Korea.
| | - Yun-Hoon Choung
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea.
- Bk21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| |
Collapse
|
31
|
Yang Z, Gao X, Zhou M, Kuang Y, Xiang M, Li J, Song J. Effect of metformin on human periodontal ligament stem cells cultured with polydopamine‐templated hydroxyapatite. Eur J Oral Sci 2019; 127:210-221. [DOI: 10.1111/eos.12616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Zun Yang
- College of Stomatology Chongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| | - Xiang Gao
- College of Stomatology Chongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| | - Mengjiao Zhou
- College of Stomatology Chongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| | - Yunchun Kuang
- College of Stomatology Chongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| | - Mingli Xiang
- College of Stomatology Chongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| | - Jie Li
- College of Stomatology Chongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| | - Jinlin Song
- College of Stomatology Chongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| |
Collapse
|
32
|
Urpilainen E, Kangaskokko J, Puistola U, Karihtala P. Metformin diminishes the unfavourable impact of Nrf2 in breast cancer patients with type 2 diabetes. Tumour Biol 2019; 41:1010428318815413. [DOI: 10.1177/1010428318815413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a major regulator of the oxidative stress response and it is negatively regulated by Kelch-like ECH-associated protein 1 (Keap1). The Keap1–Nrf2 axis has a fundamental role in carcinogenesis. In previous studies, the widely used diabetes drug metformin has appeared to have a critical role in the regulation of Nrf2 function. In this study, we assessed the expression of Nrf2 and Keap1 immunohistochemically in 157 patients with type 2 diabetes who underwent breast cancer surgery with curative intent. In total, 78 (49.7%) of these patients were taking metformin alone or combined with other oral anti-diabetic medication at the time of breast cancer diagnosis. We found that high-level cytoplasmic Nrf2 expression predicted dismal overall survival and breast cancer–specific survival, but only in the patients who were not taking metformin at the time of diagnosis. Similarly, low-level nuclear Keap1 expression had an adverse prognostic value in terms of overall survival and breast cancer–specific survival in patients without metformin. On the other hand, high-level nuclear Keap1 expression was associated with prolonged overall survival and breast cancer–specific survival. The results may be explained in terms of non-functioning or displaced Keap1, although more mechanistic pre-clinical and prospective clinical studies are warranted.
Collapse
Affiliation(s)
- Elina Urpilainen
- Department of Obstetrics and Gynaecology, PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Jenni Kangaskokko
- Department of Pathology and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Ulla Puistola
- Department of Obstetrics and Gynaecology, PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Peeter Karihtala
- Department of Oncology and Radiotherapy and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| |
Collapse
|
33
|
Yu P, Xu X, Zhang J, Xia X, Xu F, Weng J, Lai X, Shen Y. Liraglutide Attenuates Nonalcoholic Fatty Liver Disease through Adjusting Lipid Metabolism via SHP1/AMPK Signaling Pathway. Int J Endocrinol 2019; 2019:1567095. [PMID: 31236111 PMCID: PMC6545813 DOI: 10.1155/2019/1567095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/28/2019] [Indexed: 12/12/2022] Open
Abstract
A glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide (LR) had been experimentally and clinically shown to ameliorate nonalcoholic fatty liver disease (NAFLD). This study aimed to investigate the beneficial effect of LR on NAFLD in vivo and in vitro and its underlying molecular mechanism. The effects of LR were examined on the high-fat diet-induced in vivo model in mice and in vitro model of NAFLD in human HepG2 cells. Liver tissues and HepG2 cells were procured for measuring lipid metabolism, histological examination, and western blot analysis. LR administration significantly lowered the serum lipid profile and lipid disposition in vitro and in vivo because of the altered expression of enzymes on hepatic gluconeogenesis and lipid metabolism. Moreover, LR significantly decreased Src homology region 2 domain-containing phosphatase-1 (SHP1) and then increased the expression of phosphorylated-AMP-activated protein kinase (p-AMPK). However, the overexpression of SHP1 mediated by lentivirus vector reversed LR-induced improvement in lipid deposition. Moreover, SHP1 silencing could further increase the expression of p-AMPK to ameliorate lipid metabolism and relative lipogenic gene induced by LR. In addition, abrogation of AMPK by Compound C eliminated the protective effects of LR on lipid metabolism without changing the expression of SHP1. LR markedly prevented NAFLD through adjusting lipid metabolism via SHP1/AMPK signaling pathway.
Collapse
Affiliation(s)
- Peng Yu
- Department of Endocrinology and Metabolism, Jiangxi Institute of Endocrine and Metabolic Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xi Xu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Xia
- Department of Physiology and Pathophysiology, College of Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Fen Xu
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, and Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Jianping Weng
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, and Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Xiaoyang Lai
- Department of Endocrinology and Metabolism, Jiangxi Institute of Endocrine and Metabolic Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yunfeng Shen
- Department of Endocrinology and Metabolism, Jiangxi Institute of Endocrine and Metabolic Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
34
|
Gu C, Li T, Jiang S, Yang Z, Lv J, Yi W, Yang Y, Fang M. AMP-activated protein kinase sparks the fire of cardioprotection against myocardial ischemia and cardiac ageing. Ageing Res Rev 2018; 47:168-175. [PMID: 30110651 DOI: 10.1016/j.arr.2018.08.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/28/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022]
Abstract
AMP-activated protein kinase (AMPK) is a pivotal regulator of some endogenous defensive molecules in various pathological processes, particularly myocardial ischemia (MI), a high risk of myocardial infarction. Thereby it is of great significance to explore the inherent mechanism between AMPK and myocardial infarction. In this review, we first introduce the structure and role of AMPK in the heart. Next, we introduce the mechanisms of AMPK in the heart; followed by the energy regulation of AMPK in MI. Lastly, the attention will be expanded to some potential directions and further perspectives. The information compiled here will be helpful for further research and drug design in the future before AMPK might be considered as a therapeutic target of MI.
Collapse
|
35
|
Jia Y, Wang F, Guo Q, Li M, Wang L, Zhang Z, Jiang S, Jin H, Chen A, Tan S, Zhang F, Shao J, Zheng S. Curcumol induces RIPK1/RIPK3 complex-dependent necroptosis via JNK1/2-ROS signaling in hepatic stellate cells. Redox Biol 2018; 19:375-387. [PMID: 30237126 PMCID: PMC6142373 DOI: 10.1016/j.redox.2018.09.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/03/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023] Open
Abstract
It is generally recognized that hepatic fibrogenesis is an end result of increased extracellular matrix (ECM) production from the activation and proliferation of hepatic stellate cells (HSCs). An in-depth understanding of the mechanisms of HSC necroptosis might provide a new therapeutic strategy for prevention and treatment of hepatic fibrosis. In this study, we attempted to investigate the effect of curcumol on necroptosis in HSCs, and further to explore the molecular mechanisms. We found that curcumol ameliorated the carbon tetrachloride (CCl4)-induced mice liver fibrosis and suppressed HSC proliferation and activation, which was associated with regulating HSC necroptosis through increasing the phosphorylation of receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3). Moreover, curcumol promoted the migration of RIPK1 and RIPK3 into necrosome in HSCs. RIPK3 depletion impaired the anti-fibrotic effect of curcumol. Importantly, we showed that curcumol-induced RIPK3 up-regulation significantly increased mitochondrial reactive oxygen species (ROS) production and mitochondrial depolarization. ROS scavenger, N-acetyl-L-cysteine (NAC) impaired RIPK3-mediated necroptosis. In addition, our study also identified that the activation of c-Jun N-terminal kinase1/2 (JNK1/2) was regulated by RIPK3, which mediated curcumol-induced ROS production. Down-regulation of RIPK3 expression, using siRIPK3, markedly abrogated JNK1/2 expression. The use of specific JNK1/2 inhibitor (SP600125) resulted in the suppression of curcumol-induced ROS production and mitochondrial depolarization, which in turn, contributed to the inhibition of curcumol-triggered necroptosis. In summary, our study results reveal the molecular mechanism of curcumol-induced HSC necroptosis, and suggest a potential clinical use of curcumol-targeted RIPK1/RIPK3 complex-dependent necroptosis via JNK1/2-ROS signaling for the treatment of hepatic fibrosis. Curcumol exerted anti-hepatic fibrogenesis effects in CCl4-treated mice. Curcumol inhibited the activation of hepatic stellate cell in vitro. Curcumol promoted the generation of RIPK1/RIPK3-complex to induce hepatic stellate cell necroptosis. Curcumol modulated RIPK3/JNK/ROS signaling axis.
Collapse
Affiliation(s)
- Yan Jia
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feixia Wang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qin Guo
- Dermatology of Jiangsu Province Hospital of TCM, China
| | - Mengmeng Li
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ling Wang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zili Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shuoyi Jiang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huanhuan Jin
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St Louis, MO 63104, USA
| | - Shanzhong Tan
- Department of Hepatology, Integrated Traditional Chinese and Western Medicine, Nanjing Second Hospital, China
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiangjuan Shao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Shizhong Zheng
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
36
|
Kanugula AK, Thodeti CK. AMP-activated kinase "Keaps" ischemia/reperfusion-induced necroptosis under control. Int J Cardiol 2018; 259:168-169. [PMID: 29579596 DOI: 10.1016/j.ijcard.2018.02.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Anantha K Kanugula
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, United States
| | - Charles K Thodeti
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, United States.
| |
Collapse
|