1
|
Valentín C, Paula A, Verónica B, Fabiola MA. Alcohol outcomes on anxiety, impulsivity and spatial memory: Possible Omega-3 amelioration effects. Prog Neuropsychopharmacol Biol Psychiatry 2025:111281. [PMID: 39904400 DOI: 10.1016/j.pnpbp.2025.111281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
Alcohol consumption is a worldwide concern that causes 5 % of the global disease burden and contributes to 3 million deaths per year. Several studies suggest an increase in alcohol drinking and alcohol related problems. Alcohol Use Disorder (formerly referred as alcoholism or alcohol addiction) is one of many possible outcomes of an early and prolonged alcohol consumption and it is highly comorbid with anxiety disorders, impulsivity and memory deficits among others. In this review we approach recent data about global and American prevalence of alcohol use and discuss different factors that contribute to alcohol consumption. Furthermore, we revise evidence of ethanol effects on anxiety-like behaviors, impulsivity and spatial memory. Lastly, we look at the Omega-3 fatty acid as a possible course of action in mitigating the aforementioned deleterious effects of alcohol consumption.
Collapse
Affiliation(s)
- Cabrera Valentín
- Instituto de Investigaciones Psicológicas, (IIPsi-CONICET-UNC), Córdoba, Argentina
| | - Abate Paula
- Instituto de Investigaciones Psicológicas, (IIPsi-CONICET-UNC), Córdoba, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Balaszczuk Verónica
- Instituto de Investigaciones Psicológicas, (IIPsi-CONICET-UNC), Córdoba, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Macchione Ana Fabiola
- Instituto de Investigaciones Psicológicas, (IIPsi-CONICET-UNC), Córdoba, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
2
|
Centanni SW, Bedse G, Patel S, Winder DG. Driving the Downward Spiral: Alcohol-Induced Dysregulation of Extended Amygdala Circuits and Negative Affect. Alcohol Clin Exp Res 2019; 43:2000-2013. [PMID: 31403699 PMCID: PMC6779502 DOI: 10.1111/acer.14178] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/07/2019] [Indexed: 12/17/2022]
Abstract
Alcohol use disorder (AUD) afflicts a large number of individuals, families, and communities globally. Affective disturbances, including stress, depression, and anxiety, are highly comorbid with AUD, contributing in some cases to initial alcohol use and continued use. Negative affect has a particularly strong influence on the withdrawal/abstinence stage of addiction as individuals with AUD frequently report stressful events, depression, and anxiety as key factors for relapse. Treatment options for negative affect associated with AUD are limited and often ineffective, highlighting the pressing need for preclinical studies examining the underlying neural circuitry driving AUD-associated negative affect. The extended amygdala (EA) is a set of brain areas collectively involved in generating and regulating affect, and extensive research has defined a critical role for the EA in all facets of substance use disorder. Here, we review the expansive historical literature examining the effects of ethanol exposure on the EA, with an emphasis on the complex EA neural circuitry driving negative affect in all phases of the alcohol addiction cycle. Specifically, this review focuses on the effects of alcohol exposure on the neural circuitry in 2 key components of the EA, the central nucleus of the amygdala and the bed nucleus of the stria terminalis. Additionally, future directions are proposed to advance our understanding of the relationship between AUD-associated negative affect and neural circuitry in the EA, with the long-term goal of developing better diagnostic tools and new pharmacological targets aimed at treating negative affect in AUD. The concepts detailed here will serve as the foundation for a companion review focusing on the potential for the endogenous cannabinoid system in the EA as a novel target for treating the stress, anxiety, and negative emotional state driving AUD.
Collapse
Affiliation(s)
- Samuel W. Centanni
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Molecular Physiology & Biophysics, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Nashville, TN, USA
| | - Gaurav Bedse
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Nashville, TN, USA
| | - Sachin Patel
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Molecular Physiology & Biophysics, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Nashville, TN, USA
| | - Danny G. Winder
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Molecular Physiology & Biophysics, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Nashville, TN, USA
| |
Collapse
|
3
|
Hyperlocomotion and anxiety- like behavior induced by binge ethanol exposure in rat neonates. Possible ameliorative effects of Omega 3. Behav Brain Res 2019; 372:112022. [PMID: 31181220 DOI: 10.1016/j.bbr.2019.112022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 11/20/2022]
Abstract
Maternal alcohol consumption during pregnancy may cause neurocognitive and behavioral disorders that can persist until adulthood. Epidemiological data has revealed an alarming increase in the frequency of alcohol intake in pregnant women. Nutritional variables may also have an impact on the behavioral alterations occasioned by alcohol during development. Moreover, omega-3, a polyunsaturated fatty acid necessary for normal brain development, is deficient in ethanol-treated animals. Although studies have shown that omega-3 supplementation after prenatal ethanol (EtOH) treatment improves some disorders, there are no reports about acute treatment with omega-3 in binge alcohol neurotoxic models during postnatal development. The goal of this study was to determine whether an administration of omega-3, after an acute ethanol dose in neonates, would be able to attenuate alcohol effects in offspring. Male/ female rats were administered ethanol (2.5 g/kg s.c. at 0 and 2 h) or saline on postnatal day (PND) 7, with a single dose of omega-3 (720 mg/kg) 15 min after the last alcohol injection. It was have found that EtOH-treated animals showed hyperlocomotion on PND 14 (pre-juvenile), and anxiety-like behavior was observed at all the three ages studied. Administration of omega-3 after EtOH treatment reduced hyperlocomotion and the anxiety-like behaviors on PND 14, but did not diminish the anxiety on either PND 20 or 30 (juvenile). In conclusion, acute ethanol exposure produced neurobehavioral alterations that persisted in the offspring, with omega-3 able to ameliorate these effects on PND 14. These data are relevant considering that omega-3 administration may have therapeutic effects through mitigating some of ethanol´s damaging consequences.
Collapse
|
4
|
Restraint stress exacerbates cell degeneration induced by acute binge ethanol in the adolescent, but not in the adult or middle-aged, brain. Behav Brain Res 2019; 364:317-327. [PMID: 30797854 DOI: 10.1016/j.bbr.2019.02.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 12/22/2022]
Abstract
Restraint stress (RS) induces neurotoxicity in the hippocampus, yet most of the studies have employed protracted RS (i.e., ≈ 21 days). Binge ethanol can induce brain toxicity, an effect affected by age. It could be postulated that RS may facilitate ethanol-induced neurotoxicity, perhaps to a greater extent in adolescent vs. older subjects. We analyzed whether adolescent, adult or middle-aged male rats exposed to five episodes of RS followed, 72h later, by binge ethanol (i.e., two administrations of 2.5 g/kg ethanol) exhibited hippocampal neurotoxicity. Adolescents, but not adult or middle-aged rats, exhibited sensitivity to the neurotoxic effects of ethanol at dorsal CA2, ventral CA3 and ventral DG, and a neurotoxic effect of stress at dorsal CA1. Moreover, the combination of ethanol and stress exerted a synergistic effect upon cell degeneration at ventral CA1 and CA2, which was restricted to adolescents. Ethanol also increased cell degeneration, irrespective of age or stress, in dorsal CA3 and in dorsal DG; and ethanol and stress had, across all ages, a synergistic effect upon cell degeneration at the dorsal CA1. The greater neurotoxic response of adolescents to ethanol, stress, or ethanol+stress can put them at risk for the development of alcohol problems.
Collapse
|
5
|
Fernández MS, Fabio MC, Miranda-Morales RS, Virgolini MB, De Giovanni LN, Hansen C, Wille-Bille A, Nizhnikov ME, Spear LP, Pautassi RM. Age-related effects of chronic restraint stress on ethanol drinking, ethanol-induced sedation, and on basal and stress-induced anxiety response. Alcohol 2016; 51:89-100. [PMID: 26830848 DOI: 10.1016/j.alcohol.2015.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 10/16/2015] [Accepted: 11/16/2015] [Indexed: 10/22/2022]
Abstract
Adolescents are sensitive to the anxiolytic effect of ethanol, and evidence suggests that they may be more sensitive to stress than adults. Relatively little is known, however, about age-related differences in stress modulation of ethanol drinking or stress modulation of ethanol-induced sedation and hypnosis. We observed that chronic restraint stress transiently exacerbated free-choice ethanol drinking in adolescent, but not in adult, rats. Restraint stress altered exploration patterns of a light-dark box apparatus in adolescents and adults. Stressed animals spent significantly more time in the white area of the maze and made significantly more transfers between compartments than their non-stressed peers. Behavioral response to acute stress, on the other hand, was modulated by prior restraint stress only in adults. Adolescents, unlike adults, exhibited ethanol-induced motor stimulation in an open field. Stress increased the duration of loss of the righting reflex after a high ethanol dose, yet this effect was similar at both ages. Ethanol-induced sleep time was much higher in adult than in adolescent rats, yet stress diminished ethanol-induced sleep time only in adults. The study indicates age-related differences that may increase the risk for initiation and escalation in alcohol drinking.
Collapse
|
6
|
Abstract
"Fetal alcohol spectrum disorders" is a nondiagnostic umbrella term encompassing the wide variations in clinical presentation among individuals that are prenatally exposed to alcohol. This article discusses brain development and central nervous system abnormalities and reviews prevention and interventions for these neurologic manifestations.
Collapse
Affiliation(s)
- Elizabeth L Roszel
- Elizabeth L. Roszel is a primary care PNP at Suncoast Community Health Center, Wimauma, Fla
| |
Collapse
|
7
|
Bordner K, Deak T. Endogenous opioids as substrates for ethanol intake in the neonatal rat: The impact of prenatal ethanol exposure on the opioid family in the early postnatal period. Physiol Behav 2015; 148:100-10. [PMID: 25662024 DOI: 10.1016/j.physbeh.2015.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/21/2015] [Accepted: 02/03/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Despite considerable knowledge that prenatal ethanol exposure can lead to devastating effects on the developing fetus, alcohol consumption by pregnant women remains strikingly prevalent. Both clinical and basic research has suggested that, in addition to possible physical, behavioral, and cognitive deficits, gestational exposure to alcohol may lead to an increased risk for the development of later alcohol-related use and abuse disorders. The current work sought to characterize alterations in endogenous opioid signaling peptides and gene expression produced by ethanol exposure during the last days of gestation. METHODS Experimental subjects were 4-, 8-, and 12-day old infant rats obtained from pregnant females that were given daily intubations of 0, 1, or 2g/kg ethanol during the last few days of gestation (GDs 17-20). Using real-time RT-PCR, western blotting analysis, and enzyme immunoassays, we examined mRNA and protein for three opioid receptors and ligands in the nucleus accumbens, ventral tegmental area, and hypothalamus. RESULTS Three main trends emerged - (1) mRNA for the majority of factors was found to upregulate across each of the three postnatal ages assessed, indicative of escalating ontogenetic expression of opioid-related genes; (2) prenatal ethanol significantly reduced many opioid peptides, suggesting a possible mechanism by which prenatal exposure can affect future responsiveness towards ethanol; and (3) the nucleus accumbens emerged as a key site for ethanol-dependent effects, suggesting a potential target for additional assessment and intervention towards understanding the ethanol's ability to program the developing brain. CONCLUSION We provide a global assessment of relatively long-term changes in both opioid gene expression and protein following exposure to only moderate amounts of ethanol during a relatively short window in the prenatal period. These results suggest that, while continuing to undergo ontogenetic changes, the infant brain is sensitive to prenatal ethanol exposure and that such exposure may lead to relatively long-lasting changes in the endogenous opioid system within the reward circuitry. These data indicate a potential mechanism and target for additional assessments of ethanol's ability to program the brain, affecting later responsiveness towards the drug.
Collapse
Affiliation(s)
- Kelly Bordner
- Department of Psychology, Southern Connecticut State University, New Haven, CT 06515, United States; Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902, United States.
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902, United States; Developmental Exposure Alcohol Research Center (DEARC), Center for Development and Behavioral Neuroscience, Binghamton University-SUNY, Binghamton, NY 13902, United States
| |
Collapse
|
8
|
Sadrian B, Lopez-Guzman M, Wilson DA, Saito M. Distinct neurobehavioral dysfunction based on the timing of developmental binge-like alcohol exposure. Neuroscience 2014; 280:204-19. [PMID: 25241068 DOI: 10.1016/j.neuroscience.2014.09.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 12/24/2022]
Abstract
Gestational exposure to alcohol can result in long-lasting behavioral deficiencies generally described as fetal alcohol spectrum disorder (FASD). FASD-modeled rodent studies of acute ethanol exposure typically select one developmental window to simulate a specific context equivalent of human embryogenesis, and study consequences of ethanol exposure within that particular developmental epoch. Exposure timing is likely a large determinant in the neurobehavioral consequence of early ethanol exposure, as each brain region is variably susceptible to ethanol cytotoxicity and has unique sensitive periods in their development. We made a parallel comparison of the long-term effects of single-day binge ethanol at either embryonic day 8 (E8) or postnatal day 7 (P7) in male and female mice, and here demonstrate the differential long-term impacts on neuroanatomy, behavior and in vivo electrophysiology of two systems with very different developmental trajectories. The significant long-term differences in odor-evoked activity, local circuit inhibition, and spontaneous coherence between brain regions in the olfacto-hippocampal pathway that were found as a result of developmental ethanol exposure, varied based on insult timing. Long-term effects on cell proliferation and interneuron cell density were also found to vary by insult timing as well as by region. Finally, spatial memory performance and object exploration were affected in P7-exposed mice, but not E8-exposed mice. Our physiology and behavioral results are conceptually coherent with the neuroanatomical data attained from these same mice. Our results recognize both variable and shared effects of ethanol exposure timing on long-term circuit function and their supported behavior.
Collapse
Affiliation(s)
- B Sadrian
- Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, United States; Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States.
| | - M Lopez-Guzman
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - D A Wilson
- Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, United States; Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - M Saito
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States; Department of Psychiatry, NYU School of Medicine, New York, NY, United States
| |
Collapse
|
9
|
Boschen KE, Hamilton GF, Delorme JE, Klintsova AY. Activity and social behavior in a complex environment in rats neonatally exposed to alcohol. Alcohol 2014; 48:533-41. [PMID: 25150044 DOI: 10.1016/j.alcohol.2014.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Environmental complexity (EC) is a powerful, stimulating paradigm that engages animals through a variety of sensory and motor pathways. Exposure to EC (30 days) following 12 days of wheel running preserves hippocampal neuroplasticity in male rats neonatally exposed to alcohol during the third-trimester equivalent (binge-like exposure on postnatal days [PD] 4-9). The current experiment investigates the importance of various components of EC (physical activity, exploration, social interaction, novelty) and examines whether neonatal alcohol exposure affects how male rats interact with their environment and other male rats. Male pups were assigned to 1 of 3 neonatal conditions from PD 4-9: suckle control (SC), sham-intubated (SI), or alcohol-exposed (AE, 5.25 g/kg/day). From PD 30-42 animals were housed with 24-h access to a voluntary running wheel. The animals were then placed in EC from PD 42-72 (9 animals/cage, counterbalanced by neonatal condition). During EC, the animals were filmed for five 30-min sessions (PD 42, 48, 56, 64, 68). For the first experiment, the videos were coded for distance traveled in the cage, overall locomotor activity, time spent near other animals, and interaction with toys. For the second experiment, the videos were analyzed for wrestling, mounting, boxing, grooming, sniffing, and crawling over/under. AE animals were found to be less active and exploratory and engaged in fewer mounting behaviors compared to control animals. Results suggest that after exposure to wheel running, AE animals still have deficits in activity and social behaviors while housed in EC compared to control animals with the same experience.
Collapse
Affiliation(s)
- Karen E Boschen
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Gillian F Hamilton
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - James E Delorme
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Anna Y Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA.
| |
Collapse
|
10
|
Tunc-Ozcan E, Ullmann TM, Shukla PK, Redei EE. Low-dose thyroxine attenuates autism-associated adverse effects of fetal alcohol in male offspring's social behavior and hippocampal gene expression. Alcohol Clin Exp Res 2013; 37:1986-95. [PMID: 23763370 PMCID: PMC3805686 DOI: 10.1111/acer.12183] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 04/09/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND Fetal alcohol spectrum disorder (FASD) is characterized by neurodevelopmental anomalies manifesting in cognitive and behavioral deficits in the offspring with diverse severities. Social behavior is affected in FASD, and these deficits overlap with those of autism spectrum disorder (ASD). Identifying some of the molecular characteristics related to ASD in an animal model of FASD could ultimately provide details on the underlying molecular mechanisms of both disorders that could lead to novel treatments. METHODS Pregnant Sprague-Dawley rats received the following diets: control (C; ad libitum standard laboratory chow), nutritional control pair-fed (PF), ethanol (EtOH), or an EtOH diet supplemented with 0.3, 1.5, or 7.5 mg thyroxine (T4)/l in the diet. Social behavior and memory were tested in the adult offspring. Plasma total T4, free T3 (fT3), and thyroid-stimulating hormone (TSH) levels were measured. Hippocampal expression of Gabrb3, Ube3a, Nr2b, Rasgrf1, and Dio3 were measured by RT-qPCR and protein levels of Mecp2 and Slc25a12 by Western blotting. RESULTS Adult male offspring of EtOH dams showed elevated fT3 and low TSH levels. Adult male, but not female, offspring of EtOH dams exhibited social behavior and memory deficits. Expression of autism candidates, Gabrb3, Ube3a, Mecp2, and Slc25a12, was significantly increased in the hippocampus of male offspring of EtOH dams. Hippocampal Nr2b and Dio3 were also increased, while Rasgrf1 was decreased in the same population. Peripheral thyroid function, social behavioral deficits, and altered expression of the above genes were normalized by simultaneous administration of 0.3 mg/l T4 in the EtOH diet. CONCLUSIONS Our data suggest that social interaction deficits of FASD share molecular mechanism with ASD by showing altered hippocampal expression of several ASD candidate genes. Social interaction deficits as well as the gene expression changes in the offspring of EtOH-consuming dams can be reversed by low dose of thyroid hormone supplementation to the mothers.
Collapse
Affiliation(s)
| | | | - Pradeep K. Shukla
- Department of Psychiatry and Behavioral Sciences, The Asher Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Eva E. Redei
- Department of Psychiatry and Behavioral Sciences, The Asher Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
11
|
Moon Y, Kwon Y, Yu S. How does ethanol induce apoptotic cell death of SK-N-SH neuroblastoma cells. Neural Regen Res 2013; 8:1853-62. [PMID: 25206494 PMCID: PMC4145973 DOI: 10.3969/j.issn.1673-5374.2013.20.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/16/2013] [Indexed: 12/03/2022] Open
Abstract
A body of evidence suggests that ethanol can lead to damage of neuronal cells. However, the mechanism underlying the ethanol-induced damage of neuronal cells remains unclear. The role of mitogen-activated protein kinases in ethanol-induced damage was investigated in SK-N-SH neuroblastoma cells. 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide cell viability assay, DNA fragmentation detection, and flow cytometric analysis showed that ethanol induced apoptotic cell death and cell cycle arrest, characterized by increased caspase-3 activity, DNA fragmentation, nuclear disruption, and G1 arrest of cell cycle of the SK-N-SH neuroblastoma cells. In addition, western blot analysis indicated that ethanol induced a lasting increase in c-Jun N-terminal protein kinase activity and a transient increase in p38 kinase activity of the neuroblastoma cells. c-Jun N-terminal protein kinase or p38 kinase inhibitors significantly reduced the ethanol-induced cell death. Ethanol also increased p53 phosphorylation, followed by an increase in p21 tumor suppressor protein and a decrease in phospho-Rb (retinoblastoma) protein, leading to alterations in the expressions and activity of cyclin dependent protein kinases. Our results suggest that ethanol mediates apoptosis of SK-N-SH neuroblastoma cells by activating p53-related cell cycle arrest possibly through activation of the c-Jun N-terminal protein kinase-related cell death pathway.
Collapse
Affiliation(s)
- Yong Moon
- Department of Public Health Administration, Namseoul University, Chunan, Seoul 331-707, Korea
| | - Yongil Kwon
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Kangdong Sacred Heart Hospital, Hallym University, Seoul 134-701, Korea
| | - Shun Yu
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
12
|
Sadrian B, Wilson DA, Saito M. Long-lasting neural circuit dysfunction following developmental ethanol exposure. Brain Sci 2013; 3:704-27. [PMID: 24027632 PMCID: PMC3767176 DOI: 10.3390/brainsci3020704] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/10/2013] [Accepted: 04/23/2013] [Indexed: 01/14/2023] Open
Abstract
Fetal Alcohol Spectrum Disorder (FASD) is a general diagnosis for those exhibiting long-lasting neurobehavioral and cognitive deficiencies as a result of fetal alcohol exposure. It is among the most common causes of mental deficits today. Those impacted are left to rely on advances in our understanding of the nature of early alcohol-induced disorders toward human therapies. Research findings over the last decade have developed a model where ethanol-induced neurodegeneration impacts early neural circuit development, thereby perpetuating subsequent integration and plasticity in vulnerable brain regions. Here we review our current knowledge of FASD neuropathology based on discoveries of long-lasting neurophysiological effects of acute developmental ethanol exposure in animal models. We discuss the important balance between synaptic excitation and inhibition in normal neural network function, and relate the significance of that balance to human FASD as well as related disease states. Finally, we postulate that excitation/inhibition imbalance caused by early ethanol-induced neurodegeneration results in perturbed local and regional network signaling and therefore neurobehavioral pathology.
Collapse
Affiliation(s)
- Benjamin Sadrian
- Department of Child and Adolescent Psychiatry, New York University Langone School of Medicine, One Park Avenue, Eighth Floor, New York, NY 10128, USA; E-Mail:
- Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA; E-Mail:
| | - Donald A. Wilson
- Department of Child and Adolescent Psychiatry, New York University Langone School of Medicine, One Park Avenue, Eighth Floor, New York, NY 10128, USA; E-Mail:
- Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA; E-Mail:
| | - Mariko Saito
- Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA; E-Mail:
- Department of Psychiatry, New York University Langone School of Medicine, One Park Avenue, Eighth Floor, New York, NY 10128, USA
| |
Collapse
|
13
|
Balaszczuk V, Bender C, Pereno G, Beltramino CA. Binge alcohol‐induced alterations in BDNF and GDNF expression in central extended amygdala and pyriform cortex on infant rats. Int J Dev Neurosci 2013; 31:287-96. [DOI: 10.1016/j.ijdevneu.2013.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 03/21/2013] [Accepted: 04/05/2013] [Indexed: 11/25/2022] Open
Affiliation(s)
- Verónica Balaszczuk
- Instituto de Investigación Médica Mercedes y Martín FerreyraFriuli 24345016CórdobaArgentina
- Departamento de Biología Evolutiva Humana, Facultad de PsicologíaUniversidad Nacional de Córdoba5000CórdobaArgentina
| | - Crhistian Bender
- Instituto de Investigación Médica Mercedes y Martín FerreyraFriuli 24345016CórdobaArgentina
| | - Germán Pereno
- Departamento de Biología Evolutiva Humana, Facultad de PsicologíaUniversidad Nacional de Córdoba5000CórdobaArgentina
| | - Carlos A. Beltramino
- Instituto de Investigación Médica Mercedes y Martín FerreyraFriuli 24345016CórdobaArgentina
| |
Collapse
|