1
|
Neonatal administration of a subanaesthetic dose of JM-1232(-) in mice results in no behavioural deficits in adulthood. Sci Rep 2021; 11:12874. [PMID: 34145371 PMCID: PMC8213711 DOI: 10.1038/s41598-021-92344-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 06/08/2021] [Indexed: 11/09/2022] Open
Abstract
In animal models, neonatal exposure of general anaesthetics significantly increases apoptosis in the brain, resulting in persistent behavioural deficits later in adulthood. Consequently, there is growing concern about the use of general anaesthetics in obstetric and paediatric practice. JM-1232(−) has been developed as a novel intravenous anaesthetic, but the effects of JM-1232(−) on the developing brain are not understood. Here we show that neonatal administration of JM-1232(−) does not lead to detectable behavioural deficits in adulthood, contrarily to other widely-used intravenous anaesthetics. At postnatal day 6 (P6), mice were injected intraperitoneally with a sedative-equivalent dose of JM-1232(−), propofol, or midazolam. Western blot analysis of forebrain extracts using cleaved poly-(adenosine diphosphate-ribose) polymerase antibody showed that JM-1232(−) is accompanied by slight but measurable apoptosis 6 h after administration, but it was relatively small compared to those of propofol and midazolam. Behavioural studies were performed in adulthood, long after the neonatal anaesthesia, to evaluate the long-term effects on cognitive, social, and affective functions. P6 administration to JM-1232(−) was not accompanied by detectable long-term behavioural deficits in adulthood. However, animals receiving propofol or midazolam had impaired social and/or cognitive functions. These data suggest that JM-1232(−) has prospects for use in obstetric and paediatric practice.
Collapse
|
2
|
Kamimura I, Kaneko R, Morita H, Mogi K, Kikusui T. Microbial colonization history modulates anxiety-like and complex social behavior in mice. Neurosci Res 2020; 168:64-75. [PMID: 32017965 DOI: 10.1016/j.neures.2020.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 12/27/2019] [Accepted: 01/06/2020] [Indexed: 12/17/2022]
Abstract
Microbiome composition has a pivotal role in neurobehavioral development. However, there is limited information about the role of the microbiome in sociability of mice in complex social contexts. Germ-free (GF) mice were reared in a microbiota-free environment until postnatal day 21 and then transferred to a room containing specific pathogen free (SPF) mice. At 9 weeks old, group social behaviors were measured for three GF mice and three SPF mice unfamiliar to each other. GF mice spent less time in the center area of the arena and there were longer inter-individual distances compared with SPF mice. GF mice also had decreased brain-derived neurotrophic factor (BDNF) and increased ΔFosB mRNA in the prefrontal cortex compared to SPF mice. There were differences in the gut microbiome composition between GF and SPF mice; however, if cohabitating after weaning, then their microbiome composition became equivalent and group differences in behavior and BDNF and ΔFosB mRNA expression disappeared. These results demonstrate that the bacterial community can modulate neural systems that are involved in sociability and anxiety during the developmental period and suggest that sociability and anxiety can be shaped depending on the microbiome environment through interaction with conspecifics.
Collapse
Affiliation(s)
- Itsuka Kamimura
- Department of Animal Science and Biotechnology, Azabu University, Japan
| | - Ryou Kaneko
- Graduate School of Environmental and Life Science, Okayama University, Japan
| | - Hidetoshi Morita
- Graduate School of Environmental and Life Science, Okayama University, Japan
| | - Kazutaka Mogi
- Department of Animal Science and Biotechnology, Azabu University, Japan
| | - Takefumi Kikusui
- Department of Animal Science and Biotechnology, Azabu University, Japan.
| |
Collapse
|
3
|
Satoh Y, Araki Y, Kashitani M, Nishii K, Kobayashi Y, Fujita M, Suzuki S, Morimoto Y, Tokuno S, Tsumatori G, Yamamoto T, Saitoh D, Ishizuka T. Molecular Hydrogen Prevents Social Deficits and Depression-Like Behaviors Induced by Low-Intensity Blast in Mice. J Neuropathol Exp Neurol 2019; 77:827-836. [PMID: 30053086 DOI: 10.1093/jnen/nly060] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Detonation of explosive devices creates blast waves, which can injure brains even in the absence of external injuries. Among these, blast-induced mild traumatic brain injury (bmTBI) is increasing in military populations, such as in the wars in Afghanistan, Iraq, and Syria. Although the clinical presentation of bmTBI is not precisely defined, it is frequently associated with psycho-neurological deficits and usually manifests in the form of poly-trauma including psychiatric morbidity and cognitive disruption. Although the underlying mechanisms of bmTBI are largely unknown, some studies suggested that bmTBI is associated with blood-brain barrier disruption, oxidative stress, and edema in the brain. The present study investigated the effects of novel antioxidant, molecular hydrogen gas, on bmTBI using a laboratory-scale shock tube model in mice. Hydrogen gas has a strong prospect for clinical use due to easy preparation, low-cost, and no side effects. The administration of hydrogen gas significantly attenuated the behavioral deficits observed in our bmTBI model, suggesting that hydrogen application might be a strong therapeutic method for treatment of bmTBI.
Collapse
Affiliation(s)
| | - Yoshiyuki Araki
- Department of Defense Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Masashi Kashitani
- Department of Aerospace Engineering, National Defense Academy of Japan, Yokosuka, Japan
| | | | - Yasushi Kobayashi
- Department of Defense Medicine, National Defense Medical College, Tokorozawa, Japan
| | | | - Shinya Suzuki
- Kameda Medical Center, Emergency and Trauma Center, Kamogawa, Chiba, Japan
| | - Yuji Morimoto
- Department of Integrated Physiology Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Shinichi Tokuno
- Department of Defense Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Gentaro Tsumatori
- Department of Defense Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Tetsuo Yamamoto
- Military Medicine Research Unit, Test and Evaluation Command, Japan Ground Self-Defense Force, Setagaya, Tokyo, Japan
| | - Daizoh Saitoh
- Division of Traumatology, Research Institute, National Defense Medical College, Tokorozawa, Japan
| | | |
Collapse
|
4
|
Perez-Pouchoulen M, Miquel M, Saft P, Brug B, Toledo R, Hernandez ME, Manzo J. Prenatal exposure to sodium valproate alters androgen receptor expression in the developing cerebellum in a region and age specific manner in male and female rats. Int J Dev Neurosci 2016; 53:46-52. [PMID: 27423376 DOI: 10.1016/j.ijdevneu.2016.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/22/2016] [Accepted: 07/12/2016] [Indexed: 01/31/2023] Open
Abstract
Valproic acid (VPA) is an anti-epileptic drug with teratogenicity activity that has been related to autism. In rodents, exposure to VPA in utero leads to brain abnormalities similar than those reported in the autistic brain. Particularly, VPA reduces the number of Purkinje neurons in the rat cerebellum parallel to cerebellar abnormalities found in autism. Thus, we injected pregnant females on embryonic day 12 either with VPA (600mg/kg, i.p.) or 0.9% saline solution and obtained the cerebellum from their offspring at different postnatal time points. Testosterone has been linked to autism and plays an important role during brain development. Therefore, we identified and analyzed the androgen receptor (AR) by immunohistochemistry and densitometry, respectively. We found VPA decreases AR density in the superficial Purkinje layer only in cerebellar lobule 8 at PN7, but increased it at PN14 compared to control in males. In females, VPA decreased AR density in the superficial Purkinje layer in cerebellar lobule 6 at PN14, but increased it in lobule 9 at the same time point. No differences were found in the deep Purkinje layer of any cerebellar lobule in terms of AR density neither in males nor females. We additionally found a particular AR density decreasing in both superficial and deep regions across development in the majority of cerebellar lobules in males, but in all cerebellar lobules in females. Thus, our results indicate that VPA disrupts the AR ontogeny in the developing cerebellum in an age and region specific manner in male and female rats. Future epigenetic studies including the evaluation of histone deacetylases (HDAC's) might shed light these results as HDAC's are expressed by Purkinje neurons, interact with the AR and are VPA targets. This work contributes to the understanding of the cerebellar development and it might help to understand the role of the cerebellum in neurodevelopmental disorders such as autism.
Collapse
Affiliation(s)
| | - Marta Miquel
- Area de Psicobiologia, Universidad Jaume I, Castellon de la Plana, Spain.
| | - Paul Saft
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Ver, Mexico.
| | - Brenda Brug
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Ver, Mexico.
| | - Rebeca Toledo
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Ver, Mexico.
| | | | - Jorge Manzo
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Ver, Mexico.
| |
Collapse
|
5
|
Nguyen LS, Lepleux M, Makhlouf M, Martin C, Fregeac J, Siquier-Pernet K, Philippe A, Feron F, Gepner B, Rougeulle C, Humeau Y, Colleaux L. Profiling olfactory stem cells from living patients identifies miRNAs relevant for autism pathophysiology. Mol Autism 2016; 7:1. [PMID: 26753090 PMCID: PMC4705753 DOI: 10.1186/s13229-015-0064-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/21/2015] [Indexed: 01/09/2023] Open
Abstract
Background Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders caused by the interaction between genetic vulnerability and environmental factors. MicroRNAs (miRNAs) are key posttranscriptional regulators involved in multiple aspects of brain development and function. Previous studies have investigated miRNAs expression in ASD using non-neural cells like lymphoblastoid cell lines (LCL) or postmortem tissues. However, the relevance of LCLs is questionable in the context of a neurodevelopmental disorder, and the impact of the cause of death and/or post-death handling of tissue likely contributes to the variations observed between studies on brain samples. Methods miRNA profiling using TLDA high-throughput real-time qPCR was performed on miRNAs extracted from olfactory mucosal stem cells (OMSCs) biopsied from eight patients and six controls. This tissue is considered as a closer tissue to neural stem cells that could be sampled in living patients and was never investigated for such a purpose before. Real-time PCR was used to validate a set of differentially expressed miRNAs, and bioinformatics analysis determined common pathways and gene targets. Luciferase assays and real-time PCR analysis were used to evaluate the effect of miRNAs misregulation on the expression and translation of several autism-related transcripts. Viral vector-mediated expression was used to evaluate the impact of miRNAs deregulation on neuronal or glial cells functions. Results We identified a signature of four miRNAs (miR-146a, miR-221, miR-654-5p, and miR-656) commonly deregulated in ASD. This signature is conserved in primary skin fibroblasts and may allow discriminating between ASD and intellectual disability samples. Putative target genes of the differentially expressed miRNAs were enriched for pathways previously associated to ASD, and altered levels of neuronal transcripts targeted by miR-146a, miR-221, and miR-656 were observed in patients’ cells. In the mouse brain, miR-146a, and miR-221 display strong neuronal expression in regions important for high cognitive functions, and we demonstrated that reproducing abnormal miR-146a expression in mouse primary cell cultures leads to impaired neuronal dendritic arborization and increased astrocyte glutamate uptake capacities. Conclusions While independent replication experiments are needed to clarify whether these four miRNAS could serve as early biomarkers of ASD, these findings may have important diagnostic implications. They also provide mechanistic connection between miRNA dysregulation and ASD pathophysiology and may open up new opportunities for therapeutic. Electronic supplementary material The online version of this article (doi:10.1186/s13229-015-0064-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lam Son Nguyen
- INSERM UMR 1163, Laboratory of Molecular and pathophysiological bases of cognitive disorders, Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Necker-Enfants Malades Hospital, 24 boulevard du Montparnasse, 75015 Paris, France
| | - Marylin Lepleux
- Synapse in Cognition Laboratory, Institut Interdisciplinaire de NeuroSciences, Centre de génomique fonctionnelle, UMR 5297 CNRS - Université de Bordeaux, 146 rue Léo Saignat, 33077 Bordeaux, France
| | - Mélanie Makhlouf
- Epigénétique et Destin Cellulaire, Université Paris Diderot, UMR 7216, 75205 Paris, France
| | - Christelle Martin
- Synapse in Cognition Laboratory, Institut Interdisciplinaire de NeuroSciences, Centre de génomique fonctionnelle, UMR 5297 CNRS - Université de Bordeaux, 146 rue Léo Saignat, 33077 Bordeaux, France
| | - Julien Fregeac
- INSERM UMR 1163, Laboratory of Molecular and pathophysiological bases of cognitive disorders, Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Necker-Enfants Malades Hospital, 24 boulevard du Montparnasse, 75015 Paris, France
| | - Karine Siquier-Pernet
- INSERM UMR 1163, Laboratory of Molecular and pathophysiological bases of cognitive disorders, Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Necker-Enfants Malades Hospital, 24 boulevard du Montparnasse, 75015 Paris, France
| | - Anne Philippe
- INSERM UMR 1163, Laboratory of Molecular and pathophysiological bases of cognitive disorders, Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Necker-Enfants Malades Hospital, 24 boulevard du Montparnasse, 75015 Paris, France
| | - François Feron
- Aix Marseille Université, NICN, CNRS UMR 7259, 13344 Marseille, France
| | - Bruno Gepner
- Aix Marseille Université, NICN, CNRS UMR 7259, 13344 Marseille, France
| | - Claire Rougeulle
- Epigénétique et Destin Cellulaire, Université Paris Diderot, UMR 7216, 75205 Paris, France
| | - Yann Humeau
- Synapse in Cognition Laboratory, Institut Interdisciplinaire de NeuroSciences, Centre de génomique fonctionnelle, UMR 5297 CNRS - Université de Bordeaux, 146 rue Léo Saignat, 33077 Bordeaux, France
| | - Laurence Colleaux
- INSERM UMR 1163, Laboratory of Molecular and pathophysiological bases of cognitive disorders, Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Necker-Enfants Malades Hospital, 24 boulevard du Montparnasse, 75015 Paris, France
| |
Collapse
|
6
|
Hashimoto R, Nakazawa T, Tsurusaki Y, Yasuda Y, Nagayasu K, Matsumura K, Kawashima H, Yamamori H, Fujimoto M, Ohi K, Umeda-Yano S, Fukunaga M, Fujino H, Kasai A, Hayata-Takano A, Shintani N, Takeda M, Matsumoto N, Hashimoto H. Whole-exome sequencing and neurite outgrowth analysis in autism spectrum disorder. J Hum Genet 2015; 61:199-206. [PMID: 26582266 PMCID: PMC4819764 DOI: 10.1038/jhg.2015.141] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 10/23/2015] [Accepted: 10/28/2015] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder (ASD) is a complex group of clinically heterogeneous neurodevelopmental disorders with unclear etiology and pathogenesis. Genetic studies have identified numerous candidate genetic variants, including de novo mutated ASD-associated genes; however, the function of these de novo mutated genes remains unclear despite extensive bioinformatics resources. Accordingly, it is not easy to assign priorities to numerous candidate ASD-associated genes for further biological analysis. Here we developed a convenient system for identifying an experimental evidence-based annotation of candidate ASD-associated genes. We performed trio-based whole-exome sequencing in 30 sporadic cases of ASD and identified 37 genes with de novo single-nucleotide variations (SNVs). Among them, 5 of those 37 genes, POGZ, PLEKHA4, PCNX, PRKD2 and HERC1, have been previously reported as genes with de novo SNVs in ASD; and consultation with in silico databases showed that only HERC1 might be involved in neural function. To examine whether the identified gene products are involved in neural functions, we performed small hairpin RNA-based assays using neuroblastoma cell lines to assess neurite development. Knockdown of 8 out of the 14 examined genes significantly decreased neurite development (P<0.05, one-way analysis of variance), which was significantly higher than the number expected from gene ontology databases (P=0.010, Fisher's exact test). Our screening system may be valuable for identifying the neural functions of candidate ASD-associated genes for further analysis and a substantial portion of these genes with de novo SNVs might have roles in neuronal systems, although further detailed analysis might eliminate false positive genes from identified candidate ASD genes.
Collapse
Affiliation(s)
- Ryota Hashimoto
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan.,Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takanobu Nakazawa
- iPS Cell-Based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yoshinori Tsurusaki
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuka Yasuda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuki Nagayasu
- iPS Cell-Based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kensuke Matsumura
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hitoshi Kawashima
- Genomic Science Laboratories, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Hidenaga Yamamori
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Michiko Fujimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazutaka Ohi
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satomi Umeda-Yano
- Department of Molecular Neuropsychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute of Physiological Sciences, Aichi, Japan
| | - Haruo Fujino
- Graduate School of Human Sciences, Osaka University, Osaka, Japan
| | - Atsushi Kasai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Atsuko Hayata-Takano
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan.,Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Norihito Shintani
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Masatoshi Takeda
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan.,Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hitoshi Hashimoto
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan.,iPS Cell-Based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
7
|
Genestine M, Lin L, Durens M, Yan Y, Jiang Y, Prem S, Bailoor K, Kelly B, Sonsalla PK, Matteson PG, Silverman J, Crawley JN, Millonig JH, DiCicco-Bloom E. Engrailed-2 (En2) deletion produces multiple neurodevelopmental defects in monoamine systems, forebrain structures and neurogenesis and behavior. Hum Mol Genet 2015. [PMID: 26220976 DOI: 10.1093/hmg/ddv301] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Many genes involved in brain development have been associated with human neurodevelopmental disorders, but underlying pathophysiological mechanisms remain undefined. Human genetic and mouse behavioral analyses suggest that ENGRAILED-2 (EN2) contributes to neurodevelopmental disorders, especially autism spectrum disorder. In mouse, En2 exhibits dynamic spatiotemporal expression in embryonic mid-hindbrain regions where monoamine neurons emerge. Considering their importance in neuropsychiatric disorders, we characterized monoamine systems in relation to forebrain neurogenesis in En2-knockout (En2-KO) mice. Transmitter levels of serotonin, dopamine and norepinephrine (NE) were dysregulated from Postnatal day 7 (P7) to P21 in En2-KO, though NE exhibited the greatest abnormalities. While NE levels were reduced ∼35% in forebrain, they were increased 40 -: 75% in hindbrain and cerebellum, and these patterns paralleled changes in locus coeruleus (LC) fiber innervation, respectively. Although En2 promoter was active in Embryonic day 14.5 -: 15.5 LC neurons, expression diminished thereafter and gene deletion did not alter brainstem NE neuron numbers. Significantly, in parallel with reduced NE levels, En2-KO forebrain regions exhibited reduced growth, particularly hippocampus, where P21 dentate gyrus granule neurons were decreased 16%, suggesting abnormal neurogenesis. Indeed, hippocampal neurogenic regions showed increased cell death (+77%) and unexpectedly, increased proliferation. Excess proliferation was restricted to early Sox2/Tbr2 progenitors whereas increased apoptosis occurred in differentiating (Dcx) neuroblasts, accompanied by reduced newborn neuron survival. Abnormal neurogenesis may reflect NE deficits because intra-hippocampal injections of β-adrenergic agonists reversed cell death. These studies suggest that disruption of hindbrain patterning genes can alter monoamine system development and thereby produce forebrain defects that are relevant to human neurodevelopmental disorders.
Collapse
Affiliation(s)
- Matthieu Genestine
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers
| | - Lulu Lin
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers, Graduate School of Biological Sciences, Rutgers
| | - Madel Durens
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers, Graduate School of Biological Sciences, Rutgers
| | - Yan Yan
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers, Graduate School of Biological Sciences, Rutgers
| | - Yiqin Jiang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers
| | - Smrithi Prem
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers
| | - Kunal Bailoor
- Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Brian Kelly
- Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Patricia K Sonsalla
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, Rutgers
| | - Paul G Matteson
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Jill Silverman
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jacqueline N Crawley
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, USA
| | - James H Millonig
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers, Graduate School of Biological Sciences, Rutgers, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA and
| |
Collapse
|
8
|
Gesundheit B, Ashwood P, Keating A, Naor D, Melamed M, Rosenzweig JP. Therapeutic properties of mesenchymal stem cells for autism spectrum disorders. Med Hypotheses 2014; 84:169-77. [PMID: 25592283 DOI: 10.1016/j.mehy.2014.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/22/2014] [Indexed: 12/13/2022]
Abstract
Recent studies of autism spectrum disorders (ASD) highlight hyperactivity of the immune system, irregular neuronal growth and increased size and number of microglia. Though the small sample size in many of these studies limits extrapolation to all individuals with ASD, there is mounting evidence of both immune and nervous system related pathogenesis in at least a subset of patients with ASD. Given the disturbing rise in incidence rates for ASD, and the fact that no pharmacological therapy for ASD has been approved by the Food and Drug Administration (FDA), there is an urgent need for new therapeutic options. Research in the therapeutic effects of mesenchymal stem cells (MSC) for other immunological and neurological conditions has shown promising results in preclinical and even clinical studies. MSC have demonstrated the ability to suppress the immune system and to promote neurogenesis with a promising safety profile. The working hypothesis of this paper is that the potentially synergistic ability of MSC to modulate a hyperactive immune system and its ability to promote neurogenesis make it an attractive potential therapeutic option specifically for ASD. Theoretical mechanisms of action will be suggested, but further research is necessary to support these hypothetical pathways. The choice of tissue source, type of cell, and most appropriate ages for therapeutic intervention remain open questions for further consideration. Concern over poor regulatory control of stem cell studies or treatment, and the unique ethical challenges that each child with ASD presents, demands that future research be conducted with particular caution before widespread use of the proposed therapeutic intervention is implemented.
Collapse
Affiliation(s)
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California Davis, USA; Department of Medical Microbiology and Immunology, and the MIND Institute, University of California Davis, USA.
| | - Armand Keating
- Division of Hematology, University of Toronto, Cell Therapy Program, Princess Margaret Hospital, Toronto, Canada.
| | - David Naor
- Lautenberg Center for General and Tumor Immunology, Hebrew University, Hadassah Medical School, Jerusalem, Israel.
| | - Michal Melamed
- Lautenberg Center for General and Tumor Immunology, Hebrew University, Hadassah Medical School, Jerusalem, Israel.
| | | |
Collapse
|
9
|
Almeida LEF, Roby CD, Krueger BK. Increased BDNF expression in fetal brain in the valproic acid model of autism. Mol Cell Neurosci 2014; 59:57-62. [PMID: 24480134 PMCID: PMC4008664 DOI: 10.1016/j.mcn.2014.01.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 12/29/2022] Open
Abstract
Human fetal exposure to valproic acid (VPA), a widely-used anti-epileptic and mood-stabilizing drug, leads to an increased incidence of behavioral and intellectual impairments including autism; VPA administration to pregnant rats and mice at gestational days 12.5 (E12.5) or E13.5 leads to autistic-like symptoms in the offspring and is widely used as an animal model for autism. We report here that this VPA administration protocol transiently increased both BDNF mRNA and BDNF protein levels 5-6-fold in the fetal mouse brain. VPA exposure in utero induced smaller increases in the expression of mRNA encoding the other neurotrophins, NT3 (2.5-fold) and NT4 (2-fold). Expression of the neurotrophin receptors, trkA, trkB and trkC were minimally affected, while levels of the low-affinity neurotrophin receptor, p75(NTR), doubled. Of the nine 5'-untranslated exons of the mouse BDNF gene, only expression of exons I, IV and VI was stimulated by VPA in utero. In light of the well-established role of BDNF in regulating neurogenesis and the laminar fate of postmitotic neurons in the developing cortex, an aberrant increase in BDNF expression in the fetal brain may contribute to VPA-induced cognitive disorders by altering brain development.
Collapse
Affiliation(s)
- Luis E F Almeida
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Clinton D Roby
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Bruce K Krueger
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Program in Neuroscience, University of Maryland Baltimore, Baltimore, MD 21201, USA.
| |
Collapse
|
10
|
El-Kordi A, Winkler D, Hammerschmidt K, Kästner A, Krueger D, Ronnenberg A, Ritter C, Jatho J, Radyushkin K, Bourgeron T, Fischer J, Brose N, Ehrenreich H. Development of an autism severity score for mice using Nlgn4 null mutants as a construct-valid model of heritable monogenic autism. Behav Brain Res 2012. [PMID: 23183221 DOI: 10.1016/j.bbr.2012.11.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Autism is the short name of a complex and heterogeneous group of disorders (autism spectrum disorders, ASD) with several lead symptoms required for classification, including compromised social interaction, reduced verbal communication and stereotyped repetitive behaviors/restricted interests. The etiology of ASD is still unknown in most cases but monogenic heritable forms exist that have provided insights into ASD pathogenesis and have led to the notion of autism as a 'synapse disorder'. Among the most frequent monogenic causes of autism are loss-of-function mutations of the NLGN4X gene which encodes the synaptic cell adhesion protein neuroligin-4X (NLGN4X). We previously described autism-like behaviors in male Nlgn4 null mutant mice, including reduced social interaction and ultrasonic communication. Here, we extend the phenotypical characterization of Nlgn4 null mutant mice to both genders and add a series of additional autism-relevant behavioral readouts. We now report similar social interaction and ultrasonic communication deficits in females as in males. Furthermore, aggression, nest-building parameters, as well as self-grooming and circling as indicators of repetitive behaviors/stereotypies were explored in both genders. The construction of a gender-specific autism severity composite score for Nlgn4 mutant mice markedly diminishes population/sample heterogeneity typically obtained for single tests, resulting in p values of <0.00001 and a genotype predictability of 100% for male and of >83% for female mice. Taken together, these data underscore the similarity of phenotypical consequences of Nlgn4/NLGN4X loss-of-function in mouse and man, and emphasize the high relevance of Nlgn4 null mutant mice as an ASD model with both construct and face validity.
Collapse
Affiliation(s)
- Ahmed El-Kordi
- Division of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Harshaw C, Alberts JR. Group and individual regulation of physiology and behavior: a behavioral, thermographic, and acoustic study of mouse development. Physiol Behav 2012; 106:670-82. [PMID: 22580514 DOI: 10.1016/j.physbeh.2012.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/10/2012] [Accepted: 05/02/2012] [Indexed: 10/28/2022]
Abstract
The traditional approach to the study of thermoregulation in young animals focuses on the regulatory capacities of individuals, which, for multiparous species, risks ignoring critical aspects of the early developmental niche. Here, we examined the ontogeny of regulatory behavior in C57BL/6 mice, employing simultaneous behavioral, thermographic, and acoustic measures of groups and individual pups. Litters of mice were placed in a chamber on Postnatal Day (PND) 2, 4, or 8, in which the ambient temperature (T(a)) gradually cycled (over 50 min) from warm (36.5°C) to cool (20°C) and back (to 36.5°C). Litters of all three ages displayed "group regulatory behavior," whereby group size varied with changes in T(a). This coupling, moreover, improved with age. Infrared thermography was used to monitor skin temperature of pups' interscapular (T(IS)) and rump (T(rump)) areas, and to estimate brown adipose tissue (BAT) thermogenesis (T(IS)-T(rump)) in PND4 and PND8 individuals and huddles. Huddling was found to significantly reduce heat loss in pups subject to thermal challenge as groups, compared to pups challenged as individuals. Additionally, females were found to display significantly warmer T(IS) and T(rump) values than male huddlemates. Huddling did not have a consistent effect on emissions of ultrasonic vocalizations, which were generally correlated with ambient temperature and BAT activation. Our results indicate that simultaneous measures of behavioral and physiological response to cooling may prove useful for a variety of applications, including the phenotyping of social dysfunction.
Collapse
Affiliation(s)
- Christopher Harshaw
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN 47405, United States.
| | | |
Collapse
|
12
|
Goebel-Goody SM, Wilson-Wallis ED, Royston S, Tagliatela SM, Naegele JR, Lombroso PJ. Genetic manipulation of STEP reverses behavioral abnormalities in a fragile X syndrome mouse model. GENES BRAIN AND BEHAVIOR 2012; 11:586-600. [PMID: 22405502 DOI: 10.1111/j.1601-183x.2012.00781.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Fragile X syndrome (FXS), the most common inherited form of intellectual disability and prevailing known genetic basis of autism, is caused by an expansion in the Fmr1 gene that prevents transcription and translation of fragile X mental retardation protein (FMRP). FMRP binds to and controls translation of mRNAs downstream of metabotropic glutamate receptor (mGluR) activation. Recent work shows that FMRP interacts with the transcript encoding striatal-enriched protein tyrosine phosphatase (STEP; Ptpn5). STEP opposes synaptic strengthening and promotes synaptic weakening by dephosphorylating its substrates, including ERK1/2, p38, Fyn and Pyk2, and subunits of N-methyl-d-aspartate (NMDA) and AMPA receptors. Here, we show that basal levels of STEP are elevated and mGluR-dependent STEP synthesis is absent in Fmr1(KO) mice. We hypothesized that the weakened synaptic strength and behavioral abnormalities reported in FXS may be linked to excess levels of STEP. To test this hypothesis, we reduced or eliminated STEP genetically in Fmr1(KO) mice and assessed mice in a battery of behavioral tests. In addition to attenuating audiogenic seizures and seizure-induced c-Fos activation in the periaqueductal gray, genetically reducing STEP in Fmr1(KO) mice reversed characteristic social abnormalities, including approach, investigation and anxiety. Loss of STEP also corrected select nonsocial anxiety-related behaviors in Fmr1(KO) mice, such as light-side exploration in the light/dark box. Our findings indicate that genetically reducing STEP significantly diminishes seizures and restores select social and nonsocial anxiety-related behaviors in Fmr1(KO) mice, suggesting that strategies to inhibit STEP activity may be effective for treating patients with FXS.
Collapse
Affiliation(s)
- S M Goebel-Goody
- Child Study Center, Yale University School of Medicine, New Haven, CT 06519, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Signaling through extracellular signal-regulated kinase (ERK) is important in multiple signal transduction networks in the CNS. However, the specific role of ERK2 in in vivo brain functions is not fully understood. Here we show that ERK2 play a critical role in regulating social behaviors as well as cognitive and emotional behaviors in mice. To study the brain function of ERK2, we used a conditional, region-specific, genetic approach to target Erk2 using the Cre/loxP strategy with a nestin promoter-driven cre transgenic mouse line to induce recombination in the CNS. The resulting Erk2 conditional knock-out (CKO) mice, in which Erk2 was abrogated specifically in the CNS, were viable and fertile with a normal appearance. These mice, however, exhibited marked anomalies in multiple aspects of social behaviors related to facets of autism-spectrum disorders: elevated aggressive behaviors, deficits in maternal nurturing, poor nest-building, and lower levels of social familiarity and social interaction. Erk2 CKO mice also exhibited decreased anxiety-related behaviors and impaired long-term memory. Pharmacological inhibition of ERK1 phosphorylation in Erk2 CKO mice did not affect the impairments in social behaviors and learning disabilities, indicating that ERK2, but not ERK1 plays a critical role in these behaviors. Our findings suggest that ERK2 has complex and multiple roles in the CNS, with important implications for human psychiatric disorders characterized by deficits in social behaviors.
Collapse
|
14
|
Bambini-Junior V, Rodrigues L, Behr GA, Moreira JCF, Riesgo R, Gottfried C. Animal model of autism induced by prenatal exposure to valproate: Behavioral changes and liver parameters. Brain Res 2011; 1408:8-16. [DOI: 10.1016/j.brainres.2011.06.015] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 06/03/2011] [Accepted: 06/06/2011] [Indexed: 01/14/2023]
|
15
|
A proposed mechanism for autism: an aberrant neuroimmune response manifested as a psychiatric disorder. Med Hypotheses 2011; 76:863-70. [PMID: 21421290 DOI: 10.1016/j.mehy.2011.02.038] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/11/2011] [Accepted: 02/20/2011] [Indexed: 11/21/2022]
Abstract
Autism, an incurable neurodevelopmental brain disorder, is a complex psychopathology in which the affected individual cannot effectively self-regulate their sensory inputs toward coherent and focused motor outputs. There have been many hypotheses as to the etiology of autism - genetics, neurotransmitter imbalances, early childhood immunizations, xenobiotic and teratogenic agents, and maternal infection; the disorder can perhaps be studied best under the field of "Psychoneuroimmunology", which analyzes systemic and psychopathologies from an integrated approach through the combined effects of the nervous, immune, and endocrine systems. Using principles of psychoneuroimmunology along with previously established but yet un-linked scientific principles and observations, this paper proposes a neuroimmune-based mechanistic hypothesis for the etiology of autism that connects elevated levels of maternal pro-inflammatory cytokines to autistic symptoms in her offspring through a logical sequence of events. While both researchers and clinicians often note correlations between pro-inflammatory cytokine levels and autistic symptoms in affected individuals, no specific mechanism has been documented that logically and directly connects the two. I propose that pro-inflammatory cytokines arising from maternal inflammation, infection, and, possibly, autoimmunity, pass through the placenta; enter the fetal circulation; cross the fetal blood-brain barrier (BBB); and cause aberrant neuronal growth and plasticity within the fetal brain via a "cytokine-storm". Microglia and astrocyte stimulation lead to a positive-feedback loop that also facilitates the development of a chronic inflammatory environment within the fetus, pre-disposing it to lifelong comorbid psychiatric and systemic pathologies. Such a mechanism could account for many of the observed symptoms and behaviors of autistic individuals such as hyper-sensitivity to environmental stimuli, object fixation, echolalia, repetitive physical behaviors, chronic enterocolitis, autoimmune disease, and, at the extreme, savantism. The thiazolidinedione pioglitazone (and possibly rosiglitazone), a non-steroidal anti-inflammatory drug (NSAID), which is commonly used to lower blood glucose levels and associated inflammatory markers in patients with diabetes, and histamine receptor blockers, as well as monitoring and limiting sucrose-containing foods, might prove to be effective preventative therapies for the development of autism in the fetus for pregnant women displaying either a cytokine-induced depression or other elevated systemic inflammatory state conditions.
Collapse
|
16
|
Saunders N, Habgood M. Understanding barrier mechanisms in the developing brain to aid therapy for the dysfunctional brain. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.10.84] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The brain, both in the adult and during development, is protected by morphological barriers and functional mechanisms that provide a stable internal environment. Understanding these processes in the developing brain may lead to novel therapies for brain disorders, as some transport mechanisms, particularly those in the choroid plexus, may prove more amenable to devising novel delivery systems. Based on results from studies of the transfer of specific proteins across the blood–cerebrospinal fluid interface in the developing brain, the steps required to develop such a delivery system are outlined. Knowledge of barrier mechanisms in the developing brain may be relevant to treating neuropsychiatric conditions in children and adults for whom barrier dysfunction in the fetus, precipitated by adverse factors such as maternal infection, may contribute to the neuropathology underlying disorders such as autism and schizophrenia.
Collapse
Affiliation(s)
- Norman Saunders
- University of Melbourne, Department of Pharmacology, Parkville, Victoria 3010, Australia
| | - Mark Habgood
- University of Melbourne, Department of Pharmacology, Parkville, Victoria 3010, Australia
| |
Collapse
|
17
|
Oblak AL, Rosene DL, Kemper TL, Bauman ML, Blatt GJ. Altered posterior cingulate cortical cyctoarchitecture, but normal density of neurons and interneurons in the posterior cingulate cortex and fusiform gyrus in autism. Autism Res 2011; 4:200-11. [PMID: 21360830 DOI: 10.1002/aur.188] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 01/07/2011] [Indexed: 01/11/2023]
Abstract
Autism is a developmental disorder with prenatal origins, currently estimated to affect 1 in 91 children in the United States. Social-emotional deficits are a hallmark of autism and early neuropathology studies have indicated involvement of the limbic system. Imaging studies demonstrate abnormal activation of the posterior cingulate cortex (PCC), a component of the limbic system. Abnormal activation has also been noted in the fusiform gyrus (FFG), a region important for facial recognition and a key element in social interaction. A potential imbalance between excitatory and inhibitory interneurons in the cortex may contribute to altered information processing in autism. Furthermore, reduced numbers of GABA receptors have previously been reported in the autistic brain. Thionin-stained sections were used to qualitatively assess cytoarchitectonic patterning and quantitatively determine the density of neurons and immunohistochemistry was used to determine the densities of a subset of GABAergic interneurons utilizing parvalbumin-and calbindin-immunoreactivity. In autism, the PCC displayed altered cytoarchitecture with irregularly distributed neurons, poorly demarcated layers IV and V, and increased presence of white matter neurons. In contrast, no neuropathology was observed in the FFG. There was no significant difference in the density of thionin, parvalbumin, or calbindin interneurons in either region and there was a trend towards a reduced density of calbindin neurons in the PCC. This study highlights the presence of abnormal findings in the PCC, which appear to be developmental in nature and could affect the local processing of social-emotional behaviors as well as functioning of interrelated areas.
Collapse
Affiliation(s)
- Adrian L Oblak
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | | | | | |
Collapse
|
18
|
Abstract
PURPOSE Autism is a multifactorial disorder that involves impairments in social interactions and communication, as well as restricted and repetitive behaviors. About 30% of individuals with autism develop epilepsy by adulthood. The EL mouse has long been studied as a natural model of multifactorial idiopathic generalized epilepsy with complex partial seizures. Because epilepsy is a comorbid trait of autism, we evaluated the EL mouse for behaviors associated with autism. METHODS We compared the behavior of EL mice to age-matched control DDY mice, a genetically related nonepileptic strain. The mice were compared in the open field and in the light-dark compartment tests to measure activity, exploratory behavior, and restricted and repetitive behaviors. The social transmission of food preference test was employed to evaluate social communication. Home-cage behavior was also evaluated in EL and DDY mice as a measure of repetitive activity. KEY FINDINGS We found that EL mice displayed several behavioral abnormalities characteristic of autism. Impairments in social interaction and restricted patterns of interest were evident in EL mice. Activity, exploratory behavior, and restricted behavior were significantly greater in EL mice than in DDY mice. EL mice exhibited impairment in the social transmission of food preference assay. In addition, a stereotypic myoclonic jumping behavior was observed in EL mice, but was not seen in DDY mice. It is of interest to note that seizure activity within 24 h of testing exacerbated the autistic behavioral abnormalities found in EL mice. SIGNIFICANCE These findings suggest that the EL mouse expresses behavioral abnormalities similar to those seen in persons with autism. We propose that the EL mouse can be utilized as a natural model of autism and epilepsy.
Collapse
|
19
|
Multiple autism-like behaviors in a novel transgenic mouse model. Behav Brain Res 2010; 218:29-41. [PMID: 21093492 DOI: 10.1016/j.bbr.2010.11.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 11/05/2010] [Accepted: 11/09/2010] [Indexed: 11/21/2022]
Abstract
Autism spectrum disorder (ASD) diagnoses are behaviorally based with no defined universal biomarkers, occur at a 1:110 ratio in the population, and predominantly affect males compared to females at approximately a 4:1 ratio. One approach to investigate and identify causes of ASD is to use organisms that display abnormal behavioral responses that model ASD-related impairments. This study describes a novel transgenic mouse, MALTT, which was generated using a forward genetics approach. It was determined that the transgene integrated within a non-coding region on the X chromosome. The MALTT line exhibited a complete repertoire of ASD-like behavioral deficits in all three domains required for an ASD diagnosis: reciprocal social interaction, communication, and repetitive or inflexible behaviors. Specifically, MALTT male mice showed deficits in social interaction and interest, abnormalities in pup and juvenile ultrasonic vocalization communications, and exhibited a repetitive stereotypy. Abnormalities were also observed in the domain of sensory function, a secondary phenotype prevalently associated with ASD. Mapping and expression studies suggested that the Fam46 gene family may be linked to the observed ASD-related behaviors. The MALTT line provides a unique genetic model for examining the underlying biological mechanisms involved in ASD-related behaviors.
Collapse
|
20
|
Abstract
Even now fruit of the human genome project is available, we have difficulties to approach neuropsychiatric disorders at the molecular level. Autism is a complex psychiatric illness but has received considerable attention as a developmental brain disorder not only from basic researchers but also from society. Substantial evidence suggests that chromosomal abnormalities contribute to autism risk. The duplication of human chromosome 15q11-13 is known to be the most frequent cytogenetic abnormality in autism. We succeeded to generate mice with a 6.3-Mb-wide interstitial duplication in mouse chromosome 7c that is highly syntenic to human 15q11-13 by using a Cre-loxP-based chromosome-engineering technique. The only paternally duplicated mice display autistic behavioral features such as poor social interaction and stereotypical behavior, and exhibit a developmental abnormality in ultrasonic vocalizations as well as anxiety. The detailed analysis focusing on a non-coding small nucleolar RNA, MBII52, within the duplicated region, revealed that the paternally duplicated mice alter the editing ratio of serotonin (5-HT) 2c receptor pre-mRNA and intracellular calcium responses by a 5-HT2c receptor specific agonist are changed in neurons. This result may explain one of molecular mechanisms of abnormal behaviors in the paternal duplicated mice. The first chromosome-engineered mouse model for human chromosome 15q11-13 duplication fulfills not only face validity of human autistic phenotypes but also construct validity based on human chromosome abnormality. This model will be a founder mouse for forward genetics of autistic disease and an invaluable tool for its therapeutic development.
Collapse
Affiliation(s)
- Toru Takumi
- Laboratory of Integrative Bioscience, Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima 734-8553, Japan.
| |
Collapse
|
21
|
Quintero N, McIntyre LL. Sibling Adjustment and Maternal Well-Being: An Examination of Families With and Without a Child With an Autism Spectrum Disorder. FOCUS ON AUTISM AND OTHER DEVELOPMENTAL DISABILITIES 2010; 25:37-46. [PMID: 21037802 PMCID: PMC2966315 DOI: 10.1177/1088357609350367] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Differences in sibling social, behavioral, and academic adjustment and maternal well-being in families with (n = 20) and without (n = 23) a preschooler with autism spectrum disorder (ASD) were explored. Results are interpreted to suggest that mothers of children with autism report more daily hassles, life stress, and depression than mothers without a child with ASD. There were no significant differences in parent and teacher reports of older siblings' social, behavioral, and academic adjustment in families with and without a child with ASD. Sibling behavioral adjustment was, however, significantly related to maternal well-being. Because families with children with ASD often experience more parenting stress and depression, siblings may be more vulnerable to the cumulative risks over time.
Collapse
|
22
|
Acute administration of leptin produces anxiolytic-like effects: a comparison with fluoxetine. Psychopharmacology (Berl) 2010; 207:535-45. [PMID: 19823809 PMCID: PMC4057895 DOI: 10.1007/s00213-009-1684-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 09/22/2009] [Indexed: 12/20/2022]
Abstract
RATIONALE Our previous studies in rats have shown that the adipocyte-derived hormone leptin induces antidepressant-like effects with a behavioral profile similar to selective serotonin reuptake inhibitor (SSRI) antidepressants. Acute SSRI treatment causes paradoxical anxiogenic responses, although chronic treatment has therapeutic effects on anxiety. However, the role of leptin in anxiety remains to be established. OBJECTIVES The scope of this study was to investigate the acute effects of leptin on anxiety-related behaviors in comparison with the SSRI antidepressant fluoxetine. MATERIALS AND METHODS Adult male C57BL/6J mice received intraperitoneal injection of leptin or fluoxetine. Thirty minutes after injection, mice were subjected to the tail suspension test (TST) and forced swim test (FST) for evaluating antidepressant activity. Anxiety-like behavior was assessed in the elevated plus maze (EPM), social interaction, and open field tests 30 min following drug treatment. RESULTS While leptin and fluoxetine showed similar antidepressant-like behavioral effects in the TST and FST, they differed in the behavioral assays for anxiety. Open arm exploration in the EPM was increased by leptin but decreased by fluoxetine. Analysis of social interaction revealed that distinct social behavioral components were modulated by leptin and fluoxetine. The total time of active social behaviors was increased by leptin but reduced by fluoxetine. In addition, self-grooming, a non-social behavior, was suppressed by leptin treatment. Neither leptin nor fluoxetine produced significant effects in the open field test. CONCLUSIONS In contrast to anxiogenic-like effects induced by acute fluoxetine, leptin elicits anxiolytic-like effects after acute administration. These results suggest that leptin has both antidepressant-like and anxiolytic-like properties.
Collapse
|
23
|
Nakatani J, Tamada K, Hatanaka F, Ise S, Ohta H, Inoue K, Tomonaga S, Watanabe Y, Chung YJ, Banerjee R, Iwamoto K, Kato T, Okazawa M, Yamauchi K, Tanda K, Takao K, Miyakawa T, Bradley A, Takumi T. Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism. Cell 2009; 137:1235-46. [PMID: 19563756 PMCID: PMC3710970 DOI: 10.1016/j.cell.2009.04.024] [Citation(s) in RCA: 347] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 09/09/2008] [Accepted: 04/03/2009] [Indexed: 11/22/2022]
Abstract
Substantial evidence suggests that chromosomal abnormalities contribute to the risk of autism. The duplication of human chromosome 15q11-13 is known to be the most frequent cytogenetic abnormality in autism. We have modeled this genetic change in mice by using chromosome engineering to generate a 6.3 Mb duplication of the conserved linkage group on mouse chromosome 7. Mice with a paternal duplication display poor social interaction, behavioral inflexibility, abnormal ultrasonic vocalizations, and correlates of anxiety. An increased MBII52 snoRNA within the duplicated region, affecting the serotonin 2c receptor (5-HT2cR), correlates with altered intracellular Ca2+ responses elicited by a 5-HT2cR agonist in neurons of mice with a paternal duplication. This chromosome-engineered mouse model for autism seems to replicate various aspects of human autistic phenotypes and validates the relevance of the human chromosome abnormality. This model will facilitate forward genetics of developmental brain disorders and serve as an invaluable tool for therapeutic development.
Collapse
Affiliation(s)
- Jin Nakatani
- Osaka Bioscience Institute, Suita, Osaka 565-0874, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Moy SS, Nadler JJ, Young NB, Nonneman RJ, Grossman AW, Murphy DL, D'Ercole AJ, Crawley JN, Magnuson TR, Lauder JM. Social approach in genetically engineered mouse lines relevant to autism. GENES, BRAIN, AND BEHAVIOR 2009; 8:129-42. [PMID: 19016890 PMCID: PMC2659808 DOI: 10.1111/j.1601-183x.2008.00452.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Profound impairment in social interaction is a core symptom of autism, a severe neurodevelopmental disorder. Deficits can include a lack of interest in social contact and low levels of approach and proximity to other children. In this study, a three-chambered choice task was used to evaluate sociability and social novelty preference in five lines of mice with mutations in genes implicated in autism spectrum disorders. Fmr1(tm1Cgr/Y)(Fmr1(-/y)) mice represent a model for fragile X, a mental retardation syndrome that is partially comorbid with autism. We tested Fmr1(-/y)mice on two genetic backgrounds, C57BL/6J and FVB/N-129/OlaHsd (FVB/129). Targeted disruption of Fmr1 resulted in low sociability on one measure, but only when the mutation was expressed on FVB/129. Autism has been associated with altered serotonin levels and polymorphisms in SLC6A4 (SERT), the serotonin transporter gene. Male mice with targeted disruption of Slc6a4 displayed significantly less sociability than wild-type controls. Mice with conditional overexpression of Igf-1 (insulin-like growth factor-1) offered a model for brain overgrowth associated with autism. Igf-1 transgenic mice engaged in levels of social approach similar to wild-type controls. Targeted disruption in other genes of interest, En2 (engrailed-2) and Dhcr7, was carried on genetic backgrounds that showed low levels of exploration in the choice task, precluding meaningful interpretations of social behavior scores. Overall, results show that loss of Fmr1 or Slc6a4 gene function can lead to deficits in sociability. Findings from the fragile X model suggest that the FVB/129 background confers enhanced susceptibility to consequences of Fmr1 mutation on social approach.
Collapse
Affiliation(s)
- S S Moy
- Neurodevelopmental Disorders Research Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lee J, Jomier J, Aylward S, Tyszka M, Moy S, Lauder J, Styner M. Evaluation of Atlas based Mouse Brain Segmentation. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2009; 7259:725943-725949. [PMID: 20640188 PMCID: PMC2905053 DOI: 10.1117/12.812762] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Magentic Reasonance Imaging for mouse phenotype study is one of the important tools to understand human diseases. In this paper, we present a fully automatic pipeline for the process of morphometric mouse brain analysis. The method is based on atlas-based tissue and regional segmentation, which was originally developed for the human brain. To evaluate our method, we conduct a qualitative and quantitative validation study as well as compare of b-spline and fluid registration methods as components in the pipeline. The validation study includes visual inspection, shape and volumetric measurements and stability of the registration methods against various parameter settings in the processing pipeline. The result shows both fluid and b-spline registration methods work well in murine settings, but the fluid registration is more stable. Additionally, we evaluated our segmentation methods by comparing volume differences between Fmr1 FXS in FVB background vs C57BL/6J mouse strains.
Collapse
Affiliation(s)
- Joohwi Lee
- Department of Computer Science, University of North Carolina, Chapel Hill NC, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Effect of the atypical neuroleptic risperidone on morphology and S100B secretion in C6 astroglial lineage cells. Mol Cell Biochem 2008; 314:59-63. [PMID: 18421423 DOI: 10.1007/s11010-008-9765-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 04/07/2008] [Indexed: 01/29/2023]
Abstract
We investigated the effect of the atypical neuroleptic risperidone on morphology and S100B secretion in C6 glioma cells, considering the putative involvement of astroglial cells in neuropsychiatric disorders. In the presence of high experimental doses of risperidone, C6 cells become stellate, with process-bearing cells and partial retraction of the cell body followed by detachment from the adhesion surface with practically no cell death. These results indicate that risperidone is able to interfere with C6 cell adhesion without toxic effects. RhoA activator LPA prevented the effects of risperidone on cell morphology. From 6 h risperidone induced a statistically significant increment of about 80% in S100B secretion. These data contribute to the proposal that glial cells are targets of risperidone, which could be involved in the therapeutic response of risperidone to improve autism symptoms.
Collapse
|
27
|
Abstract
Autism is a neurodevelopmental syndrome with markedly high heritability. The diagnostic indicators of autism are core behavioral symptoms, rather than definitive neuropathological markers. Etiology is thought to involve complex, multigenic interactions and possible environmental contributions. In this review, we focus on genetic pathways with multiple members represented in autism candidate gene lists. Many of these pathways can also be impinged upon by environmental risk factors associated with the disorder. The mouse model system provides a method to experimentally manipulate candidate genes for autism susceptibility, and to use environmental challenges to drive aberrant gene expression and cell pathology early in development. Mouse models for fragile X syndrome, Rett syndrome and other disorders associated with autistic-like behavior have elucidated neuropathology that might underlie the autism phenotype, including abnormalities in synaptic plasticity. Mouse models have also been used to investigate the effects of alterations in signaling pathways on neuronal migration, neurotransmission and brain anatomy, relevant to findings in autistic populations. Advances have included the evaluation of mouse models with behavioral assays designed to reflect disease symptoms, including impaired social interaction, communication deficits and repetitive behaviors, and the symptom onset during the neonatal period. Research focusing on the effect of gene-by-gene interactions or genetic susceptibility to detrimental environmental challenges may further understanding of the complex etiology for autism.
Collapse
Affiliation(s)
- S S Moy
- Neurodevelopmental Disorders Research Center, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
28
|
Presti-Torres J, de Lima MN, Scalco FS, Caldana F, Garcia VA, Guimarães MR, Schwartsmann G, Roesler R, Schröder N. Impairments of social behavior and memory after neonatal gastrin-releasing peptide receptor blockade in rats: Implications for an animal model of neurodevelopmental disorders. Neuropharmacology 2007; 52:724-32. [PMID: 17097693 DOI: 10.1016/j.neuropharm.2006.09.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 09/04/2006] [Accepted: 09/22/2006] [Indexed: 01/30/2023]
Abstract
The gastrin-releasing peptide receptor (GRPR) has been implicated in central nervous system (CNS) diseases, including neurodevelopmental disorders associated with autism. In the present study we examined the effects of GRPR blockade during the neonatal period on behavioral measures relevant to animal models of neurodevelopmental disorders. Male Wistar rats were given an intraperitoneal (i.p.) injection of either saline (SAL) or the GRPR antagonist [D-Tpi(6), Leu(13) psi(CH(2)NH)-Leu(14)] bombesin (6-14) (RC-3095; 1 or 10mg/kg) twice daily for 10days from postnatal days (PN) 1 to 10. Animals treated with RC-3095 showed pronounced deficits in social interaction when tested at PN 30-35 and impaired 24-h retention of memory for both novel object recognition (NOR) and inhibitory avoidance (IA) tasks tested at PN 60-71. Neither short-term memory tested 1.5h posttraining nor open field behavior were affected by neonatal GRPR blockade. The implications of the findings for animal models of neurodevelopmental disorders are discussed.
Collapse
Affiliation(s)
- J Presti-Torres
- Neurobiology and Developmental Biology Laboratory and Graduate Program in Cellular and Molecular Biology, Faculty of Biosciences, Pontifical Catholic University, 90619-900 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Moy SS, Nadler JJ, Young NB, Perez A, Holloway LP, Barbaro RP, Barbaro JR, Wilson LM, Threadgill DW, Lauder JM, Magnuson TR, Crawley JN. Mouse behavioral tasks relevant to autism: phenotypes of 10 inbred strains. Behav Brain Res 2007; 176:4-20. [PMID: 16971002 PMCID: PMC1857288 DOI: 10.1016/j.bbr.2006.07.030] [Citation(s) in RCA: 611] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 07/24/2006] [Accepted: 07/31/2006] [Indexed: 01/19/2023]
Abstract
Three defining clinical symptoms of autism are aberrant reciprocal social interactions, deficits in social communication, and repetitive behaviors, including motor stereotypies and insistence on sameness. We developed a set of behavioral tasks designed to model components of these core symptoms in mice. Male mice from 10 inbred strains were characterized in assays for sociability, preference for social novelty, and reversal of the spatial location of the reinforcer in T-maze and Morris water maze tasks. Six strains, C57BL/6J, C57L/J, DBA/2J, FVB/NJ, C3H/HeJ, and AKR/J, showed significant levels of sociability, while A/J, BALB/cByJ, BTBR T(+)tf/J, and 129S1/SvImJ mice did not. C57BL/6J, C57L/J, DBA/2J, FVB/NJ, BALB/cByJ, and BTBR T(+)tf/J showed significant preference for social novelty, while C3H/HeJ, AKR/J, A/J, and 129S1/SvImJ did not. Normal scores on relevant control measures confirmed general health and physical abilities in all strains, ruling out artifactual explanations for social deficits. Elevated plus maze scores confirmed high anxiety-like behaviors in A/J, BALB/cByJ, and 129S1/SvImJ, which could underlie components of their low social approach. Strains that showed high levels of performance on acquisition of a T-maze task were also able to reach criterion for reversal learning. On the Morris water maze task, DBA/2J, AKR/J, BTBR T(+)tf/J, and 129S1/SvImJ failed to show significant quadrant preference during the reversal probe trial. These results highlight a dissociation between social task performance and reversal learning. BTBR T(+)tf/J is a particularly interesting strain, displaying both low social approach and resistance to change in routine on the water maze, consistent with an autism-like phenotype. Our multitask strategy for modeling symptoms of autism will be useful for investigating targeted and random gene mutations, QTLs, and microarray analyses.
Collapse
Affiliation(s)
- Sheryl S Moy
- North Carolina STAART Center for Autism Research, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Weiss HR, Liu X, Zhang Q, Chi OZ. Increased cerebral oxygen consumption in Eker rats and effects of N-methyl-D-aspartate blockade: Implications for autism. J Neurosci Res 2007; 85:2512-7. [PMID: 17549750 DOI: 10.1002/jnr.21378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Because there is a strong correlation between tuberous sclerosis and autism, we used a tuberous sclerosis model (Eker rat) to test the hypothesis that these animals would have an altered regional cerebral O2 consumption that might be associated with autism. We also examined whether the altered cerebral O2 consumption was related to changes in the importance of N-methyl-D-aspartate (NMDA) receptors. Young (4 weeks) male control Long Evans (N = 14) and Eker (N = 14) rats (70-100 g) were divided into control and CGS-19755 (10 mg/kg, competitive NMDA antagonist)-treated animals. Cerebral regional blood flow (14C-iodoantipyrine) and O2 consumption (cryomicrospectrophotometry) were determined in isoflurane-anesthetized rats. NMDA receptor protein levels were determined by Western immunoblotting. We found significantly increased basal O2 consumption in the cortex (6.2 +/- 0.6 ml O2/min/100 g Eker vs. 4.7 +/- 0.4 Long Evans), hippocampus, cerebellum, and pons. Regional cerebral blood flow was also elevated in Eker rats at baseline, but cerebral O2 extraction was similar. CGS-19755 significantly lowered O2 consumption in the cortex (2.8 +/- 0.3), hippocampus, and pons of the Long Evans rats but had no effect on cortex (5.8 +/- 0.8) or other regions of the Eker rats. Cerebral blood flow followed a similar pattern. NMDA receptor protein levels (NR1 subunit) were similar between groups. In conclusion, Eker rats had significantly elevated cerebral O2 consumption and blood flow, but this was not related to NMDA receptor activation. In fact, the importance of NMDA receptors in the control of basal cerebral O2 consumption was reduced. This might have important implications in the treatment of autism.
Collapse
Affiliation(s)
- Harvey R Weiss
- Department of Physiology and Biophysics, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635, USA.
| | | | | | | |
Collapse
|
31
|
Tordjman S, Drapier D, Bonnot O, Graignic R, Fortes S, Cohen D, Millet B, Laurent C, Roubertoux PL. Animal models relevant to schizophrenia and autism: validity and limitations. Behav Genet 2006; 37:61-78. [PMID: 17160702 DOI: 10.1007/s10519-006-9120-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 10/12/2006] [Indexed: 10/23/2022]
Abstract
Development of animal models is a crucial issue in biological psychiatry. Animal models provide the opportunity to decipher the relationships between the nervous system and behavior and they are an obligatory step for drug tests. Mouse models or rat models to a lesser extent could help to test for the implication of a gene using gene targeting or transfecting technologies. One of the main problem for the development of animal models is to define a marker of the psychiatric disorder. Several markers have been suggested for schizophrenia and autism, but for the moment no markers or etiopathogenic mechanisms have been identified for these disorders. We examined here animal models related to schizophrenia and autism and discussed their validity and limitations after first defining these two disorders and considering their similarities and differences. Animal models reviewed in this article test mainly behavioral dimensions or biological mechanisms related to autistic disorder or schizophrenia rather than providing specific categorical models of autism or schizophrenia. Furthermore, most of these studies focus on a behavioral dimension associated with an underlying biological mechanism, which does not correspond to the complexity of mental disorders. It could be useful to develop animal models relevant to schizophrenia or autism to test a behavioral profile associated with a biological profile. A multi-trait approach seems necessary to better understand multidimensional disorders such as schizophrenia and autism and their biological and clinical heterogeneity. Finally, animal models can help us to clarify complex mechanisms and to study relationships between biological and behavioral variables and their interactions with environmental factors. The main interest of animal models is to generate new pertinent hypotheses relevant to humans opening the path to innovative research.
Collapse
Affiliation(s)
- Sylvie Tordjman
- Service Hospitalo-Universitaire de Psychiatrie de l'Enfant et de l'Adolescent, Université de Rennes 1 et Centre Hospitalier Guillaume Régnier, 154 rue de Châtillon, 35200, Rennes, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Kwon CH, Luikart BW, Powell CM, Zhou J, Matheny SA, Zhang W, Li Y, Baker SJ, Parada LF. Pten regulates neuronal arborization and social interaction in mice. Neuron 2006; 50:377-88. [PMID: 16675393 PMCID: PMC3902853 DOI: 10.1016/j.neuron.2006.03.023] [Citation(s) in RCA: 741] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 02/15/2006] [Accepted: 03/16/2006] [Indexed: 12/11/2022]
Abstract
CNS deletion of Pten in the mouse has revealed its roles in controlling cell size and number, thus providing compelling etiology for macrocephaly and Lhermitte-Duclos disease. PTEN mutations in individuals with autism spectrum disorders (ASD) have also been reported, although a causal link between PTEN and ASD remains unclear. In the present study, we deleted Pten in limited differentiated neuronal populations in the cerebral cortex and hippocampus of mice. Resulting mutant mice showed abnormal social interaction and exaggerated responses to sensory stimuli. We observed macrocephaly and neuronal hypertrophy, including hypertrophic and ectopic dendrites and axonal tracts with increased synapses. This abnormal morphology was associated with activation of the Akt/mTor/S6k pathway and inactivation of Gsk3beta. Thus, our data suggest that abnormal activation of the PI3K/AKT pathway in specific neuronal populations can underlie macrocephaly and behavioral abnormalities reminiscent of certain features of human ASD.
Collapse
Affiliation(s)
- Chang-Hyuk Kwon
- Center for Developmental Biology and Kent Waldrep Foundation Center for Basic Neuroscience Research on Nerve Growth and Regeneration
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105
| | - Bryan W. Luikart
- Center for Developmental Biology and Kent Waldrep Foundation Center for Basic Neuroscience Research on Nerve Growth and Regeneration
| | - Craig M. Powell
- Departments of Neurology and Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Jing Zhou
- Center for Developmental Biology and Kent Waldrep Foundation Center for Basic Neuroscience Research on Nerve Growth and Regeneration
| | - Sharon A. Matheny
- Center for Developmental Biology and Kent Waldrep Foundation Center for Basic Neuroscience Research on Nerve Growth and Regeneration
| | - Wei Zhang
- Center for Developmental Biology and Kent Waldrep Foundation Center for Basic Neuroscience Research on Nerve Growth and Regeneration
| | - Yanjiao Li
- Center for Developmental Biology and Kent Waldrep Foundation Center for Basic Neuroscience Research on Nerve Growth and Regeneration
| | - Suzanne J. Baker
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105
| | - Luis F. Parada
- Center for Developmental Biology and Kent Waldrep Foundation Center for Basic Neuroscience Research on Nerve Growth and Regeneration
- Correspondence:
| |
Collapse
|
34
|
Haydar TF. Advanced microscopic imaging methods to investigate cortical development and the etiology of mental retardation. ACTA ACUST UNITED AC 2006; 11:303-16. [PMID: 16240412 PMCID: PMC2670616 DOI: 10.1002/mrdd.20088] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Studies on human patients and animal models of disease have shown that disruptions in prenatal and early postnatal brain development are a root cause of mental retardation. Since proper brain development is achieved by a strict spatiotemporal control of neurogenesis, cell migration, and patterning of synapses, abnormalities in one or more of these events during prenatal development can lead to cognitive dysfunction after birth. Many of underlying causes of mental retardation must therefore be studied in developing brains. To aid in this research, live imaging using laser scanning microscopy (LSM) has recently allowed neuroscientists to delve deeply into the complex three-dimensional environment of the living brain to record dynamic cellular events over time. This review will highlight recent examples of how LSM is being applied to elucidate both normal and abnormal cortical development.
Collapse
Affiliation(s)
- Tarik F Haydar
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.
| |
Collapse
|
35
|
Moy SS, Nadler JJ, Magnuson TR, Crawley JN. Mouse models of autism spectrum disorders: The challenge for behavioral genetics. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2006; 142C:40-51. [PMID: 16419099 DOI: 10.1002/ajmg.c.30081] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Autism is a severe neurodevelopmental disorder, which typically emerges early in childhood. The core symptoms of autism include deficits in social interaction, impaired communication, and aberrant repetitive behavior, including self-injury. Despite the strong genetic component for the disease, most cases of autism have not been linked to mutations in a specific gene, and the etiology of the disorder has yet to be established. At the present time, there is no generally accepted therapeutic strategy to treat the core symptoms of autism, and there remains a critical need for appropriate animal models and relevant behavioral assays to promote the understanding and treatment of the clinical syndrome. Challenges for the development of valid mouse models include complex genetic interactions underlying the high heritability of the disease in humans, diagnosis based on deficits in social interaction and communication, and the lack of confirmatory neuropathological markers to provide validation for genetic models of the disorder. Research focusing on genes that mediate social behavior in mice may help identify neural circuitry essential for normal social interaction, and lead to novel genetic animal models of the autism behavioral phenotype.
Collapse
Affiliation(s)
- Sheryl S Moy
- Neurodevelopmental Disorders Research Center, CB #7146, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
36
|
Dhossche DM, Rout U. Are Autistic and Catatonic Regression Related? A Few Working Hypotheses Involving Gaba, Purkinje Cell Survival, Neurogenesis, and ECT. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 72:55-79. [PMID: 16697291 DOI: 10.1016/s0074-7742(05)72004-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Autistic regression seems to occur in about a quarter of children with autism. Its cause is unknown. Late-onset autistic regression, that is, after 2 years of age, shares some features with catatonic regression. A working hypothesis is developed that some children with autistic regression suffer from early-onset catatonic regression. This hypothesis cannot be answered from current data and is difficult to address in clinical studies in the absence of definite markers of autistic and catatonic regression. Treatment implications are theoretical and involve the potential use of anticatatonic treatments for autistic regression. Focus is on electroconvulsive therapy (ECT)--an established but controversial treatment that is viewed by many, but not all, as the most effective treatment for severe, life-threatening catatonic regression. Clinical trials of ECT in early- or late-onset autistic regression in children have not been done yet. The effects of electroconvulsive seizures--the experimental analogue of ECT--should also be tested in gamma-aminobutyric acid-ergic animal models of autistic regression, autism, catatonia, and other neurodevelopmental disorders. Purkinje cell survival and neurogenesis are putative outcome measures in these models.
Collapse
Affiliation(s)
- Dirk Marcel Dhossche
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | |
Collapse
|