1
|
Ren Y, Tian R, Wang T, Cao J, Li J, Deng A. An Extremely Highly Sensitive ELISA in pg mL -1 Level Based on a Newly Produced Monoclonal Antibody for the Detection of Ochratoxin A in Food Samples. Molecules 2023; 28:5743. [PMID: 37570711 PMCID: PMC10420233 DOI: 10.3390/molecules28155743] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
In this study, an extremely highly sensitive enzyme-linked immunosorbent assay (ELISA) based on a newly produced monoclonal antibody (mAb) for the detection of ochratoxin A (OTA) in food samples was developed. OTA-Bovine serum albumin (BSA) conjugate was prepared and used as the immunogen for the production of the mAb. Among four hybridoma clones (8B10, 5C2, 9B7, and 5E11), the antibody from 8B10 displayed the highest affinity recognition for OTA. Based on the mAb (8B10), the IC50 and LOD of the ELISA for OTA were 34.8 pg mL-1 and 1.5 pg mL-1, respectively, which was 1.53~147 times lower than those in published ELISAs, indicating the ultra-sensitivity of our assay. There was no cross-reactivity of the mAb with the other four mycotoxins (AFB1, ZEN, DON, and T-2). Due to the high similarity in molecular structures among OTA, ochratoxin B (OTB), and ochratoxin C (OTC), the CR values of the mAb with OTB and OTC were 96.67% and 22.02%, respectively. Taking this advantage, the ELISA may be able to evaluate total ochratoxin levels in food samples. The recoveries of the ELISA for OTA in spiked samples (corn, wheat, and feed) were 96.5-110.8%, 89.5-94.4%, and 91.8-113.3%; and the RSDs were 5.2-13.6%, 8.2-13.0%, and 7.7-13.7% (n = 3), respectively. The spiked food samples (corn) were measured by ELISA and HPLC-FLD simultaneously. A good correlation between ELISA (x) and HPLC-FLD (y) with the linear regression equation of y = 0.918x - 0.034 (R2 = 0.985, n = 5) was obtained. These results demonstrated that the newly produced mAb-based ELISA was a feasible and ultra-sensitive analytical method for the detection of OTA in food samples.
Collapse
Affiliation(s)
| | | | | | | | - Jianguo Li
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Renai Road 199, Suzhou 215123, China; (Y.R.); (R.T.); (T.W.); (J.C.)
| | - Anping Deng
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Renai Road 199, Suzhou 215123, China; (Y.R.); (R.T.); (T.W.); (J.C.)
| |
Collapse
|
2
|
Steglińska A, Sulyok M, Janas R, Grzesik M, Liszkowska W, Kręgiel D, Gutarowska B. Metabolite Formation by Fungal Pathogens of Potatoes ( Solanum tuberosum L.) in the Presence of Bioprotective Agents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5221. [PMID: 36982130 PMCID: PMC10049107 DOI: 10.3390/ijerph20065221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
The potato is a crop of global importance for the food industry. This is why effective protection against pathogens is so important. Fungi as potato pathogens are responsible for plant diseases and a significant reduction in yields, as well as for the formation of mycotoxins. This study focuses on the effect of three natural biocides, yeast Metschnikowia pulcherrima, lactic acid bacteria Lactiplantibacillus plantarum, and aqueous garlic extract, on the improvement of the physiology of planted potato tubers and the reduction in mycotoxin formation. The secondary metabolites produced by the fungal pathogens of genera Fusarium, Alternaria, Colletotrichum, Rhizoctonia, and Phoma in the presence of these biocontrol agents were compared to profiles obtained from contaminated potatoes. Analysis of liquid chromatography coupled with tandem mass spectrometry data showed the presence of 68 secondary metabolites, including the mycotoxins: alternariol, alternariol methyl ether, altertoxin-I, aurofusarin, beauvericin, diacetoxyscirpenol, enniatin B, and sterigmatocystin. The studies showed that the applied biocontrol agents had a positive effect on the physiological parameters of potatoes (including root growth, stem growth, gas exchange, and chlorophyll content index) and on the reduction in the production of mycotoxins and other secondary metabolites by Fusarium, Alternaria, and Phoma.
Collapse
Affiliation(s)
- Aleksandra Steglińska
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-950 Łódź, Poland; (W.L.); (D.K.); (B.G.)
- Interdisciplinary Doctoral School, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Michael Sulyok
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria;
| | - Regina Janas
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland; (R.J.); (M.G.)
| | - Mieczysław Grzesik
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland; (R.J.); (M.G.)
| | - Wiktoria Liszkowska
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-950 Łódź, Poland; (W.L.); (D.K.); (B.G.)
| | - Dorota Kręgiel
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-950 Łódź, Poland; (W.L.); (D.K.); (B.G.)
| | - Beata Gutarowska
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-950 Łódź, Poland; (W.L.); (D.K.); (B.G.)
| |
Collapse
|
3
|
Hamad GM, Mehany T, Simal-Gandara J, Abou-Alella S, Esua OJ, Abdel-Wahhab MA, Hafez EE. A review of recent innovative strategies for controlling mycotoxins in foods. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109350] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
4
|
A Culture-Based Study of Micromycetes Isolated from the Urban Nests of Grey Heron (Ardea cinerea) in SW Poland. Animals (Basel) 2022; 12:ani12060676. [PMID: 35327074 PMCID: PMC8944552 DOI: 10.3390/ani12060676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Fungi inhabiting bird nests may pose a serious threat to living organisms. Therefore, the main goal of the study was to identify cultivable fungi in the nest of grey heron (Ardea cinerea) located near the city centre of Wrocław (Poland). Overall, 10 different fungal species were obtained which were both cosmopolitan and potentially hazardous to humans, homoiothermous animals and plants. The greatest number of fungal species was obtained from the nest fragments with visible fungal growth, and the least from western conifer seed bugs (Leptoglossus occidentalis) inhabiting the nests. The damp chamber allowed isolation of Aspergillus fumigatus, Penicillium coprophilum, and P. griseofulvum as directly related to the occurrence of visible fungal growth on plant fragments of grey heron nests. Abstract There are many positive relationships between micromycetes and birds: They can spread fungal spores, and fungi facilitate cavity woodpecker excavation by preparing and modifying excavation sites. In turn, bird nests are mainly a source of potentially zoopathogenic fungi. The Wrocław city centre hosts the biggest grey heron breeding colony in Poland with at least 240 breeding birds pairs. To assess the possible public health risks associated with bird nests, the goal of the present study was to identify cultivable fungi present in the nests of grey herons (Ardea cinerea) in Wrocław. Additionally, attempts were made to determine whether the obtained species of fungi may pose a potential threat to animal health. Fungi were cultured at 23 and 37 ± 0.5 °C, and identified based on phenotypic and genotypic traits. Moreover, during routine inspection, visible fungal growth in some of the nests was found. Overall, 10 different fungal species were obtained in the study (Alternaria alternata, Aspergillus fumigatus, Botryotrichum piluliferum, Cladosporium cladosporioides, Epicoccum layuense, Mucor circinelloides, M.hiemalis, Penicillium atramentosum, P.coprophilum, and P.griseofulvum). They are both cosmopolitan species and a source of potential threat to humans, homoiothermous animals and plants. The greatest number of fungal species was obtained from the nest fragments with visible fungal growth incubated at 23 °C, and the least from western conifer seed bugs (Leptoglossus occidentalis) inhabiting the nests. The species such as A. fumigatus, P. coprophilum, and P.griseofulvum can be directly related to the occurrence of visible fungal growth on plant fragments of grey heron’s nests.
Collapse
|
5
|
Ertas Onmaz N, Gungor C, Al S, Dishan A, Hizlisoy H, Yildirim Y, Kasap Tekinsen F, Disli HB, Barel M, Karadal F. Mycotoxigenic and phylogenetic perspective to the yeasts and filamentous moulds in mould-matured Turkish cheese. Int J Food Microbiol 2021; 357:109385. [PMID: 34509930 DOI: 10.1016/j.ijfoodmicro.2021.109385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 08/23/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
This study was conducted to determine the diversity of yeasts and filamentous moulds in mould-matured cheese (MMC) consumed in Turkey. Overall, 120 samples were collected from 12 different geographical locations between March 2016 and April 2017. The morphological observation was applied in combination with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and molecular analyses to determine yeasts and filamentous moulds in the cheeses. High-performance liquid chromatography (HPLC) technique was used to evaluate the ability of mycotoxins production of fungal isolates and the presence of mycotoxins in cheese samples. A total of 241 fungi (81 filamentous moulds and 160 yeast) were recovered, and Penicillium roqueforti and Debaryomyces hansenii were the most frequently isolated species in all cheese samples. The rep-PCR results indicated a high level of genetic diversity among fungal isolates, regardless of isolation source or geographical origin. Filamentous mould strains isolated from MMC were found to synthesize at least one mycotoxin (Aflatoxin B1, B2, G1 and G2, citrinine, cyclopiazonic acid, mycophenolic acid, ochratoxin A, penicillic acid and roquefortine C). Although mycotoxin producing ability was observed from all isolates, none of the cheese samples were found positive for these mycotoxins. AFM1 was detected in 8 (6.6%) MMC samples from which 2 (1.6%) were above the legal limits (0.05 μg/kg) set by the Turkish Food Codex (TFC) and European Commission (EC). In conclusion, Turkish MMCs were found to be contaminated with toxigenic fungi, so a potential public health risk, while low, exists. Therefore, the selection of nontoxigenic filamentous mould strains for cheese manufacturing and control of the ripening conditions is a critical need to ensure the quality and safety of Turkish MMC.
Collapse
Affiliation(s)
- Nurhan Ertas Onmaz
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey.
| | - Candan Gungor
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Serhat Al
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Adalet Dishan
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Harun Hizlisoy
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Yeliz Yildirim
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Filiz Kasap Tekinsen
- Department of Medical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - H Burak Disli
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Mukaddes Barel
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Fulden Karadal
- Department of Food Processing, Bor Vocational School, Niğde Omer Halisdemir University, Nigde, Turkey
| |
Collapse
|
6
|
Iacovelli R, Bovenberg RAL, Driessen AJM. Nonribosomal peptide synthetases and their biotechnological potential in Penicillium rubens. J Ind Microbiol Biotechnol 2021; 48:6324005. [PMID: 34279620 PMCID: PMC8788816 DOI: 10.1093/jimb/kuab045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/12/2021] [Indexed: 01/23/2023]
Abstract
Nonribosomal peptide synthetases (NRPS) are large multimodular enzymes that synthesize a diverse variety of peptides. Many of these are currently used as pharmaceuticals, thanks to their activity as antimicrobials (penicillin, vancomycin, daptomycin, echinocandin), immunosuppressant (cyclosporin) and anticancer compounds (bleomycin). Because of their biotechnological potential, NRPSs have been extensively studied in the past decades. In this review, we provide an overview of the main structural and functional features of these enzymes, and we consider the challenges and prospects of engineering NRPSs for the synthesis of novel compounds. Furthermore, we discuss secondary metabolism and NRP synthesis in the filamentous fungus Penicillium rubens and examine its potential for the production of novel and modified β-lactam antibiotics.
Collapse
Affiliation(s)
- Riccardo Iacovelli
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Roel A L Bovenberg
- Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands.,DSM Biotechnology Centre, 2613 AX Delft, The Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
7
|
Khalil OAA, Hammad AA, Sebaei AS. Aspergillus flavus and Aspergillus ochraceus inhibition and reduction of aflatoxins and ochratoxin A in maize by irradiation. Toxicon 2021; 198:111-120. [PMID: 33961848 DOI: 10.1016/j.toxicon.2021.04.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 11/19/2022]
Abstract
Grains are susceptible to contamination by molds; some cause spoilage and others produce certain mycotoxins that cause a serious health threat to humans and animals. Aspergillus flavus and Aspergillus ochraceus and their mycotoxins, aflatoxins and ochratoxin A, are natural contaminants of various agricultural commodities. Control of these molds and their mycotoxins in food commodities is of utmost importance; therefore, the target of this research was to explore the effects of gamma irradiation doses on the growth of A. flavus and A. ochraceus in artificially inoculated yellow maize as well as on the production of aflatoxin B1, ochratoxin A, and the formation of toxins in maize. The irradiated dose of 6.0 kGy was found to completely inhibit the growth of the two molds, while a dose of 4.5 kGy reduced the production of their mycotoxins. Maximum degradation of the formed aflatoxins and ochratoxin A in maize occurred at 20 kGy, with best reduction rates of 40.1%, 33.3%, and 61.1% observed for aflatoxin B1, aflatoxin B2, and ochratoxin A, respectively. We recommend grains irradiation by gamma radiation at 6.0 kGy to decontaminate mycotoxin-producing molds before they produce mycotoxins. The study represents a proactive, efficient, and potent method for avoiding potential contamination of fungus during grains storage and transfer for one to two months.
Collapse
Affiliation(s)
- Ola A A Khalil
- Radiation Microbiology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Ali A Hammad
- Radiation Microbiology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Ahmed Salem Sebaei
- Agricultural Research Center, Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Food, Ministry of Agriculture, Giza, 12311, Egypt.
| |
Collapse
|
8
|
Guan P, Terigele, Schmidt F, Riemann M, Fischer J, Thines E, Nick P. Hunting modulators of plant defence: the grapevine trunk disease fungus Eutypa lata secretes an amplifier for plant basal immunity. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3710-3724. [PMID: 32211774 PMCID: PMC7475250 DOI: 10.1093/jxb/eraa152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 03/20/2020] [Indexed: 04/08/2024]
Abstract
Grapevine trunk diseases (GTDs) are progressively affecting vineyard longevity and productivity worldwide. To be able to understand and combat these diseases, we need a different concept of the signals exchanged between the grapevine and fungi than the well-studied pathogen-associated molecular pattern and effector concepts. We screened extracts from fungi associated with GTDs for their association with basal defence responses in suspension cells of grapevine. By activity-guided fractionation of the two selected extracts, O-methylmellein was identified as a candidate modulator of grapevine immunity. O-Methylmellein could not induce immune responses by itself (i.e. does not act as an elicitor), but could amplify some of the defence responses triggered by the bacterial elicitor flg22, such as the induction level of defence genes and actin remodelling. These findings show that Eutypa lata, exemplarily selected as an endophytic fungus linked with GTDs, can secrete compounds that act as amplifiers of basal immunity. Thus, in addition to elicitors that can trigger basal immunity, and effectors that down-modulate antibacterial basal immunity, once it had been activated, E. lata seems to secrete a third type of chemical signal that amplifies basal immunity and may play a role in the context of consortia of mutually competing microorganisms.
Collapse
Affiliation(s)
- Pingyin Guan
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg, Karlsruhe, Germany
| | - Terigele
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg, Karlsruhe, Germany
| | - Florian Schmidt
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH,, Kaiserslautern, Germany
| | - Michael Riemann
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg, Karlsruhe, Germany
| | - Jochen Fischer
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH,, Kaiserslautern, Germany
| | - Eckhard Thines
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH,, Kaiserslautern, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg, Karlsruhe, Germany
| |
Collapse
|
9
|
Muhialdin BJ, Saari N, Meor Hussin AS. Review on the Biological Detoxification of Mycotoxins Using Lactic Acid Bacteria to Enhance the Sustainability of Foods Supply. Molecules 2020; 25:E2655. [PMID: 32517380 PMCID: PMC7321335 DOI: 10.3390/molecules25112655] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/19/2022] Open
Abstract
The challenges to fulfill the demand for a safe food supply are dramatically increasing. Mycotoxins produced by certain fungi cause great economic loss and negative impact on the sustainability of food supplies. Moreover, the occurrence of mycotoxins at high levels in foods poses a high health threat for the consumers. Biological detoxification has exhibited a high potential to detoxify foodstuffs on a cost-effective and large scale. Lactic acid bacteria showed a good potential as an alternative strategy for the elimination of mycotoxins. The current review describes the health and economic impacts associated with mycotoxin contamination in foodstuffs. Moreover, this review highlights the biological detoxification of common food mycotoxins by lactic acid bacteria.
Collapse
Affiliation(s)
- Belal J. Muhialdin
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
| | - Anis Shobirin Meor Hussin
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
10
|
Fu H, Xu W, Wang H, Liao S, Chen G. Preparation of magnetic molecularly imprinted polymers for the identification of zearalenone in grains. Anal Bioanal Chem 2020; 412:4725-4737. [DOI: 10.1007/s00216-020-02729-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/25/2020] [Accepted: 05/19/2020] [Indexed: 12/31/2022]
|
11
|
Relationships between Exposure to Bioaerosols, Moldy Surface and Symptoms in French Mold-Damaged Homes. ATMOSPHERE 2020. [DOI: 10.3390/atmos11030223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Air quality in homes is a major concern in Europe, where people spend most of their time indoors. According to the World Health Organization, numerous houses are subject to dampness that can lead to mold growth, with associated health and economic consequences. Our goal was to characterize the human exposure to bioaerosols in French mold-damaged houses but also to study the effects of these bioaerosols as suffered by the inhabitants of these houses. A global approach including both field study and laboratory experimentation was used to investigate 48 mold-damaged homes. Among a wide fungal diversity, 101 viable species, Aspergillus versicolor, Penicillium chrysogenum and P. crustosum were observed as recurrent species and could be used as microbial indicators of indoor air quality. Statistical analyses highlighted a relationship between the concentrations of these recurrent molds and the levels of surface contamination by molds in homes. Fever, cough, dyspnea, flu-like symptoms were observed with several fungal strains (A. versicolor, P. chrysogenum and P. crustosum) or in relation to moldy odor. Relationships between particles of 2 to 15 µm diameter and headaches and dizziness were also observed. In our study, we identified a cutaneous effect (itching) in relationship to the airborne concentration of A. versicolor.
Collapse
|
12
|
Camardo Leggieri M, Pietri A, Battilani P. Modelling Fungal Growth, Mycotoxin Production and Release in Grana Cheese. Microorganisms 2020; 8:microorganisms8010069. [PMID: 31906515 PMCID: PMC7022280 DOI: 10.3390/microorganisms8010069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/27/2019] [Accepted: 12/31/2019] [Indexed: 12/15/2022] Open
Abstract
No information is available in the literature about the influence of temperature (T) on Penicillium and Aspergillus spp. growth and mycotoxin production on cheese rinds. The aim of this work was to: (i) study fungal ecology on cheese in terms of T requirements, focusing on the partitioning of mycotoxins between the rind and mycelium; and (ii) validate predictive models previously developed by in vitro trials. Grana cheese rind blocks were inoculated with A. versicolor, P. crustosum, P. nordicum, P. roqueforti, and P. verrucosum, incubated at different T regimes (10–30 °C, step 5 °C) and after 14 days the production of mycotoxins (ochratoxin A (OTA); sterigmatocystin (STC); roquefortine C (ROQ-C), mycophenolic acid (MPA), Pr toxin (PR-Tox), citrinin (CIT), cyclopiazonic acid (CPA)) was quantified. All the fungi grew optimally around 15–25 °C and produced the expected mycotoxins (except MPA, Pr-Tox, and CIT). The majority of the mycotoxins produced remained in the mycelium (~90%) in three out of five fungal species (P. crustosum, P. nordicum, and P. roqueforti); the opposite occurred for A. versicolor and P. verrucosum with 71% and 58% of STC and OTA detected in cheese rind, respectively. Available predictive models fitted fungal growth on the cheese rind well, but validation was not possible for mycotoxins because they were produced in a very narrow T range.
Collapse
Affiliation(s)
- Marco Camardo Leggieri
- Department of Sustinable Crop Production, Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122 Piacenza, Italy;
| | - Amedeo Pietri
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122 Piacenza, Italy;
| | - Paola Battilani
- Department of Sustinable Crop Production, Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122 Piacenza, Italy;
- Correspondence: ; Tel.: +39-0523-599-254
| |
Collapse
|
13
|
Synthesis and application of magnetic-surfaced pseudo molecularly imprinted polymers for zearalenone pretreatment in cereal samples. Food Chem 2019; 308:125696. [PMID: 31655482 DOI: 10.1016/j.foodchem.2019.125696] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 01/29/2023]
Abstract
Zearalenone (ZEA) is a fungal contaminant widely found in grains. In cereal samples, trace zearalenone was extracted and enriched using magnetic-surfaced pseudo molecularly imprinted polymers (SPMIPs) and detected. SPMIPs were prepared with Fe3O4 as the magnetic core, modified halloysites nanotubes as supporting materials, and selective imprinted polymers as shells. Vinyl was modified on the surface of halloysites nanotube. SPMIPs were synthesized with pseudo templates. SPMIPs as the adsorbent of dispersed-solid phase extraction (μ-SPE) were used to purify and enrich ZEA from maize samples. After optimized, the pretreatment method was evaluated. The linearity of the method was ranged within 10-200 ng mL-1. LOD and LOQ were 2.5 ng mL-1 and 8 ng mL-1 respectively. The ZEA spiking recoveries in maize samples ranged within 74.95-88.41% were with good RSDs lower than 4.25%. The developed method was successful applied in maize, oat, and wheat sample treatments and compared.
Collapse
|
14
|
|
15
|
Huang Z, He J, Li Y, Wu C, You L, Wei H, Li K, Zhang S. Preparation of dummy molecularly imprinted polymers for extraction of Zearalenone in grain samples. J Chromatogr A 2019; 1602:11-18. [DOI: 10.1016/j.chroma.2019.05.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/09/2019] [Accepted: 05/12/2019] [Indexed: 01/06/2023]
|
16
|
Coton M, Auffret A, Poirier E, Debaets S, Coton E, Dantigny P. Production and migration of ochratoxin A and citrinin in Comté cheese by an isolate of Penicillium verrucosum selected among Penicillium spp. mycotoxin producers in YES medium. Food Microbiol 2019; 82:551-559. [DOI: 10.1016/j.fm.2019.03.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 11/28/2022]
|
17
|
Dhungana B, Ali S, Byamukama E, Krishnan P, Wu J, Caffe‐Treml M. Effects of temperature, water activity, and fungal isolate on ochratoxin A accumulation in oat grain inoculated with
Penicillium verrucosum
and development of a methodology to screen oat cultivars for ochratoxin A accumulation. Cereal Chem 2019. [DOI: 10.1002/cche.10199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bandana Dhungana
- Department of Agronomy, Horticulture and Plant Science South Dakota State University Brookings SD USA
| | - Shaukat Ali
- Department of Agronomy, Horticulture and Plant Science South Dakota State University Brookings SD USA
| | - Emmanuel Byamukama
- Department of Agronomy, Horticulture and Plant Science South Dakota State University Brookings SD USA
| | - Padmanaban Krishnan
- Dairy and Food Science Department South Dakota State University Brookings SD USA
| | - Jixiang Wu
- Department of Agronomy, Horticulture and Plant Science South Dakota State University Brookings SD USA
| | - Melanie Caffe‐Treml
- Department of Agronomy, Horticulture and Plant Science South Dakota State University Brookings SD USA
| |
Collapse
|
18
|
Ramos-Pereira J, Mareze J, Patrinou E, Santos JA, López-Díaz TM. Polyphasic identification of Penicillium spp. isolated from Spanish semi-hard ripened cheeses. Food Microbiol 2019; 84:103253. [PMID: 31421787 DOI: 10.1016/j.fm.2019.103253] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/19/2019] [Accepted: 06/27/2019] [Indexed: 11/17/2022]
Abstract
Fifteen samples of semi-hard ripened cheeses, both spoiled (10) and unspoiled (5), and obtained from cheese factories located in Northwest of Spain, were analysed by a dilution plating technique and direct sampling. A total of 32 isolates were identified at species level by a polyphasic approach (phenotypic characterization, partial extrolite analysis and molecular identification). Most isolates (65.6%) belonged to the species P. commune; other species found were P. solitum, P. chrysogenum, P. nordicum, P. expansum and P. cvjetkovicii. All of the P. commune isolates were able to produce cyclopiazonic acid, while the P. nordicum and the P. expansum isolates were producers of ochratoxin A and patulin respectively. Despite this, the role of P. commune as beneficial fungi in cheese ripening should be investigated. Molecular identification based on BenA sequence analysis was able to identify the majority of isolates. The three mycotoxins investigated can be considered key for identification. The polyphasic approach seems to be a very valuable tool for identification of isolates of this complex genus.
Collapse
Affiliation(s)
- Juliana Ramos-Pereira
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain.
| | - Juliana Mareze
- Department of Veterinary and Preventive Medicine, University of Londrina, Brazil.
| | - Eleni Patrinou
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain.
| | - Jesús A Santos
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain.
| | - Teresa-María López-Díaz
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain.
| |
Collapse
|
19
|
Oliveira G, Evangelista SR, Passamani FRF, Santiago WD, Cardoso MDG, Batista LR. Influence of temperature and water activity on Ochratoxin A production by Aspergillus strain in coffee south of Minas Gerais/Brazil. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Oliveira BR, Mata AT, Ferreira JP, Barreto Crespo MT, Pereira VJ, Bronze MR. Production of mycotoxins by filamentous fungi in untreated surface water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:17519-17528. [PMID: 29663293 DOI: 10.1007/s11356-018-1952-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Several research studies reported that mycotoxins and other metabolites can be produced by fungi in certain matrices such as food. In recent years, attention has been drawn to the wide occurrence and identification of fungi in drinking water sources. Due to the large demand of water for drinking, watering, or food production purposes, it is imperative that further research is conducted to investigate if mycotoxins may be produced in water matrices. This paper describes the results obtained when a validated analytical method was applied to detect and quantify the presence of mycotoxins as a result of fungi inoculation and growth in untreated surface water. Aflatoxins B1 and B2, fumonisin B3, and ochratoxin A were detected at concentrations up to 35 ng/L. These results show that fungi can produce mycotoxins in water matrices in a non-negligible quantity and, as such, attention must be given to the presence of fungi in water.
Collapse
Affiliation(s)
- Beatriz R Oliveira
- IBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Ana T Mata
- iMED, Faculdade de Farmácia Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-019, Lisbon, Portugal
| | - João P Ferreira
- iMED, Faculdade de Farmácia Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-019, Lisbon, Portugal
| | - Maria T Barreto Crespo
- IBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Vanessa J Pereira
- IBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Maria R Bronze
- IBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
- iMED, Faculdade de Farmácia Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-019, Lisbon, Portugal.
| |
Collapse
|
21
|
Extrinsic harmful residues in Chinese herbal medicines: types, detection, and safety evaluation. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2018.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
22
|
Zhang F, Liu B, Sheng W, Zhang Y, Liu Q, Li S, Wang S. Fluoroimmunoassays for the detection of zearalenone in maize using CdTe/CdS/ZnS quantum dots. Food Chem 2018; 255:421-428. [PMID: 29571496 DOI: 10.1016/j.foodchem.2018.02.060] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/20/2017] [Accepted: 02/11/2018] [Indexed: 11/19/2022]
Abstract
CdTe/CdS/ZnS quantum dots (QDs) were synthesized in aqueous phase and conjugated with a new anti-zearalenone (ZEN) monoclonal antibody. Using this novel fluorescent probe, a fluoroimmunoassay (FLISA) and a rapid immunochromatographic strip (ICTS) were developed for the detection of ZEN in maize. Our proposed FLISA allowed for ZEN determination in the range of 0.038-0.977 ng/mL with an IC50 of 0.162 ng/mL and a limit of detection (LOD) of 0.012 ng/mL occurring in maize. The rapid ICTS had a visual LOD of 1.0 ng/mL in buffer solution and 1.5 ng/mL in maize extract. These two QDs-based immunoassays were all successfully verified by commercial ELISA kits. The results confirmed that: firstly, the FLISA can be used as a robust method for the sensitive detection of ZEN; and secondly, the ICTS is ideally suited for rapidly screening large numbers of samples.
Collapse
Affiliation(s)
- Fuyuan Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China; ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, North Ryde 2109, Australia
| | - Bing Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wei Sheng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yan Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qi Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shijie Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
23
|
Casquete R, Rodríguez A, Hernández A, Martín A, Bartolomé T, Córdoba JJ, Córdoba MG. Occurrence of Toxigenic Fungi and Mycotoxins during Smoked Paprika Production. J Food Prot 2017; 80:2068-2077. [PMID: 29154716 DOI: 10.4315/0362-028x.jfp-17-164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
'La Vera' smoked paprika is a traditional Spanish product regulated under a protected designation of origin. Mycotoxins are possible contaminants in paprika, yet there is little information about mycotoxin production during the processing of smoked paprika. In this study, samples of dried peppers collected from six traditional dryers from four producers were evaluated for physicochemical parameters, mycotoxins, and mycotoxin-producing fungi. The moisture content and water activity of the peppers ranged from 11.0 to 16.3% and 0.513 to 0.611, respectively, with significant differences among the dryers (P ≤ 0.05). Culture methods revealed fungal counts of 2.6 to 5.7 log CFU/g, with significant differences among the dryers (P ≤ 0.05), and real-time PCR revealed aflatoxin-producing fungi (2.00 to 3.42 log CFU/g) in all dryers. However, mycotoxins were not detected in dried pepper samples. Sixty-seven mold species isolated from dried peppers were identified by sequencing of the ITS1-5.8S rRNA-ITS2 region and characterized by mycotoxigenic ability. Four isolates of Penicillium expansum, four isolates of Penicillium thomii, and one isolate of Aspergillus parasiticus were producers of patulin, penicillic acid, and aflatoxins, respectively. Toxigenic fungi were inoculated onto smoked dried peppers and stored at 84, 91, 94, and 97% relative humidity (RH) at 20°C for 30 days. Patulin was not detected under any of these conditions. Penicillic acid was detected in dried samples stored at 91 to 97% RH, although the optimum condition was isolate dependent. Aflatoxins G2, B1, and B2 were detected at 91 to 97% RH, with the highest concentrations at 94% RH. According to our results, hazard analysis critical control point systems should be used to control the drying and storage conditions of dried peppers until the milling step to avoid rehydration, which encourages fungal growth and mycotoxin production.
Collapse
Affiliation(s)
| | - Alicia Rodríguez
- 3 Department of Vegetable Production, Institute of Agronomics Resources, School of Agronomics Engineering, University of Extremadura, Avenida Adolfo Suárez s/n, 06007-Badajoz, Spain (ORCID: http://orcid.org/0000-0002-2764-3386 [A.H.]); and
| | | | | | - Teresa Bartolomé
- 2 Department of Food Hygiene and Safety, Meat and Meat Products Research Institute, Faculty of Veterinary Science, University of Extremadura, Avda. de la Universidad s/n, 10003-Cáceres, Spain
| | - Juan José Córdoba
- 3 Department of Vegetable Production, Institute of Agronomics Resources, School of Agronomics Engineering, University of Extremadura, Avenida Adolfo Suárez s/n, 06007-Badajoz, Spain (ORCID: http://orcid.org/0000-0002-2764-3386 [A.H.]); and
| | | |
Collapse
|
24
|
Liu L, Xu L, Suryoprabowo S, Song S, Kuang H. Development of an immunochromatographic test strip for the detection of ochratoxin A in red wine. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1401043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Liqiang Liu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
| | - Liguang Xu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
| | - Steven Suryoprabowo
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
| | - Shanshan Song
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
| |
Collapse
|
25
|
Gao M, Glenn AE, Blacutt AA, Gold SE. Fungal Lactamases: Their Occurrence and Function. Front Microbiol 2017; 8:1775. [PMID: 28974947 PMCID: PMC5610705 DOI: 10.3389/fmicb.2017.01775] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/31/2017] [Indexed: 01/07/2023] Open
Abstract
Fungi are absorptive feeders and thus must colonize and ramify through their substrate to survive. In so doing they are in competition, particularly in the soil, with myriad microbes. These microbes use xenobiotic compounds as offensive weapons to compete for nutrition, and fungi must be sufficiently resistant to these xenobiotics. One prominent mechanism of xenobiotic resistance is through production of corresponding degrading enzymes. As typical examples, bacterial β-lactamases are well known for their ability to degrade and consequently confer resistance to β-lactam antibiotics, a serious emerging problem in health care. We have identified many fungal genes that putatively encode proteins exhibiting a high degree of similarity to β-lactamases. However, fungal cell walls are structurally different from the bacterial peptidoglycan target of β-lactams. This raises the question, why do fungi have lactamases and what are their functions? Previously, we identified and characterized one Fusarium verticillioides lactamase encoding gene (FVEG_08291) that confers resistance to the benzoxazinoid phytoanticipins produced by maize, wheat, and rye. Since benzoxazinoids are γ-lactams with five-membered rings rather than the four-membered β-lactams, we refer to the predicted enzymes simply as lactamases, rather than β-lactamases. An overview of fungal genomes suggests a strong positive correlation between environmental niche complexity and the number of fungal lactamase encoding genes, with soil-borne fungi showing dramatic amplification of lactamase encoding genes compared to those fungi found in less biologically complex environments. Remarkably, Fusarium species frequently possess large (>40) numbers of these genes. We hypothesize that many fungal hydrolytic lactamases are responsible for the degradation of plant or microbial xenobiotic lactam compounds. Alignment of protein sequences revealed two conserved patterns resembling bacterial β-lactamases, specifically those possessing PFAM domains PF00753 or PF00144. Structural predictions of F. verticillioides lactamases also suggested similar catalytic mechanisms to those of their bacterial counterparts. Overall, we present the first in-depth analysis of lactamases in fungi, and discuss their potential relevance to fitness and resistance to antimicrobials in the environment.
Collapse
Affiliation(s)
- Minglu Gao
- Department of Plant Pathology, The University of Georgia, AthensGA, United States
| | - Anthony E. Glenn
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, United States Department of Agriculture – Agricultural Research Service, AthensGA, United States
| | - Alex A. Blacutt
- Department of Plant Pathology, The University of Georgia, AthensGA, United States
| | - Scott E. Gold
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, United States Department of Agriculture – Agricultural Research Service, AthensGA, United States
| |
Collapse
|
26
|
Influence of Environmental Factors on the Production of Penitrems A-F by Penicillium crustosum. Toxins (Basel) 2017; 9:toxins9070210. [PMID: 28671569 PMCID: PMC5535157 DOI: 10.3390/toxins9070210] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/15/2017] [Accepted: 06/29/2017] [Indexed: 11/17/2022] Open
Abstract
Filamentous fungi produce a multitude of secondary metabolites, some of them known as mycotoxins, which are toxic to vertebrates and other animal groups in low concentrations. Among them, penitrems, which belong to the group of indole-diterpene mycotoxins, are synthesized by Penicillium and Aspergillus genera and exhibit potent tremorgenic effects. This is the first complex study of the penitrems A-F production under the influence of different abiotic factors, e.g., media, incubation time, temperature, pH, light, water activity, and carbon and nitrogen source as well as oxidative and salt stress. For this purpose, penitrems A-F were isolated from Penicillium crustosum cultures and used as analytical standards. Among the carbon sources, glucose supplemented to the media at the concentration of 50 g/L, showed the strongest inducing effect on the biosynthesis of penitrems. Among nitrogen sources, glutamate was found to be the most favorable supplement, significantly increasing production of these secondary metabolites. CuSO4-promoted oxidative stress was also shown to remarkably stimulate biosynthesis of all penitrems. In contrast, the salt stress, caused by the elevated concentrations of NaCl, showed an inhibitory effect on the penitrem biosynthesis. Finally, cheese model medium elicited exceptionally high production of all members of the penitrems family. Obtained results give insides into the biosynthesis of toxicologically relevant penitrems A-F under different environmental factors and can be utilized to prevent food contamination.
Collapse
|
27
|
Olsen M, Gidlund A, Sulyok M. Experimental mould growth and mycotoxin diffusion in different food items. WORLD MYCOTOXIN J 2017. [DOI: 10.3920/wmj2016.2163] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Isolates of Penicillium commune, Penicillium crustosum, Penicillium expansum, Penicillium roqueforti and Aspergillus versicolor, were inoculated on different food items (hard cheese, crème fraiche, tomato purée, apple and blueberry jam) and incubated at 15 °C for 14 days at 50% relative humidity (RH). After incubation the food samples were divided into 3 subsamples; A was 0-2 cm from the surface and including the fungal colony, subsample B was 2-4 cm and subsample C was the rest from >4 cm from the surface. The subsamples were analysed with a multianalyte method capable of identifying more than several hundreds of fungal metabolites. The outcome showed that mouldy food can contain a cocktail of bioactive secondary metabolites including mycotoxins and sometimes at high concentrations. Measurements of the diffusion of fungal metabolites from the colony on the surface (layer A) into the food (layer B and C) showed that the fungal metabolites do not diffuse more than 2 cm into the inner core of the hard cheese. On the other hand in more liquid foods, such as crème fraiche, fruit jams and tomato purée, the toxins diffused quite readily throughout the entire food sample. The levels of patulin found in the apple jam indicate that the tolerable daily intake for patulin may easily be exceeded even if the mouldy layer A is removed. This limited study calls for more similar studies to be performed to give risk managers a sound basis for advice to consumers.
Collapse
Affiliation(s)
- M. Olsen
- National Food Agency, Department of Risk Benefit Assessment, P.O. Box 622, 751 26 Uppsala, Sweden
| | - A. Gidlund
- National Food Agency, Department of Biology, P.O. Box 622, 751 26 Uppsala, Sweden
| | - M. Sulyok
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| |
Collapse
|
28
|
Phoku J, Barnard T, Potgieter N, Dutton M. Mycotoxigenic potentials of the genera: Aspergillus, Fusarium and Penicillium isolated from houseflies (Musca domestica L.). Acta Trop 2017; 168:29-36. [PMID: 28042000 DOI: 10.1016/j.actatropica.2016.12.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/03/2016] [Accepted: 12/27/2016] [Indexed: 10/20/2022]
Abstract
A study on the potential of houseflies (Musca domestica L.) to spread fungal spores in Gauteng Province, South Africa proved that houseflies are vectors for fungal spores. Therefore, there is a need to determine the toxigenic potentials and to identify the mycotoxins produced by fungal isolates derived from this study. In total 377 potentially toxigenic isolates of Aspergillus (186), Fusarium (85) and Penicillium (106) species (spp.) were isolated. These isolates were further tested for their ability to produce aflatoxins (AFs) [aflatoxin B1, B2, G1 and G2], deoxynivalenol (DON), fumonisin B1 (FB1) ochratoxin A (OTA), and zearalenone (ZEA) by high-performance liquid chromatography (HPLC) respectively. Strains of A. flavus and A. parasiticus belonging to the genera of Aspergillus were found to be the main producers of AFB1, AFB2, AFG1, and AFG2, while A. carbonarius, A. niger and A. ochraceus produced OTA. Fumonisin B1 was produced by F. verticillioides and F. proliferatum with concentrations ranging from 20 to 1834μg/kg and 79 to 262μg/kg respectively. Deoxynivalenol produced mainly by F. culmorum (2-6μg/kg), F. graminearum (1-4μg/kg), F. poae (1-3μg/kg), and F. sporotrichioides (2-3μg/kg) species was the least detected toxin in this study. The high mycotoxins levels produced in isolates from houseflies in this study are regarded as unsafe, especially when international legislated tolerance levels for mycotoxins are considered. Thus, possible human exposure to mycotoxins may pose concerns with respect to human health and demands constant and consistent investigation.
Collapse
|
29
|
Hautbergue T, Puel O, Tadrist S, Meneghetti L, Péan M, Delaforge M, Debrauwer L, Oswald IP, Jamin EL. Evidencing 98 secondary metabolites of Penicillium verrucosum using substrate isotopic labeling and high-resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1071:29-43. [PMID: 28351740 DOI: 10.1016/j.jchromb.2017.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/06/2017] [Accepted: 03/10/2017] [Indexed: 12/23/2022]
Abstract
Industrial applications of fungal compounds, coupled with the emergence of fungal threats to natural ecosystems and public health, have increased interest in filamentous fungi. Among all pathogenic fungi, Penicillium verrucosum is one of the most common mold-infecting stored cereals in temperate regions. However, it is estimated that 80% of fungal secondary metabolites remain unknown. To detect new P. verrucosum compounds, an untargeted metabolomic approach was applied to fungus grown on wheat grains labeled with stable isotopes: (i) natural grains (99% 12C); (ii) grains enriched with 97% of 13C; and (iii) grains enriched with 53% of 13C and 97% of 15N. Analyses performed by high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) enabled the specific detection of fungal metabolites, and the unambiguous characterization of their chemical formulas. In this way, 98 secondary metabolites were detected and their chemical formulas were determined. Of these, only 18 identifications could be made based on databases, the literature and mass spectrometry fragmentation experiments, with the result that 80 were totally unknown. Molecular networks were generated to analyze these results, leading to the characterization by MSn experiments of a new fungisporin produced by P. verrucosum. More generally, this article provides precise mass spectrometric data about all these compounds for further studies of the Penicillium metabolome.
Collapse
Affiliation(s)
- Thaïs Hautbergue
- Toxalim, Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Univ. Toulouse 3 Paul Sabatier, 31027 Toulouse, France; Axiom Platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, 31027 Toulouse, France
| | - Olivier Puel
- Toxalim, Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Univ. Toulouse 3 Paul Sabatier, 31027 Toulouse, France.
| | - Souria Tadrist
- Toxalim, Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Univ. Toulouse 3 Paul Sabatier, 31027 Toulouse, France
| | - Lauriane Meneghetti
- Toxalim, Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Univ. Toulouse 3 Paul Sabatier, 31027 Toulouse, France; Axiom Platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, 31027 Toulouse, France
| | - Michel Péan
- Groupe de Recherches Appliquées en Phytotechnologie, CEA, IBEB, Cadarache, FR 13108 Saint-Paul-les-Durance, France; UMR Biologie Végétale et Microbiologie Environnementale, CNRS, FR 13108 Saint-Paul-les-Durance, France; Université d'Aix-Marseille, FR 13007 Marseille, France
| | | | - Laurent Debrauwer
- Toxalim, Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Univ. Toulouse 3 Paul Sabatier, 31027 Toulouse, France; Axiom Platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, 31027 Toulouse, France
| | - Isabelle P Oswald
- Toxalim, Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Univ. Toulouse 3 Paul Sabatier, 31027 Toulouse, France
| | - Emilien L Jamin
- Toxalim, Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Univ. Toulouse 3 Paul Sabatier, 31027 Toulouse, France; Axiom Platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, 31027 Toulouse, France
| |
Collapse
|
30
|
Camardo Leggieri M, Decontardi S, Bertuzzi T, Pietri A, Battilani P. Modeling Growth and Toxin Production of Toxigenic Fungi Signaled in Cheese under Different Temperature and Water Activity Regimes. Toxins (Basel) 2016; 9:E4. [PMID: 28029129 PMCID: PMC5308237 DOI: 10.3390/toxins9010004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to investigate in vitro and model the effect of temperature (T) and water activity (aw) conditions on growth and toxin production by some toxigenic fungi signaled in cheese. Aspergillus versicolor, Penicillium camemberti, P. citrinum, P. crustosum, P. nalgiovense, P. nordicum, P. roqueforti, P. verrucosum were considered they were grown under different T (0-40 °C) and aw (0.78-0.99) regimes. The highest relative growth occurred around 25 °C; all the fungi were very susceptible to aw and 0.99 was optimal for almost all species (except for A. versicolor, awopt = 0.96). The highest toxin production occurred between 15 and 25 °C and 0.96-0.99 aw. Therefore, during grana cheese ripening, managed between 15 and 22 °C, ochratoxin A (OTA), penitrem A (PA), roquefortine-C (ROQ-C) and mycophenolic acid (MPA) are apparently at the highest production risk. Bete and logistic function described fungal growth under different T and aw regimes well, respectively. Bete function described also STC, PA, ROQ-C and OTA production as well as function of T. These models would be very useful as starting point to develop a mechanistic model to predict fungal growth and toxin production during cheese ripening and to help advising the most proper setting of environmental factors to minimize the contamination risk.
Collapse
Affiliation(s)
- Marco Camardo Leggieri
- Department of Sustainable Crop Production-Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122 Piacenza, Italy.
| | - Simone Decontardi
- Department of Sustainable Crop Production-Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122 Piacenza, Italy.
| | - Terenzio Bertuzzi
- Institute of Food & Feed Science and Nutrition-Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122 Piacenza, Italy.
| | - Amedeo Pietri
- Institute of Food & Feed Science and Nutrition-Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122 Piacenza, Italy.
| | - Paola Battilani
- Department of Sustainable Crop Production-Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122 Piacenza, Italy.
| |
Collapse
|
31
|
|
32
|
Kong D, Liu L, Song S, Suryoprabowo S, Li A, Kuang H, Wang L, Xu C. A gold nanoparticle-based semi-quantitative and quantitative ultrasensitive paper sensor for the detection of twenty mycotoxins. NANOSCALE 2016; 8:5245-53. [PMID: 26879591 DOI: 10.1039/c5nr09171c] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A semi-quantitative and quantitative multi-immunochromatographic (ICA) strip detection assay was developed for the simultaneous detection of twenty types of mycotoxins from five classes, including zearalenones (ZEAs), deoxynivalenols (DONs), T-2 toxins (T-2s), aflatoxins (AFs), and fumonisins (FBs), in cereal food samples. Sensitive and specific monoclonal antibodies were selected for this assay. The semi-quantitative results were obtained within 20 min by the naked eye, with visual limits of detection for ZEAs, DONs, T-2s, AFs and FBs of 0.1-0.5, 2.5-250, 0.5-1, 0.25-1 and 2.5-10 μg kg(-1), and cut-off values of 0.25-1, 5-500, 1-10, 0.5-2.5 and 5-25 μg kg(-1), respectively. The quantitative results were obtained using a hand-held strip scan reader, with the calculated limits of detection for ZEAs, DONs, T-2s, AFs and FBs of 0.04-0.17, 0.06-49, 0.15-0.22, 0.056-0.49 and 0.53-1.05 μg kg(-1), respectively. The analytical results of spiked samples were in accordance with the accurate content in the simultaneous detection analysis. This newly developed ICA strip assay is suitable for the on-site detection and rapid initial screening of mycotoxins in cereal samples, facilitating both semi-quantitative and quantitative determination.
Collapse
Affiliation(s)
- Dezhao Kong
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, JiangSu 214122, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu 214122, People's Republic of China
| | - Liqiang Liu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, JiangSu 214122, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu 214122, People's Republic of China
| | - Shanshan Song
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, JiangSu 214122, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu 214122, People's Republic of China
| | - Steven Suryoprabowo
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, JiangSu 214122, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu 214122, People's Republic of China
| | - Aike Li
- Cereals & Oils Nutrition Research Group, Academy of Science & Technology of State Administration of Grain, Beijing 100037, People's Republic of China.
| | - Hua Kuang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, JiangSu 214122, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu 214122, People's Republic of China
| | - Libing Wang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, JiangSu 214122, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu 214122, People's Republic of China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, JiangSu 214122, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu 214122, People's Republic of China
| |
Collapse
|
33
|
Cakmakci S, Gurses M, Hayaloglu AA, Cetin B, Sekerci P, Dagdemir E. Mycotoxin production capability ofPenicillium roquefortiin strains isolated from mould-ripened traditional Turkish civil cheese. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:245-9. [DOI: 10.1080/19440049.2014.997808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Simoncini N, Virgili R, Spadola G, Battilani P. Autochthonous yeasts as potential biocontrol agents in dry-cured meat products. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.04.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Kachouri F, Ksontini H, Hamdi M. Removal of aflatoxin B1 and inhibition of Aspergillus flavus growth by the use of Lactobacillus plantarum on olives. J Food Prot 2014; 77:1760-7. [PMID: 25285494 DOI: 10.4315/0362-028x.jfp-13-360] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Olives can be contaminated with a wide variety of molds (Aspergillus and/or Penicillium) that can be occurring naturally on fresh and processed olives and could support mycotoxin production. The aim of this work was to investigate aflatoxin B1 (AFB1) production by fungi and its bioaccumulation in olives during storage and to study the impact of the application of Lactobacillus plantarum on the inhibition of mold development and production of AFB1. Two different treatments were applied: (i) olives with natural microflora and (ii) olives inoculated with Aspergillus flavus after elimination of natural microflora. AFB1 has been extracted from olives and quantitated by high-performance liquid chromatography using a fluorescence detector. Results showed the absence of this metabolite in the olives for the season 2008 to 2009. In 2009 to 2010, AFB1 was detected at the level of 11 μg/kg. The application of L. plantarum during the storage of olives favors the reduction of the level of AFB1 to 5.9 μg/kg correlated with a decrease in the amount of molds (86.3%). The images obtained by environmental scanning electron microscopy showed that L. plantarum was able to adhere to the olive surface and probably produce a biofilm that inhibits the multiplication of yeast and fungi by oxygen competition. Results showed an increase of antioxidant activity and amount of total phenolic compounds of olives, respectively, by 24 and 8.6%. In many olives contaminated with A. flavus, AFB1 was present at an initial level of 5.15 μg/kg and increased to 6.55 μg/kg after 8 days of storage. The biological detoxification of AFB1 in olives by L. plantarum is confirmed by the reduction of the level of AFB1 to 2.12 μg/kg on day 0 and its absence after 4 days of storage.
Collapse
Affiliation(s)
- Faten Kachouri
- Laboratory of Microbial Ecology and Technology (LETMI), National Institute of Applied Sciences and Technology (INSAT), BP: 676. 1080, Tunis, Tunisia; Superior School of Food Industry at Tunis (ESIAT), 58 Street Alain Savary, 1003, Tunis, Tunisia.
| | - Hamida Ksontini
- Laboratory of Microbial Ecology and Technology (LETMI), National Institute of Applied Sciences and Technology (INSAT), BP: 676. 1080, Tunis, Tunisia; Superior School of Food Industry at Tunis (ESIAT), 58 Street Alain Savary, 1003, Tunis, Tunisia
| | - Moktar Hamdi
- Laboratory of Microbial Ecology and Technology (LETMI), National Institute of Applied Sciences and Technology (INSAT), BP: 676. 1080, Tunis, Tunisia; Superior School of Food Industry at Tunis (ESIAT), 58 Street Alain Savary, 1003, Tunis, Tunisia
| |
Collapse
|
36
|
Hymery N, Vasseur V, Coton M, Mounier J, Jany JL, Barbier G, Coton E. Filamentous Fungi and Mycotoxins in Cheese: A Review. Compr Rev Food Sci Food Saf 2014; 13:437-456. [PMID: 33412699 DOI: 10.1111/1541-4337.12069] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/12/2014] [Indexed: 12/01/2022]
Abstract
Important fungi growing on cheese include Penicillium, Aspergillus, Cladosporium, Geotrichum, Mucor, and Trichoderma. For some cheeses, such as Camembert, Roquefort, molds are intentionally added. However, some contaminating or technological fungal species have the potential to produce undesirable metabolites such as mycotoxins. The most hazardous mycotoxins found in cheese, ochratoxin A and aflatoxin M1, are produced by unwanted fungal species either via direct cheese contamination or indirect milk contamination (animal feed contamination), respectively. To date, no human food poisoning cases have been associated with contaminated cheese consumption. However, although some studies state that cheese is an unfavorable matrix for mycotoxin production; these metabolites are actually detected in cheeses at various concentrations. In this context, questions can be raised concerning mycotoxin production in cheese, the biotic and abiotic factors influencing their production, mycotoxin relative toxicity as well as the methods used for detection and quantification. This review emphasizes future challenges that need to be addressed by the scientific community, fungal culture manufacturers, and artisanal and industrial cheese producers.
Collapse
Affiliation(s)
- Nolwenn Hymery
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, ESIAB, Technopôle de Brest Iroise, Université de Brest, EA3882, 29280 Plouzané, France
| | - Valérie Vasseur
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, ESIAB, Technopôle de Brest Iroise, Université de Brest, EA3882, 29280 Plouzané, France
| | - Monika Coton
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, ESIAB, Technopôle de Brest Iroise, Université de Brest, EA3882, 29280 Plouzané, France
| | - Jérôme Mounier
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, ESIAB, Technopôle de Brest Iroise, Université de Brest, EA3882, 29280 Plouzané, France
| | - Jean-Luc Jany
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, ESIAB, Technopôle de Brest Iroise, Université de Brest, EA3882, 29280 Plouzané, France
| | - Georges Barbier
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, ESIAB, Technopôle de Brest Iroise, Université de Brest, EA3882, 29280 Plouzané, France
| | - Emmanuel Coton
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, ESIAB, Technopôle de Brest Iroise, Université de Brest, EA3882, 29280 Plouzané, France
| |
Collapse
|
37
|
Li X, Li P, Zhang Q, Li R, Zhang W, Zhang Z, Ding X, Tang X. Multi-component immunochromatographic assay for simultaneous detection of aflatoxin B1, ochratoxin A and zearalenone in agro-food. Biosens Bioelectron 2013; 49:426-32. [PMID: 23807236 DOI: 10.1016/j.bios.2013.05.039] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 12/19/2022]
|
38
|
Li X, Li P, Zhang Q, Zhang Z, Li R, Zhang W, Ding X, Chen X, Tang X. A Sensitive Immunoaffinity Column-Linked Indirect Competitive ELISA for Ochratoxin A in Cereal and Oil Products Based on a New Monoclonal Antibody. FOOD ANAL METHOD 2013; 6:1433-1440. [DOI: 10.1007/s12161-013-9561-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Samsudin NIP, Abdullah N. A preliminary survey on the occurrence of mycotoxigenic fungi and mycotoxins contaminating red rice at consumer level in Selangor, Malaysia. Mycotoxin Res 2012; 29:89-96. [PMID: 23242851 DOI: 10.1007/s12550-012-0154-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/13/2012] [Accepted: 11/15/2012] [Indexed: 11/27/2022]
Abstract
Red rice is a fermented product of Monascus spp. It is widely consumed by Malaysian Chinese who believe in its pharmacological properties. The traditional method of red rice preparation disregards safety regulation and renders red rice susceptible to fungal infestation and mycotoxin contamination. A preliminary study was undertaken aiming to determine the occurrence of mycotoxigenic fungi and mycotoxins contamination on red rice at consumer level in Selangor, Malaysia. Fifty red rice samples were obtained and subjected to fungal isolation, enumeration, and identification. Citrinin, aflatoxin, and ochratoxin-A were quantitated by ELISA based on the presence of predominant causal fungi. Fungal loads of 1.4 × 10(4) to 2.1 × 10(6) CFU/g exceeded Malaysian limits. Monascus spp. as starter fungi were present in 50 samples (100%), followed by Penicillium chrysogenum (62%), Aspergillus niger (54%), and Aspergillus flavus (44%). Citrinin was present in 100% samples (0.23-20.65 mg/kg), aflatoxin in 92% samples (0.61-77.33 μg/kg) and Ochratoxin-A in 100% samples (0.23-2.48 μg/kg); 100% citrinin and 76.09% aflatoxin exceeded Malaysian limits. The presence of mycotoxigenic fungi served as an indicator of mycotoxins contamination and might imply improper production, handling, transportation, and storage of red rice. Further confirmatory analysis (e.g., HPLC) is required to verify the mycotoxins level in red rice samples and to validate the safety status of red rice.
Collapse
Affiliation(s)
- Nik Iskandar Putra Samsudin
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor darul Ehsan, Malaysia
| | | |
Collapse
|
40
|
Stoev SD, Gundasheva D, Zarkov I, Mircheva T, Zapryanova D, Denev S, Mitev Y, Daskalov H, Dutton M, Mwanza M, Schneider YJ. Experimental mycotoxic nephropathy in pigs provoked by a mouldy diet containing ochratoxin A and fumonisin B1. ACTA ACUST UNITED AC 2012; 64:733-41. [DOI: 10.1016/j.etp.2011.01.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 01/02/2011] [Accepted: 01/13/2011] [Indexed: 11/29/2022]
|
41
|
Amézqueta S, Schorr-Galindo S, Murillo-Arbizu M, González-Peñas E, López de Cerain A, Guiraud J. OTA-producing fungi in foodstuffs: A review. Food Control 2012. [DOI: 10.1016/j.foodcont.2012.01.042] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
42
|
Kong W, Xie T, Li J, Wei J, Qiu F, Qi A, Zheng Y, Yang M. Analysis of fumonisins B1 and B2 in spices and aromatic and medicinal herbs by HPLC-FLD with on-line post-column derivatization and positive confirmation by LC-MS/MS. Analyst 2012; 137:3166-74. [PMID: 22627776 DOI: 10.1039/c2an35164a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fumonisins are produced by the fungus Fusarium verticillioides, which are known to cause fatal diseases in some animals and humans. Here, we describe a sensitive, reproducible and reliable analytical method for the quantitative determination of fumonisins B(1) (FB(1)) and B(2) (FB(2)) in 112 spices and aromatic and medicinal herbs marketed in China. This method is based on high performance liquid chromatography and fluorescence detection (HPLC-FLD) coupled to a new on-line post-column derivatization using ortho-phthaldialdehyde with 2-mercaptoethanol and immunoaffinity column clean-up. Under the optimized experimental conditions, a complete separation of FB(1) and FB(2) was obtained using a Synergi C(18) column and a gradient elution at 0.8 mL min(-1) with methanol and 0.1 M phosphate buffer at pH 3.15. The limits of detection for FB(1) and FB(2) were both 40 μg kg(-1). Good recoveries were found for spiked samples with FB(1) and FB(2), ranging from 82.34% to 98.16% for FB(1) and from 72.58% to 97.10% for FB(2), with relative standard deviation (RSD) < 7.0%. 5 spices, 11 aromatic herbs and 96 medicinal herbs including 93 normal samples and 19 visibly moldy samples, which were spoiled artificially, were analyzed. The results showed that 8 (42.1%) visibly moldy samples and 8 (8.6%) normal samples were contaminated with FB(1) at mean contents of 129.0 and 165.9 μg kg(-1), and with FB(2) at 1745.0 and 256.8 μg kg(-1), respectively. Positive confirmation of detected samples was performed by liquid chromatography tandem electrospray ionization mass spectrometry (LC-ESI-MS/MS), using a triple quadrupole analyzer and operated in the multiple reaction monitoring mode.
Collapse
Affiliation(s)
- Weijun Kong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Scientific Opinion on the risks for public and animal health related to the presence of citrinin in food and feed. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2605] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
44
|
MAKUN HUSSAINIANTHONY, DUTTON MICHAELFRANCIS, NJOBEH PATRICKBERKA, PHOKU JUDITHZANELE, YAH CLARENCESUH. INCIDENCE, PHYLOGENY AND MYCOTOXIGENIC POTENTIALS OF FUNGI ISOLATED FROM RICE IN NIGER STATE, NIGERIA. J Food Saf 2011. [DOI: 10.1111/j.1745-4565.2011.00305.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Berni E, Degola F, Cacchioli C, Restivo F, Spotti E. Polyphasic approach for differentiatingPenicillium nordicumfromPenicillium verrucosum. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2011; 28:477-84. [DOI: 10.1080/19440049.2010.550065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
|
47
|
Influence of abiotic parameters on ochratoxin A production by a Penicillium nordicum strain in dry-cured meat model systems. Food Control 2010. [DOI: 10.1016/j.foodcont.2010.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Ghali R, Khlifa KH, Ghorbel H, Maaroufi K, Hedilli A. Aflatoxin determination in commonly consumed foods in Tunisia. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2010; 90:2347-2351. [PMID: 20812375 DOI: 10.1002/jsfa.4069] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
BACKGROUND To investigate natural aflatoxin occurrence, a total of 180 samples of different foods widely consumed in Tunisia were analysed by an in-house-validated high-performance liquid chromatography method including affinity column clean-up and post-column bromination techniques. RESULTS The method used appeared to be rapid, selective and reproducible, and its performances were established. Detection limits were 0.05 ng g(-1) for aflatoxin B1 and 0.025 ng g(-1) for aflatoxins B2, G1 and G2. Aflatoxins were detected in all investigated commodities except rice, with an overall contamination frequency of 34.4% and concentrations ranging from 0.1 to 40.6 ng g(-1). Aflatoxin B1 was found in all contaminated samples. Sorghum, spices and nuts were most contaminated. CONCLUSION This study has provided an effective analytical method for the reliable determination of aflatoxins in food samples. Over one-third of the samples investigated were contaminated with aflatoxins. Sorghum, spices and nuts were most contaminated, whereas rice showed no contamination.
Collapse
Affiliation(s)
- Ridha Ghali
- Laboratory of Biology and Toxicology, Centre of Urgent Medical Aid of Tunis, Montfleury, 1008 Tunis, Tunisia.
| | | | | | | | | |
Collapse
|
49
|
Sant'Ana AS, Simas RC, Almeida CAA, Cabral EC, Rauber RH, Mallmann CA, Eberlin MN, Rosenthal A, Massaguer PR. Influence of package, type of apple juice and temperature on the production of patulin by Byssochlamys nivea and Byssochlamys fulva. Int J Food Microbiol 2010; 142:156-63. [PMID: 20633943 DOI: 10.1016/j.ijfoodmicro.2010.06.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 05/19/2010] [Accepted: 06/19/2010] [Indexed: 10/19/2022]
Abstract
Although the production of patulin in apple fruits is mainly by Penicillium expansum, there is no information on the ability of heat resistant moulds that may survive pasteurization to produce this mycotoxin in juice packages during storage and distribution. In this study, the production of patulin by Byssochlamys spp (Byssochlamys nivea FRR 4421, B. nivea ATCC 24008 and Byssochlamys fulva IOC 4518) in cloudy and clarified apple juices packaged in laminated paperboard packages or in polyethylene terephthalate bottles (PET) and stored at both 21 degrees C and 30 degrees C, was investigated. The three Byssochlamys strains were able to produce patulin in both cloudy and clarified apple juices. Overall, the lower the storage temperature, the lower the patulin levels and mycelium dry weight in the apple juices (p<0.05). The greatest variations in pH and degrees Brix were observed in the juices from which the greatest mycelium dry weights were recovered. The maximum levels of patulin recovered from the juices were ca. 150 microg/kg at 21 degrees C and 220 microg/kg at 30 degrees C. HPLC-UV, HPCL-DAD and mass spectrometry analyses confirmed the ability of B. fulva IOC 4518 to produce patulin. Due to the heat resistance of B. nivea and B. fulva and their ability to produce patulin either in PET bottles or in laminated paperboard packages, the control of contamination and the incidence of these fungi should be a matter of concern for food safety. Control measures taken by juice industries must also focus on controlling the ascospores of heat resistant moulds.
Collapse
Affiliation(s)
- Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, State University of Campinas, Campinas, SP, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Stoev S, Dutton M, Njobeh P, Mosonik J, Steenkamp P. Mycotoxic nephropathy in Bulgarian pigs and chickens: complex aetiology and similarity to Balkan Endemic Nephropathy. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2010; 27:72-88. [DOI: 10.1080/02652030903207227] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|