1
|
Mangarova DB, Reimann C, Kaufmann JO, Möckel J, Kader A, Adams LC, Ludwig A, Onthank D, Robinson S, Karst U, Helmer R, Botnar R, Hamm B, Makowski MR, Brangsch J. Elastin-specific MR probe for visualization and evaluation of an interleukin-1β targeted therapy for atherosclerosis. Sci Rep 2024; 14:20648. [PMID: 39232217 PMCID: PMC11375012 DOI: 10.1038/s41598-024-71716-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory condition of the arteries and represents the primary cause of various cardiovascular diseases. Despite ongoing progress, finding effective anti-inflammatory therapeutic strategies for atherosclerosis remains a challenge. Here, we assessed the potential of molecular magnetic resonance imaging (MRI) to visualize the effects of 01BSUR, an anti-interleukin-1β monoclonal antibody, for treating atherosclerosis in a murine model. Male apolipoprotein E-deficient mice were divided into a therapy group (01BSUR, 2 × 0.3 mg/kg subcutaneously, n = 10) and control group (no treatment, n = 10) and received a high-fat diet for eight weeks. The plaque burden was assessed using an elastin-targeted gadolinium-based contrast probe (0.2 mmol/kg intravenously) on a 3 T MRI scanner. T1-weighted imaging showed a significantly lower contrast-to-noise (CNR) ratio in the 01BSUR group (pre: 3.93042664; post: 8.4007067) compared to the control group (pre: 3.70679168; post: 13.2982156) following administration of the elastin-specific MRI probe (p < 0.05). Histological examinations demonstrated a significant reduction in plaque size (p < 0.05) and a significant decrease in plaque elastin content (p < 0.05) in the treatment group compared to control animals. This study demonstrated that 01BSUR hinders the progression of atherosclerosis in a mouse model. Using an elastin-targeted MRI probe, we could quantify these therapeutic effects in MRI.
Collapse
Affiliation(s)
- Dilyana Branimirova Mangarova
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| | - Carolin Reimann
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Jan Ole Kaufmann
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Division 1.5 Protein Analysis, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Jana Möckel
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Avan Kader
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Lisa Christine Adams
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Antje Ludwig
- Department of Cardiology and Angiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Berlin, Germany
| | - David Onthank
- Lantheus Medical Imaging, 331 Treble Cove Road, North Billerica, MA, United States of America
| | - Simon Robinson
- Lantheus Medical Imaging, 331 Treble Cove Road, North Billerica, MA, United States of America
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Rebecca Helmer
- Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Rene Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital Westminster Bridge Road, London, SE1 7EH, United Kingdom
- Wellcome Trust/EPSRC Centre for Medical Engineering, King's College London, London, United Kingdom
- BHF Centre of Excellence, King's College London, Denmark Hill Campus, 125 Coldharbour Lane, London, SE5 9NU, United Kingdom
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bernd Hamm
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Marcus Richard Makowski
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Julia Brangsch
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
2
|
Chen J, Hu L, Liu Z. Medical treatments for abdominal aortic aneurysm: an overview of clinical trials. Expert Opin Investig Drugs 2024; 33:979-992. [PMID: 38978286 DOI: 10.1080/13543784.2024.2377747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
INTRODUCTION Abdominal aortic aneurysm is a progressive, segmental, abdominal aortic dilation associated with a high mortality rate. Abdominal aortic aneurysms with diameters larger than 55 mm are associated with a high risk of rupture, and the most effective treatment options are surgical repair. Close observation and lifestyle adjustments are recommended for smaller abdominal aortic aneurysms with lower rupture risk. The development of medical therapies that limit or prevent the progression, expansion, and eventual rupture of abdominal aortic aneurysms remains an unmet clinical need. AREAS COVERED This review provides an overview of completed and ongoing clinical trials examining the efficacies of various drug classes, including antibiotics, antihypertensive drugs, hypolipidemic drugs, hypoglycemic drugs, and other potential therapies for abdominal aortic aneurysms. A search of PubMed, Web of Science, Clinical Trials, and another six clinical trial registries was conducted in January 2024. EXPERT OPINION None of the drugs have enough evidence to indicate that they can effectively inhibit the dilation of abdominal aortic aneurysm. More clinical trial data is required to support the efficacy of propranolol. Future research should also explore different drug delivery mechanisms, such as nanoparticles, to elevate drug concentration at the aneurysm wall.
Collapse
Affiliation(s)
- Jinyi Chen
- Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lanting Hu
- Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenjie Liu
- Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Zhang J, Zhang X, Liu X, Chen H, Wang J, Ji M. M1 Macrophage-Derived Exosome LncRNA PVT1 Promotes Inflammation and Pyroptosis of Vascular Smooth Muscle Cells in Abdominal Aortic Aneurysm by Inhibiting miR-186-5p and Regulating HMGB1. Cardiovasc Toxicol 2024; 24:302-320. [PMID: 38453799 PMCID: PMC10937795 DOI: 10.1007/s12012-024-09838-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/03/2024] [Indexed: 03/09/2024]
Abstract
Abdominal aortic aneurysm (AAA) is a chronic vascular degenerative disease. Vascular smooth muscle cells (VSMCs) are essential for maintaining the integrity of healthy blood vessels. Macrophages play an important role in the inflammatory process of AAA. However, the effect of macrophage-derived exosome LncRNA PVT1 on VSMCs is unclear. Exosomes from M1 macrophages (M1φ-exos) were isolated and identified. The expression of LncRNA PVT1 in M1φ-exos was determined. AAA cell model was constructed by treating VSMCs with Ang-II. AAA cell model was treated with M1φ exosomes transfected with si-LncRNA PVT1 (M1φsi-LncRNA PVT1-exo). VSMCs were transfected with miR-186-5p mimic and oe-HMGB1. Cell viability was detected by CCK-8. The accumulation of LDH was detected by ELISA. Western blot was used to detect the expression of HMGB1, inflammatory factors (IL-6, TNF-α and IL-1β) and pyroptosis-related proteins (GSDMD, N-GSDMD, ASC, NLRP3, Caspase-1 and Cleaved-Capase-1). Cell pyroptosis rate was detected by flow cytometry. At the same time, the targeting relationship between miR-186-5p and LncRNA PVT1 and HMGB1 was verified by double fluorescein experiment. Exosomes from M1φ were successfully extracted. The expression of LncRNA PVT1 in M1φ-exos was significantly increased. M1φ-exo promotes inflammation and pyroptosis of VSMCs. M1φsi-LncRNA PVT1-exos inhibited the inflammation and pyroptosis of VSMCs. LncRNA PVT1 can sponge miR-186-5p mimic to regulate HMGB1 expression. MiR-186-5p mimic further inhibited inflammation and pyroptosis induced by M1φsi-LncRNA PVT1-exos. However, oe-HMGB1 could inhibit the reversal effect of miR-186-5p mimic. LncRNA PVT1 in exosomes secreted by M1φ can regulate HMGB1 by acting as ceRNA on sponge miR-186-5p, thereby promoting cell inflammatory and pyroptosis and accelerating AAA progression.
Collapse
Affiliation(s)
- Jinhui Zhang
- Yan'an Hospital Affiliated To Kunming Medical University, Kunming, 650032, China.
| | - Xili Zhang
- First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Xunqiang Liu
- Yan'an Hospital Affiliated To Kunming Medical University, Kunming, 650032, China
| | - Huanjun Chen
- Yan'an Hospital Affiliated To Kunming Medical University, Kunming, 650032, China
| | - Jifeng Wang
- Yan'an Hospital Affiliated To Kunming Medical University, Kunming, 650032, China
| | - Min Ji
- Yan'an Hospital Affiliated To Kunming Medical University, Kunming, 650032, China
| |
Collapse
|
4
|
Cho MJ, Lee MR, Park JG. Aortic aneurysms: current pathogenesis and therapeutic targets. Exp Mol Med 2023; 55:2519-2530. [PMID: 38036736 PMCID: PMC10766996 DOI: 10.1038/s12276-023-01130-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 12/02/2023] Open
Abstract
Aortic aneurysm is a chronic disease characterized by localized expansion of the aorta, including the ascending aorta, arch, descending aorta, and abdominal aorta. Although aortic aneurysms are generally asymptomatic, they can threaten human health by sudden death due to aortic rupture. Aortic aneurysms are estimated to lead to 150,000 ~ 200,000 deaths per year worldwide. Currently, there are no effective drugs to prevent the growth or rupture of aortic aneurysms; surgical repair or endovascular repair is the only option for treating this condition. The pathogenic mechanisms and therapeutic targets for aortic aneurysms have been examined over the past decade; however, there are unknown pathogenic mechanisms involved in cellular heterogeneity and plasticity, the complexity of the transforming growth factor-β signaling pathway, inflammation, cell death, intramural neovascularization, and intercellular communication. This review summarizes the latest research findings and current pathogenic mechanisms of aortic aneurysms, which may enhance our understanding of aortic aneurysms.
Collapse
Affiliation(s)
- Min Ji Cho
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Mi-Ran Lee
- Department of Biomedical Laboratory Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk, 28024, Republic of Korea
| | - Jong-Gil Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- Department of Bioscience, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
5
|
Yao Y, Cao Y, Xu Y, Chen G, Liu Y, Jiang H, Fan R, Qin W, Wang X, Chai H, Chen X, Qiu Z, Chen W. CARMA3 Deficiency Aggravates Angiotensin II-Induced Abdominal Aortic Aneurysm Development Interacting Between Endoplasmic Reticulum and Mitochondria. Can J Cardiol 2023; 39:1449-1462. [PMID: 37030515 DOI: 10.1016/j.cjca.2023.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is life threatening and associated with vascular walls' chronic inflammation. However, a detailed understanding of the underlying mechanisms is yet to be elucidated. CARMA3 assembles the CARMA3-BCL10-MALT1 (CBM) complex in inflammatory diseases and is proven to mediate angiotensin II (Ang II) response to inflammatory signals by modulating DNA damage-induced cell pyroptosis. In addition, interaction between endoplasmic reticulum (ER) stress and mitochondrial damage is one of the main causes of cell pyroptosis. METHODS Male wild type (WT) or CARMA3-/- mice aged 8 to 10 weeks were subcutaneously implanted with osmotic minipumps, delivering saline or Ang II at the rate of 1 μg/kg/min for 1, 2, and 4 weeks. RESULTS We discovered that CARMA3 knockout promoted formation of AAA and prominently increased diameter and severity of the mice abdominal aorta infused with Ang II. Moreover, a significant increase in the excretion of inflammatory cytokines, expression levels of matrix metalloproteinases (MMPs) and cell death was found in the aneurysmal aortic wall of CARMA3-/- mice infused with Ang II compared with WT mice. Further studies found that the degree of ER stress and mitochondrial damage in the abdominal aorta of CARMA3-/- mice was more severe than that in WT mice. Mechanistically, CARMA3 deficiency exacerbates the interaction between ER stress and mitochondrial damage by activating the p38MAPK pathway, ultimately contributing to the pyroptosis of vascular smooth muscle cells (VSMCs). CONCLUSIONS CARMA3 appears to play a key role in AAA formation and might be a potential target for therapeutic interventions of AAA.
Collapse
Affiliation(s)
- Yiwei Yao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yide Cao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yueyue Xu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ganyi Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yafeng Liu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongwei Jiang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Fan
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Wei Qin
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaodi Wang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Chai
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhibing Qiu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Li J, Ma S, Jia X, Bu Y, Zhou T, Zhang L, Qiu M, Wang X. Rivaroxaban in patients with abdominal aortic aneurysm and high-sensitivity C-reactive protein elevation (BANBOO): study protocol for a randomized, controlled trial. Trials 2023; 24:419. [PMID: 37337298 DOI: 10.1186/s13063-023-07461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 06/13/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a fatal disease due to the tendency to rupture. The drug treatment for small AAA without surgical indications has been controversial. Previous studies showed that high-sensitivity C-reactive protein (hs-CRP) had become a potential biomarker of the disease, and the anti-inflammatory effect of rivaroxaban for AAA had been well established. Thus, we hypothesized that rivaroxaban could control the progression of AAA in patients with hs-CRP elevation. METHODS The study is a prospective, open-label, randomized, controlled clinical trial. Sixty subjects are recruited from the General Hospital of Northern Theatre Command of China. Subjects are randomly assigned (1:1) to the intervention arm (rivaroxaban) or control arm (aspirin). The primary efficacy outcome is the level of serum hs-CRP at 6 months. The secondary outcomes include imaging examination (the maximal diameter of AAA, the maximal thickness of mural thrombus, and the length of aneurysm), major adverse cardiovascular and cerebrovascular events (MACCE, including AAA transformation, non-fatal myocardial infarction, acute congestive heart failure, stent thrombosis, ischemia-driven target vessel revascularization, vascular amputation, stroke, cardiovascular death, and all-cause death), and other laboratory tests (troponin T, interleukin 6, D-dimer, and coagulation function). DISCUSSION The BANBOO trial tested the effect of rivaroxaban on the progression of AAA in patients with elevated Hs-CRP for the first time. TRIAL REGISTRATION ChiCTR2100051990, ClinicalTrials.gov, registered on 12 October 2021.
Collapse
Affiliation(s)
- Jingyuan Li
- College of Life Science and Biopharmaceutical, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, China
- Department of Cardiology, General Hospital of Northern Theatre Command, Liaoning, 110016, Shenyang, China
| | - Sicong Ma
- Department of Cardiology, General Hospital of Northern Theatre Command, Liaoning, 110016, Shenyang, China
| | - Xiu Jia
- Department of Cardiology, General Hospital of Northern Theatre Command, Liaoning, 110016, Shenyang, China
| | - Yingzhen Bu
- Department of Cardiology, General Hospital of Northern Theatre Command, Liaoning, 110016, Shenyang, China
| | - Tienan Zhou
- Department of Cardiology, General Hospital of Northern Theatre Command, Liaoning, 110016, Shenyang, China
| | - Lei Zhang
- Department of Cardiology, General Hospital of Northern Theatre Command, Liaoning, 110016, Shenyang, China
| | - Miaohan Qiu
- Department of Cardiology, General Hospital of Northern Theatre Command, Liaoning, 110016, Shenyang, China
| | - Xiaozeng Wang
- College of Life Science and Biopharmaceutical, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, China.
- Department of Cardiology, General Hospital of Northern Theatre Command, Liaoning, 110016, Shenyang, China.
| |
Collapse
|
7
|
The mechanism and therapy of aortic aneurysms. Signal Transduct Target Ther 2023; 8:55. [PMID: 36737432 PMCID: PMC9898314 DOI: 10.1038/s41392-023-01325-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/15/2022] [Accepted: 01/14/2023] [Indexed: 02/05/2023] Open
Abstract
Aortic aneurysm is a chronic aortic disease affected by many factors. Although it is generally asymptomatic, it poses a significant threat to human life due to a high risk of rupture. Because of its strong concealment, it is difficult to diagnose the disease in the early stage. At present, there are no effective drugs for the treatment of aneurysms. Surgical intervention and endovascular treatment are the only therapies. Although current studies have discovered that inflammatory responses as well as the production and activation of various proteases promote aortic aneurysm, the specific mechanisms remain unclear. Researchers are further exploring the pathogenesis of aneurysms to find new targets for diagnosis and treatment. To better understand aortic aneurysm, this review elaborates on the discovery history of aortic aneurysm, main classification and clinical manifestations, related molecular mechanisms, clinical cohort studies and animal models, with the ultimate goal of providing insights into the treatment of this devastating disease. The underlying problem with aneurysm disease is weakening of the aortic wall, leading to progressive dilation. If not treated in time, the aortic aneurysm eventually ruptures. An aortic aneurysm is a local enlargement of an artery caused by a weakening of the aortic wall. The disease is usually asymptomatic but leads to high mortality due to the risk of artery rupture.
Collapse
|
8
|
Potential of Disease-Modifying Anti-Rheumatic Drugs to Limit Abdominal Aortic Aneurysm Growth. Biomedicines 2022; 10:biomedicines10102409. [PMID: 36289670 PMCID: PMC9598733 DOI: 10.3390/biomedicines10102409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/28/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Inflammation is strongly implicated in the pathogenesis of abdominal aortic aneurysms (AAA). This review examined the potential role of biologic disease-modifying anti-rheumatic drugs (bDMARDs) as repurposed drugs for treating AAA. Published evidence from clinical and preclinical studies was examined. Findings from animal models suggested that a deficiency or inhibition of tumour necrosis factor-α (TNF-α) (standard mean difference (SMD): −8.37, 95% confidence interval (CI): −9.92, −6.82), interleukin (IL)-6 (SMD: −1.44, 95% CI: −2.85, −0.04) and IL-17 (SMD: −3.36, 95% CI: −4.21, −2.50) led to a significantly smaller AAA diameter compared to controls. Human AAA tissue samples had significantly increased TNF-α (SMD: 1.68, 95% CI: 0.87, 2.49), IL-1β (SMD: 1.93, 95% CI: 1.08, 2.79), IL-6 (SMD: 2.56, 95% CI: 1.79, 3.33) and IL-17 (SMD: 6.28, 95% CI: 3.57, 8.99) levels compared to non-AAA controls. In human serum, TNF-α (SMD: 1.11, 95% CI: 0.25, 1.97) and IL-6 (SMD: 1.42, 95% CI: 0.91, 1.92) levels were significantly elevated compared to non-AAA controls. These findings implicate TNF-α, IL-17 and IL-6 in AAA pathogenesis. Randomised controlled trials testing the value of bDMARDs in limiting AAA growth may be warranted.
Collapse
|
9
|
Puchenkova OA, Soldatov VO, Belykh AE, Bushueva O, Piavchenko GA, Venediktov AA, Shakhpazyan NK, Deykin AV, Korokin MV, Pokrovskiy MV. Cytokines in Abdominal Aortic Aneurysm: Master Regulators With Clinical Application. Biomark Insights 2022; 17:11772719221095676. [PMID: 35492378 PMCID: PMC9052234 DOI: 10.1177/11772719221095676] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/04/2022] [Indexed: 01/05/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a potentially life-threatening disorder with a mostly asymptomatic course where the abdominal aorta is weakened and bulged. Cytokines play especially important roles (both positive and negative) among the molecular actors of AAA development. All the inflammatory cascades, extracellular matrix degradation and vascular smooth muscle cell apoptosis are driven by cytokines. Previous studies emphasize an altered expression and a changed epigenetic regulation of key cytokines in AAA tissue samples. Such cytokines as IL-6, IL-10, IL-12, IL-17, IL-33, IL-1β, TGF-β, TNF-α, IFN-γ, and CXCL10 seem to be crucial in AAA pathogenesis. Some data obtained in animal studies show a protective function of IL-10, IL-33, and canonical TGF-β signaling, as well as a dual role of IL-4, IFN-γ and CXCL10, while TNF-α, IL-1β, IL-6, IL-12/IL-23, IL-17, CCR2, CXCR2, CXCR4 and the TGF-β noncanonical pathway are believed to aggravate the disease. Altogether data highlight significance of cytokines as informative markers and predictors of AAA. Pathologic serum/plasma concentrations of IL-1β, IL-2, IL-6, TNF-α, IL-10, IL-8, IL-17, IFN-γ, and PDGF have been already found in AAA patients. Some of the changes correlate with the size of aneurysms. Moreover, the risk of AAA is associated with polymorphic variants of genes encoding cytokines and their receptors: CCR2 (rs1799864), CCR5 (Delta-32), IL6 (rs1800796 and rs1800795), IL6R (rs12133641), IL10 (rs1800896), TGFB1 (rs1800469), TGFBR1 (rs1626340), TGFBR2 (rs1036095, rs4522809, rs1078985), and TNFA (rs1800629). Finally, 5 single-nucleotide polymorphisms in gene coding latent TGF-β-binding protein (LTBP4) and an allelic variant of TGFB3 are related to a significantly slower AAA annual growth rate.
Collapse
Affiliation(s)
- Olesya A Puchenkova
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Vladislav O Soldatov
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Andrei E Belykh
- Department of Pathophysiology, Research Institute of General Pathology, Kursk State Medical University, Kursk, Russia
- Dioscuri Centre for Metabolic Diseases, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - OlgaYu Bushueva
- Department of Biology, Medical Genetics and Ecology, Laboratory of Genomic Research at the Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
| | - Gennadii A Piavchenko
- Department of Histology, Cytology and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Laboratory of Cell Pathology in Critical State, State Research Institute of General Reanimatology, Moscow, Russia
| | - Artem A Venediktov
- Department of Histology, Cytology and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Alexey V Deykin
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Mikhail V Korokin
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Mikhail V Pokrovskiy
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| |
Collapse
|
10
|
Skotsimara G, Antonopoulos A, Oikonomou E, Papastamos C, Siasos G, Tousoulis D. Aortic Wall Inflammation in the Pathogenesis, Diagnosis and Treatment of Aortic Aneurysms. Inflammation 2022; 45:965-976. [DOI: 10.1007/s10753-022-01626-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 12/18/2022]
|
11
|
Chen H, Zhao XY, Chen YX, Deng TT. Angiotensin II is a crucial factor in retinal aneurysm formation. Exp Eye Res 2021; 213:108810. [PMID: 34757002 DOI: 10.1016/j.exer.2021.108810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/30/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022]
Abstract
Retinal arterial macroaneurysms are characterized by the acquired fusiform or saccular dilatations of the retinal artery. Angiotensin II (Ang II) is a major signal molecule of the renin-angiotensin system, which exerts a range of pathogenic actions that are relevant to retinal vascular abnormalities. We aimed to study the effect of Ang II on retinal vessels and explore its relationship with retinal aneurysmal disease. C57BL/6J male mice were administered Ang II at 1000 ng/kg/min for 28 days, and the mice given saline served as controls. The mice in the treatment group were treated once daily by gastric gavage of candesartan cilexetil (an antagonist of Ang II type 1 (AT1) receptor) at 100 mg/kg/day. The in vivo imaging of murine retinas was performed using fundus photography, optical coherence tomography, fluorescein angiography, and indocyanine green angiography at 7th, 14th, and 28th days of infusion. At the end of the infusion and treatment, the morphological changes were evaluated by histopathological examination and electron microscopy; the levels of related proteins in murine retinas were examined by antibody array and Western blot analyses. We found that Ang II infusion induced aneurysm formation in mice retina, which presented as either solitary aneurysms or retinal arterial beading. The aneurysm formation was often accompanied with vessel leakage. Moreover, Ang II infusion itself may result in increased vascular permeability and ganglion cell and inner plexiform layer thickening. The blockade of AT1 receptors by systemic administration of candesartan cilexetil alleviated the Ang II-induced retinal vasculopathy. The protein level analysis further showed that Ang II upregulated IL-1β, PDGFR-β, and MMP-9 expression, and the expression of IL-1β could be inhibited by AT1 receptor antagonist. Our study provides evidence that Ang II is a crucial factor in retinal aneurysm formation and vessel leakage. It is probably the combined effect of Ang II on vessel inflammatory response, pericyte function, and extracellular matrix remodeling that predisposes the retinal arterial wall to aneurysm formation and blood-retinal barrier breakdown.
Collapse
Affiliation(s)
- He Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Xin-Yu Zhao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - You-Xin Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, China.
| | - Ting-Ting Deng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
12
|
Cai D, Sun C, Zhang G, Que X, Fujise K, Weintraub NL, Chen SY. A Novel Mechanism Underlying Inflammatory Smooth Muscle Phenotype in Abdominal Aortic Aneurysm. Circ Res 2021; 129:e202-e214. [PMID: 34551587 PMCID: PMC8575453 DOI: 10.1161/circresaha.121.319374] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Dunpeng Cai
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
- Department of Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, MO
| | - Chenming Sun
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA
| | - Gui Zhang
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA
| | - Xingyi Que
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
| | - Ken Fujise
- Harborview Medical Center, Department of Medicine, University of Washington, Seattle, WA
| | - Neal L Weintraub
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA
| | - Shi-You Chen
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
- Department of Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, MO
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA
| |
Collapse
|
13
|
Sun P, Zhang L, Gu Y, Wei S, Wang Z, Li M, Wang W, Wang Z, Bai H. Immune checkpoint programmed death-1 mediates abdominal aortic aneurysm and pseudoaneurysm progression. Biomed Pharmacother 2021; 142:111955. [PMID: 34339918 DOI: 10.1016/j.biopha.2021.111955] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE The causes and pathogenetic mechanisms underlying abdominal aortic aneurysms (AAAs) and pseudoaneurysms are not fully understood. We hypothesized that inhibiting programmed death-1 (PD-1) can decrease AAA and pseudoaneurysm formation in mouse and rat models. METHODS Human AAA samples were examined in conjunction with an adventitial calcium chloride (CaCl2) application mouse model and an aortic patch angioplasty rat model. Single-dose PD-1 antibody (4 mg/kg) or BMS-1 (PD-1 inhibitor-1) (1 mg/kg) was administered by intraperitoneal (IP) or intraluminal injection. In the intramural injection group, PD-1 antibody was injected after CaCl2 incubation. The rats were divided into three groups: (1) the control group was only decellularized without other special treatment, (2) the PD-1 antibody-coated patch group, and (3) the BMS-1 coated patch group. Patches implanted in the rat abdominal aorta were harvested on day 14 after implantation and analyzed. RESULTS Immunohistochemical analysis showed PD-1-positive cells, PD-1 and CD3, PD-1 and CD68, and PD-1 and α-actin co-expressed in the human AAA samples. Intraperitoneal (IP) injection or intraluminal injection of PD-1antibody/BMS-1 significantly inhibited AAA progression. PD-1 antibody and BMS-1 were each successfully conjugated to decellularized rat thoracic artery patches, respectively, by hyaluronic acid. Patches coated with either humanized PD-1 antibody or BMS-1 can also inhibit pseudoaneurysm progression and inflammatory cell infiltration. CONCLUSION PD-1 pathway inhibition may be a promising therapeutic strategy for inhibiting AAA and pseudoaneurysm progression.
Collapse
MESH Headings
- Aneurysm, False/drug therapy
- Aneurysm, False/metabolism
- Aneurysm, False/pathology
- Angioplasty/methods
- Animals
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Aortic Aneurysm, Abdominal/drug therapy
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/metabolism
- Calcium Chloride/toxicity
- Coated Materials, Biocompatible/pharmacology
- Coated Materials, Biocompatible/therapeutic use
- Disease Models, Animal
- Disease Progression
- Humans
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Injections, Intraperitoneal
- Lymphocytes/immunology
- Macrophages/immunology
- Male
- Mice
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/immunology
- Programmed Cell Death 1 Receptor/metabolism
- Rats, Sprague-Dawley
- Rats
Collapse
Affiliation(s)
- Peng Sun
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, 450052 Henan, China
| | - Liwei Zhang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, 450052 Henan, China
| | - Yulei Gu
- Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, 450052 Henan, China
| | - Shunbo Wei
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, 450052 Henan, China
| | - Zhiwei Wang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, 450052 Henan, China
| | - Mingxing Li
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, 450052 Henan, China
| | - Wang Wang
- Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, 450002 Henan, China; Department of Physiology, Medical School of Zhengzhou University, 450002 Henan, China
| | - Zhiju Wang
- Department of Physiology, Medical School of Zhengzhou University, 450002 Henan, China
| | - Hualong Bai
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, 450052 Henan, China; Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, 450002 Henan, China.
| |
Collapse
|
14
|
Neutrophils as Regulators and Biomarkers of Cardiovascular Inflammation in the Context of Abdominal Aortic Aneurysms. Biomedicines 2021; 9:biomedicines9091236. [PMID: 34572424 PMCID: PMC8467789 DOI: 10.3390/biomedicines9091236] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022] Open
Abstract
Neutrophils represent up to 70% of circulating leukocytes in healthy humans and combat infection mostly by phagocytosis, degranulation and NETosis. It has been reported that neutrophils are centrally involved in abdominal aortic aneurysm (AAA) pathogenesis. The natural course of AAA is growth and rupture, if left undiagnosed or untreated. The rupture of AAA has a very high mortality and is currently among the leading causes of death worldwide. The use of noninvasive cardiovascular imaging techniques for patient screening, surveillance and postoperative follow-up is well established and recommended by the current guidelines. Neutrophil-derived biomarkers may offer clinical value to the monitoring and prognosis of AAA patients, allowing for potential early therapeutic intervention. Numerous promising biomarkers have been studied. In this review, we discuss neutrophils and neutrophil-derived molecules as regulators and biomarkers of AAA, and our aim was to specifically highlight diagnostic and prognostic markers. Neutrophil-derived biomarkers may potentially, in the future, assist in determining AAA presence, predict size, expansion rate, rupture risk, and postoperative outcome once validated in highly warranted future prospective clinical studies.
Collapse
|
15
|
Wortmann M, Peters AS, Erhart P, Körfer D, Böckler D, Dihlmann S. Inflammasomes in the Pathophysiology of Aortic Disease. Cells 2021; 10:cells10092433. [PMID: 34572082 PMCID: PMC8468335 DOI: 10.3390/cells10092433] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 12/27/2022] Open
Abstract
Aortic diseases comprise aneurysms, dissections, and several other pathologies. In general, aging is associated with a slow but progressive dilation of the aorta, along with increased stiffness and pulse pressure. The progression of aortic disease is characterized by subclinical development or acute presentation. Recent evidence suggests that inflammation participates causally in different clinical manifestations of aortic diseases. As of yet, diagnostic imaging and surveillance is mainly based on ultrasonography, computed tomography (CT), and magnetic resonance imaging (MRI). Little medical therapy is available so far to prevent or treat the majority of aortic diseases. Endovascular therapy by the introduction of covered stentgrafts provides the main treatment option, although open surgery and implantation of synthetic grafts remain necessary in many situations. Because of the risks associated with surgery, there is a need for identification of pharmaceutical targets interfering with the pathophysiology of aortic remodeling. The participation of innate immunity and inflammasome activation in different cell types is common in aortic diseases. This review will thus focus on inflammasome activities in vascular cells of different chronic and acute aortic diseases and discuss their role in development and progression. We will also identify research gaps and suggest promising therapeutic targets, which may be used for future medical interventions.
Collapse
|
16
|
Ngetich E, Lapolla P, Chandrashekar A, Handa A, Lee R. The role of dipeptidyl peptidase-IV in abdominal aortic aneurysm pathogenesis: A systematic review. Vasc Med 2021; 27:77-87. [PMID: 34392748 PMCID: PMC8808362 DOI: 10.1177/1358863x211034574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abdominal aortic aneurysm (AAA) is an important vascular disease carrying significant mortality implications due to the risk of aneurysm rupture. Current management relies exclusively on surgical repair as there is no effective medical therapy. A key element of AAA pathogenesis is the chronic inflammation mediated by inflammatory cells releasing proteases, including the enzyme dipeptidyl peptidase IV (DPP-IV). This review sought to recapitulate available evidence on the involvement of DPP-IV in AAA development. Further, we assessed the experimental use of currently available DPP-IV inhibitors for AAA management in murine models. Embase, Medline, PubMed, and Web of Science databases were utilised to access the relevant studies. The review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). A narrative synthesis approach was used. Sixty-four studies were identified from the searched databases; a final 11 were included in the analysis. DPP-IV was reported to be significantly increased in both AAA tissue and plasma of patients and correlated with AAA growth. DPP-IV inhibitors (sitagliptin, vildagliptin, alogliptin, and teneligliptin) were all shown to attenuate AAA formation in murine models by reducing monocyte differentiation, the release of reactive oxygen species (ROS), and metalloproteinases (MMP-2 and MMP-9). DPP-IV seems to play a role in AAA pathogenesis by propagating the inflammatory microenvironment. This is supported by observations of decreased AAA formation and reduction in macrophage infiltration, ROS, matrix MMPs, and interleukins following the use of DPP-IV inhibitors in murine models. There is an existing translational gap from preclinical observations to clinical trials in this important and novel mechanism of AAA pathogenesis. This prior literature highlights the need for further research on molecular targets involved in AAA formation.
Collapse
Affiliation(s)
- Elisha Ngetich
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Pierfrancesco Lapolla
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Anirudh Chandrashekar
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ashok Handa
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Regent Lee
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
17
|
Chen YW, Tang HJ, Tsai YS, Lee NY, Hung YP, Huang CF, Lee CC, Li CW, Li MC, Syue LS, Su SL, Hsu SH, Ko WC, Chen PL. Risk of non-typhoidal Salmonella vascular infections is increased with degree of atherosclerosis and inflammation: A multicenter study in southern Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 55:474-481. [PMID: 34301492 DOI: 10.1016/j.jmii.2021.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/29/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Atherosclerosis and vascular inflammatory response have been considered as risk factors for non-typhoidal Salmonella (NTS) vascular infection. The study aims to assess the risk of vascular infection by measuring atherosclerosis severity, NTS vascular infection (NTSVI) score, and serum levels of inflammatory markers in people with NTS bacteremia. METHODS A prospective observational study was conducted in two medical centers and two regional hospitals. Adults aged ≥50 years with NTS bacteremia who underwent computed tomography (CT) scan for revealing vascular infections were enrolled. The degree of atherosclerosis was scaled by a calcium score determined by a CT scan. Serum concentrations of inflammatory biomarkers were determined in the patients enrolled in a medical center. RESULTS Fourteen (20.3%) of 69 patients with NTS bacteremia had vascular infections. Calcium scores over the thoracic (12,540 vs. 3,261, P = 0.0005) and abdominal (9755 vs. 3,461, P = 0.0006) aorta of those with vascular infections were higher than those without vascular infection. All vascular infections were present in the high-risk group (NTSVI score ≥1), yielding a sensitivity of 100% and specificity of 30.9%. Among 17 low-risk patients (NTSVI score <1), none had vascular infections, resulting in a negative predictive value of 100%. Higher plasma concentrations of IL-1β were detected in the cases of vascular infection than those in the control group (23.6 vs. 1.06 pg/mL, P = 0.001). CONCLUSION Atherosclerosis of the aorta which is associated with a positive NTSVI score can predict the occurrence of vascular infections and serum IL-1β could be a biomarker for vascular infection in patients with NTS bacteremia.
Collapse
Affiliation(s)
- Ying-Wen Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Jen Tang
- Department of Medicine, Chi Mei Medical Center, Tainan, Taiwan; Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Yi-Shan Tsai
- Department of Diagnostic Radiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Nan-Yao Lee
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Pin Hung
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan; Graduate Institute of Clinical Medicine, National Health Research Institutes, Tainan, Taiwan
| | - Chien-Fang Huang
- Department of Internal Medicine, Kuo General Hospital, Tainan, Taiwan
| | - Ching-Chi Lee
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Wen Li
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Chi Li
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ling-Shan Syue
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Li Su
- Diagnostic Microbiology and Antimicrobial Resistance Laboratory, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Shu-Hao Hsu
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Diagnostic Microbiology and Antimicrobial Resistance Laboratory, National Cheng Kung University Hospital, Tainan, Taiwan.
| | - Po-Lin Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Diagnostic Microbiology and Antimicrobial Resistance Laboratory, National Cheng Kung University Hospital, Tainan, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
18
|
Shi J, Guo J, Li Z, Xu B, Miyata M. Importance of NLRP3 Inflammasome in Abdominal Aortic Aneurysms. J Atheroscler Thromb 2021; 28:454-466. [PMID: 33678767 PMCID: PMC8193780 DOI: 10.5551/jat.rv17048] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a chronic inflammatory degenerative aortic disease, which particularly affects older people. Nucleotide-binding oligomerization domain-like receptor family protein 3 (NLRP3) inflammasome is a multi-protein complex and mediates inflammatory responses by activating caspase 1 for processing premature interleukin (IL)-1β and IL-18. In this review, we first summarize the principle of NLRP3 inflammasome activation and the functionally distinct classes of small molecule NLRP3 inflammasome inhibitors. Next, we provide a comprehensive literature review on the expression of NLRP3 inflammasome effector mediators (IL-1β and IL-18) and components (caspase 1, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and NLRP3) in clinical and experimental AAAs. Finally, we discuss the influence of genetic deficiency or pharmacological inhibition of individual effector mediators and components of NLRP3 inflammasome on experimental AAAs. Accumulating clinical and experimental evidence suggests that NLRP3 inflammasome may be a promise therapeutic target for developing pharmacological strategies for clinical AAA management.
Collapse
Affiliation(s)
- Jinyun Shi
- Center for Hypertension Care, Shanxi Medical University First Hospital, Taiyuan, Shanxi Province, P. R. China
| | - Jia Guo
- Center for Hypertension Care, Shanxi Medical University First Hospital, Taiyuan, Shanxi Province, P. R. China
| | - Zhidong Li
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi Province, P. R. China
| | - Baohui Xu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Masaaki Miyata
- School of Health Science, Faculty of Medicine, Kagoshima University, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
19
|
Forrer A, Schoenrath F, Torzewski M, Schmid J, Franke UFW, Göbel N, Aujesky D, Matter CM, Lüscher TF, Mach F, Nanchen D, Rodondi N, Falk V, von Eckardstein A, Gawinecka J. Novel Blood Biomarkers for a Diagnostic Workup of Acute Aortic Dissection. Diagnostics (Basel) 2021; 11:diagnostics11040615. [PMID: 33808169 PMCID: PMC8065878 DOI: 10.3390/diagnostics11040615] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 12/20/2022] Open
Abstract
Acute aortic dissection (AAD) is a rare condition, but together with acute myocardial infarction (AMI) and pulmonary embolism (PE) it belongs to the most relevant and life-threatening causes of acute chest pain. Until now, there has been no specific blood test in the diagnostic workup of AAD. To identify clinically relevant biomarkers for AAD, we applied Proseek® Multiplex assays to plasma samples from patients with AAD, AMI, PE, thoracic aortic aneurysm (TAA), and non-cardiovascular chest pain (nonCVD). Subsequently, we validated top hits using conventional immunoassays and examined their expression in the aortic tissue. Interleukin 10 (IL-10) alone showed the best performance with a sensitivity of 55% and a specificity of 98% for AAD diagnosis. The combination of D-dimers, high-sensitive troponin T (hs-TnT), interleukin 6 (IL-6), and plasminogen activator inhibitor 1 (PAI1) correctly classified 75% of AAD cases, delivering a sensitivity of 83% and specificity of 95% for its diagnosis. Moreover, this model provided the correct classification of 77% of all analyzed cases. Our data suggest that IL-10 shows potential to be a rule-in biomarker for AAD. Moreover, the addition of PAI1 and IL-6 to hs-TnT and D-dimers may improve the discrimination of suspected AAD, AMI, and PE in patients presenting with acute chest pain.
Collapse
Affiliation(s)
- Anja Forrer
- Institute of Clinical Chemistry, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland; (A.F.); (A.v.E.)
| | - Felix Schoenrath
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353 Berlin, Germany; (F.S.); (V.F.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Michael Torzewski
- Department of Laboratory Medicine and Hospital Hygiene, Robert Bosch Hospital, 70376 Stuttgart, Germany; (M.T.); (J.S.)
| | - Jens Schmid
- Department of Laboratory Medicine and Hospital Hygiene, Robert Bosch Hospital, 70376 Stuttgart, Germany; (M.T.); (J.S.)
| | - Urlich F. W. Franke
- Department of Cardiovascular Surgery, Robert Bosch Hospital, 70376 Stuttgart, Germany; (U.F.W.F.); (N.G.)
| | - Nora Göbel
- Department of Cardiovascular Surgery, Robert Bosch Hospital, 70376 Stuttgart, Germany; (U.F.W.F.); (N.G.)
| | - Drahomir Aujesky
- Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (D.A.); (N.R.)
| | - Christian M. Matter
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (C.M.M.); (T.F.L.)
| | - Thomas F. Lüscher
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (C.M.M.); (T.F.L.)
| | - Francois Mach
- Department of Cardiology, University Hospital Geneva, 1205 Geneva, Switzerland;
| | - David Nanchen
- Center for Primary Care and Public Health, University of Lausanne, 1015 Lausanne, Switzerland;
| | - Nicolas Rodondi
- Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (D.A.); (N.R.)
- Institute of Primary Health Care (BIHAM), University of Bern, 3012 Bern, Switzerland
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353 Berlin, Germany; (F.S.); (V.F.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Department of Cardiothoracic Surgery, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117 Berlin, Germany
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland; (A.F.); (A.v.E.)
| | - Joanna Gawinecka
- Institute of Clinical Chemistry, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland; (A.F.); (A.v.E.)
- Correspondence: ; Tel.: +41-44-255-9643; Fax: +41-44-255-4590
| |
Collapse
|
20
|
Deshayes S, Ly KH, Rieu V, Maigné G, Silva NM, Manrique A, Monteil J, de Boysson H, Aouba A. Steroid-sparing effect of anakinra in giant-cell arteritis: a case series with clinical, biological and iconographic long-term assessments. Rheumatology (Oxford) 2021; 61:400-406. [PMID: 33742671 DOI: 10.1093/rheumatology/keab280] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The treatment of giant cell arteritis (GCA) relies on corticosteroids but is burdened by a high rate of relapses and adverse effects. Anti-interleukin-6 treatments show a clear benefit with a significant steroid-sparing effect, but late relapses occur after treatment discontinuation. In addition to interleukin-6, interleukin-1 also appears to play a significant role in GCA pathophysiology. We report herein the efficacy of anakinra, an interleukin-1 receptor antagonist, in 6 GCA patients exhibiting corticosteroid dependence or resistance, specifically analyzing the outcome of aortitis in 4 of them. METHODS This retrospective study analyzed the cases of all GCA patients treated with anakinra from the French Study Group for Large Vessel Vasculitis. RESULTS After a median duration of anakinra therapy of 19 [18-32] months, all 6 patients exhibited complete clinical and biological remission. Among the 4 patients with large-vessel involvement, 2 had a disappearance of aortitis under anakinra, and 2 showed a decrease in vascular uptake. After a median follow-up of 56 [48-63] months, corticosteroids were discontinued in 4 patients, and corticosteroid dosage could be decreased to 5 mg/day in 2 patients. One patient relapsed 13 months after anakinra introduction in the context of increasing the daily anakinra injection interval to every 48 hours. Three patients experienced transient injection-site reactions, and 1 patient had pneumonia. CONCLUSION In this short series, anakinra appears to be an efficient and safe steroid-sparing agent in refractory GCA, with a possible beneficial effect on large-vessel involvement.
Collapse
Affiliation(s)
- Samuel Deshayes
- Service de Médecine Interne, CHU de Caen Normandie, 14000 Caen, France.,Normandie Univ, UNICAEN, EA4650 SEILIRM, CHU de Caen Normandie, 14000 Caen, France
| | - Kim-Heang Ly
- Service de Médecine Interne A, CHU Dupuytren, 87000 Limoges, France.,Faculté de médecine, laboratoire d'immunologie, EA3842, 87025 Limoges, France
| | - Virginie Rieu
- Service de Médecine Interne, CHU Estaing, Clermont-Ferrand, France
| | - Gwénola Maigné
- Service de Médecine Interne, CHU de Caen Normandie, 14000 Caen, France
| | | | - Alain Manrique
- Normandie Univ, UNICAEN, EA4650 SEILIRM, CHU de Caen Normandie, 14000 Caen, France.,Service de Médecine Nucléaire, CHU de Caen Normandie, 14000 Caen, France
| | - Jacques Monteil
- Service de Médecine Nucléaire, CHU Dupuytren, 87000 Limoges, France
| | - Hubert de Boysson
- Service de Médecine Interne, CHU de Caen Normandie, 14000 Caen, France.,Normandie Univ, UNICAEN, EA4650 SEILIRM, CHU de Caen Normandie, 14000 Caen, France
| | - Achille Aouba
- Service de Médecine Interne, CHU de Caen Normandie, 14000 Caen, France.,Normandie Univ, UNICAEN, EA4650 SEILIRM, CHU de Caen Normandie, 14000 Caen, France
| | | |
Collapse
|
21
|
Adams L, Brangsch J, Hamm B, Makowski MR, Keller S. Targeting the Extracellular Matrix in Abdominal Aortic Aneurysms Using Molecular Imaging Insights. Int J Mol Sci 2021; 22:ijms22052685. [PMID: 33799971 PMCID: PMC7962044 DOI: 10.3390/ijms22052685] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022] Open
Abstract
This review outlines recent preclinical and clinical advances in molecular imaging of abdominal aortic aneurysms (AAA) with a focus on molecular magnetic resonance imaging (MRI) of the extracellular matrix (ECM). In addition, developments in pharmacologic treatment of AAA targeting the ECM will be discussed and results from animal studies will be contrasted with clinical trials. Abdominal aortic aneurysm (AAA) is an often fatal disease without non-invasive pharmacologic treatment options. The ECM, with collagen type I and elastin as major components, is the key structural component of the aortic wall and is recognized as a target tissue for both initiation and the progression of AAA. Molecular imaging allows in vivo measurement and characterization of biological processes at the cellular and molecular level and sets forth to visualize molecular abnormalities at an early stage of disease, facilitating novel diagnostic and therapeutic pathways. By providing surrogate criteria for the in vivo evaluation of the effects of pharmacological therapies, molecular imaging techniques targeting the ECM can facilitate pharmacological drug development. In addition, molecular targets can also be used in theranostic approaches that have the potential for timely diagnosis and concurrent medical therapy. Recent successes in preclinical studies suggest future opportunities for clinical translation. However, further clinical studies are needed to validate the most promising molecular targets for human application.
Collapse
Affiliation(s)
- Lisa Adams
- Charité—Universitaetsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.B.); (B.H.); (M.R.M.); (S.K.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-627-376
| | - Julia Brangsch
- Charité—Universitaetsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.B.); (B.H.); (M.R.M.); (S.K.)
| | - Bernd Hamm
- Charité—Universitaetsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.B.); (B.H.); (M.R.M.); (S.K.)
| | - Marcus R. Makowski
- Charité—Universitaetsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.B.); (B.H.); (M.R.M.); (S.K.)
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Sarah Keller
- Charité—Universitaetsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.B.); (B.H.); (M.R.M.); (S.K.)
| |
Collapse
|
22
|
Brangsch J, Reimann C, Kaufmann JO, Adams LC, Onthank D, Thöne-Reineke C, Robinson S, Wilke M, Weller M, Buchholz R, Karst U, Botnar R, Hamm B, Makowski MR. Molecular MR-Imaging for Noninvasive Quantification of the Anti-Inflammatory Effect of Targeting Interleukin-1β in a Mouse Model of Aortic Aneurysm. Mol Imaging 2020; 19:1536012120961875. [PMID: 33216687 PMCID: PMC7682246 DOI: 10.1177/1536012120961875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Molecular-MRI is a promising imaging modality for the assessment of abdominal aortic aneurysms (AAAs). Interleukin-1β (IL-1β) represents a new therapeutic tool for AAA-treatment, since pro-inflammatory cytokines are key-mediators of inflammation. This study investigates the potential of molecular-MRI to evaluate therapeutic effects of an anti-IL-1β-therapy on AAA-formation in a mouse-model. Methods: Osmotic-minipumps were implanted in apolipoprotein-deficient-mice (N = 27). One group (Ang-II+01BSUR group, n = 9) was infused with angiotensin-II (Ang-II) for 4 weeks and received an anti-murine IL-1β-antibody (01BSUR) 3 times. One group (Ang-II-group, n = 9) was infused with Ang-II for 4 weeks but received no treatment. Control-group (n = 9) was infused with saline and received no treatment. MR-imaging was performed using an elastin-specific gadolinium-based-probe (0.2 mmol/kg). Results: Mice of the Ang-II+01BSUR-group showed a lower aortic-diameter compared to mice of the Ang-II-group and control mice (p < 0.05). Using the elastin-specific-probe, a significant decrease in elastin-destruction was observed in mice of the Ang-II+01BSUR-group. In vivo MR-measurements correlated well with histopathology (y = 0.34x-13.81, R2 = 0.84, p < 0.05), ICP-MS (y = 0.02x+2.39; R2 = 0.81, p < 0.05) and LA-ICP-MS. Immunofluorescence and western-blotting confirmed a reduced IL-1β-expression. Conclusions: Molecular-MRI enables the early visualization and quantification of the anti-inflammatory-effects of an IL-1β-inhibitor in a mouse-model of AAAs. Responders and non-responders could be identified early after the initiation of the therapy using molecular-MRI.
Collapse
Affiliation(s)
- Julia Brangsch
- Department of Radiology, 14903Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany
| | - Carolin Reimann
- Department of Radiology, 14903Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany
| | - Jan Ole Kaufmann
- Department of Radiology, 14903Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Division 1.5 Protein Analysis, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany.,Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lisa Christine Adams
- Department of Radiology, 14903Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - David Onthank
- 128865Lantheus Medical Imaging, North Billerica, MA, USA
| | - Christa Thöne-Reineke
- Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany
| | - Simon Robinson
- 128865Lantheus Medical Imaging, North Billerica, MA, USA
| | - Marco Wilke
- Division 1.5 Protein Analysis, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Michael Weller
- Division 1.5 Protein Analysis, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Rebecca Buchholz
- Institute of Inorganic and Analytical Chemistry, 9185Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, 9185Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Rene Botnar
- School of Biomedical Engineering and Imaging Sciences, 4616King's College London, St Thomas' Hospital, London, United Kingdom.,Wellcome Trust/EPSRC Centre for Medical Engineering, 4616King's College London, United Kingdom.,BHF Centre of Excellence, 4616King's College London, Denmark Hill Campus, London, United Kingdom.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bernd Hamm
- Department of Radiology, 14903Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Marcus Richard Makowski
- Department of Radiology, 14903Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,School of Biomedical Engineering and Imaging Sciences, 4616King's College London, St Thomas' Hospital, London, United Kingdom.,BHF Centre of Excellence, 4616King's College London, Denmark Hill Campus, London, United Kingdom.,Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| |
Collapse
|
23
|
Song H, Xu T, Feng X, Lai Y, Yang Y, Zheng H, He X, Wei G, Liao W, Liao Y, Zhong L, Bin J. Itaconate prevents abdominal aortic aneurysm formation through inhibiting inflammation via activation of Nrf2. EBioMedicine 2020; 57:102832. [PMID: 32574955 PMCID: PMC7322255 DOI: 10.1016/j.ebiom.2020.102832] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Identifying effective drugs to suppress vascular inflammation is a promising strategy to delay the progression of abdominal aortic aneurysm (AAA). Itaconate has a vital role in regulating inflammatory activation in various inflammatory diseases. However, the role of itaconate in the progression of AAA is unknown. In this study, we explored the inhibitory effect of itaconate on AAA formation and its underlying mechanisms. METHODS Quantitative PCR, western blotting and immunohistochemistry were used to determine Irg1 and downstream Nrf2 expression in human and mouse AAA samples. Liquid chromatograph-mass spectrometry (LC-MS) analysis was performed to measure the abundance of itaconate. OI treatment and Irg1 knockdown were performed to study the role of OI in AAA formation. Nrf2 intervention in vivo was performed to detect the critical role of Nrf2 in the beneficial effect of OI on AAA. FINDINGS We found that itaconate suppressed the formation of angiotensin II (Ang II)-induced AAA in apolipoprotein E-deficient (Apoe-/-) mice, while Irg1 deficiency exerted the opposite effect. Mechanistically, itaconate inhibited vascular inflammation by enabling Nrf2 to function as a transcriptional repressor of downstream inflammatory genes via alkylation of Keap1. Moreover, Nrf2 deficiency significantly aggravated inflammatory factor expression and promoted AAA formation. In addition, Keap1 overexpression significantly promoted Ang II-induced AAA formation, which was inhibited by itaconate. INTERPRETATION Itaconate inhibited AAA formation by suppressing vascular inflammation, and therapeutic approaches to increase itaconate are potentially beneficial for preventing AAA formation. FUNDING National Natural Science Foundations of China and Guangzhou regenerative medicine and Health Laboratory of Guangdong.
Collapse
Affiliation(s)
- Haoyu Song
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Tong Xu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Xiaofei Feng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Yanxian Lai
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Yang Yang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Hao Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Xiang He
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Guoquan Wei
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Lintao Zhong
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China; Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai 519000, China.
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China.
| |
Collapse
|
24
|
Urwyler SA, Ebrahimi F, Burkard T, Schuetz P, Poglitsch M, Mueller B, Donath MY, Christ-Crain M. IL (Interleukin)-1 Receptor Antagonist Increases Ang (Angiotensin [1–7]) and Decreases Blood Pressure in Obese Individuals. Hypertension 2020; 75:1455-1463. [DOI: 10.1161/hypertensionaha.119.13982] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
IL (Interleukin)-1 antagonism decreases blood pressure in obese individuals. The underlying mechanisms are unknown. Based on experimental data, we hypothesized an effect of IL-1 antagonism via modulation of the renin-angiotensin-aldosterone system. In this explorative study, we examined shorter- (2 days) and longer-term effects (4 weeks) of IL-1 antagonism (anakinra/Kineret) on renin-angiotensin system peptide profiles and on hemodynamic parameters assessed by noninvasive measurement in obese (body mass index ≥30 kg/m
2
) individuals from 2 interventional trials (a prospective interventional trial [n=73] and a placebo controlled-double blinded interventional trial [n=67]). A total of 140 patients were included. Systolic blood pressure decreased after short-term (absolute difference −5.2 mm Hg [95% CI, −8.5 to −1.8];
P
=0.0006) and after longer-term treatment with anakinra (absolute difference −3.9 mm Hg [95% CI, −7.59 to −0.21];
P
=0.04), with no change in blood pressure in the placebo group. Upon IL-1 antagonism, equilibrium levels of Ang II (angiotensin II), Ang I, aldosterone, and renin remained unchanged. In contrast, Ang (1–7) peptide levels increased after 4 weeks (between-group difference 16.35 pmol/L [95% CI, 1.22–30.17],
P
=0.03), as well as the Ang (1–7)/Ang II ratio (between-group difference 0.42 [95% CI, 0.17–0.67],
P
=0.02) in comparison to placebo. Consistently, the stroke systemic vascular resistance index significantly decreased in the anakinra group (between-group difference of −62.65 dyn/sec per cm
−5
per m
2
[95% CI, −116.94 to −18.36],
P
=0.008, consistent with a 25% decrease). IL-1 antagonism increased the vasodilatory Ang (1–7) peptide after 4 weeks of treatment in obese individuals, paralleled by a decrease in peripheral vascular resistance. These findings point to an IL-1 mediated blood pressure-lowering mechanism via modulation of Ang (1–7).
Registration—
URL:
https://www.clinicaltrials.gov
. Unique identifiers: NCT02227420 and NCT02672592.
Collapse
Affiliation(s)
- Sandrine Andrea Urwyler
- From the Department of Endocrinology, Diabetology and Metabolism (S.A.U., F.E., M.Y.D., M.C.-C.), University Hospital Basel, Switzerland
- Department of Clinical Research (S.A.U., F.E., T.B., P.S., B.M., M.Y.D., M.C.-C.), University Hospital Basel, Switzerland
| | - Fahim Ebrahimi
- From the Department of Endocrinology, Diabetology and Metabolism (S.A.U., F.E., M.Y.D., M.C.-C.), University Hospital Basel, Switzerland
- Department of Clinical Research (S.A.U., F.E., T.B., P.S., B.M., M.Y.D., M.C.-C.), University Hospital Basel, Switzerland
| | - Thilo Burkard
- Department of Clinical Research (S.A.U., F.E., T.B., P.S., B.M., M.Y.D., M.C.-C.), University Hospital Basel, Switzerland
- Department of Internal Medicine, Medical Outpatient Department and Hypertension Clinic, ESH Hypertension Centre of Excellence (T.B.), University Hospital Basel, Switzerland
| | - Philipp Schuetz
- Department of Clinical Research (S.A.U., F.E., T.B., P.S., B.M., M.Y.D., M.C.-C.), University Hospital Basel, Switzerland
- Department of General Internal and Emergency Medicine, Medical University Clinic, Kantonsspital Aarau, Switzerland (P.S.)
| | - Marko Poglitsch
- Attoquant Diagnostics GmbH, Campus-Vienna-Biocenter, Vienna, Austria (M.P.)
| | - Beat Mueller
- Department of Clinical Research (S.A.U., F.E., T.B., P.S., B.M., M.Y.D., M.C.-C.), University Hospital Basel, Switzerland
- Department of Endocrinology, Diabetes and Metabolism, Medical University Clinic, Kantonsspital Aarau, Switzerland (B.M.)
| | - Marc Y. Donath
- From the Department of Endocrinology, Diabetology and Metabolism (S.A.U., F.E., M.Y.D., M.C.-C.), University Hospital Basel, Switzerland
- Department of Clinical Research (S.A.U., F.E., T.B., P.S., B.M., M.Y.D., M.C.-C.), University Hospital Basel, Switzerland
| | - Mirjam Christ-Crain
- From the Department of Endocrinology, Diabetology and Metabolism (S.A.U., F.E., M.Y.D., M.C.-C.), University Hospital Basel, Switzerland
- Department of Clinical Research (S.A.U., F.E., T.B., P.S., B.M., M.Y.D., M.C.-C.), University Hospital Basel, Switzerland
| |
Collapse
|
25
|
The role of IL-1β in aortic aneurysm. Clin Chim Acta 2020; 504:7-14. [PMID: 31945339 DOI: 10.1016/j.cca.2020.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/12/2022]
Abstract
Interleukin-1β (IL-1β) is a vital cytokine that plays an important role in regulating immune responses to infectious challenges and sterile insults. In addition, two endogenous inhibitors of functional receptor binding, IL-1 receptor antagonist (IL-1Ra), complete the family. To gain biological activity, IL-1β requires processing by the protease caspase-1 and activation of inflammasomes. Numerous clinical association studies and experimental approaches have implicated members of the IL-1 family, their receptors, or components of the processing machinery in the underlying processes of cardiovascular diseases. Here, we summarize the current state of knowledge regarding the pro-inflammatory and disease-modulating role of the IL-1 family in aneurysm. We discuss clinical evidence, signalling pathway, and mechanism of action and last, lend a perspective on currently developing therapeutic strategies involving IL-1β in aneurysm.
Collapse
|
26
|
Nakayama A, Morita H, Komuro I. Comprehensive Cardiac Rehabilitation as a Therapeutic Strategy for Abdominal Aortic Aneurysm. Circ Rep 2019; 1:474-480. [PMID: 33693088 PMCID: PMC7897575 DOI: 10.1253/circrep.cr-19-0095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Abdominal aortic aneurysms (AAA) are referred to as “time bombs”. The only way to prevent AAA rupture is elective repair beforehand using surgical replacement or an endovascular procedure. Non-surgical strategies to prevent AAA expansion are under intense investigation. At each AAA stage, that is, occurrence, expansion, and rupture, the mechanisms and risk factors are different, as discussed in this review. Based on the mechanism and risk factors for AAA expansion, the most effective strategy against AAA expansion need to be identified, but so far none has. Exercise is known to be essential for preventing atherosclerosis related to the coexistence of AAA and CAD, but some doctors are hesitant to prescribe exercise programs to AAA patients given that BP elevation during exercise can cause AAA expansion or rupture. In our retrospective study and prospective study on the safety and effectiveness of exercise for AAA patients, the protective role of mild-moderate exercise against expansion of small AAA was clearly shown. The stability of AAA on exercise might be related to reduced inflammatory activity in the aortic wall, stabilized elevation in BP during exercise, increased aortic blood flow, upregulation of transforming growth factor-β1, moderated BMI and/or fat, or improved endothelial function. Until a revolutionary drug emerges that can regress AAA, cardiac rehabilitation remains the best strategy for preventing AAA expansion and rupture.
Collapse
Affiliation(s)
- Atsuko Nakayama
- Department of Cardiovascular Medicine, The University of Tokyo Tokyo Japan
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, The University of Tokyo Tokyo Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo Tokyo Japan
| |
Collapse
|
27
|
Cai C, Xiang Y, Wu Y, Zhu N, Zhao H, Xu J, Lin W, Zeng C. Formononetin attenuates monocrotaline‑induced pulmonary arterial hypertension via inhibiting pulmonary vascular remodeling in rats. Mol Med Rep 2019; 20:4984-4992. [PMID: 31702810 PMCID: PMC6854580 DOI: 10.3892/mmr.2019.10781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/15/2019] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life‑threatening disease induced by the excessive proliferation and reduced apoptosis of pulmonary artery smooth muscle cells (PASMCs). Formononetin (FMN) is a natural isoflavone with numerous cardioprotective properties, which can inhibit the proliferation and induce the apoptosis of tumor cells; however, whether FMN has a therapeutic effect on PAH remains unclear. In the present study, PAH was induced in rats with monocrotaline (MCT, 60 mg/kg); rats were then administered FMN (10, 30 or 60 mg/kg/day). At the end of the experiment, hemodynamic changes, right ventricular hypertrophy and lung morphological characteristics were evaluated. α‑smooth muscle actin (α‑SMA), proliferating cell nuclear antigen (PCNA), and TUNEL were detected by immunohistochemical staining. The expression of PCNA, Bcl‑2‑associated X protein (Bax), Bcl‑2 and, cleaved caspase‑3, and activation of AKT and ERK were examined by western blot analysis. The results demonstrated that FMN significantly ameliorated the right ventricular systolic pressure, right ventricular hypertrophy, and pulmonary vascular remodeling induced by MCT. FMN also attenuated MCT‑induced increased expression of α‑SMA and PCNA. The ratio of Bax/Bcl‑2 and cleaved caspase‑3 expression increased in rat lung tissue in response to FMN treatment. Furthermore, reduced phosphorylation of AKT and ERK was also observed in FMN‑treated rats. Therefore, FMN may provide protection against MCT‑induced PAH by preventing pulmonary vascular remodeling, potentially by suppressing the PI3K/AKT and ERK pathways in rats.
Collapse
Affiliation(s)
- Changhong Cai
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Yijia Xiang
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Yonghui Wu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Ning Zhu
- Department of Cardiology, The Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Huan Zhao
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Jian Xu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Wensheng Lin
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Chunlai Zeng
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang 323000, P.R. China
| |
Collapse
|
28
|
Erhart P, Cakmak S, Grond-Ginsbach C, Hakimi M, Böckler D, Dihlmann S. Inflammasome activity in leucocytes decreases with abdominal aortic aneurysm progression. Int J Mol Med 2019; 44:1299-1308. [PMID: 31432101 PMCID: PMC6713432 DOI: 10.3892/ijmm.2019.4307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022] Open
Abstract
Abdominal aortic aneurysms (AAAs) are characterized by chronic inflammatory cell infiltration. The present extended immunohistochemistry study aimed to characterize inflammation in AAA and aortic control samples. In specific, the composition of the infiltrating immune cells and the expression of five inflammasome components in these immune cells were evaluated, in order to characterize their role in AAA development. A total of 104 biopsies from 48 AAA patients and 40 healthy specimens from organ donors were evaluated for their grade of inflammation. Infiltrating leukocytes were characterized by specific markers (CD3, CD20 and CD68), intramural localization and inflammasome protein expression [NLR family pyrin domain containing 3 (NLRP3), absent in melanoma 2 (AIM2), apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), Caspase-1 and Caspase-5]. Macrophages, B and T lymphocytes were detected to a similar extent in grade 1, 2 and 3 AAA specimens, whereas in control samples, B and T lymphocytes were rarely observed in grade 1 lesions. Expression frequencies of NLRP3, AIM2 and Caspase-5 were significantly higher in grade 1 lesions of AAA samples compared with grade 1 lesions in control samples. Finally, AIM2, ASC, and Caspase-5 displayed significantly lower expression frequencies in grade 3 compared with grade 2 AAA specimens, and all inflammasome components were less frequently detected in grade 3 than in grade 1 lesions of AAA. This indicates that inflammasome activities decrease with AAA progression in infiltrating leukocytes. No statistically significant association was found for grade 2 and grade 3 lesions and total leukocyte count, C-reactive protein levels, maximal aortic diameter, plasma cholesterol level or biomechanical parameters (derived from finite element analysis) of the respective patients. Overall, the aortic wall of AAA contained lymphocytes and macrophages with different states of activity. The present data suggested that therapeutic inhibition of specific inflammasome components might counteract AAA development and progression.
Collapse
Affiliation(s)
- Philipp Erhart
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Sinan Cakmak
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | | | - Maani Hakimi
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Dittmar Böckler
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Susanne Dihlmann
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
29
|
The potential of cardiac rehabilitation as a method of suppressing abdominal aortic aneurysm expansion: a pilot study. Heart Vessels 2019; 34:2031-2039. [PMID: 31144100 DOI: 10.1007/s00380-019-01441-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022]
Abstract
This study is a prospective evaluation of the effectiveness of cardiac rehabilitation (CR) in terms of clinical outcomes for small abdominal aortic aneurysms (AAA) that were previously reported in a retrospective cohort study. We conducted a prospective non-randomized trial on patients with small AAA (N = 40; mean age 75.0 ± 6.6 years). Patients were enrolled into one of two groups, rehabilitation (CR) or non-rehabilitation (non-CR) group. Only CR group participated in a supervised-CR program including bicycle ergometer for 150 days. The AAA expansion rate and the risk of AAA repair were compared between two groups. We also researched the relationship between AAA expansion rate and body composition, blood IL-6 and TGFβ1 levels. The CR (N = 15) and non-CR groups (N = 25) were comparable in terms their baseline data. The CR group had a significantly smaller change in the maximal AAA size (- 1.3 ± 2.4 mm/years) compared to the non-CR group (2.0 ± 3.6 mm/years) (p < 0.01). The IL-6, and TGFβ1 levels were unrelated to the changes in AAA size. There was mild positive correlation between the change in systolic blood pressure from rest to exercise and the AAA expansion rate (p = 0.06). The risk of AAA repair after 12 months was lower in the CR group compared to the non-CR group (0% vs. 28%, respectively). CR in patients with small AAA significantly suppressed AAA expansion and resulted in a lowered risk of AAA repair.Clinical trial Trial name: The study of the profitability and protective effect of cardiac rehabilitation on abdominal aortic aneurysm. Number: UMIN000028237. UTL: https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R0000323.
Collapse
|
30
|
de Carvalho Santuchi M, Dutra MF, Vago JP, Lima KM, Galvão I, de Souza-Neto FP, Morais e Silva M, Oliveira AC, de Oliveira FCB, Gonçalves R, Teixeira MM, Sousa LP, dos Santos RAS, da Silva RF. Angiotensin-(1-7) and Alamandine Promote Anti-inflammatory Response in Macrophages In Vitro and In Vivo. Mediators Inflamm 2019; 2019:2401081. [PMID: 30918468 PMCID: PMC6409041 DOI: 10.1155/2019/2401081] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/12/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023] Open
Abstract
The renin-angiotensin system (RAS) peptides play an important role in inflammation. Resolution of inflammation contributes to restore tissue homeostasis, and it is characterized by neutrophil apoptosis and their subsequent removal by macrophages, which are remarkable plastic cells involved in the pathophysiology of diverse inflammatory diseases. However, the effects of RAS peptides on different macrophage phenotypes are still emerging. Here, we evaluated the effects of angiotensin-(1-7) (Ang-(1-7)) and the most novel RAS peptide, alamandine, on resting (M0), proinflammatory M(LPS+IFN-γ), and anti-inflammatory M(IL-4) macrophage phenotypes in vitro, as well as on specific immune cell populations and macrophage subsets into the pleural cavity of LPS-induced pleurisy in mice. Our results showed that Ang-(1-7) and alamandine, through Mas and MrgD receptors, respectively, do not affect M0 macrophages but reduce the proinflammatory TNF-α, CCL2, and IL-1β transcript expression levels in LPS+IFN-γ-stimulated macrophages. Therapeutic administration of these peptides in LPS-induced inflammation in mice decreased the number of neutrophils and M1 (F4/80lowGr1+CD11bmed) macrophage frequency without affecting the other investigated macrophage subsets. Our data suggested that both Ang-(1-7) and alamandine, through their respective receptors Mas and MrgD, promote an anti-inflammatory reprogramming of M(LPS+IFN-γ)/M1 macrophages under inflammatory circumstances and potentiate the reprogramming induced by IL-4. In conclusion, our work sheds light on the emerging proresolving properties of Ang-(1-7) and alamandine, opening new avenues for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Melissa de Carvalho Santuchi
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Miriane Fernandes Dutra
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Priscila Vago
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Kátia Maciel Lima
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Izabela Galvão
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernando Pedro de Souza-Neto
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mario Morais e Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Aline Cristina Oliveira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Ricardo Gonçalves
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia Pires Sousa
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Robson Augusto Souza dos Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rafaela Fernandes da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
31
|
Koch CA, Krabbe S, Hehmke B. Statins, metformin, proprotein-convertase-subtilisin-kexin type-9 (PCSK9) inhibitors and sex hormones: Immunomodulatory properties? Rev Endocr Metab Disord 2018; 19:363-395. [PMID: 30673921 DOI: 10.1007/s11154-018-9478-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The immune system is closely intertwined with the endocrine system. Many effects of medications used for various clinical endocrine conditions such as the metabolic syndrome, hypercholesterolemia, diabetes mellitus, hypertension, Graves' disease and others also have an impact on the immune system. Some drugs including statins, metformin, angiotensin converting enzyme and proprotein-convertase-subtilisin-kexin type-9 (PCSK9) inhibitors and sex hormones are known to have immunomodulatory properties. We here review the literature on this topic and provide some clinical examples including the use of statins in Graves' orbitopathy, rheumatoid arthritis, multiple sclerosis, and adult-onset Still's disease. In that context, we introduce a special immunodiagnostics method developed at the Institute of Diabetes "Gerhardt Katsch" in Karlsburg, Germany, to not only measure but also monitor immune disease activity.
Collapse
Affiliation(s)
- Christian A Koch
- Medicover GmbH Berlin, Berlin, Germany.
- Carl von Ossietzky University, Oldenburg, Germany.
- Technical University of Dresden, Dresden, Germany.
- University of Louisville, Louisville, KY, USA.
- University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Siegfried Krabbe
- Medicover GmbH Berlin, Berlin, Germany
- Carl von Ossietzky University, Oldenburg, Germany
- University of Greifswald, Greifswald, Germany
| | - Bernd Hehmke
- Institute of Diabetes ''Gerhardt Katsch'', Karlsburg, Germany.
| |
Collapse
|