1
|
Zhang F, Lu L, Ma S, Sun J, Liu J, Gao N, Gou Z, Zhou Y, Lai C, Li Y, Sun M, Jiang H. Artemisinin attenuates perinatal inflammation and consequent oxidative stress in oligodendrocyte precursor cells by inhibiting IRAK-4 and IRAK-1. Int Immunopharmacol 2024; 142:113117. [PMID: 39293313 DOI: 10.1016/j.intimp.2024.113117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND The main causes of abnormal white matter development (periventricular leukomalacia) in premature infants are perinatal inflammation and the consequent oxidant/antioxidant imbalance in oligodendrocyte precursor cells (OPCs); however, the underlying mechanisms remain largely unclear. In this work, a rat model of prenatal inflammation was used to examine the mechanism by which artemisinin (ART) protects against white matter dysplasia. METHODS We established a primary OPC model and rat model of perinatal inflammation. ART was identified from the FDA-approved medicinal chemical library to be beneficial for treating OPC inflammation in model systems. Based on bioinformatics analysis of protein interactions and molecular docking analysis, we further identified the possible targets of ART and evaluated its specific effects and the underlying molecular mechanisms in vivo and in vitro. RESULTS Following inflammatory stimulation, ART strongly promoted the maturation of OPCs and the development of white matter in the brain. A Cellular thermal shift assay (CETSA) demonstrated that interleukin-1 receptor-associated kinase-4 (IRAK-4) and interleukin-1 receptor-associated kinase-1 (IRAK-1) may be targets of ART, which was consistent with the findings from molecular modelling with Autodock software. Experiments conducted both in vivo and in vitro demonstrated the activation of the IRAK-4/IRAK-1/nuclear factor kappa-B (NF-κB) pathway and the production of inflammatory factors (IL-1β, IL-6, and TNF-α) in OPCs were greatly suppressed in the group treated with ART compared to the lipopolysaccharide (LPS)-treated group. Moreover, ART dramatically decreased reactive oxygen species (ROS) levels in OPCs while increasing nuclear factor e2-related factor 2 (Nrf2) levels. CONCLUSION Our findings suggest that ART can significantly reduce OPC perinatal inflammation and consequent oxidative stress. The targeted inhibition of IRAK-4 and IRAK-1 by ART may be a potential therapeutic strategy for alleviating abnormalities in white matter development in premature newborns.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China; Animal Experiment Center, Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| | - Liqun Lu
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan Province 610500, China
| | - Shiyi Ma
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China; Animal Experiment Center, Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| | - Junfang Sun
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China; Animal Experiment Center, Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| | - Jingyi Liu
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan Province 610500, China
| | - Na Gao
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan Province 610500, China
| | - Zhixian Gou
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan Province 610500, China
| | - Yue Zhou
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan Province 610500, China
| | - Chunchi Lai
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China; Animal Experiment Center, Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| | - Yishi Li
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China; Animal Experiment Center, Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| | - Mengya Sun
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China; Animal Experiment Center, Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China
| | - Hong Jiang
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China; Animal Experiment Center, Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
2
|
Emmanuel C, Oran A, Jensen ET, Fichorova RN, Gower WA, Perrin EM, Sanderson K, South AM, Gogcu S, Shenberger J, Singh R, Makker K, Thompson AL, Santos H, Fry RC, O'Shea TM. Neonatal inflammation and its association with asthma and obesity in late childhood among individuals born extremely preterm. Pediatr Res 2024:10.1038/s41390-024-03325-x. [PMID: 38914762 DOI: 10.1038/s41390-024-03325-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/06/2024] [Accepted: 04/27/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Asthma and obesity are frequent outcomes among individuals born extremely preterm and are associated with decreased lifespan. Neonatal inflammation is associated with chronic neurodevelopmental disorders; however, it is less studied in association with other later childhood chronic disorders in this population. METHODS Fourteen hospitals in 5 U.S. states enrolled 1506 infants born before 28 weeks of gestation in the Extremely Low Gestational Age Newborn cohort in 2004-2014. Neonatal blood spots were collected on postnatal days 1, 7, 14, 21, and 28, and used to measure 14 inflammation-related proteins. Associations were evaluated between high (top quartile) levels of proteins and two chronic health disorders at ages 10 and 15 years: physician-diagnosed asthma and obesity (body mass index ≥95th percentile). RESULTS Few associations were found between high levels of 14 inflammation-related proteins, either on a single day or on multiple days, and either asthma or obesity. Similarly, few associations were found in analyses stratified by sex or presence/absence of prenatal inflammation. CONCLUSIONS In extremely preterm newborns, systemic elevations of inflammation-related proteins during the neonatal period were not associated with childhood asthma and obesity outcomes at 10 or 15 years of age. IMPACT In the large multi-center Extremely Low Gestational Age Newborn (ELGAN) cohort, sustained elevation of neonatal levels of inflammation-related proteins was not consistently associated with asthma or obesity outcomes at 10 or 15 years of age. This finding contrasts with reported associations of perinatal inflammation with obesity at 2 years and neurodevelopmental disorders at 2-15 years in the ELGANs, suggesting that unlike neurodevelopment, peripubertal obesity and asthma may be driven by later childhood exposures. Future research on perinatal mechanisms of childhood asthma and obesity should account for both fetal and later exposures and pathways in addition to inflammation at birth.
Collapse
Affiliation(s)
- Crisma Emmanuel
- University of North Carolina School of Nursing, Chapel Hill, NC, USA
| | - Ali Oran
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC, USA
| | - Elizabeth T Jensen
- Department of Epidemiology and Prevention, Wake Forest University, Winston-Salem, NC, USA
| | - Raina N Fichorova
- Brigham and Women's Hospital, Boston, MA and Harvard Medical School, Boston, MA, USA
| | - William A Gower
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Eliana M Perrin
- Department of Pediatrics, Johns Hopkins University School of Medicine and School of Nursing, Baltimore, MD, USA
| | - Keia Sanderson
- Department of Medicine-Nephrology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Andrew M South
- Department of Epidemiology and Prevention, Wake Forest University, Winston-Salem, NC, USA
- Departments of Pediatrics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Semsa Gogcu
- Departments of Pediatrics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jeffrey Shenberger
- Connecticut Children's Hospital, Hartford, CT and University of Connecticut School of Medicine, Farmington, CT, USA
| | - Rachana Singh
- Department of Pediatrics, Tufts University School of Medicine, Boston, MA, USA
| | - Kartikeya Makker
- Department of Pediatrics, Johns Hopkins University School of Medicine and School of Nursing, Baltimore, MD, USA
| | - Amanda L Thompson
- Department of Anthropology, University of North Carolina, Chapel Hill, NC, USA
| | - Hudson Santos
- University of Miami School of Nursing, Miami, FL, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC, USA
| | - T M O'Shea
- Brigham and Women's Hospital, Boston, MA and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
O'Shea TM, McGrath M, Aschner JL, Lester B, Santos HP, Marsit C, Stroustrup A, Emmanuel C, Hudak M, McGowan E, Patel S, Fry RC. Environmental influences on child health outcomes: cohorts of individuals born very preterm. Pediatr Res 2023; 93:1161-1176. [PMID: 35948605 PMCID: PMC9363858 DOI: 10.1038/s41390-022-02230-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/27/2022] [Accepted: 07/19/2022] [Indexed: 12/05/2022]
Abstract
The National Institutes of Health's Environmental influences on Child Health Outcomes (ECHO) Program was designed to address solution-oriented research questions about the links between children's early life environment and their risks of pre-, peri-, and post-natal complications, asthma, obesity, neurodevelopmental disorders, and positive health. Children born very preterm are at increased risk for many of the outcomes on which ECHO focuses, but the contributions of environmental factors to this risk are not well characterized. Three ECHO cohorts consist almost exclusively of individuals born very preterm. Data provided to ECHO from cohorts can be used to address hypotheses about (1) differential risks of chronic health and developmental conditions between individuals born very preterm and those born at term; (2) health disparities across social determinants of health; and (3) mechanisms linking early-life exposures and later-life outcomes among individuals born very preterm. IMPACT: The National Institutes of Health's Environmental Influences on Child Health Outcomes Program is conducting solution-oriented research on the links between children's environment and health. Three ECHO cohorts comprise study participants born very preterm; these cohorts have enrolled, to date, 1751 individuals born in 14 states in the U.S. in between April 2002 and March 2020. Extensive data are available on early-life environmental exposures and child outcomes related to neurodevelopment, asthma, obesity, and positive health. Data from ECHO preterm cohorts can be used to address questions about the combined effects of preterm birth and environmental exposures on child health outcomes.
Collapse
Affiliation(s)
- T Michael O'Shea
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| | - Monica McGrath
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Judy L Aschner
- Department of Pediatrics, Joseph M. Sanzari Children's Hospital at Hackensack University Medical Center, Hackensack, NJ, USA
- Department of Pediatrics, Hackensack Meridian School of Medicine, Nutley, NJ, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Barry Lester
- Department of Pediatrics, Women & Infants Hospital, Brown University, Providence, RI, USA
- Brown Center for the Study of Children at Risk, Warren Alpert Medical School of Brown University, Women & Infants Hospital, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Hudson P Santos
- Biobehavioral Laboratory, School of Nursing, The University of North Carolina, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC, USA
| | - Carmen Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Annemarie Stroustrup
- Departments of Pediatrics and Occupational Medicine, Epidemiology and Prevention, Zucker School of Medicine at Hofstra, Northwell Health, Cohen Children's Medical Center, New Hyde Park, NY, USA
| | - Crisma Emmanuel
- Biobehavioral Laboratory, School of Nursing, The University of North Carolina, Chapel Hill, NC, USA
| | - Mark Hudak
- Department of Pediatrics, University of Florida College of Medicine - Jacksonville, Jacksonville, FL, USA
| | - Elisabeth McGowan
- Women & Infants Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Simran Patel
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Abstract
Neonatal late-onset sepsis (LOS) continues to threaten morbidity and mortality in the NICU and poses ongoing diagnostic and therapeutic challenges. Early recognition of clinical signs, rapid evaluation, and prompt initiation of treatment are critical to prevent life-threatening deterioration. Preterm infants-born at ever-decreasing gestational ages-are at particularly high risk for life-long morbidities and death. This changing NICU population necessitates continual reassessments of diagnostic and preventive measures and evidence-based treatment for LOS. The clinical presentation of LOS is varied and nonspecific. Despite ongoing research, reliable, specific laboratory biomarkers facilitating early diagnosis are lacking. These limitations drive an ongoing practice of liberal initiation of empiric antibiotics among infants with suspected LOS. Subsequent promotion of multidrug-resistant microorganisms threatens the future of antimicrobial therapy and puts preterm and chronically ill infants at even higher risk of nosocomial infection. Efforts to identify adjunctive therapies counteracting sepsis-driven hyperinflammation and sepsis-related functional immunosuppression are ongoing. However, most approaches have either failed to improve LOS prognosis or are not yet ready for clinical application. This article provides an overview of the epidemiology, risk factors, diagnostic tools, and treatment options of LOS in the context of increasing numbers of extremely preterm infants. It addresses the question of whether LOS could be identified earlier and more precisely to allow for earlier and more targeted therapy and discusses rational approaches to antibiotic therapy to avoid overuse. Finally, this review elucidates the necessity of long-term follow-up of infants with a history of LOS.
Collapse
Affiliation(s)
- Sarah A. Coggins
- Division of Neonatology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kirsten Glaser
- Division of Neonatology, Department of Women’s and Children’s Health, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
5
|
Klein L, Van Steenwinckel J, Fleiss B, Scheuer T, Bührer C, Faivre V, Lemoine S, Blugeon C, Schwendimann L, Csaba Z, Bokobza C, Vousden DA, Lerch JP, Vernon AC, Gressens P, Schmitz T. A unique cerebellar pattern of microglia activation in a mouse model of encephalopathy of prematurity. Glia 2022; 70:1699-1719. [PMID: 35579329 PMCID: PMC9545095 DOI: 10.1002/glia.24190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022]
Abstract
Preterm infants often show pathologies of the cerebellum, which are associated with impaired motor performance, lower IQ and poor language skills at school ages. Using a mouse model of inflammation-induced encephalopathy of prematurity driven by systemic administration of pro-inflammatory IL-1β, we sought to uncover causes of cerebellar damage. In this model, IL-1β is administered between postnatal day (P) 1 to day 5, a timing equivalent to the last trimester for brain development in humans. Structural MRI analysis revealed that systemic IL-1β treatment induced specific reductions in gray and white matter volumes of the mouse cerebellar lobules I and II (5% false discovery rate [FDR]) from P15 onwards. Preceding these MRI-detectable cerebellar volume changes, we observed damage to oligodendroglia, with reduced proliferation of OLIG2+ cells at P10 and reduced levels of the myelin proteins myelin basic protein (MBP) and myelin-associated glycoprotein (MAG) at P10 and P15. Increased density of IBA1+ cerebellar microglia were observed both at P5 and P45, with evidence for increased microglial proliferation at P5 and P10. Comparison of the transcriptome of microglia isolated from P5 cerebellums and cerebrums revealed significant enrichment of pro-inflammatory markers in microglia from both regions, but cerebellar microglia displayed a unique type I interferon signaling dysregulation. Collectively, these data suggest that perinatal inflammation driven by systemic IL-1β leads to specific cerebellar volume deficits, which likely reflect oligodendrocyte pathology downstream of microglial activation. Further studies are now required to confirm the potential of protective strategies aimed at preventing sustained type I interferon signaling driven by cerebellar microglia as an important therapeutic target.
Collapse
Affiliation(s)
- Luisa Klein
- Department of NeonatologyCharité University Medicine BerlinBerlinGermany
| | | | - Bobbi Fleiss
- NeuroDiderot, InsermUniversité de ParisParisFrance
- School of Health and Biomedical SciencesRMIT UniversityMelbourneVictoriaAustralia
| | - Till Scheuer
- Department of NeonatologyCharité University Medicine BerlinBerlinGermany
| | - Christoph Bührer
- Department of NeonatologyCharité University Medicine BerlinBerlinGermany
| | | | - Sophie Lemoine
- Genomics Core Facility, Département de Biologie, École Normale Supérieure, Institut de Biologie de l'ENS (IBENS), CNRS, INSERMUniversité PSLParisFrance
| | - Corinne Blugeon
- Genomics Core Facility, Département de Biologie, École Normale Supérieure, Institut de Biologie de l'ENS (IBENS), CNRS, INSERMUniversité PSLParisFrance
| | | | - Zsolt Csaba
- NeuroDiderot, InsermUniversité de ParisParisFrance
| | | | - Dulcie A. Vousden
- Mouse Imaging CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Jason P. Lerch
- Mouse Imaging CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
- Wellcome Trust Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| | - Anthony C. Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| | | | - Thomas Schmitz
- Department of NeonatologyCharité University Medicine BerlinBerlinGermany
| |
Collapse
|
6
|
Abstract
Individuals born extremely preterm (before 28 weeks of gestation) comprise only about 0.7% of births in the United States and an even lower proportion in other high resource countries. However, these individuals account for a disproportionate number of children with cerebral palsy, intellectual deficit, autism spectrum disorder, attention deficit hyperactivity disorder, and epilepsy. This review describes two large multiple center cohorts comprised of individuals born extremely preterm: the EPICURE cohort, recruited 1995 in the United Kingdom and the Republic of Ireland, and the Extremely Low Gestational Age Newborn (ELGAN), recruited 2002-2004 in five states in the United States. The primary focus of these studies has been neurodevelopmental disorders, but also of interest are growth, respiratory illness, and parent- and self-reported global health and well-being. Both of these studies indicate that among individuals born extremely preterm the risks of most neurodevelopmental disorders are increased. Early life factors that contribute to this risk include perinatal brain damage, some of which can be identified using neonatal head ultrasound, bronchopulmonary dysplasia, and neonatal systemic inflammation. Prenatal factors, particularly the family's socioeconomic position, also appear to contribute to risk. For most adverse outcomes, the risk is higher in males. Young adults born extremely preterm who have neurodevelopmental impairment, as compared to those without such impairment, rate their quality of life lower. However, young adults born extremely preterm who do not have neurodevelopmental impairments rate their quality of life as being similar to that of young adults born at term. Finally, we summarize the current state of interventions designed to improve the life course of extremely premature infants, with particular focus on efforts to prevent premature birth and on postnatal efforts to prevent adverse neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Genevieve L Taylor
- Genevieve L Taylor MD: Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of North Carolina School of Medicine
| | - T Michael O'Shea
- T. Michael O'Shea, MD, MPH: Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of North Carolina School of Medicine.
| |
Collapse
|
7
|
Belfort MB, Ramel SE, Martin CR, Fichorova R, Kuban KCK, Heeren T, Fry RC, O'Shea TM. Systemic Inflammation in the First 2 Weeks after Birth as a Determinant of Physical Growth Outcomes in Hospitalized Infants with Extremely Low Gestational Age. J Pediatr 2022; 240:37-43.e1. [PMID: 34508750 PMCID: PMC8712377 DOI: 10.1016/j.jpeds.2021.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To examine associations of systemic inflammation with growth outcomes at neonatal intensive care unit discharge or transfer among infants with extremely low gestational ages. STUDY DESIGN We studied 850 infants at born at 23-27 weeks of gestation. We defined inflammatory protein elevation as the highest quartile of C-reactive protein (CRP), Interleukin (IL)-6, tumor necrosis factor-∝, or IL-8 on postnatal days 1, 7, and 14. We compared z-scores of weight, length, and head circumference at neonatal intensive care unit discharge or transfer between infants with vs without inflammatory protein elevation, adjusting in linear regression for birth size z-score, sex, gestational age, diet, comorbidities, medications, and length of hospitalization. RESULTS The mean gestational age was 25 weeks (range, 23-27 weeks) and birth weight z-score 0.14 (range, -2.73 to 3.28). Infants with a high CRP on day 7 had lower weights at discharge or transfer (-0.17 z-score; 95% CI, -0.27 to -0.06) than infants without CRP elevation, with similar results on day 14. Infants with CRP elevation on day 14 were also shorter (-0.21 length z-scores; 95% CI, -0.38 to -0.04), and had smaller head circumferences (-0.18 z-scores; 95% CI, -0.33 to -0.04) at discharge or transfer. IL-6 elevation on day 14 was associated with lower weight (-0.12; 95% CI, -0.22 to -0.02); IL-6 elevation on day 7 was associated with shorter length (-0.27; 95% CI, -0.43 to -0.12). Tumor necrosis factor-∝ and IL-8 elevation on day 14 were associated with a lower weight at discharge or transfer. CONCLUSIONS Postnatal systemic inflammation may contribute to impaired nutrient accretion during a critical period in development in infants with extremely low gestational ages.
Collapse
Affiliation(s)
- Mandy B Belfort
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA.
| | - Sara E Ramel
- University of Minnesota School of Medicine, Minneapolis, MN
| | - Camilia R Martin
- Harvard Medical School, Boston, MA; Beth Israel Deaconess Medical Center, Boston, MA
| | - Raina Fichorova
- Harvard Medical School, Boston, MA; Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA
| | | | | | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, University of North Carolina School of Medicine, Chapel Hill, NC
| | - T Michael O'Shea
- Division of Neonatal-Perinatal Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
8
|
Wood TR, Parikh P, Comstock BA, Law JB, Bammler TK, Kuban KC, Mayock DE, Heagerty PJ, Juul S. Early Biomarkers of Hypoxia and Inflammation and Two-Year Neurodevelopmental Outcomes in the Preterm Erythropoietin Neuroprotection (PENUT) Trial. EBioMedicine 2021; 72:103605. [PMID: 34619638 PMCID: PMC8498235 DOI: 10.1016/j.ebiom.2021.103605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 08/24/2021] [Accepted: 09/16/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND In the Preterm Erythropoietin (Epo) NeUroproTection (PENUT) Trial, potential biomarkers of neurological injury were measured to determine their association with outcomes at two years of age and whether Epo treatment decreased markers of inflammation in extremely preterm (<28 weeks' gestation) infants. METHODS Plasma Epo was measured (n=391 Epo, n=384 placebo) within 24h after birth (baseline), 30min after study drug administration (day 7), 30min before study drug (day 9), and on day 14. A subset of infants (n=113 Epo, n=107 placebo) had interferon-gamma (IFN-γ), Interleukin (IL)-6, IL-8, IL-10, Tau, and tumour necrosis factor-α (TNF-α) levels evaluated at baseline, day 7 and 14. Infants were then evaluated at 2 years using the Bayley Scales of Infant and Toddler Development, 3rd Edition (BSID-III). FINDINGS Elevated baseline Epo was associated with increased risk of death or severe disability (BSID-III Motor and Cognitive subscales <70 or severe cerebral palsy). No difference in other biomarkers were seen between treatment groups at any time, though Epo appeared to mitigate the association between elevated baseline IL-6 and lower BSID-III scores in survivors. Elevated baseline, day 7 and 14 Tau concentrations were associated with worse BSID-III Cognitive, Motor, and Language skills at two years. INTERPRETATION Elevated Epo at baseline and elevated Tau in the first two weeks after birth predict poor outcomes in infants born extremely preterm. However, no clear prognostic cut-off values are apparent, and further work is required before these biomarkers can be widely implemented in clinical practice. FUNDING PENUT was funded by the National Institute of Neurological Disorders and Stroke (U01NS077955 and U01NS077953).
Collapse
Affiliation(s)
- Thomas R. Wood
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, WA
| | - Pratik Parikh
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, WA
| | | | - Janessa B. Law
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, WA
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | - Karl C. Kuban
- Department of Pediatrics, Boston University School of Medicine, Boston, MA
| | - Dennis E. Mayock
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, WA
| | | | - Sandra Juul
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, WA
| | - for the PENUT Trial consortium
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, WA
- Department of Biostatistics, University of Washington, Seattle, WA
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
- Department of Pediatrics, Boston University School of Medicine, Boston, MA
| |
Collapse
|
9
|
Prasad JD, Gunn KC, Davidson JO, Galinsky R, Graham SE, Berry MJ, Bennet L, Gunn AJ, Dean JM. Anti-Inflammatory Therapies for Treatment of Inflammation-Related Preterm Brain Injury. Int J Mol Sci 2021; 22:4008. [PMID: 33924540 PMCID: PMC8069827 DOI: 10.3390/ijms22084008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the prevalence of preterm brain injury, there are no established neuroprotective strategies to prevent or alleviate mild-to-moderate inflammation-related brain injury. Perinatal infection and inflammation have been shown to trigger acute neuroinflammation, including proinflammatory cytokine release and gliosis, which are associated with acute and chronic disturbances in brain cell survival and maturation. These findings suggest the hypothesis that the inhibition of peripheral immune responses following infection or nonspecific inflammation may be a therapeutic strategy to reduce the associated brain injury and neurobehavioral deficits. This review provides an overview of the neonatal immunity, neuroinflammation, and mechanisms of inflammation-related brain injury in preterm infants and explores the safety and efficacy of anti-inflammatory agents as potentially neurotherapeutics.
Collapse
Affiliation(s)
- Jaya D. Prasad
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Katherine C. Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Joanne O. Davidson
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia;
| | - Scott E. Graham
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand;
| | - Mary J. Berry
- Department of Pediatrics and Health Care, University of Otago, Dunedin 9016, New Zealand;
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Alistair J. Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Justin M. Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| |
Collapse
|
10
|
Chen X, Song D, Nakada S, Qiu J, Iwamoto K, Chen RH, Lim YP, Jusko WJ, Stonestreet BS. Pharmacokinetics of Inter-Alpha Inhibitor Proteins and Effects on Hemostasis After Hypoxic-Ischemic Brain Injury in Neonatal Rats. Curr Pharm Des 2021; 26:3997-4006. [PMID: 32316887 DOI: 10.2174/1381612826666200421123242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/08/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Hypoxic-ischemic (HI) brain injury is a leading cause of long-term neurodevelopmental morbidities in neonates. Human plasma-derived Inter-Alpha Inhibitor Proteins (hIAIPs) are neuroprotective after HI brain injury in neonatal rats. The light chain (bikunin) of hIAIPs inhibits proteases involved in the coagulation of blood. Newborns exposed to HI can be at risk for significant bleeding in the brain and other organs. OBJECTIVE The objectives of the present study were to assess the pharmacokinetics (PK) and the duration of bleeding after intraperitoneal (IP) administration of hIAIPs in HI-exposed male and female neonatal rats. METHODS HI was induced with the Rice-Vannucci method in postnatal (P) day-7 rats. After the right common carotid artery ligation, rats were exposed to 90 min of 8% oxygen. hIAIPs (30 mg/kg, IP) were given immediately after Sham or HI exposure in the PK study and serum was collected 1, 6, 12, 24, or 36 h after the injections. Serum hIAIP concentrations were measured with a competitive ELISA. ADAPT5 software was used to fit the pooled PK data considering first-order absorption and disposition. hIAIPs (60 mg/kg, IP) were given in the bleeding time studies at 0, 24 and 48 h after HI with tail bleeding times measured 72 h after HI. RESULTS IP administration yielded significant systemic exposure to hIAIPs with PK being affected markedly including primarily faster absorption and reduced elimination as a result of HI and modestly of sex-related differences. hIAIP administration did not affect bleeding times after HI. CONCLUSION These results will help to inform hIAIP dosing regimen schedules in studies of neuroprotection in neonates exposed to HI.
Collapse
Affiliation(s)
- Xiaodi Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Providence, RI, United States
| | - Dawei Song
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Sakura Nakada
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Providence, RI, United States
| | - Joseph Qiu
- ProThera Biologics, Inc., Providence, RI, United States
| | - Karin Iwamoto
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Providence, RI, United States
| | - Ray H Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Providence, RI, United States
| | - Yow-Pin Lim
- ProThera Biologics, Inc., Providence, RI, United States
| | - William J Jusko
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Barbara S Stonestreet
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
11
|
Leviton A, Joseph RM, Fichorova RN, Allred EN, Gerry Taylor H, Michael O'Shea T, Dammann O. Executive Dysfunction Early Postnatal Biomarkers among Children Born Extremely Preterm. J Neuroimmune Pharmacol 2019; 14:188-199. [PMID: 30191383 PMCID: PMC6401360 DOI: 10.1007/s11481-018-9804-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 08/16/2018] [Indexed: 01/12/2023]
Abstract
We evaluated the relationship between blood levels of inflammatory and neurotrophic proteins during the first postnatal month in 692 children born before the 28th week of gestation and executive function limitations among those 10-year olds who had an IQ ≥ 70. The measures of dysfunction were Z-scores ≤ -1 on the Differential Ability Scales-II working memory (WM) assessment) (N = 164), the NEPSY-II (A Developmental NEuroPSYchological Assessment-II) Inhibition-Inhibition assessment) (N = 350), the NEPSY-II Inhibition-Switching assessment) (N = 345), as well as a Z-score ≤ -1 on all three assessments (identified as the executive dysfunction composite (N = 104). Increased risks of the executive dysfunction composite associated with high concentrations of inflammatory proteins (IL-8, TNF-α, and ICAM-1) were modulated by high concentrations of neurotrophic proteins. This pattern of modulation by neurotrophins of increased risk associated with inflammation was also seen for the working memory limitation, but only with high concentrations of IL-8 and TNF-α, and the switching limitation, but only with high concentrations of ICAM-1. We infer that among children born extremely preterm, risks of executive function limitations might be explained by perinatal systemic inflammation in the absence of adequate neurotrophic capability.
Collapse
Affiliation(s)
- Alan Leviton
- Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115-5724, USA.
| | | | - Raina N Fichorova
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Elizabeth N Allred
- Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115-5724, USA
| | - H Gerry Taylor
- Rainbow Babies & Children's Hospital and Case Western Reserve University, Cleveland, OH, USA
| | - T Michael O'Shea
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Olaf Dammann
- Tufts University School of Medicine, Boston, MA, 02111, USA
| |
Collapse
|
12
|
Leviton A, Allred EN, Dammann O, Joseph RM, Fichorova RN, O’Shea TM, Kuban KCK. Socioeconomic status and early blood concentrations of inflammation-related and neurotrophic proteins among extremely preterm newborns. PLoS One 2019; 14:e0214154. [PMID: 30913246 PMCID: PMC6435168 DOI: 10.1371/journal.pone.0214154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
The main objective of this study was to evaluate the relationship between mother’s socioeconomic disadvantage and blood concentrations of inflammation-related proteins among extremely preterm newborns (<28 weeks gestation), a group at heightened risk of cognitive impairment when exposed to systemic inflammation. We measured the concentrations of 27 inflammatory and neurotrophic proteins in blood specimens collected a week apart during the first postnatal month from 857 extremely preterm newborns in the United States. We classified children according to 3 indicators/correlates of socioeconomic disadvantage, mother’s eligibility for government-provided medical care insurance (Medicaid), mother’s formal education level, and mother’s IQ approximated with the Kaufman Brief Intelligence Test– 2. The risks of a top-quartile concentration of each protein on each of 5 days a week apart, on two occasions during the first two postnatal weeks, and during the next two weeks were modeled as functions of each indicator of socioeconomic disadvantage. The risks of top quartile concentrations of multiple (2–5) inflammation-related proteins on multiple days during the first two weeks were increased for each of the 3 indicators of socioeconomic disadvantage, while the risks of top quartile concentrations of selected neurotrophic proteins were reduced. Adjustment for socioeconomic disadvantage did not alter the relationships between protein concentrations and both low IQ and low working memory 10 years later. Among extremely preterm newborns, indicators of socioeconomic disadvantage are associated with modestly increased risk of systemic inflammation in postnatal blood during the first postnatal month and with a slightly reduced risk of a neurotrophic signal, but do not confound relationships between protein concentrations and outcomes.
Collapse
Affiliation(s)
- Alan Leviton
- Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| | - Elizabeth N. Allred
- Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Olaf Dammann
- Tufts University School of Medicine, Boston, MA, United States of America
| | - Robert M. Joseph
- Boston University School of Medicine, Boston, MA, United States of America
| | - Raina N. Fichorova
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America
| | - T. Michael O’Shea
- University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Karl C. K. Kuban
- Boston Medical Center and Boston University School of Medicine, Boston, MA, United States of America
| |
Collapse
|
13
|
Leviton A, Joseph RM, Allred EN, Fichorova RN, O'Shea TM, Kuban KKC, Dammann O. The risk of neurodevelopmental disorders at age 10 years associated with blood concentrations of interleukins 4 and 10 during the first postnatal month of children born extremely preterm. Cytokine 2018; 110:181-188. [PMID: 29763840 DOI: 10.1016/j.cyto.2018.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/23/2018] [Accepted: 05/07/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Interleukin (IL)-4 and IL-10 are viewed mainly as anti-inflammatory cytokines. Yet, high concentrations have also been associated with inflammation-related diseases in newborns. METHODS We measured the concentrations of IL-4 and IL-10, as well as IL-8 and ICAM-1 in blood specimens collected on postnatal day 21 (N = 555), day 28 (N = 521), and both days 21 and 28 (N = 449) from children born extremely preterm (EP) (<28 weeks gestation) who at age 10 years had a DAS-II IQ Z-score > -2 (which approximates a score of >70) and the following assessments, CCC-2, and CSI-4, DAS-II, NEPSY-II, OWLS-II, SCQ, and WIAT-III. Selected children also were assessed with the ADI-R and the ADOS-2. We modeled the risk of low scores or dysfunctions associated with top quartile concentrations of IL-4 and IL-10 on each day and on both days. RESULTS The risks of low scores on the Animal Sorting and Arrows components of the NEPSY-II, both components of the OWLS-II, and the PseudoWord and Spelling components of the WIAT-III were heightened among children who had top quartile concentrations of IL-4 on postnatal days 21 and 28. Children who had high concentrations of IL-10 on days 21 and 28, individually and collectively, were at increased risk of low scores on the WIAT-III Spelling component. High concentrations of IL-4 on day 28 were associated with autism spectrum disorder (ASD). High concentrations of IL-10 on day 28 were also associated with a doubling of ASD risk, but this did not achieve statistical significance. Top quartile concentrations of IL-4 and IL10 on both days were not associated with increased risk of social, language, or behavioral dysfunctions. CONCLUSION Among children born EP, those who had top quartile concentrations of IL-4 and/or IL-10 on postnatal days 21 and/or 28 were more likely than their peers to have low scores on components of the NEPSY-II, OWLS-II, and WIAT-III assessments, as well as identification as having an ASD. What is known: What is not known: What this study adds.
Collapse
Affiliation(s)
- Alan Leviton
- Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| | | | | | - Raina N Fichorova
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - T Michael O'Shea
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Karl K C Kuban
- Boston Medical Center and Boston University School of Medicine, Boston, MA, USA
| | - Olaf Dammann
- Tufts University School of Medicine, Boston, MA 02111, USA; Perinatal Neuroepidemiology Unit, Department of Gynecology and Obstetrics, Hannover Medical School, 30623 Hannover, Germany
| |
Collapse
|