1
|
Marsia S, Kumar D, Raheel H, Salman A, Aslam B, Ikram A, Kumar P, Aslam A, Shafiq A, Gul A. Evaluating the Safety and Efficacy of Erythropoietin Therapy for Neonatal Hypoxic-Ischemic Encephalopathy: A Systematic Review and Meta-Analysis. Pediatr Neurol 2024; 152:4-10. [PMID: 38171084 DOI: 10.1016/j.pediatrneurol.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Erythropoietin (EPO) is a proposed drug for the treatment of neonatal hypoxic-ischemic encephalopathy (HIE). Multiple studies have linked its use, either as a monotherapy or in conjunction with therapeutic hypothermia (TH), with improved neonatal outcomes including death and neurodisability. However, there is also evidence in the literature that raises concerns about its efficacy and safety for the treatment of neonatal encephalopathy (NE). METHODS We searched MEDLINE, Cochrane CENTRAL, and Embase for both observational studies and randomized controlled trials (RCTs) investigating the effectiveness of EPO in treating NE. Only studies in which at least 300 U/kg of EPO was used and reported any one of the following outcomes: death, death or neurodisability, and cerebral palsy, were included. RESULTS Seven studies with 903 infants with the diagnosis of NE were included in our meta-analysis. EPO did not reduce the risk of death or neurodisability (risk ratio 0.68 [95% confidence interval [CI]: 0.43 to 1.09]) (P = 0.11). Similarly, the risk of cerebral palsy was not reduced by the administration of EPO (risk ratio 0.68 [95% CI: 0.33 to 1.40]) (P = 0.30). The risk of death was also not reduced at any dose of EPO regardless of the use of TH. CONCLUSIONS The results of our meta-analysis do not support the use of EPO for the treatment of neonatal encephalopathy. However, future large-scale RCTs are needed to strengthen these findings.
Collapse
Affiliation(s)
- Shayan Marsia
- Department of Neurology, Spectrum Health/Michigan State University, Grand Rapids, Michigan.
| | - Danisha Kumar
- Dow University of Health Sciences, Karachi, Pakistan
| | - Hamna Raheel
- Dow University of Health Sciences, Karachi, Pakistan
| | - Ali Salman
- Dow University of Health Sciences, Karachi, Pakistan
| | - Baseer Aslam
- Dow University of Health Sciences, Karachi, Pakistan
| | - Armeen Ikram
- Dow University of Health Sciences, Karachi, Pakistan
| | - Piresh Kumar
- Bahria University Of Medical and Dental College, Karachi city, Pakistan
| | - Aimun Aslam
- Jinnah Sindh Medical University, Karachi, Pakistan
| | - Areeba Shafiq
- Dow University of Health Sciences, Karachi, Pakistan
| | - Areeba Gul
- Jinnah Sindh Medical University, Karachi, Pakistan
| |
Collapse
|
2
|
Marques KL, Rodrigues V, Balduci CTN, Montes GC, Barradas PC, Cunha-Rodrigues MC. Emerging therapeutic strategies in hypoxic-ischemic encephalopathy: a focus on cognitive outcomes. Front Pharmacol 2024; 15:1347529. [PMID: 38469401 PMCID: PMC10925695 DOI: 10.3389/fphar.2024.1347529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 03/13/2024] Open
Abstract
Perinatal hypoxia-ischemia represents a significant risk to CNS development, leading to high mortality rates, diverse damages, and persistent neurological deficits. Despite advances in neonatal medicine in recent decades, the incidence of HIE remains substantial. Motor deficits can manifest early, while cognitive impairments may be diagnosed later, emphasizing the need for extended follow-up. This review aims to explore potential candidates for therapeutic interventions for hypoxic-ischemic encephalopathy (HIE), with a focus on cognitive deficits. We searched randomized clinical trials (RCT) that tested drug treatments for HIE and evaluated cognitive outcomes. The results included studies on erythropoietin, melatonin, magnesium sulfate, topiramate, and a combination of vitamin C and ibuprofen. Although there are several indications of the efficacy of these drugs among animal models, considering neuroprotective properties, the RCTs failed to provide complete effectiveness in the context of cognitive impairments derived from HIE. More robust RCTs are still needed to advance our knowledge and to establish standardized treatments for HIE.
Collapse
Affiliation(s)
- Kethely L. Marques
- Laboratory of Neurobiology, Pharmacology and Psychobiology Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor Rodrigues
- Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cassiana T. N. Balduci
- Laboratory of Neurobiology, Pharmacology and Psychobiology Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
- Rare Diseases Sales Force, Daiichi Sankyo Brazil, São Paulo, Brazil
| | - Guilherme C. Montes
- Laboratory of Neurobiology, Pharmacology and Psychobiology Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Penha C. Barradas
- Laboratory of Neurobiology, Pharmacology and Psychobiology Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marta C. Cunha-Rodrigues
- Laboratory of Neurobiology, Pharmacology and Psychobiology Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Guan Y, Zhou H, Luo B, Hussain S, Xiong L. Research progress of neonatal hypoxic-ischemic encephalopathy in nonhuman primate models. IBRAIN 2023; 9:183-194. [PMID: 37786551 PMCID: PMC10528769 DOI: 10.1002/ibra.12097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 10/04/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is one of the important complications of neonatal asphyxia, which not only leads to neurological disability but also seriously threatens the life of neonates. Over the years, animal models of HIE have been a research hotspot to find ways to cope with HIE and thereby reduce the risk of neonatal death or disability in moderate-to-severe HIE. By reviewing the literature related to HIE over the years, it was found that nonhuman primates share a high degree of homology with human gross neural anatomy. The basic data on nonhuman primates are not yet complete, so it is urgent to mine and develop new nonhuman primate model data. In recent years, the research on nonhuman primate HIE models has been gradually enriched and the content is more novel. Therefore, the purpose of this review is to further summarize the methods for establishing the nonhuman primate HIE model and to better elucidate the relevance of the nonhuman primate model to humans by observing the behavioral manifestations, neuropathology, and a series of biomarkers of HIE in primates HIE. Finally, the most popular and desirable treatments studied in nonhuman primate models in the past 5 years are summarized.
Collapse
Affiliation(s)
- Yi‐Huan Guan
- School of AnesthesiologyZunyi Medical UniversityZunyiChina
| | - Hong‐Su Zhou
- Department of Experimental AnimalsKunming Medical UniversityKunmingChina
| | - Bo‐Yan Luo
- School of PharmacyZunyi Medical UniversityZunyiChina
| | - Sajid Hussain
- NUTECH School of Applied Sciences and HumanitiesNational University of TechnologyIslamabadPakistan
| | - Liu‐Lin Xiong
- School of Pharmacy and Medical Sciences, Faculty of Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| |
Collapse
|
4
|
Perrone S, Lembo C, Gironi F, Petrolini C, Catalucci T, Corbo G, Buonocore G, Gitto E, Esposito SMR. Erythropoietin as a Neuroprotective Drug for Newborn Infants: Ten Years after the First Use. Antioxidants (Basel) 2022; 11:antiox11040652. [PMID: 35453337 PMCID: PMC9031072 DOI: 10.3390/antiox11040652] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/19/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
Protective strategies against perinatal brain injury represent a major challenge for modern neonatology. Erythropoietin (Epo) enhances endogenous mechanisms of repair and angiogenesis. In order to analyse the newest evidence on the role of Epo in prematurity, hypoxic ischemic encephalopathy (HIE) and perinatal stroke, a critical review using 2020 PRISMA statement guidelines was conducted. This review uncovered 26 clinical trials examining the use of Epo for prematurity and brain injury-related outcomes. The effects of Epo on prematurity were analysed in 16 clinical trials. Erythropoietin was provided until 32–35 weeks of corrected postnatal age with a dosage between 500–3000 UI/kg/dose. Eight trials reported the Epo effects on HIE term newborn infants: Erythropoietin was administered in the first weeks of life, at different multiple doses between 250–2500 UI/kg/dose, as either an adjuvant therapy with hypothermia or a substitute for hypothermia. Two trials investigated Epo effects in perinatal stroke. Erythropoietin was administered at a dose of 1000 IU/kg for three days. No beneficial effect in improving morbidity was observed after Epo administration in perinatal stroke. A positive effect on neurodevelopmental outcome seems to occur when Epo is used as an adjuvant therapy with hypothermia in the HIE newborns. Administration of Epo in preterm infants still presents inconsistencies with regard to neurodevelopmental outcome. Clinical trials show significant differences mainly in target population and intervention scheme. The identification of specific markers and their temporal expression at different time of recovery after hypoxia-ischemia in neonates might be implemented to optimize the therapeutic scheme after hypoxic-ischemic injury in the developing brain. Additional studies on tailored regimes, accounting for the risk stratification of brain damage in newborns, are required.
Collapse
Affiliation(s)
- Serafina Perrone
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (C.P.); (S.M.R.E.)
- Correspondence:
| | - Chiara Lembo
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.L.); (F.G.); (T.C.); (G.C.); (G.B.)
| | - Federica Gironi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.L.); (F.G.); (T.C.); (G.C.); (G.B.)
| | - Chiara Petrolini
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (C.P.); (S.M.R.E.)
| | - Tiziana Catalucci
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.L.); (F.G.); (T.C.); (G.C.); (G.B.)
| | - Giulia Corbo
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.L.); (F.G.); (T.C.); (G.C.); (G.B.)
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.L.); (F.G.); (T.C.); (G.C.); (G.B.)
| | - Eloisa Gitto
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | | |
Collapse
|
5
|
Pan JJ, Wu Y, Liu Y, Cheng R, Chen XQ, Yang Y. The effect of erythropoietin on neonatal hypoxic-ischemic encephalopathy: An updated meta-analysis of randomized control trials. Front Pediatr 2022; 10:1074287. [PMID: 36699298 PMCID: PMC9869948 DOI: 10.3389/fped.2022.1074287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/09/2022] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE Erythropoietin (EPO) seems to have a good application prospect both in experimental models and patients with hypoxic ischaemic encephalopathy (HIE). Data regarding the effect of EPO on death or neurodevelopmental impairment are conflicting. METHODS A search was conducted by two investigators involved in this research in PubMed, Embase, and Cochrane databases for studies in English, in Wanfang, VIP, and Cnki databases for Chinese studies (all last launched on 2022/08/31). Ultimately, we identified 11 original studies, including the EPO group (n = 636) and the control group (n = 626). Odds ratio (OR) and weighted mean difference were calculated using a random effects or fixed effects model, depending on the data type and heterogeneity of the included studies. RESULTS 1. The comparison of effectiveness of EPO treatment on HIE: (1) With respect to death, data showed no significant difference between EPO and control groups (OR = 0.97, 95% CI, 0.66-1.43; P = 0.88); Considering the additional effect of mild hypothermia treatment (MHT), no significant difference was found between EPO + MHT/control + MHT groups either (OR = 1.09, 95% CI, 0.69-1.73; P = 0.72); With respect to the interference of different routes of medication administration, Meta-analysis further showed no difference between intravenous EPO/control groups (OR = 1.13, 95% CI, 0.70-1.82; P = 0.62). (2) With respect to cerebral palsy, the analysis showed no significant difference (OR = 0.76, 95% CI, 0.50-1.15; P = 0.20); Considering the effect of MHT and routes of medication administration, data further showed no difference between EPO group and control group (OR = 1.26, 95% CI, 0.73-2.19; P = 0.41). (3) Regarding epilepsy, no significant difference was found (OR = 0.49, 95% CI, 0.20-1.19; P = 0.12). MR abnormality was less common in EPO group (OR = 0.39, 95% CI, 0.19-0.79; P = 0.008). 2. The comparison of possible adverse events of EPO: EPO treatment would not increase the risk of thrombocytopenia, hypotension, and hepatic and kidney injury. CONCLUSIONS This meta-analysis showed that EPO treatment is not beneficial for reducing death and improving neurological impairment, though it would not increase the risk of adverse events.
Collapse
Affiliation(s)
- Jing-Jing Pan
- First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yue Wu
- Children's Hospital of Nanjing Medical University, Nanjing Children's Hospital, Nanjing, China
| | - Yun Liu
- Children's Hospital of Nanjing Medical University, Nanjing Children's Hospital, Nanjing, China
| | - Rui Cheng
- Children's Hospital of Nanjing Medical University, Nanjing Children's Hospital, Nanjing, China
| | - Xiao-Qing Chen
- First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yang Yang
- Children's Hospital of Nanjing Medical University, Nanjing Children's Hospital, Nanjing, China
| |
Collapse
|
6
|
Liang L, Yu J, Xiao L, Wang G. Sustained low-dose prophylactic early erythropoietin for improvement of neurological outcomes in preterm infants:A systematic review and meta-analysis. J Affect Disord 2021; 282:1187-1192. [PMID: 33601694 DOI: 10.1016/j.jad.2021.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/01/2021] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
The aim of this meta-analysis was conducted to assess the effects of different doses of prophylactic rhEPO on neurodevelopmental outcomes and provide reference for rational drug use. The primary outcome was the number of infants with a Mental Developmental Index (MDI) <70 on the Bayley Scales of Infant Development. Five RCTs, comprising 2282 infants, were included in this meta-analysis. Overall, prophylactic rhEPO administration reduced the incidence of infants with an MDI <70, with an odds ratio (95% confidence interval) of 0.55 (0.38-0.79), P <0.05. The low-dose rhEPO subgroup was superior to the placebo subgroup, with an OR (95% CI) of 0.47 (0.25-0.87), P <0.05. However, high-dose rhEPO subgroup had no significant impact on MDI <70 in infants <28 weeks' gestational age. The definitions of the secondary outcome showed that there was no significant effect of rhEPO on cerebral palsy. For neonatal complications, although four studies showed that there were no differences in the pooled results of BPD and ICH events between rhEPO treatment and placebo, the ICH events were significantly lower in the low-dose rhEPO (OR 0.36; 95% CI 0.23-0.59). In addition, in the pooled results of NEC and ROP events, there were significant differences between the two groups (OR 0.63; 95% CI 0.43-0.93) (OR 0.80; 95% CI 0.65-0.98). And the NEC events were significantly lower in the low-dose rhEPO (OR 0.45; 95% CI 0.27-0.73). Sustained low-dose prophylactic early erythropoietin might be more superior than high-dose for improvement of neurological outcomes and several neonatal complications in preterm infants.
Collapse
Affiliation(s)
- Liang Liang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Hubei Zhang Road (formerly Ziyang Road), Wuchang District No. 99, Jiefang Road 238, Wuhan, Hubei province, China
| | - Jia Yu
- Department of General Surgery, Renmin Hospital of Wuhan University, Hubei Zhang Road (formerly Ziyang Road), Wuchang District No. 99, Jiefang Road 238, Wuhan, Hubei province, China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Hubei Zhang Road (formerly Ziyang Road), Wuchang District No. 99, Jiefang Road 238, Wuhan, Hubei province, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Hubei Zhang Road (formerly Ziyang Road), Wuchang District No. 99, Jiefang Road 238, Wuhan, Hubei province, China.
| |
Collapse
|
7
|
Drug delivery platforms for neonatal brain injury. J Control Release 2021; 330:765-787. [PMID: 33417984 DOI: 10.1016/j.jconrel.2020.12.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/18/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE), initiated by the interruption of oxygenated blood supply to the brain, is a leading cause of death and lifelong disability in newborns. The pathogenesis of HIE involves a complex interplay of excitotoxicity, inflammation, and oxidative stress that results in acute to long term brain damage and functional impairments. Therapeutic hypothermia is the only approved treatment for HIE but has limited effectiveness for moderate to severe brain damage; thus, pharmacological intervention is explored as an adjunct therapy to hypothermia to further promote recovery. However, the limited bioavailability and the side-effects of systemic administration are factors that hinder the use of the candidate pharmacological agents. To overcome these barriers, therapeutic molecules may be packaged into nanoscale constructs to enable their delivery. Yet, the application of nanotechnology in infants is not well examined, and the neonatal brain presents unique challenges. Novel drug delivery platforms have the potential to magnify therapeutic effects in the damaged brain, mitigate side-effects associated with high systemic doses, and evade mechanisms that remove the drugs from circulation. Encouraging pre-clinical data demonstrates an attenuation of brain damage and increased structural and functional recovery. This review surveys the current progress in drug delivery for treating neonatal brain injury.
Collapse
|
8
|
Sun Y, Ma L, Jin M, Zheng Y, Wang D, Ni H. Effects of Melatonin on Neurobehavior and Cognition in a Cerebral Palsy Model of plppr5-/- Mice. Front Endocrinol (Lausanne) 2021; 12:598788. [PMID: 33692754 PMCID: PMC7937640 DOI: 10.3389/fendo.2021.598788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Cerebral palsy (CP), a group of clinical syndromes caused by non-progressive brain damage in the developing fetus or infant, is one of the most common causes of lifelong physical disability in children in most countries. At present, many researchers believe that perinatal cerebral hypoxic ischemic injury or inflammatory injury are the main causes of cerebral palsy. Previous studies including our works confirmed that melatonin has a protective effect against convulsive brain damage during development and that it affects the expression of various molecules involved in processes such as metabolism, plasticity and signaling in the brain. Integral membrane protein plppr5 is a new member of the plasticity-related protein family, which is specifically expressed in brain and spinal cord, and induces filopodia formation as well as neurite growth. It is highly expressed in the brain, especially in areas of high plasticity, such as the hippocampus. The signals are slightly lower in the cortex, the cerebellum, and in striatum. Noteworthy, during development plppr5 mRNA is expressed in the spinal cord, i.e., in neuron rich regions such as in medial motor nuclei, suggesting that plppr5 plays an important role in the regulation of neurons. However, the existing literature only states that plppr5 is involved in the occurrence and stability of dendritic spines, and research on its possible involvement in neonatal ischemic hypoxic encephalopathy has not been previously reported. We used plppr5 knockout (plppr5-/-) mice and their wild-type littermates to establish a model of hypoxicischemic brain injury (HI) to further explore the effects of melatonin on brain injury and the role of plppr5 in this treatment in an HI model, which mainly focuses on cognition, exercise, learning, and memory. All the tests were performed at 3-4 weeks after HI. As for melatonin treatment, which was performed 5 min after HI injury and followed by every 24h. In these experiments, we found that there was a significant interaction between genotype and treatment in novel object recognition tests, surface righting reflex tests and forelimb suspension reflex tests, which represent learning and memory, motor function and coordination, and the forelimb grip of the mice, respectively. However, a significant main effect of genotype and treatment on performance in all behavioral tests were observed. Specifically, wild-type mice with HI injury performed better than plppr5-/- mice, regardless of treatment with melatonin or vehicle. Moreover, treatment with melatonin could improve behavior in the tests for wild-type mice with HI injury, but not for plppr5-/- mice. This study showed that plppr5 knockout aggravated HI damage and partially weakened the neuroprotection of melatonin in some aspects (such as novel object recognition test and partial nerve reflexes), which deserves further study.
Collapse
|
9
|
Larpthaveesarp A, Pathipati P, Ostrin S, Rajah A, Ferriero D, Gonzalez FF. Enhanced Mesenchymal Stromal Cells or Erythropoietin Provide Long-Term Functional Benefit After Neonatal Stroke. Stroke 2021; 52:284-293. [PMID: 33349013 PMCID: PMC7770074 DOI: 10.1161/strokeaha.120.031191] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE Perinatal stroke is a common cause of life-long neurobehavioral compromise. Mesenchymal stromal cells (MSCs) and EPO (erythropoietin) have each demonstrated short-term benefit with delayed administration after stroke, and combination therapy may provide the most benefit. The purpose of this study is to determine the long-term histological and functional efficacy of enhanced, intranasal stem cell therapy (MSC preexposed to EPO) compared with standard MSC or multidose systemic EPO. METHODS Transient middle cerebral artery occlusion or sham surgery was performed in postnatal day (P) 10 Sprague-Dawley rats, who were treated with single-dose intranasal MSC, MSC preexposed to EPO (MSC/EPO), multidose systemic EPO (EPO3; 1000 u/kg per dose×3 every 72 hours), or cell-conditioned media on P13 (day 3 [P13-P19] for EPO), or on P17 (day 7 [P17-P23] for EPO). At 2 months of age, animals underwent novel object recognition, cylinder rearing, and open field testing to assess recognition memory, sensorimotor function, and anxiety in adulthood. RESULTS MSC, MSC/EPO, and EPO3 improved brain volume when administered at 3 or 7 days after middle cerebral artery occlusion. MSC/EPO also enhanced long-term recognition memory with either day 3 or day 7 treatment, but EPO3 had the most long-term benefit, improving recognition memory and exploratory behavior and reducing anxiety. CONCLUSIONS These data suggest that single-dose MSC/EPO and multidose systemic EPO improve long-term neurobehavioral outcomes even when administration is delayed, although EPO was the most effective treatment overall. It is possible that EPO represents a final common pathway for improved long-term repair, although the specific mechanisms remain to be determined.
Collapse
Affiliation(s)
| | | | - Samuel Ostrin
- Department of Pediatrics, University of California, San Francisco
| | - Anthony Rajah
- Department of Pediatrics, University of California, San Francisco
| | - Donna Ferriero
- Department of Pediatrics, University of California, San Francisco
- Department of Neurology, University of California, San Francisco
| | | |
Collapse
|
10
|
Min YJ, Ling EA, Li F. Immunomodulatory Mechanism and Potential Therapies for Perinatal Hypoxic-Ischemic Brain Damage. Front Pharmacol 2020; 11:580428. [PMID: 33536907 PMCID: PMC7849181 DOI: 10.3389/fphar.2020.580428] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-ischemia (HI) is one of the most common causes of death and disability in neonates. Currently, the only available licensed treatment for perinatal HI is hypothermia. However, it alone is not sufficient to prevent the brain injuries and/or neurological dysfunction related to HI. Perinatal HI can activate the immune system and trigger the peripheral and central responses which involve the immune cell activation, increase in production of immune mediators and release of reactive oxygen species. There is mounting evidence indicating that regulation of immune response can effectively rescue the outcomes of brain injury in experimental perinatal HI models such as Rice-Vannucci model of newborn hypoxic-ischemic brain damage (HIBD), local transient cerebral ischemia and reperfusion model, perinatal asphyxia model, and intrauterine hypoxia model. This review summarizes the many studies about immunomodulatory mechanisms and therapies for HI. It highlights the important actions of some widely documented therapeutic agents for effective intervening of HI related brain damage, namely, HIBD, such as EPO, FTY720, Minocycline, Gastrodin, Breviscapine, Milkvetch etc. In this connection, it has been reported that the ameboid microglial cells featured prominently in the perinatal brain represent the key immune cells involved in HIBD. To this end, drugs, chemical agents and herbal compounds which have the properties to suppress microglia activation have recently been extensively explored and identified as potential therapeutic agents or strategies for amelioration of neonatal HIBD.
Collapse
Affiliation(s)
- Ying-Jun Min
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fan Li
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| |
Collapse
|
11
|
Jiao M, Li X, Chen L, Wang X, Yuan B, Liu T, Dong Q, Mei H, Yin H. Neuroprotective effect of astrocyte-derived IL-33 in neonatal hypoxic-ischemic brain injury. J Neuroinflammation 2020; 17:251. [PMID: 32859229 PMCID: PMC7455908 DOI: 10.1186/s12974-020-01932-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 08/18/2020] [Indexed: 02/07/2023] Open
Abstract
Background Interleukin-33 (IL-33) is a well-recognized pleiotropic cytokine which plays crucial roles in immune regulation and inflammatory responses. Recent studies suggest that IL-33 and its receptor ST2 are involved in the pathogenesis of neurological diseases. Here, we explore the effect of IL-33/ST2 signaling in neonatal hypoxic-ischemic (HI) brain injury and elucidate the underlying mechanisms of action. Methods The brain HI model was established in neonatal C57BL/6 mice by left common carotid artery occlusion with 90 min hypoxia and treated with IL-33 at a dose of 0.2 μg/day i.p. for 3 days. TTC staining and neurobehavioral observation were used to evaluate the HI brain injury. Immunofluorescence and flow cytometry were applied to determine the expression of IL-33 and its receptor ST2 on brain CNS cells and cell proliferation and apoptosis. OGD experiment was used to assay the viability of astrocytes and neurons. RT-qPCR was used to measure the expression of neurotrophic factor-associated genes. Results The expression level of IL-33 was markedly enhanced in astrocytes 24 h after cerebral HI in neonatal mice. Exogenous delivery of IL-33 significantly alleviated brain injury 7 days after HI, whereas ST2 deficiency exacerbated brain infarction and neurological deficits post HI. Flow cytometry analyses demonstrated high levels of ST2 expression on astrocytes, and the expression of ST2 was further elevated after HI. Intriguingly, IL-33 treatment apparently improved astrocyte response and attenuated HI-induced astrocyte apoptosis through ST2 signaling pathways. Further in vitro studies revealed that IL-33-activated astrocytes released a series of neurotrophic factors, which are critical for raising neuronal survival against oxygen glucose deprivation. Conclusions The activation of IL-33/ST2 signaling in the ischemic brain improves astrocyte response, which in turn affords protection to ischemic neurons in a glial-derived neurotrophic factor-dependent manner.
Collapse
Affiliation(s)
- Mengya Jiao
- Department of Biochemistry and Molecular Biology, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiangyong Li
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, 524023, China
| | - Liying Chen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiaodi Wang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Baohong Yuan
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tao Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qun Dong
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hanfang Mei
- Department of Biochemistry and Molecular Biology, Guangdong Pharmaceutical University, Guangzhou, 510006, China. .,Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Hui Yin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China. .,Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Volpe JJ. Commentary - Do the negative results of the PENUT trial close the book on erythropoietin for premature infant brain? J Neonatal Perinatal Med 2020; 13:149-152. [PMID: 32333558 PMCID: PMC7369037 DOI: 10.3233/npm-200444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Joseph J Volpe
- Department of Neurology, Harvard Medical School, Boston, MA, USA.,Department of Pediatric Newborn Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Zhang LM, Zhang DX, Zhao XC, Sun W. RETRACTED ARTICLE: Erythropoietin Rescues Primary Rat Cortical Neurons by Altering the Nrf2:Bach1 Ratio: Roles of Extracellular Signal-Regulated Kinase 1/2. Neurochem Res 2020; 45:1244. [PMID: 28083849 DOI: 10.1007/s11064-017-2174-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/31/2016] [Accepted: 01/03/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Li-Min Zhang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China.
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Xiao-Chun Zhao
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wenbo Sun
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
14
|
Erythropoietin induces synaptogenesis and neurite repair after hypoxia ischemia-mediated brain injury in neonatal rats. Neuroreport 2020; 30:783-789. [PMID: 31261238 DOI: 10.1097/wnr.0000000000001285] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The memory dysfunction is one of the disastrous outcomes for perinatal hypoxia ischemia. Erythropoietin (EPO) has been demonstrated as a neuroprotective agent with multiple effects in a series of neurological diseases. We hypothesized that disruption of neural network including synapses and neurites would contribute to memory dysfunction induced by hypoxia ischemia. The aim of the present study was to elucidate the involvement of EPO on synaptogenesis and neurite repair following perinatal hypoxia ischemia. Using a neonatal hypoxia ischemia rat model, we found that EPO rescued hypoxia ischemia-induced decrease of synaptic proteins including Synapsin1 and PSD95 rather than GluR1 in the cortex and hippocampus. In addition, EPO reduced the expression of APP (an axonal injury marker), induced the expression of microtubule-associated protein MAP-2 (a dendritic marker), and restored axonal density after hypoxia ischemia. These changes contributed to improving electrophysiological properties of synapses and spatial memory performance. In summary, our data revealed an important role of EPO in synaptogenesis and neurite repair, providing a new insight into cellular mechanisms underlying cognitive and memory dysfunction associated with perinatal hypoxia ischemia.
Collapse
|
15
|
Oorschot DE, Sizemore RJ, Amer AR. Treatment of Neonatal Hypoxic-Ischemic Encephalopathy with Erythropoietin Alone, and Erythropoietin Combined with Hypothermia: History, Current Status, and Future Research. Int J Mol Sci 2020; 21:E1487. [PMID: 32098276 PMCID: PMC7073127 DOI: 10.3390/ijms21041487] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/04/2020] [Accepted: 02/16/2020] [Indexed: 02/06/2023] Open
Abstract
Perinatal hypoxic-ischemic encephalopathy (HIE) remains a major cause of morbidity and mortality. Moderate hypothermia (33.5 °C) is currently the sole established standard treatment. However, there are a large number of infants for whom this therapy is ineffective. This inspired global research to find neuroprotectants to potentiate the effect of moderate hypothermia. Here we examine erythropoietin (EPO) as a prominent candidate. Neonatal animal studies show that immediate, as well as delayed, treatment with EPO post-injury, can be neuroprotective and/or neurorestorative. The observed improvements of EPO therapy were generally not to the level of control uninjured animals, however. This suggested that combining EPO treatment with an adjunct therapeutic strategy should be researched. Treatment with EPO plus hypothermia led to less cerebral palsy in a non-human primate model of perinatal asphyxia, leading to clinical trials. A recent Phase II clinical trial on neonatal infants with HIE reported better 12-month motor outcomes for treatment with EPO plus hypothermia compared to hypothermia alone. Hence, the effectiveness of combined treatment with moderate hypothermia and EPO for neonatal HIE currently looks promising. The outcomes of two current clinical trials on neurological outcomes at 18-24 months-of-age, and at older ages, are now required. Further research on the optimal dose, onset, and duration of treatment with EPO, and critical consideration of the effect of injury severity and of gender, are also required.
Collapse
Affiliation(s)
- Dorothy E. Oorschot
- Department of Anatomy, School of Biomedical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand; (R.J.S.); (A.R.A.)
| | | | | |
Collapse
|
16
|
Early-life N-arachidonoyl-dopamine exposure increases antioxidant capacity of the brain tissues and reduces functional deficits after neonatal hypoxia in rats. Int J Dev Neurosci 2019; 78:7-18. [PMID: 31369794 DOI: 10.1016/j.ijdevneu.2019.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/16/2019] [Accepted: 06/21/2019] [Indexed: 12/17/2022] Open
Abstract
Perinatal hypoxia-ischemia is one of the most common causes of perinatal brain injury and subsequent neurological disorders in children. The aim of this work was to evaluate the potential antioxidant and neuroprotective effects of N-arachidonoyl-dopamine (NADA) in the model of acute neonatal hypoxia (ANH) in rat pups. Male and female Wistar rats were exposed to a hypoxic condition (8% oxygen for 120 min) at postnatal day 2 (P2). Transcription factor HIF1-α and glutathione peroxidases GPx2 and GPx4 gene expression was increased in rat brains in the hypoxic group compared to control 1.5 h but not 4 days after ANH. There were no post-hypoxic changes in reduced (GSH) and oxidised (GSSG) glutathione levels in the brain of rat pups 1.5 h and 4 d after hypoxia. Hypoxic rats displayed retarded performance in the righting reflex and the negative geotaxis tests. ANH resulted in increased ambulation in Open field test and impaired retention in the Barnes maze task under stressful conditions as compared with the control group. Treatment with NADA significantly attenuated the delayed development of sensorimotor reflexes and stress-evoked disruption of memory retention in hypoxic rats but had no effect on the hypoxia-induced hyperactivity. In rats exposed to hypoxia, treatment with NADA decreased GPx2 gene expression and increased GSH/GSSG ratio in whole brains 1.5 h after ANH. These results suggest that the long-lasting beneficial effects of NADA on hypoxia-induced neurobehavioural deficits are mediated, at least in part, by its antioxidant properties.
Collapse
|
17
|
Abstract
Perinatal arterial ischemic stroke is a relatively common and serious neurologic disorder that can affect the fetus, the preterm, and the term-born infant. It carries significant long-term disabilities. Herein we describe the current understanding of its etiology, pathophysiology and classification, different presentations, and optimal early management. We discuss the role of different brain imaging modalities in defining the extent of lesions and the impact this has on the prediction of outcomes. In recent years there has been progress in treatments, making early diagnosis and the understanding of likely morbidities imperative. An overview is given of the range of possible outcomes and optimal approaches to follow-up and support for the child and their family in the light of present knowledge.
Collapse
|
18
|
Rosenkrantz TS, Hussain Z, Fitch RH. Sex Differences in Brain Injury and Repair in Newborn Infants: Clinical Evidence and Biological Mechanisms. Front Pediatr 2019; 7:211. [PMID: 31294000 PMCID: PMC6606734 DOI: 10.3389/fped.2019.00211] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022] Open
Abstract
Differences in the development of the male and female brain are an evolving area of investigation. We are beginning to understand the underpinnings of male and female advantages due to differences in brain development as well as the consequences following hypoxic-ischemic brain injury in the newborn. The two main factors that appear to affect outcomes are gestation age at the time of injury and sex of the subject. This review starts with a summary of differences in the anatomy and physiology of the developing male and female brain. This is followed by a review of the major factors responsible for the observed differences in the face of normal development and hypoxic injury. The last section reviews the response of male and female subjects to various neuroprotective strategies that are currently being used and where there is a need for additional information for more precise therapy based on the sex of the infant.
Collapse
Affiliation(s)
- Ted S Rosenkrantz
- Division of Neonatology, Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Zeenat Hussain
- Department of Volunteer Services, UCONN Health, Farmington, CT, United States.,Department of Anthropology, New York University, New York, NY, United States
| | - Roslyn Holly Fitch
- Department of Psychology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
19
|
Kim TK, Park D, Ban YH, Cha Y, An ES, Choi J, Choi EK, Kim YB. Improvement by Human Oligodendrocyte Progenitor Cells of Neurobehavioral Disorders in an Experimental Model of Neonatal Periventricular Leukomalacia. Cell Transplant 2018; 27:1168-1177. [PMID: 29978719 PMCID: PMC6158554 DOI: 10.1177/0963689718781330] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The effects of human oligodendrocyte progenitor (F3.olig2) cells on improving neurobehavioral deficits were investigated in an experimental model of periventricular leukomalacia (PVL). Seven-day-old male rats were subjected to hypoxia-ischemia-lipopolysaccharide injection (HIL), and intracerebroventricularly transplanted with F3.olig2 (4 × 105 cells/rat) once at post-natal day (PND) 10 or repeatedly at PND10, 17, 27, and 37. Neurobehavioral disorders were evaluated at PND14, 20, 30, and 40 via cylinder test, locomotor activity, and rotarod performance, and cognitive function was evaluated at PND41-45 through passive avoidance and Morris water-maze performances. F3.olig2 cells recovered the rate of use of the forelimb contralateral to the injured brain, improved locomotor activity, and restored rotarod performance of PVL animals; in addition, marked improvement of learning and memory function was seen. It was confirmed that transplanted F3·olig2 cells migrated to injured areas, matured to oligodendrocytes expressing myelin basic protein (MBP), and markedly attenuated the loss of host MBP in the corpus callosum. The results indicate that the transplanted F3.olig2 cells restored neurobehavioral functions by preventing axonal demyelination, and that human oligodendrocyte progenitor cells could be a candidate for cell therapy of perinatal hypoxic-ischemic and infectious brain injuries including PVL and cerebral palsy.
Collapse
Affiliation(s)
- Tae-Kyun Kim
- 1 College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Dongsun Park
- 1 College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Young-Hwan Ban
- 1 College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Yeseul Cha
- 1 College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Eun Suk An
- 1 College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Jieun Choi
- 1 College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Ehn-Kyoung Choi
- 1 College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Yun-Bae Kim
- 1 College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| |
Collapse
|
20
|
Leviton A, Allred EN, Fichorova RN, O'Shea TM, Fordham LA, Kuban KKC, Dammann O. Circulating biomarkers in extremely preterm infants associated with ultrasound indicators of brain damage. Eur J Paediatr Neurol 2018; 22:440-450. [PMID: 29429901 PMCID: PMC5899659 DOI: 10.1016/j.ejpn.2018.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 12/09/2017] [Accepted: 01/20/2018] [Indexed: 02/06/2023]
Abstract
AIM To assess to what extent the blood concentrations of proteins with neurotrophic and angiogenic properties measured during the first postnatal month convey information about the risk of sonographically-identified brain damage among very preterm newborns. METHODS Study participants were 1219 children who had a cranial ultrasound scan during their stay in the intensive care nursery and blood specimens collected on 2 separate days at least a week apart during the first postnatal month. Concentrations of selected proteins in blood spots were measured with electrochemiluminescence or with a multiplex immunobead assay and the risks of cranial ultrasound images associated with top-quartile concentrations were assessed. RESULTS High concentrations of multiple inflammation-related proteins during the first 2 postnatal weeks were associated with increased risk of ventriculomegaly, while high concentrations of just 3 inflammation-related proteins were associated with increased risk of an echolucent/hypoechoic lesion (IL-6, IL-8, ICAM-1), especially on day 7. Concomitant high concentrations of IL6R and bFGF appeared to modulate the increased risks of ventriculomegaly and an echolucent lesion associated with inflammation. More commonly high concentrations of putative protectors/repair-enhancers did not appear to diminish these increased risks. CONCLUSION Our findings provide support for the hypothesis that endogenous proteins are capable of either protecting the brain against damage and/or enhancing repair of damage.
Collapse
Affiliation(s)
- Alan Leviton
- Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA.
| | | | - Raina N Fichorova
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Karl K C Kuban
- Boston Medical Center and Boston University School of Medicine, Boston, MA, USA
| | - Olaf Dammann
- Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
21
|
Erythropoietin Effects on Pathological Changes of Brain Tissues and Motor Balance Functions after Trauma Brain Injury in Animal Model. RAZAVI INTERNATIONAL JOURNAL OF MEDICINE 2017. [DOI: 10.5812/rijm.65025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
Threlkeld SW, Lim YP, La Rue M, Gaudet C, Stonestreet BS. Immuno-modulator inter-alpha inhibitor proteins ameliorate complex auditory processing deficits in rats with neonatal hypoxic-ischemic brain injury. Brain Behav Immun 2017; 64:173-179. [PMID: 28286301 PMCID: PMC5482760 DOI: 10.1016/j.bbi.2017.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 10/20/2022] Open
Abstract
Hypoxic-ischemic (HI) brain injury is recognized as a significant problem in the perinatal period, contributing to life-long language-learning and other cognitive impairments. Central auditory processing deficits are common in infants with hypoxic-ischemic encephalopathy and have been shown to predict language learning deficits in other at risk infant populations. Inter-alpha inhibitor proteins (IAIPs) are a family of structurally related plasma proteins that modulate the systemic inflammatory response to infection and have been shown to attenuate cell death and improve learning outcomes after neonatal brain injury in rats. Here, we show that systemic administration of IAIPs during the early HI injury cascade ameliorates complex auditory discrimination deficits as compared to untreated HI injured subjects, despite reductions in brain weight. These findings have significant clinical implications for improving central auditory processing deficits linked to language learning in neonates with HI related brain injury.
Collapse
Affiliation(s)
- Steven W. Threlkeld
- Department of Neuroscience, Regis College, 235 Wellesley street, Weston MA, 02493, USA
| | - Yow-Pin Lim
- ProThera Biologics, Inc., Providence, RI 02903, USA,Department of Pathology and Laboratory Medicine, The Alpert Medical School of Brown University, Providence, RI 02912, USA
| | - Molly La Rue
- Departments of Psychology and Biology, Rhode Island College, 600 Mount Pleasant Ave. Providence, RI, 02904, USA
| | - Cynthia Gaudet
- Departments of Psychology and Biology, Rhode Island College, 600 Mount Pleasant Ave. Providence, RI, 02904, USA
| | - Barbara S. Stonestreet
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, 101 Dudley Street, Providence, RI 02905, USA
| |
Collapse
|
23
|
Sheldon RA, Windsor C, Lee BS, Arteaga Cabeza O, Ferriero DM. Erythropoietin Treatment Exacerbates Moderate Injury after Hypoxia-Ischemia in Neonatal Superoxide Dismutase Transgenic Mice. Dev Neurosci 2017; 39:228-237. [PMID: 28445874 DOI: 10.1159/000472710] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/27/2017] [Indexed: 02/02/2023] Open
Abstract
The neonatal brain is highly susceptible to oxidative stress as developing endogenous antioxidant mechanisms are overwhelmed. In the neonate, superoxide dismutase (SOD) overexpression worsens hypoxic-ischemic injury due to H2O2 accumulation in the brain. Erythropoietin (EPO) is upregulated in 2 phases after HI, early (4 h) and late (7 days), and exogenous EPO has been effective in reducing the injury, possibly through reducing oxidative stress. We hypothesized that exogenous EPO would limit injury from excess H2O2 seen in SOD1-overexpressing mice, and thus enhance recovery after HI. We first wanted to confirm our previous findings in postnatal day 7 (P7) SOD-tg (CD1) mice using a P9 model of the Vannucci procedure of HI with SOD-tg mice from a different background strain (C57Bl/6), and then determine the efficacy of EPO treatment in this strain and their wild-type (WT) littermates. Thus, mice overexpressing copper/zinc SOD1 were subjected to HI, modified for the P9 mouse, and recombinant EPO (5 U/g) or vehicle (saline) was administered intraperitoneally 3 times: at 0 h, 24 h, and 5 days. Injury was assessed 7 days after HI. In addition, protein expression for EPO and EPO receptor was assessed in the cortex and hippocampus 24 h after HI. With the moderate insult, the SOD-tg mice had greater injury than the WT overall, confirming our previous results, as did the hippocampus and striatum when analyzed separately, but not the cortex or thalamus. EPO treatment worsened injury in SOD-tg overall and in the WT and SOD-tg hippocampus and striatum. With the more severe insult, all groups had greater injury than with the moderate insult, but differences between SOD-tg and WT were no longer observed and EPO treatment had no effect. Increased protein expression of EPO was observed in the cortex of SOD-tg mice given recombinant human EPO compared to SOD-tg given vehicle. This study confirms our previous results showing greater injury with SOD overexpression in the neonatal brain after HI at P7 in a different strain. These results also suggest that EPO treatment cannot ameliorate the damage seen in situations where there is excess H2O2 accumulation, and it may exacerbate injury in settings of extreme oxidative stress.
Collapse
Affiliation(s)
- R Ann Sheldon
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
24
|
Li R, Zhang LM, Sun WB. RETRACTED: Erythropoietin rescues primary rat cortical neurons from pyroptosis and apoptosis via Erk1/2-Nrf2/Bach1 signal pathway. Brain Res Bull 2017; 130:236-244. [DOI: 10.1016/j.brainresbull.2017.01.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/11/2017] [Accepted: 01/24/2017] [Indexed: 11/16/2022]
|
25
|
Lei J, Paules C, Nigrini E, Rosenzweig JM, Bahabry R, Farzin A, Yang S, Northington FJ, Oros D, McKenney S, Johnston MV, Graham EM, Burd I. Umbilical Cord Blood NOS1 as a Potential Biomarker of Neonatal Encephalopathy. Front Pediatr 2017; 5:112. [PMID: 28649562 PMCID: PMC5466059 DOI: 10.3389/fped.2017.00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND There are no definitive markers to aid in diagnosis of neonatal encephalopathy (NE). The purpose of our study was (1) to identify and evaluate the utility of neuronal nitric oxide synthase (NOS1) in umbilical cord blood as a NE biomarker and (2) to identify the source of NOS1 in umbilical cord blood. METHODS This was a nested case-control study of neonates >35 weeks of gestation. ELISA for NOS1 in umbilical cord blood was performed. Sources of NOS1 in umbilical cord were investigated by immunohistochemistry, western blot, ELISA, and quantitative PCR. Furthermore, umbilical cords of full-term neonates were subjected to 1% hypoxia ex vivo. RESULTS NOS1 was present in umbilical cord blood and increased in NE cases compared with controls. NOS1 was expressed in endothelial cells of the umbilical cord vein, but not in artery or blood cells. In ex vivo experiments, hypoxia was associated with increased levels of NOS1 in venous endothelial cells of the umbilical cord as well as in ex vivo culture medium. CONCLUSION This is the first study to investigate an early marker of NE. NOS1 is elevated with hypoxia, and further studies are needed to investigate it as a valuable tool for early diagnosis of neonatal brain injury.
Collapse
Affiliation(s)
- Jun Lei
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cristina Paules
- Aragón Health Research Institute, SAMID Network ref RD12/0026/001, Zaragoza, Spain
| | - Elisabeth Nigrini
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jason M Rosenzweig
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rudhab Bahabry
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Azadeh Farzin
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samuel Yang
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frances J Northington
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Neurosciences Intensive Care Nursery Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Oros
- Aragón Health Research Institute, SAMID Network ref RD12/0026/001, Zaragoza, Spain
| | - Stephanie McKenney
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael V Johnston
- Neurosciences Intensive Care Nursery Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurosciences, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ernest M Graham
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Neurosciences Intensive Care Nursery Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Neurosciences Intensive Care Nursery Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurosciences, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Sukhanova IA, Sebentsova EA, Levitskaya NG. The acute and delayed effects of perinatal hypoxic brain damage in children and in model experiments with rodents. NEUROCHEM J+ 2016. [DOI: 10.1134/s1819712416040127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
27
|
Yıldız EP, Ekici B, Tatlı B. Neonatal hypoxic ischemic encephalopathy: an update on disease pathogenesis and treatment. Expert Rev Neurother 2016; 17:449-459. [PMID: 27830959 DOI: 10.1080/14737175.2017.1259567] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Hypoxic ischemic encephalopathy (HIE) is the most important reason for morbidity and mortality in term-born infants. Understanding pathophysiology of the brain damage is essential for the early detection of patients with high risk for HIE and development of strategies for their treatments. Areas covered: This review discusses pathophysiology of the neonatal HIE and its treatment options, including hypothermia, melatonin, allopurinol, topiramate, erythropoietin, N-acetylcyctein, magnesium sulphate and xenon. Expert commentary: Several clinical studies have been performed in order to decrease the risk of brain injury due to difficulties in the early diagnosis and treatment, and to develop strategies for better long-term outcomes. Although currently standard treatment methods include therapeutic hypothermia for neonates with moderate to severe HIE, new supportive options are needed to enhance neuroprotective effects of the hypothermia, which should aim to reduce production of the free radicals and to have anti-inflammatory and anti-apoptotic actions.
Collapse
Affiliation(s)
| | - Barış Ekici
- b Department of Pediatric Neurology , Liv Hospital , Istanbul , Turkey
| | - Burak Tatlı
- a Department of Pediatric Neurology , Istanbul University , Istanbul , Turkey
| |
Collapse
|
28
|
Ren Q, Zhang XF, Yang JY. Erythropoietin reduces white matter damage in two-day-old rats exposed to hypoxic/ischemia injury. Neurol Res 2016; 38:1020-1026. [DOI: 10.1080/01616412.2016.1242451] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
29
|
McAdams RM, Juul SE. Neonatal Encephalopathy: Update on Therapeutic Hypothermia and Other Novel Therapeutics. Clin Perinatol 2016; 43:485-500. [PMID: 27524449 PMCID: PMC4987711 DOI: 10.1016/j.clp.2016.04.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neonatal encephalopathy (NE) is a major cause of neonatal mortality and morbidity. Therapeutic hypothermia (TH) is standard treatment for newborns at 36 weeks of gestation or greater with intrapartum hypoxia-related NE. Term and late preterm infants with moderate to severe encephalopathy show improved survival and neurodevelopmental outcomes at 18 months of age after TH. TH can increase survival without increasing major disability, rates of an IQ less than 70, or cerebral palsy. Neonates with severe NE remain at risk of death or severe neurodevelopmental impairment. This review discusses the evidence supporting TH for term or near term neonates with NE.
Collapse
|
30
|
Wu YW, Mathur AM, Chang T, McKinstry RC, Mulkey SB, Mayock DE, Van Meurs KP, Rogers EE, Gonzalez FF, Comstock BA, Juul SE, Msall ME, Bonifacio SL, Glass HC, Massaro AN, Dong L, Tan KW, Heagerty PJ, Ballard RA. High-Dose Erythropoietin and Hypothermia for Hypoxic-Ischemic Encephalopathy: A Phase II Trial. Pediatrics 2016; 137:peds.2016-0191. [PMID: 27244862 DOI: 10.1542/peds.2016-0191] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2016] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To determine if multiple doses of erythropoietin (Epo) administered with hypothermia improve neuroradiographic and short-term outcomes of newborns with hypoxic-ischemic encephalopathy. METHODS In a phase II double-blinded, placebo-controlled trial, we randomized newborns to receive Epo (1000 U/kg intravenously; n = 24) or placebo (n = 26) at 1, 2, 3, 5, and 7 days of age. All infants had moderate/severe encephalopathy; perinatal depression (10 minute Apgar <5, pH <7.00 or base deficit ≥15, or resuscitation at 10 minutes); and received hypothermia. Primary outcome was neurodevelopment at 12 months assessed by the Alberta Infant Motor Scale and Warner Initial Developmental Evaluation. Two independent observers rated MRI brain injury severity by using an established scoring system. RESULTS The mean age at first study drug was 16.5 hours (SD, 5.9). Neonatal deaths did not significantly differ between Epo and placebo groups (8% vs 19%, P = .42). Brain MRI at mean 5.1 days (SD, 2.3) showed a lower global brain injury score in Epo-treated infants (median, 2 vs 11, P = .01). Moderate/severe brain injury (4% vs 44%, P = .002), subcortical (30% vs 68%, P = .02), and cerebellar injury (0% vs 20%, P = .05) were less frequent in the Epo than placebo group. At mean age 12.7 months (SD, 0.9), motor performance in Epo-treated (n = 21) versus placebo-treated (n = 20) infants were as follows: Alberta Infant Motor Scale (53.2 vs 42.8, P = .03); Warner Initial Developmental Evaluation (28.6 vs 23.8, P = .05). CONCLUSIONS High doses of Epo given with hypothermia for hypoxic-ischemic encephalopathy may result in less MRI brain injury and improved 1-year motor function.
Collapse
Affiliation(s)
| | | | - Taeun Chang
- Departments of Neurology and Neonatology, Children's National Health Systems, Washington, District of Columbia
| | | | - Sarah B Mulkey
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Krisa P Van Meurs
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California
| | | | | | | | | | - Michael E Msall
- Section of Developmental and Behavioral Pediatrics, Department of Pediatrics, University of Chicago Medicine, Comer Children's Hospital, Chicago, Illinois; and
| | - Sonia L Bonifacio
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California
| | - Hannah C Glass
- Departments of Neurology, Pediatrics, and Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - An N Massaro
- Neonatology, Children's National Health Systems, Washington, District of Columbia
| | - Lawrence Dong
- Department of Pediatrics, Kaiser Permanente Santa Clara, Santa Clara, California
| | - Katherine W Tan
- Biostatistics, University of Washington, Seattle, Washington
| | | | | |
Collapse
|
31
|
Larpthaveesarp A, Georgevits M, Ferriero DM, Gonzalez FF. Delayed erythropoietin therapy improves histological and behavioral outcomes after transient neonatal stroke. Neurobiol Dis 2016; 93:57-63. [PMID: 27142685 DOI: 10.1016/j.nbd.2016.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 04/06/2016] [Accepted: 04/29/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Stroke is a major cause of neonatal morbidity, often with delayed diagnosis and with no accepted therapeutic options. The purpose of this study is to investigate the efficacy of delayed initiation of multiple dose erythropoietin (EPO) therapy in improving histological and behavioral outcomes after early transient ischemic stroke. METHODS 32 postnatal day 10 (P10) Sprague-Dawley rats underwent sham surgery or transient middle cerebral artery occlusion (tMCAO) for 3h, resulting in injury involving the striatum and parieto-temporal cortex. EPO (1000U/kg per dose×3 doses) or vehicle was administered intraperitoneally starting one week after tMCAO (at P17, P20, and P23). At four weeks after tMCAO, sensorimotor function was assessed in these four groups (6 vehicle-sham, 6 EPO-sham, 10 vehicle-tMCAO and 10 EPO-tMCAO) with forepaw preference in cylinder rearing trials. Brains were then harvested for hemispheric volume and Western blot analysis. RESULTS EPO-tMCAO animals had significant improvement in forepaw symmetry in cylinder rearing trials compared to vehicle-tMCAO animals, and did not differ from sham animals. There was also significant preservation of hemispheric brain volume in EPO-tMCAO compared to vehicle-tMCAO animals. No differences in ongoing cell death at P17 or P24 were noted by spectrin cleavage in either EPO-tMCAO or vehicle-tMCAO groups. CONCLUSIONS These results suggest that delayed EPO therapy improves both behavioral and histological outcomes at one month following transient neonatal stroke, and may provide a late treatment alternative for early brain injury.
Collapse
Affiliation(s)
- Amara Larpthaveesarp
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, United States
| | - Margaret Georgevits
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, United States
| | - Donna M Ferriero
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, United States; Department of Neurology, University of California San Francisco, San Francisco, CA 94143, United States
| | - Fernando F Gonzalez
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, United States.
| |
Collapse
|
32
|
Huang Y, Chen HJ, Zhu JH, Zhao FY, Qu Y, Mu DZ. [Effects of PINK1 gene on cell apoptosis and cell autophagy in neonatal mice with hypoxic-ischemic brain damage]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:263-269. [PMID: 26975827 PMCID: PMC7389992 DOI: 10.7499/j.issn.1008-8830.2016.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/03/2016] [Indexed: 06/05/2023]
Abstract
OBJECTIVE To study the effect of PINK1 (phosphatase and tensin homolog deleted on chromosome ten induced putative kinase 1) gene on cell apoptosis and cell autophagy in neonatal mice with hypoxic-ischemic brain damage (HIBD). METHODS Seventy-two wild-type C57BL/6 mice and 72 PINK1 gene knockout neonatal C57BL/6 mice were randomly divided into four groups: sham-operated wild-type (SWT), HIBD model wild-type (MWT), sham-operated knockout (SKO) and HIBD model knockout (MKO). HIBD model was prepared by low oxygen exposure for 2.5 hours after right carotid artery ligation. After 24 hours of hypoxia-ischemia treatment, TTC (2,3,5-triphenyl four azole nitrogen chloride) staining was used to measure brain infarct volume. The immunohistochemical staining was used to measure the expression of cell apoptosis protein cleaved-caspase-3 (CC3) in brain tissues. The TUNEL method was used to measure cell apoptosis. The immunofluorescence staining and Western blot were used to measure the expression of cell autophagy protein LC3. RESULTS Compared with the MWT group, the infarct volume of brain tissues was markedly reduced in the MKO group (P<0.05), the number of apoptotic cells and the cell apoptosis index were markedly decreased in the MKO group (P<0.05), the expression of apoptosis protein CC3 was significantly reduced in the MKO group (P<0.05), the expression of cell autophagy protein LC3 was significantly decreased in the MKO group, and the autophagy indicator LC3II/LC3I was also markedly reduced in the MKO group (P<0.05). CONCLUSIONS PINK1 gene knockout can protect neonatal mice from HIBD.
Collapse
Affiliation(s)
- Yang Huang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | | | | | | | | | | |
Collapse
|
33
|
Lee HJ, Koh SH, Song KM, Seol IJ, Park HK. The Akt/mTOR/p70S6K Pathway Is Involved in the Neuroprotective Effect of Erythropoietin on Hypoxic/Ischemic Brain Injury in a Neonatal Rat Model. Neonatology 2016; 110:93-100. [PMID: 27070481 DOI: 10.1159/000444360] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/01/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND The mTOR (mammalian target of rapamycin) signaling pathway is a master regulator of cell growth and proliferation in the nervous system. However, the effects of erythropoietin (EPO) treatment on the mTOR signaling pathway have not been elucidated in neonates with hypoxic/ischemic (H/I) brain injury. OBJECTIVES We investigated the mechanism underlying the neuroprotective effect of EPO by analyzing the mTOR signaling pathway after H/I injury in a neonatal rat model. METHODS Seven-day-old rats were subjected to left carotid artery ligation and hypoxic exposure (8%) for 90 min (H/I). EPO at a dose of either 3,000 U/kg or a vehicle (V) was administered by intraperitoneal injection 0, 24 and 48 h after H/I. At 72 h after H/I (postnatal day 10), 2,3,5-triphenyltetrazolium chloride staining, myelin basic protein (MBP) immunofluorescence staining and Western blot analysis of the Akt/mTOR/p70S6K pathway were performed. Neuromotor behavioral tests included Rotarod challenge and cylinder rearing test 1 performed 3 and 6 weeks after H/I. RESULTS EPO treatment resulted in significant offsetting of MBP depletion ipsilateral (p = 0.001) and contralateral (p = 0.003) to ligation. Western blot analysis showed that the relative immunoreactivity of phosphorylated (p)-Akt, p-mTOR and p-p70S6K ipsilateral to ligation was significantly decreased in the H/I+V group compared with the sham-operated groups. However, EPO treatment significantly upregulated Akt/mTOR/p70S6K signals ipsilateral to ligation compared to the H/I+V group. The behavior tests showed that EPO attenuates long-term impairment in Rotarod challenge and cylinder test performance from 3-6 weeks. CONCLUSION This study demonstrates an underlying mechanism of the mTOR signaling pathway after EPO treatment, which is a potential target for treating H/I-induced brain injury.
Collapse
Affiliation(s)
- Hyun Ju Lee
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
34
|
Jin C, Londono I, Mallard C, Lodygensky GA. New means to assess neonatal inflammatory brain injury. J Neuroinflammation 2015; 12:180. [PMID: 26407958 PMCID: PMC4583178 DOI: 10.1186/s12974-015-0397-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/10/2015] [Indexed: 01/23/2023] Open
Abstract
Preterm infants are especially vulnerable to infection-induced white matter injury, associated with cerebral palsy, cognitive and psychomotor impairment, and other adverse neurological outcomes. The etiology of such lesions is complex and multifactorial. Furthermore, timing and length of exposure to infection also influence neurodevelopmental outcomes. Different mechanisms have been posited to mediate the observed brain injury including microglial activation followed by subsequent release of pro-inflammatory species, glutamate-induced excitotoxicity, and vulnerability of developing oligodendrocytes to cerebral insults. The prevalence of such neurological impairments requires an urgent need for early detection and effective neuroprotective strategies. Accordingly, noninvasive methods of monitoring disease progression and therapy effectiveness are essential. While diagnostic tools using biomarkers from bodily fluids may provide useful information regarding potential risks of developing neurological diseases, the use of magnetic resonance imaging/spectroscopy has emerged as a promising candidate for such purpose. Various pharmacological agents have demonstrated protective effects in the immature brain in animal models; however, few studies have progressed to clinical trials with promising results.
Collapse
Affiliation(s)
- Chen Jin
- Department of Pediatrics, Sainte-Justine Hospital and Research Center, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada.
| | - Irene Londono
- Department of Pediatrics, Sainte-Justine Hospital and Research Center, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada.
| | - Carina Mallard
- Perinatal Center, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden.
| | - Gregory A Lodygensky
- Department of Pediatrics, Sainte-Justine Hospital and Research Center, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada. .,Montreal Heart Institute, 5000 Rue Bélanger, Montréal, Québec, Canada. .,Department of Neuroscience and Pharmacology, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
35
|
Larpthaveesarp A, Ferriero DM, Gonzalez FF. Growth factors for the treatment of ischemic brain injury (growth factor treatment). Brain Sci 2015; 5:165-77. [PMID: 25942688 PMCID: PMC4493462 DOI: 10.3390/brainsci5020165] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/13/2015] [Accepted: 04/21/2015] [Indexed: 12/11/2022] Open
Abstract
In recent years, growth factor therapy has emerged as a potential treatment for ischemic brain injury. The efficacy of therapies that either directly introduce or stimulate local production of growth factors and their receptors in damaged brain tissue has been tested in a multitude of models for different Central Nervous System (CNS) diseases. These growth factors include erythropoietin (EPO), vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and insulin-like growth factor (IGF-1), among others. Despite the promise shown in animal models, the particular growth factors that should be used to maximize both brain protection and repair, and the therapeutic critical period, are not well defined. We will review current pre-clinical and clinical evidence for growth factor therapies in treating different causes of brain injury, as well as issues to be addressed prior to application in humans.
Collapse
Affiliation(s)
- Amara Larpthaveesarp
- Department of Pediatrics, University of California, San Francisco, CA 94158, USA.
| | - Donna M Ferriero
- Departments of Pediatrics and Neurology, University of California, San Francisco, CA 94158, USA.
| | - Fernando F Gonzalez
- Department of Pediatrics, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
36
|
Wu YW, Gonzalez FF. Erythropoietin: a novel therapy for hypoxic-ischaemic encephalopathy? Dev Med Child Neurol 2015; 57 Suppl 3:34-9. [PMID: 25800490 DOI: 10.1111/dmcn.12730] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2014] [Indexed: 11/27/2022]
Abstract
Perinatal hypoxic-ischaemic encephalopathy (HIE) occurs in 1 to 3 per 1000 term births. HIE is not preventable in most cases, and therapies are limited. Hypothermia improves outcomes and is the current standard of care. Yet, clinical trials suggest that 44-53% of infants who receive hypothermia will die or suffer moderate to severe neurological disability. In this article, we review the preclinical and clinical evidence for erythropoietin (EPO) as a potential novel neuroprotective agent for the treatment of HIE. EPO is a novel neuroprotective agent, with remarkable neuroprotective and neuroregenerative effects in animals. Rodent and primate models of neonatal brain injury support the safety and efficacy of multiple EPO doses for improving histological and functional outcomes after hypoxia-ischaemia. Small clinical trials of EPO in neonates with HIE have also provided evidence supporting safety and preliminary efficacy in humans. There is currently insufficient evidence to support the use of high-dose EPO in newborns with HIE. However, several on-going trials will provide much needed data regarding the safety and efficacy of this potential new therapy when given in conjunction with hypothermia for HIE. Novel neuroprotective therapies are needed to further reduce the rate and severity of neurodevelopmental disabilities resulting from HIE. High-dose EPO is a promising therapy that can be administered in conjunction with hypothermia. However, additional data are needed to determine the safety and efficacy of this adjuvant therapy for HIE.
Collapse
Affiliation(s)
- Yvonne W Wu
- Department of Neurology, University of California, San Francisco, CA, USA; Department of Pediatrics, University of California, San Francisco, CA, USA
| | | |
Collapse
|
37
|
Torun YA, Ozdemir MA, Ulger H, Nisari M, Akalın H, Patıroglu T, Ozkul Y, Onal M, Karakukcu M. Erythropoietin improves brain development in short-term hypoxia in rat embryo cultures. Brain Dev 2014; 36:864-9. [PMID: 24529975 DOI: 10.1016/j.braindev.2014.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/07/2014] [Accepted: 01/14/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND Hypoxic ischemic encephalopathy continues to be a significant cause of death and disability worldwide. Erythropoietin (EPO) has the potential to lessen neurologic sequelae due to hypoxia-ischemia. METHODS The in vitro effects of EPO on total embryonic development and brain VEGF receptor (VEGFR) expressions were investigated in 50 rat embryos at 9.5 days of gestation that were cultured in whole rat serum (WRS). According to the study protocol, the embryos were divided into two groups. The first group is comprised hypoxia, 100 and 50 U/ml EPO after hypoxia groups. Group 2 comprised control (WRS) and WRS+EPO. After 48-h culture, the embryos from each group were harvested to be analyzed according to a morphological scoring system and also genetically to measure brain VEGFR expression. RESULTS The mean morphological scores for the embryos grown in control, WRS+EPO, hypoxia, and in the presence of 100 and 50 U/ml EPO in hypoxic medium were 55.30±7.22, 52.10±5.27, 23.0±4.60, 36.20±5.07, and 19.70±5.07, respectively. Expressions of VEGFR-1, -2, -3 were significantly elevated in the 100U/ml EPO and WRS+EPO groups compared to the hypoxia group (p<0.05). CONCLUSIONS These results support the conclusion that (1) VEGFR-1, -2, -3 may increase with EPO treatment in hypoxic conditions, (2) VEGF and EPO may be part of a self-regulated physiological protection mechanism to prevent neuronal injury including in utero neural tube defects.
Collapse
Affiliation(s)
- Yasemin Altuner Torun
- Erciyes University, Faculty of Medicine, Department of Pediatric Hematology, 38039 Kayseri, Turkey.
| | - Mehmet Akif Ozdemir
- Erciyes University, Faculty of Medicine, Department of Pediatric Hematology, 38039 Kayseri, Turkey
| | - Harun Ulger
- Erciyes University, Faculty of Medicine, Department of Anatomy and Clinical Research Institute, 38039 Kayseri, Turkey
| | - Mehtap Nisari
- Erciyes University, Faculty of Medicine, Department of Anatomy and Clinical Research Institute, 38039 Kayseri, Turkey
| | - Hilal Akalın
- Erciyes University, Faculty of Medicine, Department of Genetics, 38039 Kayseri, Turkey
| | - Turkan Patıroglu
- Erciyes University, Faculty of Medicine, Department of Pediatric Hematology, 38039 Kayseri, Turkey
| | - Yusuf Ozkul
- Erciyes University, Faculty of Medicine, Department of Genetics, 38039 Kayseri, Turkey
| | - Muge Onal
- Erciyes University, Faculty of Medicine, Department of Genetics, 38039 Kayseri, Turkey
| | - Musa Karakukcu
- Erciyes University, Faculty of Medicine, Department of Pediatric Hematology, 38039 Kayseri, Turkey
| |
Collapse
|
38
|
Gonzales-Portillo GS, Reyes S, Aguirre D, Pabon MM, Borlongan CV. Stem cell therapy for neonatal hypoxic-ischemic encephalopathy. Front Neurol 2014; 5:147. [PMID: 25161645 PMCID: PMC4130306 DOI: 10.3389/fneur.2014.00147] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 07/22/2014] [Indexed: 11/27/2022] Open
Abstract
Treatments for neonatal hypoxic-ischemic encephalopathy (HIE) have been limited. The aim of this paper is to offer translational research guidance on stem cell therapy for neonatal HIE by examining clinically relevant animal models, practical stem cell sources, safety and efficacy of endpoint assays, as well as a general understanding of modes of action of this cellular therapy. In order to do so, we discuss the clinical manifestations of HIE, highlighting its overlapping pathologies with stroke and providing insights on the potential of cell therapy currently investigated in stroke, for HIE. To this end, we draw guidance from recommendations outlined in stem cell therapeutics as an emerging paradigm for stroke or STEPS, which have been recently modified to Baby STEPS to cater for the “neonatal” symptoms of HIE. These guidelines recognized that neonatal HIE exhibit distinct disease symptoms from adult stroke in need of an innovative translational approach that facilitates the entry of cell therapy in the clinic. Finally, new information about recent clinical trials and insights into combination therapy are provided with the vision that stem cell therapy may benefit from available treatments, such as hypothermia, already being tested in children diagnosed with HIE.
Collapse
Affiliation(s)
| | - Stephanny Reyes
- Department of Neurosurgery and Brain Repair, University of South Florida , Tampa, FL , USA
| | - Daniela Aguirre
- Department of Neurosurgery and Brain Repair, University of South Florida , Tampa, FL , USA
| | - Mibel M Pabon
- Department of Neurosurgery and Brain Repair, University of South Florida , Tampa, FL , USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida , Tampa, FL , USA
| |
Collapse
|
39
|
Back SA, Rosenberg PA. Pathophysiology of glia in perinatal white matter injury. Glia 2014; 62:1790-815. [PMID: 24687630 DOI: 10.1002/glia.22658] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/13/2014] [Accepted: 02/27/2014] [Indexed: 12/12/2022]
Abstract
Injury to the preterm brain has a particular predilection for cerebral white matter. White matter injury (WMI) is the most common cause of brain injury in preterm infants and a major cause of chronic neurological morbidity including cerebral palsy. Factors that predispose to WMI include cerebral oxygenation disturbances and maternal-fetal infection. During the acute phase of WMI, pronounced oxidative damage occurs that targets late oligodendrocyte progenitors (pre-OLs). The developmental predilection for WMI to occur during prematurity appears to be related to both the timing of appearance and regional distribution of susceptible pre-OLs that are vulnerable to a variety of chemical mediators including reactive oxygen species, glutamate, cytokines, and adenosine. During the chronic phase of WMI, the white matter displays abberant regeneration and repair responses. Early OL progenitors respond to WMI with a rapid robust proliferative response that results in a several fold regeneration of pre-OLs that fail to terminally differentiate along their normal developmental time course. Pre-OL maturation arrest appears to be related in part to inhibitory factors that derive from reactive astrocytes in chronic lesions. Recent high field magnetic resonance imaging (MRI) data support that three distinct forms of chronic WMI exist, each of which displays unique MRI and histopathological features. These findings suggest the possibility that therapies directed at myelin regeneration and repair could be initiated early after WMI and monitored over time. These new mechanisms of acute and chronic WMI provide access to a variety of new strategies to prevent or promote repair of WMI in premature infants.
Collapse
Affiliation(s)
- Stephen A Back
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon; Department of Neurology, Oregon Health and Science University, Portland, Oregon
| | | |
Collapse
|
40
|
Zhang J, Wang Q, Xiang H, Xin Y, Chang M, Lu H. Neuroprotection with erythropoietin in preterm and/or low birth weight infants. J Clin Neurosci 2014; 21:1283-7. [PMID: 24650681 DOI: 10.1016/j.jocn.2013.10.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/13/2013] [Accepted: 10/27/2013] [Indexed: 12/01/2022]
Abstract
Neonatal brain injury caused by extreme prematurity remains a great challenge for prevention. Erythropoietin (EPO) has shown neuroprotective effects in a series of neonatal experimental models and recent clinical trials of premature infants. In this meta-analysis of seven clinical trials, EPO was associated with a highly reproducible reduction in the risk of neurodevelopmental disability in preterm infants. However, there was no difference in the risk for morbidity, cerebral palsy, visual deficit, severe hearing deficit, necrotizing enterocolitis, intracranial hemorrhage and patent ductus arteriosus. The use of EPO, to some extent, is associated with reduction in neurodevelopmental disability in preterm infants. More double blind randomized controlled trials are needed to establish the best therapeutic approach for neuroprotection in preterm infants.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, Jiangsu Province, PR China
| | - Qiuxia Wang
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, Jiangsu Province, PR China
| | - Hong Xiang
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, Jiangsu Province, PR China
| | - Yue Xin
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, Jiangsu Province, PR China
| | - Ming Chang
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, Jiangsu Province, PR China
| | - Hongyan Lu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, Jiangsu Province, PR China.
| |
Collapse
|
41
|
Kooijman E, Nijboer CH, van Velthoven CTJ, Kavelaars A, Kesecioglu J, Heijnen CJ. The rodent endovascular puncture model of subarachnoid hemorrhage: mechanisms of brain damage and therapeutic strategies. J Neuroinflammation 2014; 11:2. [PMID: 24386932 PMCID: PMC3892045 DOI: 10.1186/1742-2094-11-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/17/2013] [Indexed: 01/05/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) represents a considerable health problem. To date, limited therapeutic options are available. In order to develop effective therapeutic strategies for SAH, the mechanisms involved in SAH brain damage should be fully explored. Here we review the mechanisms of SAH brain damage induced by the experimental endovascular puncture model. We have included a description of similarities and distinctions between experimental SAH in animals and human SAH pathology. Moreover, several novel treatment options to diminish SAH brain damage are discussed.SAH is accompanied by cerebral inflammation as demonstrated by an influx of inflammatory cells into the cerebral parenchyma, upregulation of inflammatory transcriptional pathways and increased expression of cytokines and chemokines. Additionally, various cell death pathways including cerebral apoptosis, necrosis, necroptosis and autophagy are involved in neuronal damage caused by SAH.Treatment strategies aiming at inhibition of inflammatory or cell death pathways demonstrate the importance of these mechanisms for survival after experimental SAH. Moreover, neuroregenerative therapies using stem cells are discussed as a possible strategy to repair the brain after SAH since this therapy may extend the window of treatment considerably. We propose the endovascular puncture model as a suitable animal model which resembles the human pathology of SAH and which could be applied to investigate novel therapeutic therapies to combat this debilitating insult.
Collapse
Affiliation(s)
- Elke Kooijman
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cora H Nijboer
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cindy TJ van Velthoven
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annemieke Kavelaars
- Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jozef Kesecioglu
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cobi J Heijnen
- Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
42
|
Marks KA. Hypoxic–ischemic brain injury and neuroprotection in the newborn infant. FUTURE NEUROLOGY 2013. [DOI: 10.2217/fnl.13.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent clinical trials have confirmed that in term infants with moderate-to-severe hypoxic–ischemic encephalopathy, death and severe developmental disability can be reduced by early treatment with hypothermia. However, meta-analysis of these trials has confirmed that two-thirds of the survivors remain seriously impaired. The search for new neuroprotective interventions has therefore continued. Extensive research has identified the important biochemical pathways that result in neuronal loss, and the subsequent repair and regeneration processes. The most promising neuroprotective agents that limit the former, and promote the latter, are being tested in animal models of hypoxic–ischemic brain injury and are awaiting clinical trials. It is likely that a ‘cocktail’ of agents, affecting a number of pathways, will ultimately prove to be the most effective intervention. The latest additions to a long list of proposed substances are various stem cells that promote neurogenesis by releasing trophic substances into the injured brain. Future clinical trials are likely to employ early biomarkers, of which MRI and proton spectroscopy are probably the most predictive of long-term neurodevelopmental outcome. In conclusion, the exponential increase in knowledge in this field can be expected to provide many more neuroprotective agents within the next decade.
Collapse
Affiliation(s)
- Kyla-Anna Marks
- Department of Neonatal Medicine, Soroka University Medical Centre, PO Box 151, Beersheva, Israel
| |
Collapse
|
43
|
McAdams RM, McPherson RJ, Juul SE. Response to dr C dame. J Perinatol 2013; 33:412. [PMID: 23624974 DOI: 10.1038/jp.2012.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Haynes RL, van Leyen K. 12/15-lipoxygenase expression is increased in oligodendrocytes and microglia of periventricular leukomalacia. Dev Neurosci 2013; 35:140-54. [PMID: 23838566 DOI: 10.1159/000350230] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 02/21/2013] [Indexed: 01/19/2023] Open
Abstract
Oxidative stress involving premyelinating oligodendrocytes (OLs) is a major factor in the pathogenesis of preterm white matter injury. In animal and cell culture studies, activation of the lipid-oxidizing enzyme 12/15-lipoxygenase (12/15-LOX) plays a central role as an inflammatory mediator in the pathology of oxidative stress and OL cell death, as well as ischemia and neuronal death. The role of 12/15-LOX, however, is unclear in the developing human brain. The mechanism of 12/15-LOX involves the production of reactive oxygen species through the metabolism of arachidonic acid, as well as direct detrimental effects on organelle membranes. Here we tested the hypothesis that the density of 12/15-LOX-expressing cells is increased in periventricular leukomalacia (PVL). Using immunocytochemistry (ICC) in human paraffin-embedded tissue, 12/15-LOX expression was seen in macrophages of the focally necrotic lesions in the periventricular white matter, as well as in glial cells throughout the surrounding white matter with reactive gliosis. Interestingly, no significant 12/15-LOX expression was detected in neurons in the cerebral cortex overlying the damaged white matter. Using a scoring system from 0 to 3, we assessed the density of 12/15-LOX-expressing cells in diffusely gliotic white matter from 20 to 43 postconceptional (PC) weeks in 19 PVL cases (median = 36 PC weeks) and 10 control (non-PVL) cases (median = 34 PC weeks). The density of 12/15-LOX-positive cells was significantly increased in the diffuse component of PVL (score = 1.17 ± 0.15) compared to controls (score = 0.48 ± 0.21; p = 0.014). Using double-label ICC, 12/15-LOX was observed in PVL in OLs of the O4 and O1 premyelinating stages, as well as in mature OLs as determined with the mature OL marker adenomatous polyposis coli (APC). In addition, 12/15-LOX expression was present in a population of CD68-positive activated microglia. There was no 12/15-LOX expression in reactive astrocytes. Finally we observed terminal deoxynucleotide transferase dUTP nick end-labeling-positive cells within the white matter of PVL that expressed 12/15-LOX and/or within close proximity of 12/15-LOX-positive cells. Our data support a role for 12/15-LOX activation as an inflammatory mediator of injury in PVL, with a contribution of 12/15-LOX to PVL-induced damage to or cell death of OLs, including those at the O1 and O4 stages.
Collapse
Affiliation(s)
- Robin L Haynes
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
45
|
Ergaz Z, Ornoy A. Perinatal and early postnatal factors underlying developmental delay and disabilities. ACTA ACUST UNITED AC 2013; 17:59-70. [PMID: 23362026 DOI: 10.1002/ddrr.1101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 06/13/2012] [Indexed: 12/26/2022]
Abstract
A delay in meeting developmental milestones may be secondary to perinatal events, involving complicated interactions between mother and fetus during delivery. Maternal factors including weight, diet, and morbidities can affect neonatal adaptation and later development. Prematurity, low birth weight, and previous intrauterine insults as well as complications during delivery of a previously normal fetus increase the risk for perinatal stress. In this article, the literature on perinatal and early postnatal factors that underlie risks for developmental delay and disabilities is reviewed. Studies that concern neuroprotective therapies and prediction of long-term neurologic outcome by clinical examination, neuroimaging techniques, and electroencephalographic studies are reviewed as well.
Collapse
Affiliation(s)
- Zivanit Ergaz
- Department of Neonatology, Hebrew University Hadassah Medical School, Jerusalem, Israel.
| | | |
Collapse
|
46
|
Abstract
OBJECTIVE To evaluate long-term outcomes of 60 extremely low birth weight (ELBW) infants treated with or without three injections of high-dose erythropoietin (Epo). STUDY DESIGN A retrospective analysis of anthropometric and neurodevelopmental outcome data comparing 30 ELBW infants enrolled in a phase I/II study examining the pharmacokinetics of high-dose Epo (500, 1000 and 2500 U/kg × 3 doses) administered to 30 concurrent controls. RESULT Birth characteristics and growth from 4 to 36 months were similar for untreated and Epo-treated patients. Multiple linear regression analysis of neurodevelopmental follow-up scores from 17/25 Epo-treated and 18/26 control infants identified that Epo correlated with improvement of cognitive (R=0.22, P=0.044) and motor (R=0.15, P=0.026) scores. No negative long-term effects of Epo treatment were evident. CONCLUSION Retrospective analysis of the only available long-term follow-up data from ELBW infants given high-dose Epo treatment suggests that Epo treatment is safe and correlates with modest improvement of neurodevelopmental outcomes.
Collapse
|
47
|
Pabon MM, Borlongan CV. ADVANCES IN THE CELL-BASED TREATMENT OF NEONATAL HYPOXIC-ISCHEMIC BRAIN INJURY. FUTURE NEUROLOGY 2013; 8:193-203. [PMID: 23565051 DOI: 10.2217/fnl.12.85] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stem cell therapy for adult stroke has reached limited clinical trials. Here, we provide translational research guidance on stem cell therapy for neonatal hypoxic-ischemic brain injury requiring a careful consideration of clinically relevant animal models, feasible stem cell sources, and validated safety and efficacy endpoint assays, as well as a general understanding of modes of action of this cellular therapy. To this end, we refer to existing translational guidelines, in particular the recommendations outlined in the consortium of academicians, industry partners and regulators called Stem cell Therapeutics as an Emerging Paradigm for Stroke or STEPS. Although the STEPS guidelines are directed at enhancing the successful outcome of cell therapy in adult stroke, we highlight overlapping pathologies between adult stroke and neonatal hypoxic-ischemic brain injury. We are, however, cognizant that the neonatal hypoxic-ischemic brain injury displays disease symptoms distinct from adult stroke in need of an innovative translational approach that facilitates the entry of cell therapy in the clinic. Finally, insights into combination therapy are provided with the vision that stem cell therapy may benefit from available treatments, such as hypothermia, already being tested in children diagnosed with hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Mibel M Pabon
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, Florida 33612 USA
| | | |
Collapse
|
48
|
Cansev M, Minbay Z, Goren B, Yaylagul EO, Cetinkaya M, Koksal N, Alkan T. Neuroprotective effects of uridine in a rat model of neonatal hypoxic-ischemic encephalopathy. Neurosci Lett 2013; 542:65-70. [PMID: 23458674 DOI: 10.1016/j.neulet.2013.02.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/07/2013] [Accepted: 02/20/2013] [Indexed: 10/27/2022]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a major cause of neurological disability requiring newer therapeutic strategies. Uridine is the principal circulating pyrimidine in humans and a substrate for nucleotides and membrane phospholipids. The objective of this study was to investigate the effects of uridine in a neonatal rat model of HIE. Rat pups subjected to hypoxic-ischemic insult on postnatal day 7 were injected intraperitoneally with either saline or uridine (100, 300 or 500mg/kg) for three consecutive days and brains were collected for evaluation of brain infarct volume and apoptosis. Compared with Control group, uridine at 300 and 500mg/kg doses significantly reduced percent infarct volume, TUNEL(+) cell ratio and active Caspase-3 immunoreactivity in the cortex, as well as in CA1 and CA3 regions of the hippocampus. Uridine (300 and 500mg/kg) also decreased active Caspase-3 expression in the ipsilateral hemisphere. These data indicate that uridine dose-dependently reduces brain injury in a rat model of neonatal HIE by decreasing apoptosis.
Collapse
Affiliation(s)
- Mehmet Cansev
- Uludag University Medical School, Department of Pharmacology, Turkey
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
This review summarizes target populations of neonates for which erythropoietin (Epo) neuroprotective therapy might be of benefit, and the mechanisms by which Epo functions as a neuroprotective agent. Potential risks of Epo are reviewed. Finally, the progression of Epo neuroprotection from preclinical studies to translational studies is discussed.
Collapse
Affiliation(s)
- Sandra Juul
- Department of Paediatrics, Neonatology Division, University of Washington, Seattle, Washington 98195-6320, USA.
| |
Collapse
|
50
|
Park D, Lee SH, Bae DK, Yang YH, Yang G, Kyung J, Kim D, Choi EK, Hong JT, Shin IS, Kang SK, Ra JC, Kim YB. Transplantation of Human Adipose Tissue-Derived Mesenchymal Stem Cells Restores the Neurobehavioral Disorders of Rats With Neonatal Hypoxic-Ischemic Encephalopathy. CELL MEDICINE 2013; 5:17-28. [PMID: 26858861 DOI: 10.3727/215517913x658936] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Improving the effects of human adipose tissue-derived mesenchymal stem cells (ASCs) on the demyelination and neurobehavioral function was investigated in an experimental model of neonatal hypoxic-ischemic encephalopathy (HIE). Seven-day-old male rats were subjected to hypoxia-ischemia-lipopolysaccharide and intracerebroventricularly transplanted with human ASCs (4 × 10(5) cells/rat) once at postnatal day 10 (PND10) or repeatedly at PND10, 17, 27, and 37. Neurobehavioral abnormalities (at PND20, 30, and 40) and cognitive functions (at PND41-44) were evaluated using multiple test systems. Human ASCs recovered the using ratio of forelimb contralateral to the injured brain, improved locomotor activity, and restored rota-rod performance of HIE animals, in addition to showing a marked improvement of cognitive functions. It was confirmed that transplanted human ASCs migrated to injured areas and differentiated into oligodendrocytes expressing myelin basic protein (MBP). Moreover, transplanted ASCs restored production of growth and neurotrophic factors and expression of decreased inflammatory cytokines, leading to attenuation of host MBP loss. The results indicate that transplanted ASCs restored neurobehavioral functions by producing MBP as well as by preserving host myelins, which might be mediated by ASCs' anti-inflammatory activity and release of growth and neurotrophic factors.
Collapse
Affiliation(s)
- Dongsun Park
- College of Veterinary Medicine, Chungbuk National University , Cheongju , Republic of Korea
| | - Sun Hee Lee
- College of Veterinary Medicine, Chungbuk National University , Cheongju , Republic of Korea
| | - Dae Kwon Bae
- College of Veterinary Medicine, Chungbuk National University , Cheongju , Republic of Korea
| | - Yun-Hui Yang
- College of Veterinary Medicine, Chungbuk National University , Cheongju , Republic of Korea
| | - Goeun Yang
- College of Veterinary Medicine, Chungbuk National University , Cheongju , Republic of Korea
| | - Jangbeen Kyung
- College of Veterinary Medicine, Chungbuk National University , Cheongju , Republic of Korea
| | - Dajeong Kim
- College of Veterinary Medicine, Chungbuk National University , Cheongju , Republic of Korea
| | - Ehn-Kyoung Choi
- College of Veterinary Medicine, Chungbuk National University , Cheongju , Republic of Korea
| | - Jin Tae Hong
- † College of Pharmacy, Chungbuk National University , Cheongju , Republic of Korea
| | - Il Seob Shin
- ‡ Stem Cell Research Center, RNL BIO Co., Ltd. , Seoul , Republic of Korea
| | - Sung Keun Kang
- ‡ Stem Cell Research Center, RNL BIO Co., Ltd. , Seoul , Republic of Korea
| | - Jeong Chan Ra
- ‡ Stem Cell Research Center, RNL BIO Co., Ltd. , Seoul , Republic of Korea
| | - Yun-Bae Kim
- College of Veterinary Medicine, Chungbuk National University , Cheongju , Republic of Korea
| |
Collapse
|