1
|
Burenkova OV, Grigorenko EL. The role of epigenetic mechanisms in the long-term effects of early-life adversity and mother-infant relationship on physiology and behavior of offspring in laboratory rats and mice. Dev Psychobiol 2024; 66:e22479. [PMID: 38470450 PMCID: PMC10959231 DOI: 10.1002/dev.22479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 03/13/2024]
Abstract
Maternal care during the early postnatal period of altricial mammals is a key factor in the survival and adaptation of offspring to environmental conditions. Natural variations in maternal care and experimental manipulations with maternal-child relationships modeling early-life adversity (ELA) in laboratory rats and mice have a strong long-term influence on the physiology and behavior of offspring in rats and mice. This literature review is devoted to the latest research on the role of epigenetic mechanisms in these effects of ELA and mother-infant relationship, with a focus on the regulation of hypothalamic-pituitary-adrenal axis and brain-derived neurotrophic factor. An important part of this review is dedicated to pharmacological interventions and epigenetic editing as tools for studying the causal role of epigenetic mechanisms in the development of physiological and behavioral profiles. A special section of the manuscript will discuss the translational potential of the discussed research.
Collapse
Affiliation(s)
- Olga V. Burenkova
- Department of Psychology, University of Houston, Houston, Texas, USA
- Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, Texas, USA
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Elena L. Grigorenko
- Department of Psychology, University of Houston, Houston, Texas, USA
- Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, Texas, USA
- Center for Cognitive Sciences, Sirius University of Science and Technology, Sochi, Russia
- Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Child Study Center, Yale University, New Haven, Connecticut, USA
- Research Administration, Moscow State University for Psychology and Education, Moscow, Russia
| |
Collapse
|
2
|
Breton JM, Cort Z, Demaestri C, Critz M, Nevins S, Downend K, Ofray D, Romeo RD, Bath KG. Early life adversity reduces affiliative behavior with a stressed cagemate and leads to sex-specific alterations in corticosterone responses in adult mice. Horm Behav 2024; 158:105464. [PMID: 38070354 PMCID: PMC10872397 DOI: 10.1016/j.yhbeh.2023.105464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023]
Abstract
Experiencing early life adversity (ELA) alters stress physiology and increases the risk for developing psychiatric disorders. The social environment can influence dynamics of stress responding and buffer and/or transfer stress across individuals. Yet, the impact of ELA on sensitivity to the stress of others and social behavior following stress is unknown. Here, to test the impact of ELA on social and physiological responses to stress, circulating blood corticosterone (CORT) and social behaviors were assessed in adult male and female mice reared under limited bedding and nesting (LBN) or control conditions. To induce stress, one cagemate of a pair-housed cage underwent a footshock paradigm and was then returned to their unshocked partner. CORT was measured in both groups of mice 20 or 90 min after stress exposure, and social behaviors were recorded and analyzed. ELA rearing influenced the CORT response to stress in a sex-specific manner. In males, both control and ELA-reared mice exhibited similar stress transfer to unshocked cagemates and similar CORT dynamics. In contrast, ELA females showed a heightened stress transfer to unshocked cagemates, and sustained elevation of CORT relative to controls, indicating enhanced stress contagion and a failure to terminate the stress response. Behaviorally, ELA females displayed decreased allogrooming and increased investigative behaviors, while ELA males showed reduced huddling. Together, these findings demonstrate that ELA influenced HPA axis dynamics, social stress contagion and social behavior. Further research is needed to unravel the underlying mechanisms and long-term consequences of ELA on stress systems and their impact on behavioral outcomes.
Collapse
Affiliation(s)
- Jocelyn M Breton
- Columbia University, Department of Psychiatry, New York, NY, USA; New York State Psychiatric Institute, Division of Developmental Neuroscience, New York, NY, 10032, USA
| | - Zoey Cort
- Barnard College of Columbia University, Department of Neuroscience and Behavior, New York, NY, USA
| | - Camila Demaestri
- Columbia University, Department of Psychiatry, New York, NY, USA
| | - Madalyn Critz
- Columbia University, Department of Psychiatry, New York, NY, USA; New York State Psychiatric Institute, Division of Developmental Neuroscience, New York, NY, 10032, USA
| | - Samuel Nevins
- Brown University, Department of Cognitive, Linguistic and Psychological Sciences, Providence, RI, USA
| | - Kendall Downend
- Barnard College of Columbia University, Department of Neuroscience and Behavior, New York, NY, USA
| | - Dayshalis Ofray
- Columbia University, Department of Psychiatry, New York, NY, USA; New York State Psychiatric Institute, Division of Developmental Neuroscience, New York, NY, 10032, USA
| | - Russell D Romeo
- Barnard College of Columbia University, Department of Neuroscience and Behavior, New York, NY, USA
| | - Kevin G Bath
- Columbia University, Department of Psychiatry, New York, NY, USA; New York State Psychiatric Institute, Division of Developmental Neuroscience, New York, NY, 10032, USA.
| |
Collapse
|
3
|
Breton JM, Cort Z, Demaestri C, Critz M, Nevins S, Downend K, Ofray D, Romeo RD, Bath KG. Early life adversity reduces affiliative behavior towards a distressed cagemate and leads to sex-specific alterations in corticosterone responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.549876. [PMID: 37502995 PMCID: PMC10370200 DOI: 10.1101/2023.07.20.549876] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Experiencing early life adversity (ELA) alters stress physiology and increases the risk for developing psychiatric disorders. The social environment can influence dynamics of stress responding and buffer and/or transfer stress across individuals. Yet, the impact of ELA on sensitivity to the stress of others and social behavior following stress is unknown. Here, to test the impact of ELA on social and physiological responses to stress, circulating blood corticosterone (CORT) and social behaviors were assessed in adult male and female mice reared under limited bedding and nesting (LBN) or control conditions. To induce stress, one cagemate of a pair-housed cage underwent a footshock paradigm and was then returned to their unshocked partner. CORT was measured in both mice 20 or 90 minutes after stress exposure, and social behaviors were recorded and analyzed. ELA rearing influenced the CORT response to stress in a sex-specific manner. In males, both control and ELA-reared mice exhibited similar stress transfer to unshocked cagemates and similar CORT dynamics. In contrast, ELA females showed a heightened stress transfer to unshocked cagemates, and sustained elevation of CORT relative to controls, indicating enhanced stress contagion and a failure to terminate the stress response. Behaviorally, ELA females displayed decreased allogrooming and increased investigative behaviors, while ELA males showed reduced huddling. Together, these findings demonstrate that ELA influenced HPA axis dynamics, social stress contagion and social behavior. Further research is needed to unravel the underlying mechanisms and long-term consequences of ELA on stress systems and their impact on behavioral outcomes.
Collapse
Affiliation(s)
- Jocelyn M Breton
- Columbia University, Department of Psychiatry, New York, NY, USA
| | - Zoey Cort
- Barnard College of Columbia University, Department of Neuroscience and Behavior, New York, NY, USA
| | - Camila Demaestri
- Columbia University, Department of Psychiatry, New York, NY, USA
| | - Madalyn Critz
- Columbia University, Department of Psychiatry, New York, NY, USA
| | - Samuel Nevins
- Brown University, Department of Cognitive, Linguistic and Psychological Sciences, Providence, RI, USA
| | - Kendall Downend
- Barnard College of Columbia University, Department of Neuroscience and Behavior, New York, NY, USA
| | - Dayshalis Ofray
- Columbia University, Department of Psychiatry, New York, NY, USA
| | - Russell D Romeo
- Barnard College of Columbia University, Department of Neuroscience and Behavior, New York, NY, USA
| | - Kevin G Bath
- Columbia University, Department of Psychiatry, New York, NY, USA
| |
Collapse
|
4
|
Mancini GF, Meijer OC, Campolongo P. Stress in adolescence as a first hit in stress-related disease development: Timing and context are crucial. Front Neuroendocrinol 2023; 69:101065. [PMID: 37001566 DOI: 10.1016/j.yfrne.2023.101065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 04/06/2023]
Abstract
The two-hit stress model predicts that exposure to stress at two different time-points in life may increase or decrease the risk of developing stress-related disorders later in life. Most studies based on the two-hit stress model have investigated early postnatal stress as the first hit with adult stress as the second hit. Adolescence, however, represents another highly sensitive developmental window during which exposure to stressful events may affect programming outcomes following exposure to stress in adulthood. Here, we discuss the programming effects of different types of stressors (social and nonsocial) occurring during adolescence (first hit) and how such stressors affect the responsiveness toward an additional stressor occurring during adulthood (second hit) in rodents. We then provide a comprehensive overview of the potential mechanisms underlying interindividual and sex differences in the resilience/susceptibility to developing stress-related disorders later in life when stress is experienced in two different life stages.
Collapse
Affiliation(s)
- Giulia F Mancini
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Patrizia Campolongo
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; Neuropsychopharmacology Unit, IRCSS Fondazione Santa Lucia, 00143 Rome, Italy.
| |
Collapse
|
5
|
A comparison of stress reactivity between BTBR and C57BL/6J mice: an impact of early-life stress. Exp Brain Res 2023; 241:687-698. [PMID: 36670311 DOI: 10.1007/s00221-022-06541-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/28/2022] [Indexed: 01/21/2023]
Abstract
Early-life stress (ELS) is associated with hypothalamic-pituitary-adrenal (HPA) axis dysregulation and can increase the risk of psychiatric disorders later in life. The aim of this study was to investigate the influence of ELS on baseline HPA axis functioning and on the response to additional stress in adolescent male mice of strains C57BL/6J and BTBR. As a model of ELS, prolonged separation of pups from their mothers (for 3 h once a day: maternal separation [MS]) was implemented. To evaluate HPA axis activity, we assessed serum corticosterone levels and mRNA expression of corticotropin-releasing hormone (Crh) in the hypothalamus, of steroidogenesis genes in adrenal glands, and of an immediate early gene (c-Fos) in both tissues at baseline and immediately after 1 h of restraint stress. HPA axis activity at baseline did not depend on the history of ELS in mice of both strains. After the exposure to the acute restraint stress, C57BL/6J-MS mice showed less pronounced upregulation of Crh and of corticosterone concentration as compared to the control, indicating a decrease in stress reactivity. By contrast, BTBR-MS mice showed stronger upregulation of c-Fos in the hypothalamus and adrenal glands as compared to controls, thus pointing to greater activation of these organs in response to the acute restraint stress. In addition, we noted that BTBR mice are more stress reactive (than C57BL/6J mice) because they exhibited greater upregulation of corticosterone, c-Fos, and Cyp11a1 in response to the acute restraint stress. Taken together, these results indicate strain-specific and situation-dependent effects of ELS on HPA axis functioning and on c-Fos expression.
Collapse
|
6
|
Zanta NC, Assad N, Suchecki D. Neurobiological mechanisms involved in maternal deprivation-induced behaviours relevant to psychiatric disorders. Front Mol Neurosci 2023; 16:1099284. [PMID: 37122626 PMCID: PMC10133561 DOI: 10.3389/fnmol.2023.1099284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Parental care is essential for proper development of stress response and emotion-related behaviours. Epidemiological studies show that parental loss in childhood represents a major risk factor for the development of mental disorders throughout the lifespan, including schizophrenia, depression, and anxiety. In most mammalian species, the mother is the main source of care and maternal behaviours regulate several physiological systems. Maternal deprivation (DEP) for 24 h is a paradigm widely used to disinhibit the hypothalamic-pituitary-adrenal axis response to stress during the stress hyporesponsive period. In this mini-review we will highlight the main DEP-induced neurobiological and behavioural outcomes, including alterations on stress-related hormones, neurogenesis, neurotransmitter/neuromodulatory systems and neuroinflammation. These neurobiological changes may be reflected by aberrant behaviours, which are relevant to the study of mental disorders. The evidence indicates that DEP consequences depend on the sex, the age when the DEP takes place and the age when the animals are evaluated, reflecting dynamic plasticity and individual variability. Individual variability and sex differences have a great relevance for the study of biological factors of stress resilience and vulnerability and the DEP paradigm is a suitable model for evaluation of phenotypes of stress- and emotion-related psychopathologies.
Collapse
|
7
|
Kalamari A, Kentrop J, Hinna Danesi C, Graat EAM, van IJzendoorn MH, Bakermans-Kranenburg MJ, Joëls M, van der Veen R. Complex Housing, but Not Maternal Deprivation Affects Motivation to Liberate a Trapped Cage-Mate in an Operant Rat Task. Front Behav Neurosci 2021; 15:698501. [PMID: 34512284 PMCID: PMC8427758 DOI: 10.3389/fnbeh.2021.698501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Early life environment influences the development of various aspects of social behavior, particularly during sensitive developmental periods. We studied how challenges in the early postnatal period or (early) adolescence affect pro-social behavior. To this end, we designed a lever-operated liberation task, to be able to measure motivation to liberate a trapped conspecific (by progressively increasing required lever pressing for door-opening). Liberation of the trapped rat resulted either in social contact or in liberation into a separate compartment. Additionally, a condition was tested in which both rats could freely move in two separate compartments and lever pressing resulted in social contact. When partners were not trapped, rats were more motivated to press the lever for opening the door than in either of the trapped configurations. Contrary to our expectations, the trapped configuration resulted in a reduced motivation to act. Early postnatal stress (24 h maternal deprivation on postnatal day 3) did not affect behavior in the liberation task. However, rearing rats from early adolescence onwards in complex housing conditions (Marlau cages) reduced the motivation to door opening, both in the trapped and freely moving conditions, while the motivation for a sucrose reward was not affected.
Collapse
Affiliation(s)
- Aikaterini Kalamari
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jiska Kentrop
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Chiara Hinna Danesi
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Evelien A M Graat
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marinus H van IJzendoorn
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, Netherlands.,Primary Care Unit, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Marian Joëls
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,University Medical Center Groningen, Groningen University, Groningen, Netherlands
| | - Rixt van der Veen
- Brain Plasticity group, SILS Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
8
|
Babicola L, Ventura R, D'Addario SL, Ielpo D, Andolina D, Di Segni M. Long term effects of early life stress on HPA circuit in rodent models. Mol Cell Endocrinol 2021; 521:111125. [PMID: 33333214 DOI: 10.1016/j.mce.2020.111125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 01/06/2023]
Abstract
Adaptation to environmental challenges represents a critical process for survival, requiring the complex integration of information derived from both external cues and internal signals regarding current conditions and previous experiences. The Hypothalamic-pituitary-adrenal axis plays a central role in this process inducing the activation of a neuroendocrine signaling cascade that affects the delicate balance of activity and cross-talk between areas that are involved in sensorial, emotional, and cognitive processing such as the hippocampus, amygdala, Prefrontal Cortex, Ventral Tegmental Area, and dorsal raphe. Early life stress, especially early critical experiences with caregivers, influences the functional and structural organization of these areas, affects these processes in a long-lasting manner and may result in long-term maladaptive and psychopathological outcomes, depending on the complex interaction between genetic and environmental factors. This review summarizes the results of studies that have modeled this early postnatal stress in rodents during the first 2 postnatal weeks, focusing on the long-term effects on molecular and structural alteration in brain areas involved in Hypothalamic-pituitary-adrenal axis function. Moreover, a brief investigation of epigenetic mechanisms and specific genetic targets mediating the long-term effects of these early environmental manipulations and at the basis of differential neurobiological and behavioral effects during adulthood is provided.
Collapse
Affiliation(s)
- Lucy Babicola
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Rossella Ventura
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy.
| | - Sebastian Luca D'Addario
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy; Behavioral Neuroscience PhD Programme, Sapienza University, Piazzale Aldo Moro 5, 00184, Rome, Italy
| | - Donald Ielpo
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy; Behavioral Neuroscience PhD Programme, Sapienza University, Piazzale Aldo Moro 5, 00184, Rome, Italy
| | - Diego Andolina
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Matteo Di Segni
- IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy.
| |
Collapse
|
9
|
van der Veen R, Bonapersona V, Joëls M. The relevance of a rodent cohort in the Consortium on Individual Development. Dev Cogn Neurosci 2020; 45:100846. [PMID: 32957026 PMCID: PMC7509002 DOI: 10.1016/j.dcn.2020.100846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/29/2020] [Accepted: 08/23/2020] [Indexed: 12/31/2022] Open
Abstract
One of the features of the Consortium on Individual Development is the existence of a rodent cohort, in parallel with the human cohorts. Here we give an overview of the current status. We first elaborate on the choice of rat and mouse models mimicking early life adverse or beneficial conditions during development. We performed a systematic literature search on early life adversity and adult social behavior to address the status quo. Next, we describe the behavioral tasks we used and designed to examine behavioral control and social competence in rodents. The results so far indicate that manipulation of the environment in the first postnatal week only subtly affects social behavior. Stronger effects were seen in the model that targeted early adolescence; once adult, these rats are characterized by increased attention, a higher degree of impulsiveness and reduced social interest in peers. Many experiments in our rodent models with tightly controlled conditions were inspired by findings in human cohorts, and now allow in-depth mechanistic investigations. Vice versa, some of the findings in rodents are currently followed up by dedicated investigations in the human cohorts. This exemplifies the added value of animal investigations in a consortium encompassing primarily human developmental cohorts.
Collapse
Affiliation(s)
- Rixt van der Veen
- Dept. Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Faculty of Social and Behavioral Sciences, Leiden University, Leiden, the Netherlands.
| | - Valeria Bonapersona
- Dept. Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Marian Joëls
- Dept. Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
10
|
Papilloud A, Veenit V, Tzanoulinou S, Riccio O, Zanoletti O, Guillot de Suduiraut I, Grosse J, Sandi C. Peripubertal stress-induced heightened aggression: modulation of the glucocorticoid receptor in the central amygdala and normalization by mifepristone treatment. Neuropsychopharmacology 2019; 44:674-682. [PMID: 29941978 PMCID: PMC6372583 DOI: 10.1038/s41386-018-0110-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/03/2018] [Accepted: 05/28/2018] [Indexed: 11/09/2022]
Abstract
Despite the enormous negative impact of excessive aggression for individuals and societies, there is a paucity of treatments. Here, using a peripubertal stress model of heightened aggression in rats, we investigated the involvement of the glucocorticoid system and tested the effectiveness of antiglucocorticoid treatment to normalize behavior. We assessed peripubertal stress-induced changes in glucocorticoid (GR) and mineralocorticoid (MR) gene expression in different amygdala nuclei and hippocampus, and report a specific increase in GR mRNA expression in the central amygdala (CeA). Administration of mifepristone (10 mg/kg), a GR antagonist, before stressor exposure at peripuberty prevented the habituation of plasma corticosterone responses observed throughout the stress protocol. This treatment also prevented the increase in aggression and GR expression in the CeA observed in peripubertally stressed rats at adulthood. Viral downregulation of CeA GR expression at adulthood led to reduced aggression. Subsequently, we showed that a brief, 3-day, treatment with mifepristone at adulthood was effective to normalize the abnormal aggression phenotype in peripubertally stressed rats. Our results support a key role for GR actions during peripubertal stress for the long-term programming of heightened aggression. Strikingly, they also support the translational interest of testing the effectiveness of mifepristone treatment to diminish reactive aggression in early adversity-related human psychopathologies.
Collapse
Affiliation(s)
- Aurelie Papilloud
- 0000000121839049grid.5333.6Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Vandana Veenit
- 0000000121839049grid.5333.6Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland ,0000 0004 1937 0626grid.4714.6Present Address: Departement of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Stamatina Tzanoulinou
- 0000000121839049grid.5333.6Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland ,0000 0001 2322 4988grid.8591.5Present Address: Departement of Basic Neurosciences, University of Geneva, 1211 Geneva, Switzerland
| | - Orbicia Riccio
- 0000000121839049grid.5333.6Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Olivia Zanoletti
- 0000000121839049grid.5333.6Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Isabelle Guillot de Suduiraut
- 0000000121839049grid.5333.6Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jocelyn Grosse
- 0000000121839049grid.5333.6Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
11
|
Cutuli D, Berretta E, Laricchiuta D, Caporali P, Gelfo F, Petrosini L. Pre-reproductive Parental Enriching Experiences Influence Progeny's Developmental Trajectories. Front Behav Neurosci 2018; 12:254. [PMID: 30483072 PMCID: PMC6240645 DOI: 10.3389/fnbeh.2018.00254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/10/2018] [Indexed: 01/09/2023] Open
Abstract
While the positive effects of environmental enrichment (EE) applied after weaning, in adulthood, during aging, or even in the presence of brain damage have been widely described, the transgenerational effects of pre-reproductive EE have been less examined. And yet, this issue is remarkable given that parental environmental experience may imprint offspring’s phenotype over generations through many epigenetic processes. Interactions between individual and environment take place lifelong even before conception. In fact, the environment pre-reproductively experienced by the mother and/or the father exerts a substantial impact on neural development and motor and cognitive performances of the offspring, even if not directly exposed to social, cognitive, physical and/or motor enrichment. Furthermore, pre-reproductive parental enrichment exerts a transgenerational impact on coping response to stress as well as on the social behavior of the offspring. Among the effects of pre-reproductive parental EE, a potentiation of the maternal care and a decrease in global methylation levels in the frontal cortex and hippocampus of the progeny have been described. Finally, pre-reproductive EE modifies different pathways of neuromodulation in the brain of the offspring (involving brain-derived neurotrophic factor, oxytocin and glucocorticoid receptors). The present review highlights the importance of pre-reproductive parental enrichment in altering the performances not only of animals directly experiencing it, but also of their progeny, thus opening the way to new hypotheses on the inheritance mechanisms of behavioral traits.
Collapse
Affiliation(s)
- Debora Cutuli
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, Rome, Italy
| | - Erica Berretta
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, Rome, Italy
| | - Daniela Laricchiuta
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, Rome, Italy
| | - Paola Caporali
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, Rome, Italy
| | - Francesca Gelfo
- Fondazione Santa Lucia, Rome, Italy.,Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | - Laura Petrosini
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
12
|
Suchecki D. Maternal regulation of the infant's hypothalamic-pituitary-adrenal axis stress response: Seymour 'Gig' Levine's legacy to neuroendocrinology. J Neuroendocrinol 2018; 30:e12610. [PMID: 29774962 DOI: 10.1111/jne.12610] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 05/13/2018] [Accepted: 05/13/2018] [Indexed: 12/23/2022]
Abstract
Thirty years ago, Seymour 'Gig' Levine published a serendipitous, yet, seminal finding with respect to the regulatory role of maternal presence on the corticosterone stress response of neonatal rats during the developmental period known as the stress hyporesponsive period. At the same time, his group of students also investigated the stress response of infant monkeys with respect to maternal separation, as a means of understanding the stress to the primary caregiver resulting from disruptions of attachment. Gig and his group of students and collaborators, mainly in the USA and the Netherlands, investigated how initial social relationships buffer the stress response of nonhuman primates and rodent infants. His work in rodents involved determining how prolonged deprivation of maternal care disinhibits the stress response of neonates and how maternal behaviours regulate specific aspects of the hypothalamic-pituitary-adrenal axis. Maternal deprivation for 24 hours was useful for determining the importance of nutrition in suppressing the corticosterone stress response, whereas anogenital licking and grooming inhibited stress-induced adrenocortoctrophic hormone release, with the combination of both behaviours preventing the effects of maternal deprivation on the central hypothalamic stress response. Levine's group also studied the consequences of maternal deprivation on basal and stress-induced activity of the hypothalamic-pituitary-adrenal axis in juveniles and the persistent effects of the replacement of maternal behaviours on these parameters. Gig's legacy allowed many groups around the world to use the 24-hour maternal deprivation paradigm as an animal model of vulnerability and resilience to stress-related psychiatric disorders, as well as in studies of the neurobiological underpinnings of disruption of the mother-infant relationship and loss of parental care, a highly prevalent condition in humans. This review pays homage to a great scientist and mentor, whose discoveries paved the way for the understanding of how early social relationsships build resilience or lead to susceptibility to emotional disorders later in life.
Collapse
Affiliation(s)
- D Suchecki
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Halm ST, Bottomley MA, Almutairi MM, Di Fulvio M, Halm DR. Survival and growth of C57BL/6J mice lacking the BK channel, Kcnma1: lower adult body weight occurs together with higher body fat. Physiol Rep 2017; 5:5/4/e13137. [PMID: 28242822 PMCID: PMC5328773 DOI: 10.14814/phy2.13137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/23/2016] [Accepted: 01/02/2017] [Indexed: 11/29/2022] Open
Abstract
Big conductance potassium (BK) channels contribute to K+ flow and electrical behavior in many cell types. Mice made null for the gene (Kcnma1) producing the BK channel (BKKO) exhibit numerous deficits in physiological functions. Breeding mice lacking a single allele of Kcnma1 (C57BL/6J background) had litter sizes of approximately eight pups. For the period of maternal care (P0–P21), pup deaths peaked at P1 with a second less severe interval of death peaking near P13. Early deaths were twice as likely during a 20‐month period of building construction compared with the quiescent period after cessation of construction. Births during construction were not consistent with Mendelian predictions indicating the likelihood of a specific disadvantage induced by this environmental stressor. Later BKKO pup deaths (~P13) also were more numerous than Mendelian expectations. After weaning, weight gain was slower for BKKO mice compared with wild‐type littermates: 5 g less for male BKKO mice and 4 g less for female BKKO mice. Body composition determined by quantitative magnetic resonance indicated a higher fat proportion for wild‐type female mice compared with males, as well as a higher hydration ratio. Both male and female BKKO mice showed higher fat proportions than wild‐type, with female BKKO mice exhibiting greater variation. Together, these results indicate that BKKO mice suffered disadvantages that lead to prenatal and perinatal death. A metabolic difference likely related to glucose handling led to the smaller body size and distinct composition for BKKO mice, suggesting a diversion of energy supplies from growth to fat storage.
Collapse
Affiliation(s)
- Susan T Halm
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Michael A Bottomley
- Department of Mathematics and Statistics, Statistical Consulting Center, Wright State University, Dayton, Ohio
| | - Mohammed M Almutairi
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Maurico Di Fulvio
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Dan R Halm
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| |
Collapse
|
14
|
Infant Medical Trauma in the Neonatal Intensive Care Unit (IMTN): A Proposed Concept for Science and Practice. Adv Neonatal Care 2016; 16:289-97. [PMID: 27391564 DOI: 10.1097/anc.0000000000000309] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Trauma is an innately subjective experience ensuing from a deeply distressing event. Research has demonstrated that while the environment of the neonatal intensive care unit (NICU) is capable of providing extraordinary lifesaving measures following birth, the experience may be disruptive to several key aspects of early development, placing infants at risk for adverse behavioral, cognitive, and emotional outcomes. PURPOSE This article provides rationale for the concept of Infant Medical Trauma in the NICU (IMTN) as a means of describing this unique stress experience. A triad of cumulative early life NICU experiences (stress, parental separation, and pain) is proposed to influence an infant's swinging neurodevelopmental pendulum amid the potential outcomes of risk and resilience. IMPLICATIONS FOR PRACTICE AND RESEARCH Creating language that describes the infant experience brings meaning and calls caregivers and parents to action to consider strategies that may improve long-term health. Actively seeking opportunities to decrease the allostatic load of at-risk infants may support an infant's pendulum to swing toward a path of resilience, thereby moderating his or her early life adverse experience.
Collapse
|
15
|
Bath K, Manzano-Nieves G, Goodwill H. Early life stress accelerates behavioral and neural maturation of the hippocampus in male mice. Horm Behav 2016; 82:64-71. [PMID: 27155103 PMCID: PMC5308418 DOI: 10.1016/j.yhbeh.2016.04.010] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/20/2016] [Accepted: 04/23/2016] [Indexed: 12/22/2022]
Abstract
Early life stress (ELS) increases the risk for later cognitive and emotional dysfunction. ELS is known to truncate neural development through effects on suppressing cell birth, increasing cell death, and altering neuronal morphology, effects that have been associated with behavioral profiles indicative of precocious maturation. However, how earlier silencing of growth drives accelerated behavioral maturation has remained puzzling. Here, we test the novel hypothesis that, ELS drives a switch from growth to maturation to accelerate neural and behavioral development. To test this, we used a mouse model of ELS, fragmented maternal care, and a cross-sectional dense sampling approach focusing on hippocampus and measured effects of ELS on the ontogeny of behavioral development and biomarkers of neural maturation. Consistent with previous work, ELS was associated with an earlier developmental decline in expression of markers of cell proliferation (Ki-67) and differentiation (doublecortin). However, ELS also led to a precocious arrival of Parvalbumin-positive cells, led to an earlier switch in NMDA receptor subunit expression (marker of synaptic maturity), and was associated with an earlier rise in myelin basic protein expression (key component of the myelin sheath). In addition, in a contextual fear-conditioning task, ELS accelerated the timed developmental suppression of contextual fear. Together, these data provide support for the hypothesis that ELS serves to switch neurodevelopment from processes of growth to maturation and promotes accelerated development of some forms of emotional learning.
Collapse
Affiliation(s)
- K Bath
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912, United States.
| | - G Manzano-Nieves
- Department of Neuroscience, Brown University, Providence, RI, 02912, United States
| | - H Goodwill
- Department of Neuroscience, Brown University, Providence, RI, 02912, United States
| |
Collapse
|
16
|
Moussaoui N, Larauche M, Biraud M, Molet J, Million M, Mayer E, Taché Y. Limited Nesting Stress Alters Maternal Behavior and In Vivo Intestinal Permeability in Male Wistar Pup Rats. PLoS One 2016; 11:e0155037. [PMID: 27149676 PMCID: PMC4858303 DOI: 10.1371/journal.pone.0155037] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/22/2016] [Indexed: 12/17/2022] Open
Abstract
A few studies indicate that limited nesting stress (LNS) alters maternal behavior and the hypothalamic pituitary adrenal (HPA) axis of dams and offspring in male Sprague Dawley rats. In the present study, we evaluated the impact of LNS on maternal behavior in Wistar rats, and on the HPA axis, glycemia and in vivo intestinal permeability of male and female offspring. Intestinal permeability is known to be elevated during the first week postnatally and influenced by glucocorticoids. Dams and neonatal litters were subjected to LNS or normal nesting conditions (control) from days 2 to 10 postnatally. At day 10, blood was collected from pups for determination of glucose and plasma corticosterone by enzyme immunoassay and in vivo intestinal permeability by oral gavage of fluorescein isothiocyanate-dextran 4kDa. Dams exposed to LNS compared to control showed an increase in the percentage of time spent building a nest (118%), self-grooming (69%), and putting the pups back to the nest (167%). LNS male and female pups exhibited a reduction of body weight by 5% and 4%, adrenal weights/100g body weight by 17% and 18%, corticosterone plasma levels by 64% and 62% and blood glucose by 11% and 12% respectively compared to same sex control pups. In male LNS pups, intestinal permeability was increased by 2.7-fold while no change was observed in females compared to same sex control. There was no sex difference in any of the parameters in control pups except the body weight. These data indicate that Wistar dams subjected to LNS during the first postnatal week have an altered repertoire of maternal behaviors which affects the development of the HPA axis in both sexes and intestinal barrier function in male offspring.
Collapse
Affiliation(s)
- Nabila Moussaoui
- Center for Neurobiology of Stress, CURE: Digestive Diseases Research Center, Digestive Diseases Division, Department of Medicine and Brain Research Institute, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, 90073, United States of America
- * E-mail:
| | - Muriel Larauche
- Center for Neurobiology of Stress, CURE: Digestive Diseases Research Center, Digestive Diseases Division, Department of Medicine and Brain Research Institute, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, 90073, United States of America
| | - Mandy Biraud
- Center for Neurobiology of Stress, CURE: Digestive Diseases Research Center, Digestive Diseases Division, Department of Medicine and Brain Research Institute, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, 90073, United States of America
| | - Jenny Molet
- Department of Anatomy/Neurobiology, University of California Irvine, Irvine, CA, 92697–4475, United States of America
| | - Mulugeta Million
- Center for Neurobiology of Stress, CURE: Digestive Diseases Research Center, Digestive Diseases Division, Department of Medicine and Brain Research Institute, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, 90073, United States of America
| | - Emeran Mayer
- Center for Neurobiology of Stress, CURE: Digestive Diseases Research Center, Digestive Diseases Division, Department of Medicine and Brain Research Institute, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, 90073, United States of America
| | - Yvette Taché
- Center for Neurobiology of Stress, CURE: Digestive Diseases Research Center, Digestive Diseases Division, Department of Medicine and Brain Research Institute, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, 90073, United States of America
| |
Collapse
|
17
|
Daskalakis NP, De Kloet ER, Yehuda R, Malaspina D, Kranz TM. Early Life Stress Effects on Glucocorticoid-BDNF Interplay in the Hippocampus. Front Mol Neurosci 2015; 8:68. [PMID: 26635521 PMCID: PMC4644789 DOI: 10.3389/fnmol.2015.00068] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/27/2015] [Indexed: 11/19/2022] Open
Abstract
Early life stress (ELS) is implicated in the etiology of multiple psychiatric disorders. Important biological effects of ELS are manifested in stress-susceptible regions of the hippocampus and are partially mediated by long-term effects on glucocorticoid (GC) and/or neurotrophin signaling pathways. GC-signaling mediates the regulation of stress response to maintain homeostasis, while neurotrophin signaling plays a key role in neuronal outgrowth and is crucial for axonal guidance and synaptic integrity. The neurotrophin and GC-signaling pathways co-exist throughout the central nervous system (CNS), particularly in the hippocampus, which has high expression levels of glucocorticoid-receptors (GR) and mineralocorticoid-receptors (MR) as well as brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase receptor B (TrkB). This review addresses the effects of ELS paradigms on GC- and BDNF-dependent mechanisms and their crosstalk in the hippocampus, including potential implications for the pathogenesis of common stress-related disorders.
Collapse
Affiliation(s)
- Nikolaos P Daskalakis
- Traumatic Stress Studies Division and Laboratory of Molecular Neuropsychiatry, Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York, NY, USA ; Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center Bronx, NY, USA
| | - Edo Ronald De Kloet
- Department of Medical Pharmacology, Leiden Academic Centre for Drug Research Leiden, Netherlands ; Department of Endocrinology and Metabolism, Leiden University Medical Center, Leiden University Leiden, Netherlands
| | - Rachel Yehuda
- Traumatic Stress Studies Division and Laboratory of Molecular Neuropsychiatry, Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York, NY, USA ; Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center Bronx, NY, USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Dolores Malaspina
- Department of Psychiatry, New York University School of Medicine New York, NY, USA
| | - Thorsten M Kranz
- Departments of Cell Biology, Physiology and Neuroscience, and Psychiatry, Skirball Institute of Biomolecular Medicine, New York University New York, NY, USA
| |
Collapse
|
18
|
Munkhzaya M, Matsuzaki T, Iwasa T, Tungalagsuvd A, Kawami T, Kato T, Kuwahara A, Irahara M. The suppressive effect of immune stress on LH secretion is absent in the early neonatal period in rats. Int J Dev Neurosci 2015; 46:38-43. [DOI: 10.1016/j.ijdevneu.2015.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/12/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022] Open
Affiliation(s)
- Munkhsaikhan Munkhzaya
- Department of Obstetrics and GynecologyThe University of Tokushima Graduate SchoolInstitute of Health Biosciences3‐18‐15 Kuramoto‐ChoTokushima770‐8503Japan
| | - Toshiya Matsuzaki
- Department of Obstetrics and GynecologyThe University of Tokushima Graduate SchoolInstitute of Health Biosciences3‐18‐15 Kuramoto‐ChoTokushima770‐8503Japan
| | - Takeshi Iwasa
- Department of Obstetrics and GynecologyThe University of Tokushima Graduate SchoolInstitute of Health Biosciences3‐18‐15 Kuramoto‐ChoTokushima770‐8503Japan
| | - Altankhuu Tungalagsuvd
- Department of Obstetrics and GynecologyThe University of Tokushima Graduate SchoolInstitute of Health Biosciences3‐18‐15 Kuramoto‐ChoTokushima770‐8503Japan
| | - Takako Kawami
- Department of Obstetrics and GynecologyThe University of Tokushima Graduate SchoolInstitute of Health Biosciences3‐18‐15 Kuramoto‐ChoTokushima770‐8503Japan
| | - Takeshi Kato
- Department of Obstetrics and GynecologyThe University of Tokushima Graduate SchoolInstitute of Health Biosciences3‐18‐15 Kuramoto‐ChoTokushima770‐8503Japan
| | - Akira Kuwahara
- Department of Obstetrics and GynecologyThe University of Tokushima Graduate SchoolInstitute of Health Biosciences3‐18‐15 Kuramoto‐ChoTokushima770‐8503Japan
| | - Minoru Irahara
- Department of Obstetrics and GynecologyThe University of Tokushima Graduate SchoolInstitute of Health Biosciences3‐18‐15 Kuramoto‐ChoTokushima770‐8503Japan
| |
Collapse
|
19
|
Bolten M. Transgenerational Transmission of Stress Pathology. ZEITSCHRIFT FUR PSYCHOLOGIE-JOURNAL OF PSYCHOLOGY 2015. [DOI: 10.1027/2151-2604/a000219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract. The impact of the environment early in life on long-term outcomes is well known. Stressful experiences during pre- and postnatal development can modulate the genetic programming of specific brain circuits underlying emotional and cognitive aspects of behavioral adaptation to stressful experiences later in life. Furthermore, there is documented evidence for gene-environment interactions in the context of early-life stress. Identical gene variants can be associated with different phenotypes depending on environmental factors. DNA methylation, an enzymatically-catalyzed modification of the DNA, is the mechanism through which phenotypes are regulated. The dynamics and plasticity of epigenetic mechanisms can have short-term, long-term, or transgenerational consequences. In epigenetic research, rodent models have targeted several behavioral and emotional phenotypes. These models have contributed significantly to our understanding of the environmental regulation of the developmental brain in early life. This review will highlight studies with rats and mice on epigenetic processes in fetal programming of stress-related mental disorders.
Collapse
Affiliation(s)
- Margarete Bolten
- Child and Adolescent Psychiatric Clinic, University of Basel, Switzerland
| |
Collapse
|
20
|
Wang L, Zhang W, Wu R, Kong L, Feng W, Cao Y, Tai F, Zhang X. Neuroendocrine responses to social isolation and paternal deprivation at different postnatal ages in Mandarin voles. Dev Psychobiol 2014; 56:1214-28. [PMID: 24464494 DOI: 10.1002/dev.21202] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 01/02/2014] [Indexed: 02/05/2023]
Abstract
Neonatal isolation and paternal deprivation have long lasting effects on the behavior and neuroendocrine system at adulthood. Whether these effects at adulthood are induced by neonatal changes in relevant neuroendocrine parameters lead by these early-life social experiences is not well understood. Whether monogamous rodents exhibit a stress hypo-responsive period (SHRP) also remains unclear. Using the monogamous mandarin vole, we found that 30 min of isolation did not affect levels of corticosterone (CORT) and adrenocorticotropin (ACTH) at postnatal days 8, 10, and 12 displaying a SHRP, but increased these at postnatal days 4, 14, 16, and 18. Isolation increased vasopressin (AVP)-ir neurons in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) from postnatal days 4 to 12, and up-regulated oxytocin (OT)-ir neurons in the PVN at postnatal days 4 and 8 and SON at postnatal day 4. Paternally deprived pups showed increase in ACTH and CORT after 30 min of social isolation from postnatal days 8 to 14, increase in AVP-ir neurons in the PVN from postnatal days 10 to 14, reduction in OT-ir neurons in the PVN from postnatal days 10 to 14 and in the SON at postnatal days 12 and 14. These results indicate that monogamous mandarin voles display a short SHRP which can be disrupted by paternal deprivation. Central AVP and OT levels may also be altered by paternal deprivation and social isolation. We propose that changes in these neuroendocrine parameters induced by early-life social experiences such as those tested here persist and result.
Collapse
Affiliation(s)
- Lu Wang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, Shaanxi, China; Key laboratory of Modern Teaching Technology, Ministry of Education, Xi'an, 710062, Shaanxi, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Fodor A, Zelena D. The effect of maternal stress activation on the offspring during lactation in light of vasopressin. ScientificWorldJournal 2014; 2014:265394. [PMID: 24550698 PMCID: PMC3914454 DOI: 10.1155/2014/265394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/28/2013] [Indexed: 12/15/2022] Open
Abstract
Although it is obvious that preconceptional effects as well as stressors during pregnancy profoundly influence the progeny, the lactation period seems to be at least as important. Here we summarize how maternal stressors during the lactation period affect the offspring. As vasopressin is one of the crucial components both for stress adaptation and social behavior, special emphasis was given to this neuropeptide. We can conclude that stressing the mother does not have the same acute effect on the hypothalamo-pituitary-adrenocortical axis (as the main target of stress adaptation) of the pups as stressing the pups, but later endocrine and behavioral consequences can be similar. Vasopressin plays a role in acute and later consequences of perinatal stressor applied either to the mother or to the offspring, thereby contributing to transmitting the mothers' stress to the progeny. This mother-infant interaction does not necessarily mean a direct transmission of molecules, but rather is the result of programming the brain development through changes in maternal behavior. Thus, there is a time lag between maternal stress and stress-related changes in the offspring. The interactions are bidirectional as not only stress in the dam but also stress in the progeny has an effect on nursing.
Collapse
Affiliation(s)
- Anna Fodor
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony utca 43, 1083 Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, Üllői utca 26, 1085 Budapest, Hungary
| | - Dóra Zelena
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony utca 43, 1083 Budapest, Hungary
| |
Collapse
|
22
|
Daskalakis NP, Enthoven L, Schoonheere E, de Kloet ER, Oitzl MS. Immediate Effects of Maternal Deprivation on the (Re)Activity of the HPA-Axis Differ in CD1 and C57Bl/6J Mouse Pups. Front Endocrinol (Lausanne) 2014; 5:190. [PMID: 25414695 PMCID: PMC4220727 DOI: 10.3389/fendo.2014.00190] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/18/2014] [Indexed: 11/13/2022] Open
Abstract
The postnatal development of the mouse is characterized by a period of hypo-responsiveness of the hypothalamic-pituitary-adrenal (HPA) axis to mild stressors. Maternal deprivation (MD) during this period can disrupt the quiescence of the HPA-axis. The present study examined the influence of strain (outbred CD1 vs. inbred C57BL/6J mice) on some central and peripheral components of the HPA-axis in neonatal mice (5-day-old) in the presence of their mother or after 24 h MD (on postnatal day 4) under basal or mild stressful conditions. In the presence of the dam, adrenal corticosterone (CORT) secretion was low in both mouse strains. Compared to CD1 mice, C57BL/6J had lower CORT levels associated with higher ACTH levels and ACTH/CORT ratio (i.e., lower adrenal sensitivity to ACTH), and higher glucocorticoid receptor (GR) mRNA expression in the paraventricular nucleus. Although MD disinhibited the HPA-axis in both strains as reflected by increased basal CORT and ACTH, we found a strain-dependent pattern. MD increased CORT more in C57BL/6J compared to CD1 mice together with a lower ACTH/CORT ratio (i.e., higher adrenal sensitivity to ACTH), while GR mRNA was no longer different in the two strains. However, this increased adrenal sensitivity in maternally deprived C57BL/6J mice was not reflected in their CORT response to a subsequent novelty stressor, possibly due to an MD-induced ceiling effect in their steroidogenic capacity. In conclusion, the immediate outcome of MD depends on the genetic background of the mother-infant dyad, suggesting that maybe also the outcome in later-life cannot be generalized.
Collapse
Affiliation(s)
- Nikolaos P. Daskalakis
- Division of Medical Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
- Department of Endocrinology and Metabolism, Leiden University Medical Center, Leiden University, Leiden, Netherlands
- Traumatic Stress Studies Division, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Laboratory of Molecular Neuropsychiatry, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- PTSD Research Program, Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
- *Correspondence: Nikolaos P. Daskalakis, Laboratory of Molecular Neuropsychiatry and Traumatic Stress Studies Division, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1668, New York, NY 10029-6574, USA e-mail:
| | - Leo Enthoven
- Division of Medical Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
| | - Edwige Schoonheere
- Division of Medical Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
| | - Edo Ronald de Kloet
- Division of Medical Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
- Department of Endocrinology and Metabolism, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Melly S. Oitzl
- Division of Medical Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
23
|
Diamantopoulou A, Raftogianni A, Stamatakis A, Tzanoulinou S, Oitzl MS, Stylianopoulou F. Denial or receipt of expected reward through maternal contact during the neonatal period differentially affect the development of the rat amygdala and program its function in adulthood in a sex-dimorphic way. Psychoneuroendocrinology 2013; 38:1757-71. [PMID: 23490071 DOI: 10.1016/j.psyneuen.2013.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 01/24/2013] [Accepted: 02/18/2013] [Indexed: 11/18/2022]
Abstract
Early experiences affect brain development and thus adult brain function and behavior. We employed a novel early experience model involving denial (DER) or receipt of expected reward (RER) through maternal contact in a T-maze. Exposure to the DER experience for the first time, on postnatal day 10 (PND10), was stressful for the pups, as assessed by increased corticosterone levels, and was accompanied by enhanced activation of the amygdala, as assessed by c-Fos immunohistochemistry. Re-exposure to the same experience on days 11-13 led to adaptation. Corticosterone levels of the RER pups did not differ on the first and last days of training (PND10 and 13 respectively), while on PND11 and 12 they were lower than those of the CTR. The RER experience did not lead to activation of the amygdala. Males and females exposed as neonates to the DER or RER experience, and controls were tested as adults in the open field task (OF), the elevated plus maze (EPM), and cued and contextual fear conditioning (FC). No group differences were found in the EPM, while in the OF, both male and female DER animals, showed increased rearings, compared to the controls. In the FC, the RER males had increased memory for both context and cued conditioned fear, than either the DER or CTR. On the other hand, the DER males, but not females showed an increased activation, as assessed by c-Fos expression, of the amygdala following fear conditioning. Our results show that the DER early experience programmed the function of the adult amygdala as to render it more sensitive to fearful stimuli. This programming by the DER early experience could be mediated through epigenetic modifications of histones leading to chromatin opening, as indicated by our results showing increased levels of phospho-acetyl-histone-3 in the amygdala of the DER males.
Collapse
|
24
|
Early life stress paradigms in rodents: potential animal models of depression? Psychopharmacology (Berl) 2011; 214:131-40. [PMID: 21086114 DOI: 10.1007/s00213-010-2096-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 11/03/2010] [Indexed: 12/13/2022]
Abstract
RATIONALE While human depressive illness is indeed uniquely human, many of its symptoms may be modeled in rodents. Based on human etiology, the assumption has been made that depression-like behavior in rats and mice can be modulated by some of the powerful early life programming effects that are known to occur after manipulations in the first weeks of life. OBJECTIVE Here we review the evidence that is available in literature for early life manipulation as risk factors for the development of depression-like symptoms such as anhedonia, passive coping strategies, and neuroendocrine changes. Early life paradigms that were evaluated include early handling, separation, and deprivation protocols, as well as enriched and impoverished environments. We have also included a small number of stress-related pharmacological models. RESULTS We find that for most early life paradigms per se, the actual validity for depression is limited. A number of models have not been tested with respect to classical depression-like behaviors, while in many cases, the outcome of such experiments is variable and depends on strain and additional factors. CONCLUSION Because programming effects confer vulnerability rather than disease, a number of paradigms hold promise for usefulness in depression research, in combination with the proper genetic background and adult life challenges.
Collapse
|