1
|
Maliar T, Blažková M, Polák J, Maliarová M, Ürgeová E, Viskupičová J. Antioxidant and Pro-Oxidant Properties of Selected Clinically Applied Antibiotics: Therapeutic Insights. Pharmaceuticals (Basel) 2024; 17:1257. [PMID: 39458897 PMCID: PMC11510234 DOI: 10.3390/ph17101257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The balance between antioxidants and pro-oxidants plays a significant role in the context of oxidative stress, influenced by both physiological and non-physiological factors. OBJECTIVES In this study, 18 prescribed antibiotics (including doxycycline hydrochloride, tigecycline, rifampicin, tebipenem, cefuroxime, cefixime, potassium clavulanate, colistin, ampicillin, amoxicillin, amikacin, nalidixic acid, azithromycin, pipemidic acid trihydrate, pivmecillinam, aztreonam, fosfomycin sodium, and ciprofloxacin) were subjected to simultaneous determination of antioxidant and pro-oxidant potential to assess if pro-oxidant activity is a dominant co-mechanism of antibacterial activity or if any antibiotic exhibits a balanced effect. METHODS This study presents a recently developed approach for the simultaneous assessment of antioxidant and pro-oxidant potential on a single microplate in situ, applied to prescribed antibiotics. RESULTS Ten antibiotics from eighteen showed lower antioxidant or pro-oxidant potential, while five exhibited only mild potential with DPPH50 values over 0.5 mM. The pro-oxidant antioxidant balance index (PABI) was also calculated to determine whether antioxidant or pro-oxidant activity was dominant for each antibiotic. Surprisingly, three antibiotics-doxycycline hydrochloride, tigecycline, and rifampicin-showed significant measures of both antioxidant and pro-oxidant activities. Especially notable was tebipenem, a broad-spectrum, orally administered carbapenem, showed a positive PABI index ratio, indicating a dominant antioxidant over pro-oxidant effect. CONCLUSIONS These findings could be significant for both therapy, where the antibacterial effect is enhanced by radical scavenging activity, and biotechnology, where substantial pro-oxidant activity might limit microbial viability in cultures and consequently affect yield.
Collapse
Affiliation(s)
- Tibor Maliar
- Institute of Chemistry and Environmental Sciences, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia;
| | - Marcela Blažková
- Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia; (M.B.); (E.Ü.)
- National Agricultural and Food Centre, Hlohovecká 2, 951 41 Lužianky, Slovakia
| | - Jaroslav Polák
- Helgeheim Inc., Palackého 6403, 911 01 Trenčín, Slovakia;
| | - Mária Maliarová
- Institute of Chemistry and Environmental Sciences, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia;
| | - Eva Ürgeová
- Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia; (M.B.); (E.Ü.)
| | - Jana Viskupičová
- Centre of Experimental Medicine SAS, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia;
| |
Collapse
|
2
|
Huang J, Yang G, Chen K, Du M, Zalán Z, Hegyi F, Kan J. Anti-fungal effects of lactic acid bacteria from pickles on the growth and sterigmatocystin production of Aspergillus versicolor. Int J Food Microbiol 2024; 422:110809. [PMID: 38955023 DOI: 10.1016/j.ijfoodmicro.2024.110809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/30/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
Sterigmatocystin (STC) is an emerging mycotoxin that poses a significant threat to the food security of cereal crops. To mitigate STC contamination in maize, this study employed selected lactic acid bacteria as biocontrol agents against Aspergillus versicolor, evaluating their biocontrol potential and analyzing the underlying mechanisms. Lactiplantibacillus plantarum HJ10, isolated from pickle, exhibited substantial in vitro antifungal activity and passed safety assessments, including antibiotic resistance and hemolysis tests. In vivo experiments demonstrated that L. plantarum HJ10 significantly reduced the contents of A. versicolor and STC in maize (both >84 %). The impact of heat, enzymes, alkali, and other treatments on the antifungal activity of cell-free supernatant (CFS) was investigated. Integrated ultra-high-performance liquid chromatography (UPLC) and gas chromatography-mass spectrometry (GC-MS) analysis revealed that lactic acid, acetic acid, and formic acid are the key substances responsible for the in vitro antifungal activity of L. plantarum HJ10. These metabolites induced mold apoptosis by disrupting cell wall structure, increasing cell membrane fluidity, reducing enzyme activities, and disrupting energy metabolism. However, in vivo antagonism by L. plantarum HJ10 primarily occurs through organic acid production and competition for growth space and nutrients. This study highlights the potential of L. plantarum HJ10 in reducing A. versicolor and STC contamination in maize.
Collapse
Affiliation(s)
- Jun Huang
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Gang Yang
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Kewei Chen
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing 400715, PR China
| | - Muying Du
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing 400715, PR China
| | - Zsolt Zalán
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, Buda Campus, Herman Ottó str. 15, Budapest 1022, Hungary.
| | - Ferenc Hegyi
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, Buda Campus, Herman Ottó str. 15, Budapest 1022, Hungary.
| | - Jianquan Kan
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing 400715, PR China.
| |
Collapse
|
3
|
Jian P, Liu J, Li L, Song Q, Zhang D, Zhang S, Chai C, Zhao H, Zhao G, Zhu H, Qiao J. AcrR1, a novel TetR/AcrR family repressor, mediates acid and antibiotic resistance and nisin biosynthesis in Lactococcus lactis F44. J Dairy Sci 2024; 107:6576-6591. [PMID: 38762103 DOI: 10.3168/jds.2024-24754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/31/2024] [Indexed: 05/20/2024]
Abstract
Lactococcus lactis, widely used in the manufacture of dairy products, encounters various environmental stresses both in natural habitats and during industrial processes. It has evolved intricate machinery of stress sensing and defense to survive harsh stress conditions. Here, we identified a novel TetR/AcrR family transcription regulator, designated AcrR1, to be a repressor for acid and antibiotic tolerance that was derepressed in the presence of vancomycin or under acid stress. The survival rates of acrR1 deletion strain ΔAcrR1 under acid and vancomycin stresses were about 28.7-fold (pH 3.0, HCl), 8.57-fold (pH 4.0, lactic acid) and 2.73-fold (300 ng/mL vancomycin) greater than that of original strain F44. We also demonstrated that ΔAcrR1 was better able to maintain intracellular pH homeostasis and had a lower affinity to vancomycin. No evident effects of AcrR1 deletion on the growth and morphology of strain F44 were observed. Subsequently, we characterized that the transcription level of genes associated with amino acids biosynthesis, carbohydrate transport and metabolism, multidrug resistance, and DNA repair proteins significantly upregulated in ΔAcrR1 using transcriptome analysis and quantitative reverse transcription-PCR assays. Additionally, AcrR1 could repress the transcription of the nisin post-translational modification gene, nisC, leading to a 16.3% increase in nisin yield after AcrR1 deletion. Our results not only refined the knowledge of the regulatory mechanism of TetR/AcrR family regulator in L. lactis, but presented a potential strategy to enhance industrial production of nisin.
Collapse
Affiliation(s)
- Pingqiu Jian
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, 610047 Chengdu, China
| | - Jiaheng Liu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, 610047 Chengdu, China.
| | - Li Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China
| | - Qianqian Song
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China
| | - Di Zhang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, 610047 Chengdu, China
| | - Shenyi Zhang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, 610047 Chengdu, China
| | - Chaofan Chai
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, 610047 Chengdu, China
| | - Hui Zhao
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, 610047 Chengdu, China
| | - Guangrong Zhao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China
| | - Hongji Zhu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China
| |
Collapse
|
4
|
Rojas C, Sarmiento N, Ayora E, Pis Diez R. Computational prediction of retention times of veterinary antibiotics obtained by liquid chromatography-mass spectrometry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6724-6732. [PMID: 38551410 DOI: 10.1002/jsfa.13499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/19/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Veterinary antibiotics are chemical compounds used to kill or inhibit the growth of pathogenic bacteria associated with animal diseases. These molecules can be defined by their retention times (tR) in liquid chromatography-mass spectrometry (LC-MS). One strategy to predict the tR of new veterinary antibiotics is the development of predictive quantitative structure-property relationships (QSPRs), which were used in this study. RESULTS A database of 122 antibiotics was selected in which the tR was measured using a Hypersil GOLD column. An optimal three-feature model was developed by integrating the unsupervised variable reduction, replacement method variable subset selection, and multiple linear regression. The negligible differences among the coefficient of determination and the root-mean-square error for the training set (R2 = 0.902 and RMSEC = 0.871) and test set (Q2 = 0.854 and RMSEP = 1.064) indicate a stable and predictive model. In a further step, a more in-depth explanation of the mechanism of action of each descriptor in predicting the tR is provided, with the construction of the theoretical chemical space for accurate predictions of new antibiotics. CONCLUSION The in silico model developed in this work identified three molecular descriptors associated with aqueous solubility, octanol-water partition coefficient, and the presence of negative and lipophilic atom pairs. The QSPR developed here could be implemented by agricultural and food chemists to identify and monitor existing and new antibiotics within the framework of LC-MS. The computational model was developed in accordance with five principles outlined by the Organization for Economic Co-operation and Development. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cristian Rojas
- Grupo de Investigación en Quimiometría y QSAR, Facultad de Ciencia y Tecnología, Universidad del Azuay, Cuenca, Ecuador
| | - Nicole Sarmiento
- Grupo de Investigación en Quimiometría y QSAR, Facultad de Ciencia y Tecnología, Universidad del Azuay, Cuenca, Ecuador
| | - Emilia Ayora
- Grupo de Investigación en Quimiometría y QSAR, Facultad de Ciencia y Tecnología, Universidad del Azuay, Cuenca, Ecuador
| | - Reinaldo Pis Diez
- CEQUINOR, Centro de Química Inorgánica (CONICET, UNLP), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| |
Collapse
|
5
|
Mal S, Das TK, Pradhan S, Ghosh K. Probiotics as a Therapeutic Approach for Non-infectious Gastric Ulcer Management: a Comprehensive Review. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10348-7. [PMID: 39190267 DOI: 10.1007/s12602-024-10348-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
A gastric ulcer is a stomach lining or nearby intestine disruption caused by acid and pepsin. Helicobacter pylori (H. pylori) and NSAIDs are the primary culprits behind stomach infections that can lead to gastric ulcers and other digestive disorders. Additionally, lifestyle choices such as alcohol consumption and cigarette smoking, stress, and exposure to cold environments can also contribute to non-infectious gastric ulcers. Various treatments are available for gastric ulcers, including antibiotics, anticholinergics, and antacids. However, potential concerns include antibiotic resistance, side effects, and treatment failure. Considering this, there is a need for an alternative approach to manage it. Fortunately, probiotics, typically Lactobacillus and Bifidobacterium, show potential for healing gastric ulcers, offering a non-invasive alternative to conventional treatments. A notable concern arises from applying probiotic bacteria stemming from the propensity of pathogenic bacteria to develop antimicrobial resistance in response to antibiotic therapies. Therefore, the use of yeast becomes more imperative due to its natural resistance to antibacterial antibiotics for antibacterial-treated patients. Probiotic bacteria and yeasts could heal gastric ulcers by regulating the immune response, reducing inflammation, and restoring the balance between defensive and aggressive factors of the gastric layer. This comprehensive review provides an in-depth analysis of the benefits of probiotics and their potential as a therapeutic treatment for non-infectious gastric ulcers, along with other probiotic options. In particular, this review provides a succinct summary of multiple literature studies on probiotics, emphasising the distinctive properties of yeast probiotics, as well as their (bacteria and yeasts) application in the management of non-infectious gastric ulcers.
Collapse
Affiliation(s)
- Subhasree Mal
- Department of Biological Sciences, Midnapore City College, Midnapore, West Bengal, India
- Biodiversity and Environmental Studies Research Centre, Midnapore City College Affiliated to Vidyasagar University, Midnapore, West Bengal, India
| | - Tridip K Das
- Department of Biological Sciences, Midnapore City College, Midnapore, West Bengal, India
- Biodiversity and Environmental Studies Research Centre, Midnapore City College Affiliated to Vidyasagar University, Midnapore, West Bengal, India
| | - Shrabani Pradhan
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, West Bengal, India
| | - Kuntal Ghosh
- Department of Biological Sciences, Midnapore City College, Midnapore, West Bengal, India.
| |
Collapse
|
6
|
Narang A, Rashid M, Thakur S, Jain SK, Kaur A, Kaur S. Acute Pre- and Post-administration of Lactiplantibacillus plantarum 2034 and Its Secretory Metabolites Ameliorates Hyperglycaemia, Hyperlipidaemia, and Oxidative Stress in Diabetic Rats. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10343-y. [PMID: 39150651 DOI: 10.1007/s12602-024-10343-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
The global prevalence rate of diabetes in 2021 was 6.1% making diabetes one of the top 10 causes of death. Prolonged use of antidiabetic medications is associated with various side effects; therefore, alternative treatment strategies for diabetes need exploration. The antidiabetic properties of Lactiplantibacillus plantarum 2034 was explored both in in vitro and in vivo studies. Secretory metabolites of probiotic L. plantarum 2034 exhibited alpha-glucosidase, alpha-amylase, and lipase inhibitory activities, in vitro. Further, the antidiabetic efficacy of 2034 was evaluated in streptozotocin-nicotinamide-induced diabetic rats. In the therapeutic model, oral administration of L. plantarum resulted in normalization of body weight, fasting blood glucose, total cholesterol (TC), and liver enzymes, and significant (p < 0.05) reduction in insulin and triglyceride (TG) levels. Histological evaluation of pancreas, liver, and kidney showed restoration of normal architecture in probiotic-treated group. Similarly, in a preventive + therapeutic model, 14 days of pre-administration of 2034 in pre, pre + post, and cell-free supernatant resulted in significant reduction in glucose, TG, TC, and liver biochemistry of diabetic rats as compared to untreated diabetic rats. An oral glucose tolerance test showed that the glucose levels normalized within 90 min in all the treated groups. Further, the oxidative stress parameters were also studied that showed that in all the treated groups, the concentration of antioxidant enzymes significantly (p < 0.05) increased as compared to diabetic untreated rats. Thus, administration of L. plantarum 2034 and its metabolites successfully ameliorated hyperglycaemia and hypercholesterolemia in both the models probably due to inhibition of gut enzymes and by increasing the concentration of liver antioxidant enzymes.
Collapse
Affiliation(s)
- Anmol Narang
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Muzamil Rashid
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Amarjeet Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sukhraj Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
7
|
Zavišić G, Ristić S, Petričević S, Janković D, Petković B. Microbial Contamination of Food: Probiotics and Postbiotics as Potential Biopreservatives. Foods 2024; 13:2487. [PMID: 39200415 PMCID: PMC11353716 DOI: 10.3390/foods13162487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Microbial contamination of food and alimentary toxoinfection/intoxication in humans are commonly caused by bacteria such as Salmonella spp., Escherichia coli, Yersinia spp., Campylobacter spp., Listeria monocytogenes, and fungi (Aspergillus, Fusarium). The addition of probiotic cultures (bacterial strains Lactobacillus and Bifidobacterium and the yeast Saccharomyces cerevisiae var. boulardii) to food contributes primarily to food enrichment and obtaining a functional product, but also to food preservation. Reducing the number of viable pathogenic microorganisms and eliminating or neutralizing their toxins in food is achieved by probiotic-produced antimicrobial substances such as organic acids (lactic acid, acetic acid, propionic acid, phenylacetic acid, and phenyllactic acid), fatty acids (linoleic acid, butyric acid, caproic acid, and caprylic acid), aromatic compounds (diacetyl, acetaldehyde, reuterin), hydrogen peroxide, cyclic dipeptides, bacteriocins, and salivabactin. This review summarizes the basic facts on microbial contamination and preservation of food and the potential of different probiotic strains and their metabolites (postbiotics), including the mechanisms of their antimicrobial action against various foodborne pathogens. Literature data on this topic over the last three decades was searched in the PubMed, Scopus, and Google Scholar databases, systematically presented, and critically discussed, with particular attention to the advantages and disadvantages of using probiotics and postbiotics as food biopreservatives.
Collapse
Affiliation(s)
- Gordana Zavišić
- Faculty of Pharmacy Novi Sad, University Business Academy in Novi Sad, Heroja Pinkija 4, 21101 Novi Sad, Serbia
| | - Slavica Ristić
- Faculty of Medicine, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia; (S.R.); (S.P.)
| | - Saša Petričević
- Faculty of Medicine, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia; (S.R.); (S.P.)
| | - Drina Janković
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, Vinča, 11351 Belgrade, Serbia;
| | - Branka Petković
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia;
| |
Collapse
|
8
|
Santamarina-García G, Amores G, Llamazares D, Hernández I, Javier R Barron L, Virto M. Phenotypic and genotypic characterization of antimicrobial resistances reveals the effect of the production chain in reducing resistant lactic acid bacteria in an artisanal raw ewe milk PDO cheese. Food Res Int 2024; 187:114308. [PMID: 38763625 DOI: 10.1016/j.foodres.2024.114308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
Antimicrobial resistance (AMR) is a significant public health threat, with the food production chain, and, specifically, fermented products, as a potential vehicle for dissemination. However, information about dairy products, especially raw ewe milk cheeses, is limited. The present study analysed, for the first time, the occurrence of AMRs related to lactic acid bacteria (LAB) along a raw ewe milk cheese production chain for the most common antimicrobial agents used on farms (dihydrostreptomycin, benzylpenicillin, amoxicillin and polymyxin B). More than 200 LAB isolates were obtained and identified by Sanger sequencing (V1-V3 16S rRNA regions); these isolates included 8 LAB genera and 21 species. Significant differences in LAB composition were observed throughout the production chain (P ≤ 0.001), with Enterococcus (e.g., E. hirae and E. faecalis) and Bacillus (e.g., B. thuringiensis and B. cereus) predominating in ovine faeces and raw ewe milk, respectively, along with Lactococcus (L. lactis) in whey and fresh cheeses, while Lactobacillus and Lacticaseibacillus species (e.g., Lactobacillus sp. and L. paracasei) prevailed in ripened cheeses. Phenotypically, by broth microdilution, Lactococcus, Enterococcus and Bacillus species presented the greatest resistance rates (on average, 78.2 %, 56.8 % and 53.4 %, respectively), specifically against polymyxin B, and were more susceptible to dihydrostreptomycin. Conversely, Lacticaseibacillus and Lactobacillus were more susceptible to all antimicrobials tested (31.4 % and 39.1 %, respectively). Thus, resistance patterns and multidrug resistance were reduced along the production chain (P ≤ 0.05). Genotypically, through HT-qPCR, 31 antimicrobial resistance genes (ARGs) and 6 mobile genetic elements (MGEs) were detected, predominating Str, StrB and aadA-01, related to aminoglycoside resistance, and the transposons tnpA-02 and tnpA-01. In general, a significant reduction in ARGs and MGEs abundances was also observed throughout the production chain (P ≤ 0.001). The current findings indicate that LAB dynamics throughout the raw ewe milk cheese production chain facilitated a reduction in AMRs, which has not been reported to date.
Collapse
Affiliation(s)
- Gorka Santamarina-García
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute-Prevention, Promotion and Health Care, 01009 Vitoria-Gasteiz, Spain; Joint Research Laboratory on Environmental Antibiotic Resistance, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| | - Gustavo Amores
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute-Prevention, Promotion and Health Care, 01009 Vitoria-Gasteiz, Spain; Joint Research Laboratory on Environmental Antibiotic Resistance, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Diego Llamazares
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Igor Hernández
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute-Prevention, Promotion and Health Care, 01009 Vitoria-Gasteiz, Spain; Joint Research Laboratory on Environmental Antibiotic Resistance, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Luis Javier R Barron
- Lactiker Research Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Joint Research Laboratory on Environmental Antibiotic Resistance, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Mailo Virto
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute-Prevention, Promotion and Health Care, 01009 Vitoria-Gasteiz, Spain; Joint Research Laboratory on Environmental Antibiotic Resistance, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
9
|
Grujović MŽ, Marković KG, Morais S, Semedo-Lemsaddek T. Unveiling the Potential of Lactic Acid Bacteria from Serbian Goat Cheese. Foods 2024; 13:2065. [PMID: 38998570 PMCID: PMC11241559 DOI: 10.3390/foods13132065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
This study aimed to unleash the potential of indigenous lactic acid bacteria (LAB) originating from traditionally made Serbian goat cheese. Following the isolation and identification of the LAB, the safety aspects of the isolates were evaluated through tests for hemolytic activity and antibiotic sensitivity. The selected isolates were then tested for various technological properties, including growth in methylene blue, proteolytic activity, acidification, curd formation ability in both pure and enriched goat milk, diacetyl production, antagonistic potential against other LAB, and biofilm formation ability. The results indicated that Lactococcus spp., Lacticaseibacillus spp., and Lactiplantibacillus spp. did not exhibit α or β hemolysis, while enterococci displayed α hemolysis. A higher number of isolates demonstrated sensitivity to ampicillin, tetracycline, and streptomycin, while sensitivity to gentamicin and vancomycin was strain-dependent. Based on the evaluation of technological properties, Lacticaseibacillus paracasei M-1 and Lactiplantibacillus plantarum C7-7, C7-8, and C14-5 showed promising characteristics. Additionally, Lactococcus lactis subsp. lactis strains C0-14 and C21-8 emerged as promising candidates with notable technological properties. Notably, certain indigenous strains LAB exhibit promising technological properties and safety profiles. These characteristics make them suitable candidates for use as starter or adjunct cultures in goat's milk cheese production, potentially enhancing the quality and safety of the cheese as well as hygiene practices among small-scale dairy producers.
Collapse
Affiliation(s)
- Mirjana Ž. Grujović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34 000 Kragujevac, Serbia
| | - Katarina G. Marković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34 000 Kragujevac, Serbia
| | - Susana Morais
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Teresa Semedo-Lemsaddek
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
10
|
Verma J, Devi S, Narang A, Kaur S, Manhas RK. Probiotic potential of Streptomyces levis strain HFM-2 isolated from human gut and its antibiofilm properties against pathogenic bacteria. BMC Microbiol 2024; 24:208. [PMID: 38862894 PMCID: PMC11165917 DOI: 10.1186/s12866-024-03353-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a serious worldwide public health concern that needs immediate action. Probiotics could be a promising alternative for fighting antibiotic resistance, displaying beneficial effects to the host by combating diseases, improving growth, and stimulating the host immune responses against infection. This study was conducted to evaluate the probiotic, antibacterial, and antibiofilm potential of Streptomyces levis strain HFM-2 isolated from the healthy human gut. RESULTS In vitro antibacterial activity in the cell-free supernatant of S. levis strain HFM-2 was evaluated against different pathogens viz. K. pneumoniae sub sp. pneumoniae, S. aureus, B. subtilis, VRE, S. typhi, S. epidermidis, MRSA, V. cholerae, M. smegmatis, E. coli, P. aeruginosa and E. aerogenes. Further, the ethyl acetate extract from S. levis strain HFM-2 showed strong biofilm inhibition against S. typhi, K. pneumoniae sub sp. pneumoniae, P. aeruginosa and E. coli. Fluorescence microscopy was used to detect biofilm inhibition properties. MIC and MBC values of EtOAc extract were determined at 500 and 1000 µg/mL, respectively. Further, strain HFM-2 showed high tolerance in gastric juice, pancreatin, bile, and at low pH. It exhibited efficient adhesion properties, displaying auto-aggregation (97.0%), hydrophobicity (95.71%, 88.96%, and 81.15% for ethyl acetate, chloroform and xylene, respectively), and showed 89.75%, 86.53%, 83.06% and 76.13% co-aggregation with S. typhi, MRSA, S. pyogenes and E. coli, respectively after 60 min of incubation. The S. levis strain HFM-2 was susceptible to different antibiotics such as tetracycline, streptomycin, kanamycin, ciprofloxacin, erythromycin, linezolid, meropenem, amikacin, gentamycin, clindamycin, moxifloxacin and vancomycin, but resistant to ampicillin and penicillin G. CONCLUSION The study shows that S. levis strain HFM-2 has significant probiotic properties such as good viability in bile, gastric juice, pancreatin environment, and at low pH; proficient adhesion properties, and antibiotic susceptibility. Further, the EtOAc extract of Streptomyces levis strain HFM-2 has a potent antibiofilm and antibacterial activity against antibacterial-resistant clinical pathogens.
Collapse
Affiliation(s)
- Jaya Verma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sapna Devi
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anmol Narang
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sukhraj Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | | |
Collapse
|
11
|
Morandi S, Silvetti T, Lopreiato V, Piccioli-Cappelli F, Trevisi E, Brasca M. Biodiversity and antibiotic resistance profile provide new evidence for a different origin of enterococci in bovine raw milk and feces. Food Microbiol 2024; 120:104492. [PMID: 38431334 DOI: 10.1016/j.fm.2024.104492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/25/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024]
Abstract
Enterococci are widely distributed in dairy sector. They are commensals of the gastrointestinal tract of animals, thus, via fecal contamination, could reach raw milk and dairy products. The aims of this study were: 1) to investigate the enterococcal diversity in cow feces and milk samples and 2) to evaluate the antibiotic resistance (AR) of dairy-related enterococci and their ability to transfer resistance genes. E. faecalis (59.9%), E. faecium (18.6%) and E. lactis (12.4%) were prevalent in milk, while E. faecium (84.2%) and E. hirae (15.0%) were dominant in bovine feces. RAPD-PCR highlighted a high number of Enterococcus biotypes (45 from milk and 37 from feces) and none of the milk strains exhibited genetic profiles similar to those of feces biotypes. A high percentage of enterococci isolated from milk (71%) were identified as multidrug resistant and resistance against streptomycin and tetracycline were widespread among milk strains while enterococci from feces were commonly resistant to linezolid and quinupristin/dalfopristin. Only E. faecalis strains were able to transfer horizontally the tetM gene to Lb. delbrueckii subsp. lactis. Our results indicated that Enterococcus biotypes from milk and bovine feces belong to different community and the ability of these microorganisms to transfer AR genes is strain-dependent.
Collapse
Affiliation(s)
- Stefano Morandi
- Institute of Sciences of Food Production (ISPA), Italian National Research Council, Milan, Italy.
| | - Tiziana Silvetti
- Institute of Sciences of Food Production (ISPA), Italian National Research Council, Milan, Italy
| | - Vincenzo Lopreiato
- Department of Veterinary Sciences, University of Messina, Viale Palatucci 13, Messina, 98168, Italy
| | - Fiorenzo Piccioli-Cappelli
- Department of Animal Sciences, Food and Nutrition (DIANA), Alimentari e Ambientali, Università Cattolica Del Sacro Cuore, Piacenza, 29122, Italy
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Alimentari e Ambientali, Università Cattolica Del Sacro Cuore, Piacenza, 29122, Italy
| | - Milena Brasca
- Institute of Sciences of Food Production (ISPA), Italian National Research Council, Milan, Italy
| |
Collapse
|
12
|
Tian S, Jiang Y, Han Q, Meng C, Ji F, Zhou B, Ye M. Putative Probiotic Ligilactobacillus salivarius Strains Isolated from the Intestines of Meat-Type Pigeon Squabs. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10289-1. [PMID: 38805143 DOI: 10.1007/s12602-024-10289-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 05/29/2024]
Abstract
This study aims to screen for potential probiotic lactic acid bacteria from the intestines of meat-type pigeon squabs. Ligilactobacillus salivarius YZU37 was identified as the best comprehensive performed strain. Being acid- and bile salt-tolerant, it displayed growth-inhibition activities against Staphylococcus aureus ATCC25923, Escherichia coli ATCC25922, and Salmonella typhimurium SL1344, exhibited sensitivity to 6 commonly used antibiotics, and endowed with good cell surface hydrophobicity, auto-aggregation property, and anti-oxidant activities. Results of in vitro experiments indicated that the bacteriostatic effects of this strain were related to the production of proteinaceous substances that depend on acidic conditions. Whole-genome sequencing of L. salivarius YZU37 was performed to elucidate the genetic basis underlying its probiotic potential. Pangenome analysis of L. salivarius YZU37 and other 212 L. salivarius strains available on NCBI database revealed a pigeon-unique gene coding choloylglycine hydrolase (CGH), which had higher enzyme-substrate binding affinity than that of the common CGH shared by L. salivarius strains of other sources. Annotation of the functional genes in the genome of L. salivarius YZU37 revealed genes involved in responses to acid, bile salt, heat, cold, heavy metal, and oxidative stresses. The whole genome analysis also revealed the absence of virulence and toxin genes and the presence of 65 genes distributed under 4 CAZymes classes, 2 CRISPR-cas regions, and 3 enterolysin A clusters which may confer the acid-dependent antimicrobial potential of L. salivarius YZU37. Altogether, our results highlighted the probiotic potential of L. salivarius YZU37. Further in vivo investigations are required to elucidate its beneficial effects on pigeons.
Collapse
Affiliation(s)
- Shaoqi Tian
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yinhong Jiang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Qiannan Han
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Chuang Meng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Feng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100089, China
| | - Bin Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Manhong Ye
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
13
|
Lu K, Wang X, Zhou Y, Zhu Q. Genomic characterization and probiotic potential assessment of an exopolysaccharide-producing strain Pediococcus pentosaceus LL-07 isolated from fermented meat. BMC Microbiol 2024; 24:142. [PMID: 38664612 PMCID: PMC11044368 DOI: 10.1186/s12866-024-03304-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND The genomic information available for Pediococcus pentosaceus is primarily derived from fermented fruits and vegetables, with less information available from fermented meat. P. pentosaceus LL-07, a strain isolated from fermented meat, has the capability of producing exopolysaccharides (EPS). To assess the probiotic attributes of P. pentosaceus LL-07, we conducted whole-genome sequencing (WGS) using the PacBio SequelIIe and Illumina MiSeq platforms, followed by in vitro experiments to explore its probiotic potential. RESULTS The genome size of P. pentosaceus LL-07 is 1,782,685 bp, comprising a circular chromosome and a circular plasmid. Our investigation revealed the absence of a CRISPR/Cas system. Sugar fermentation experiments demonstrated the characteristics of carbohydrate metabolism. P. pentosaceus LL-07 contains an EPS synthesis gene cluster consisting of 13 genes, which is different from the currently known gene cluster structure. NO genes associated with hemolysis or toxin synthesis were detected. Additionally, eighty-six genes related to antibiotic resistance were identified but not present in the prophage, transposon or plasmid. In vitro experiments demonstrated that P. pentosaceus LL-07 was comparable to the reference strain P. pentosaceus ATCC25745 in terms of tolerance to artificial digestive juice and bile, autoaggregation and antioxidation, and provided corresponding genomic evidence. CONCLUSION This study confirmed the safety and probiotic properties of P. pentosaceus LL-07 via complete genome and phenotype analysis, supporting its characterization as a potential probiotic candidate.
Collapse
Affiliation(s)
- Kuan Lu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guizhou Province, Guiyang, 550025, China
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, School of Liquor and Food Engineering, Guizhou University, Guizhou, Guiyang, 550025, China
| | - Xueya Wang
- Chili Pepper Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guizhou, Guiyang, 550006, China
| | - Ying Zhou
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, School of Liquor and Food Engineering, Guizhou University, Guizhou, Guiyang, 550025, China
| | - Qiujin Zhu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guizhou Province, Guiyang, 550025, China.
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, School of Liquor and Food Engineering, Guizhou University, Guizhou, Guiyang, 550025, China.
| |
Collapse
|
14
|
Lee HJ, Choi BG, Joo YH, Baeg CH, Kim JY, Kim DH, Lee SS, Kim SC. The Effects of Microbial Additive Supplementation on Growth Performance, Blood Metabolites, Fecal Microflora, and Carcass Characteristics of Growing-Finishing Pigs. Animals (Basel) 2024; 14:1268. [PMID: 38731272 PMCID: PMC11083169 DOI: 10.3390/ani14091268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
This study aimed to assess the effects of microbial additives that produce antimicrobial and digestive enzymes on the growth performance, blood metabolites, fecal microflora, and carcass characteristics of growing-finishing pigs. A total of 180 growing-finishing pigs (Landrace × Yorkshire × Duroc; mixed sex; 14 weeks of age; 58.0 ± 1.00 kg) were then assigned to one of three groups with three repetitions (20 pigs) per treatment for 60 days of adaptation and 7 days of collection. Dietary treatments included 0, 0.5, and 1.0% microbial additives in the basal diet. For growth performance, no significant differences in the initial and final weights were observed among the dietary microbial additive treatments, except for the average daily feed intake, average daily gain, and feed efficiency. In terms of blood metabolites and fecal microflora, immunoglobulin G (IgG), blood urea nitrogen, blood glucose, and fecal lactic acid bacteria count increased linearly, and fecal E. coli counts decreased linearly with increasing levels of microbial additives but not growth hormones and Salmonella. Carcass quality grade was improved by the microbial additive. In addition, carcass characteristics were not influenced by dietary microbial additives. In conclusion, dietary supplementation with 1.0% microbial additive improved average daily gain, feed efficiency, IgG content, and fecal microflora in growing-finishing pigs.
Collapse
Affiliation(s)
- Hyuk-Jun Lee
- Division of Applied Life Science (BK21Four, Institute of Agriculture and Life Science), Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-J.L.); (B.-G.C.); (Y.-H.J.); (C.-H.B.); (J.-Y.K.)
| | - Bu-Gil Choi
- Division of Applied Life Science (BK21Four, Institute of Agriculture and Life Science), Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-J.L.); (B.-G.C.); (Y.-H.J.); (C.-H.B.); (J.-Y.K.)
| | - Young-Ho Joo
- Division of Applied Life Science (BK21Four, Institute of Agriculture and Life Science), Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-J.L.); (B.-G.C.); (Y.-H.J.); (C.-H.B.); (J.-Y.K.)
| | - Chang-Hyun Baeg
- Division of Applied Life Science (BK21Four, Institute of Agriculture and Life Science), Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-J.L.); (B.-G.C.); (Y.-H.J.); (C.-H.B.); (J.-Y.K.)
| | - Ji-Yoon Kim
- Division of Applied Life Science (BK21Four, Institute of Agriculture and Life Science), Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-J.L.); (B.-G.C.); (Y.-H.J.); (C.-H.B.); (J.-Y.K.)
| | - Dong-Hyeon Kim
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea;
| | - Seong-Shin Lee
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55356, Republic of Korea;
| | - Sam-Churl Kim
- Division of Applied Life Science (BK21Four, Institute of Agriculture and Life Science), Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-J.L.); (B.-G.C.); (Y.-H.J.); (C.-H.B.); (J.-Y.K.)
| |
Collapse
|
15
|
Benameur F, Belkaaloul K, Kheroua O. Isolation of 60 strains from fermented milk of mares and donkeys in Algeria and identification by 16S rRNA sequencing of lactobacilli: Assessment of probiotic skills of important strains and aromatic productivity power. Vet World 2024; 17:829-841. [PMID: 38798294 PMCID: PMC11111728 DOI: 10.14202/vetworld.2024.829-841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/14/2024] [Indexed: 05/29/2024] Open
Abstract
Background and Aim Donkey and mare milk have high nutritional and functional values, but their lactic acid bacteria (LAB) content remains poorly studied and undervalued in the Algerian dairy industry. This study aimed to isolate and select LAB strains that produce antimicrobial substances during fermentation and to characterize the probiotic profiles of each extracted strain to indicate their potential for antioxidant and proteolytic activity. Materials and Methods This study focuses on isolating and identifying lactic acid bacterial strains from 10 Equid-fermented milk samples collected in two regions of El Bayed Wilaya (Algeria). Identification of LAB strains was obtained by 16S rRNA sequencing. The probiotic properties of important strains and their aromatic productivity power are assessed. To evaluate their antibacterial activity against Listeria monocytogenes, Staphylococcus aureus, Chryseobacterium joostei, Pseudomonas aeruginosa, and Escherichia coli, we selected 21 strains. Different induction methods have been used to amplify the antibacterial effects against these pathogenic strains. Results Among a total of 60 identified strains, 31 had a probiotic profile, and most were catalase-negative. Aromatic productivity power was observed in eight strains: Lactiplantibacillus plantarum, Lactobacillus casei, Lactobacillus paracasei, Weissella confusa, Weissella cibaria, Leuconostoc mesenteroides, Leuconostoc lactis, and Lactobacillus sp1. Conclusion Our results provide insight into the considerable diversity of LAB present in fermented donkey and mare milk. To meet the expectations of the Algerian dairy industry, it is important that the probiotic skills of the nine selected strains are met. In addition, a significant number of these strains may have important probiotic activity and biotechnological potential.
Collapse
Affiliation(s)
- Fouzia Benameur
- Laboratory of Physiology of Nutrition and Food Safety, Department of Biology, Faculty of Natural and Life Sciences, University Oran 1 Ahmed Ben Bella, Oran, Algeria
| | - Kawthar Belkaaloul
- Laboratory of Physiology of Nutrition and Food Safety, Department of Biology, Faculty of Natural and Life Sciences, University Oran 1 Ahmed Ben Bella, Oran, Algeria
| | - Omar Kheroua
- Laboratory of Physiology of Nutrition and Food Safety, Department of Biology, Faculty of Natural and Life Sciences, University Oran 1 Ahmed Ben Bella, Oran, Algeria
| |
Collapse
|
16
|
Lee MG, Kang MJ, Kim S, Jeong H, Kang DK, Paik HD, Park YS. Safety Assessment of Levilactobacillus brevis KU15006: A Comprehensive Analysis of its Phenotypic and Genotypic Properties. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10237-z. [PMID: 38430332 DOI: 10.1007/s12602-024-10237-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Levilactobacillus brevis KU15006, isolated from kimchi, exhibits pathogen-antagonistic and anti-diabetic activities; however, the safety of this strain has not been assessed. In the present study, L. brevis KU15006 was evaluated to elucidate its safety as a probiotic strain using phenotypic and genotypic analyses. Its safety was assessed using a minimum inhibitory concentration test comprising nine antibiotics, 26 antibiotic resistance genes, a single conjugative element, virulence gene analysis, hemolysis, cell cytotoxicity, mucin degradation, and toxic metabolite production. L. brevis KU15006 exhibited equal or lower minimum inhibitory concentration for the nine antibiotics than the cut-off value established by the European Food Safety Authority. It did not harbor antibiotic resistance and virulence genes. L. brevis KU15006 lacked β-hemolysis, mucin degradation, cytotoxicity against Caco-2 cells, gelatin liquefaction, bile salt deconjugation, and toxic metabolite production abilities. Based on the results, L. brevis KU15006, which has antagonistic and anti-diabetic effects, could be marketed as a probiotic in the future.
Collapse
Affiliation(s)
- Min-Gyu Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Min-Joo Kang
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Suin Kim
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Huijin Jeong
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029, Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
17
|
Lv L, Xiong F, Liu Y, Pei S, He S, Li S, Yang H. The rumen-derived Lact. mucosae LLK-XR1 exhibited greater free gossypol degradation capacity during solid-state fermentation of cottonseed meal and probiotic potential. BMC Microbiol 2024; 24:15. [PMID: 38183000 PMCID: PMC10768434 DOI: 10.1186/s12866-023-03156-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND This study aimed to isolate the rumen-derived bacteria with the ability to degrade free gossypol (FG), and to evaluate the probiotic potential in vitro for ensuring safe utilization. METHODS The strains were anaerobically isolated from fresh rumen fluid of sheep with long-term fed cottonseed meal (CSM) with the screening agar medium containing gossypol as the sole carbon source. Afterwards, the isolated strain incubated with CSM was subjected to the determination of the FG degradation and in vitro evaluation of probiotic characteristics. RESULTS The target strain labeled Lact. mucosae LLK-XR1 [Accession number: OQ652016.1] was obtained, and its growth on MRS Liquid medium exhibited degradation efficiency of FG up to 69.5% which was significantly greater than its growth on Man-Rogosa-Sharpe medium with glucose free for 24 h (p < 0.01). Meanwhile, LLK-XR1 showed 40.652% degradation rate of FG for unautoclaved, non-pulverized, and no additional nutrients supplementation CSM. Furthermore, LLK-XR1 presented good survivability at pH 3.0 (above 88.6%), and 0.3% bile (78.5%). LLK-XR1 showed sensitivity to broad-spectrum antibiotics except Sulfamethoxazole, Ciprofloxacin and Gentamycin and significantly inhibited E. coli CICC 10,899, Staph. aureus CICC 21,600, and Salmonella. Typhimurium CICC 21,483. LLK-XR1 demonstrated good cell surface hydrophobicity and auto-aggregation ability. CONCLUSIONS Taken together, this study for the first time noted that rumen-originated Lact. mucosae LLK-XR1 with probiotic properties exhibited substantial FG degradation capacity when it was applied to the solid-state fermentation of CSM.
Collapse
Affiliation(s)
- Liangkang Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Fengliang Xiong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yingyi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shiteng Pei
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shanshan He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hongjian Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
18
|
Elcheninov AG, Zayulina KS, Klyukina AA, Kremneva MK, Kublanov IV, Kochetkova TV. Metagenomic Insights into the Taxonomic and Functional Features of Traditional Fermented Milk Products from Russia. Microorganisms 2023; 12:16. [PMID: 38276185 PMCID: PMC10819033 DOI: 10.3390/microorganisms12010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Fermented milk products (FMPs) contain probiotics that are live bacteria considered to be beneficial to human health due to the production of various bioactive molecules. In this study, nine artisanal FMPs (kefir, ayran, khurunga, shubat, two cottage cheeses, bryndza, khuruud and suluguni-like cheese) from different regions of Russia were characterized using metagenomics. A metagenomic sequencing of ayran, khurunga, shubat, khuruud and suluguni-like cheese was performed for the first time. The taxonomic profiling of metagenomic reads revealed that Lactococcus species, such as Lc. lactis and Lc. cremoris prevailed in khuruud, bryndza, one sample of cottage cheese and khurunga. The latter one together with suluguni-like cheese microbiome was dominated by bacteria, affiliated to Lactobacillus helveticus (32-35%). In addition, a high proportion of sequences belonging to the genera Lactobacillus, Lactococcus and Streptococcus but not classified at the species level were found in the suluguni-like cheese. Lactobacillus delbrueckii, as well as Streptococcus thermophilus constituted the majority in another cottage cheese, kefir and ayran metagenomes. The microbiome of shubat, produced from camel's milk, was significantly distinctive, and Lentilactobacillus kefiri, Lactobacillus kefiranofaciens and Bifidobacterium mongoliense represented the dominant components (42, 7.4 and 5.6%, respectively). In total, 78 metagenome-assembled genomes with a completeness ≥ 50.2% and a contamination ≤ 8.5% were recovered: 61 genomes were assigned to the Enterococcaceae, Lactobacillaceae and Streptococcaceae families (the Lactobacillales order within Firmicutes), 4 to Bifidobacteriaceae (the Actinobacteriota phylum) and 2 to Acetobacteraceae (the Proteobacteria phylum). A metagenomic analysis revealed numerous genes, from 161 to 1301 in different products, encoding glycoside hydrolases and glycosyltransferases predicted to participate in lactose, alpha-glucans and peptidoglycan hydrolysis as well as exopolysaccharides synthesis. A large number of secondary metabolite biosynthetic gene clusters, such as lanthipeptides, unclassified bacteriocins, nonribosomal peptides and polyketide synthases were also detected. Finally, the genes involved in the synthesis of bioactive compounds like β-lactones, terpenes and furans, nontypical for fermented milk products, were also found. The metagenomes of kefir, ayran and shubat was shown to contain either no or a very low count of antibiotic resistance genes. Altogether, our results show that traditional indigenous fermented products are a promising source of novel probiotic bacteria with beneficial properties for medical and food industries.
Collapse
Affiliation(s)
- Alexander G. Elcheninov
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia; (K.S.Z.); (A.A.K.); (I.V.K.); (T.V.K.)
| | - Kseniya S. Zayulina
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia; (K.S.Z.); (A.A.K.); (I.V.K.); (T.V.K.)
| | - Alexandra A. Klyukina
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia; (K.S.Z.); (A.A.K.); (I.V.K.); (T.V.K.)
| | - Mariia K. Kremneva
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia;
| | - Ilya V. Kublanov
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia; (K.S.Z.); (A.A.K.); (I.V.K.); (T.V.K.)
| | - Tatiana V. Kochetkova
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 117312, Russia; (K.S.Z.); (A.A.K.); (I.V.K.); (T.V.K.)
| |
Collapse
|
19
|
Ojha AK, Shah NP, Mishra V, Emanuel N, Taneja NK. Prevalence of antibiotic resistance in lactic acid bacteria isolated from traditional fermented Indian food products. Food Sci Biotechnol 2023; 32:2131-2143. [PMID: 37860739 PMCID: PMC10581985 DOI: 10.1007/s10068-023-01305-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 10/21/2023] Open
Abstract
The emergence of antimicrobial resistance (AMR) in lactic acid bacteria (LAB) raises questions on qualified presumptive safety status and poses challenge of AMR transmission in food milieu. This study focuses on isolation, identification and characterization of AMR in LAB prevalent in traditional fermented Indian food products. The analysis of 16SrRNA based phylogenetic tree showed placements of isolates among four different genera Lactobacillus, Enterococcus, Weissella and Leuconostoc. In E-strip gradient test of susceptibility to 14 different antibiotics, over 50% of isolates showed resistance to ampicillin, chloramphenicol, ciprofloxacin, erythromycin, kanamycin, linezolid, streptomycin, trimethoprim and vancomycin. A multivariate principal component analysis, an antibiogram and multiple antibiotic resistance index-values (> 0.2) indicated presence of multidrug-resistance among the isolates. This study reports prevalence of an alarmingly high rate of AMR LAB strains in traditional fermented foods and is important to regulators and public health authorities for developing strategies to control transmission in food systems. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01305-1.
Collapse
Affiliation(s)
- Anup Kumar Ojha
- Department of Basic and Applied Sciences, NIFTEM, Sonipat, Haryana 131028 India
| | - Nagendra Prasad Shah
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR China
| | - Vijendra Mishra
- Department of Basic and Applied Sciences, NIFTEM, Sonipat, Haryana 131028 India
| | - Neela Emanuel
- Department of Basic and Applied Sciences, NIFTEM, Sonipat, Haryana 131028 India
| | - Neetu Kumra Taneja
- Department of Basic and Applied Sciences, NIFTEM, Sonipat, Haryana 131028 India
- Centre for Advanced Translational Research in Food Nanobiotechnology (CATR-FNB), NIFTEM, Sonepat, Haryana 131028 India
| |
Collapse
|
20
|
Wu F, Xie X, Du T, Jiang X, Miao W, Wang T. Lactococcus lactis, a bacterium with probiotic functions and pathogenicity. World J Microbiol Biotechnol 2023; 39:325. [PMID: 37776350 DOI: 10.1007/s11274-023-03771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/16/2023] [Indexed: 10/02/2023]
Abstract
Lactococcus lactis (L. lactis) is the primary organism for lactic acid bacteria (LAB) and is a globally recognized safe microorganism for the regulation of the intestinal micro-ecological balance of animals and improving the immune performance of the host. L. lactis is known to play a commercially important role in feed fortification, milk fermentation, and vaccine production, but pathogenic L. lactis has been isolated from many clinical cases in recent years, such as the brain of silver carp with Lactococcosis, the liver and spleen of diseased waterfowl, milk samples and padding materials with cow mastitis, and blood and urine from human patients with endocarditis. In dairy farming, where L. lactis has been used as a probiotic in the past, however, some studies have found that L. lactis can cause mastitis in cows, but the lack of understanding of the pathogenesis of mastitis in cows caused by L. lactis has become a new problem. The main objective of this review is to analyze the increasingly serious clinical mastitis caused by L. lactis and combined with the wide application of L. lactis as probiotics, to comprehensively discuss the characteristics and diversity of L. lactis.
Collapse
Affiliation(s)
- Fan Wu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xinmei Xie
- Elanco (Shanghai)Animal Health Co, Ltd, No.1, Field Middle Road, Wusi Farm, Fengxian District, Shanghai, China
| | - Tao Du
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaodan Jiang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Wei Miao
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Tiancheng Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
21
|
Cheriet S, Lengliz S, Romdhani A, Hynds P, Abbassi MS, Ghrairi T. Selection and Characterization of Bacteriocinogenic Lactic Acid Bacteria from the Intestine of Gilthead Seabream ( Sparus aurata) and Whiting Fish ( Merlangius merlangus): Promising Strains for Aquaculture Probiotic and Food Bio-Preservation. Life (Basel) 2023; 13:1833. [PMID: 37763237 PMCID: PMC10532712 DOI: 10.3390/life13091833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
This study sought to evaluate the probiotic properties and the food preservation ability of lactic acid bacteria isolates collected from the intestines of wild marine fishes (gilthead seabream (Sparus aurata) (n = 60) and whiting fish (Merlangius merlangus) (n = 40)) from the Mediterranean sea in the area of Mostaganem city, Algeria. Forty-two isolates were identified as: Enterococcus durans (n = 19), Enterococcus faecium (n = 15), Enterococcus faecalis (n = 4), Lactococcus lactis subp. lactis (n = 3), and Lactobacillus plantarum (n = 1). All isolates showed inhibition to at least one indicator strain, especially against Listeria monocytogenes, Staphylococcus aureus, Paenibacillus larvae, Vibrio alginolyticus, Enterococcus faecalis, Bacillus cereus, and Bacillus subtilis. In all collected isolates, PCR analysis of enterocin-encoding genes showed the following genes: entP (n = 21), ent1071A/B (n = 11), entB (n = 8), entL50A/B (n = 7), entAS48 (n = 5), and entX (n = 1). Interestingly, 15 isolates harbored more than one ent gene. Antimicrobial susceptibility, phenotypic virulence, and genes encoding virulence factors were investigated by PCR. Resistance to tetracycline (n = 8: tetL + tetK), erythromycin (n = 7: 5 ermA, 2 msrA, and 1 mef(A/E)), ciprofloxacin (n = 1), gentamicin (n = 1: aac(6')-aph(2″)), and linezolid (n = 1) were observed. Three isolates were gelatinase producers and eight were α-hemolytic. Three E. durans and one E. faecium harbored the hyl gene. Eight isolates showing safety properties (susceptible to clinically relevant antibiotics, free of genes encoding virulence factors) were tested to select probiotic candidates. They showed high tolerance to low pH and bile salt, hydrophobicity power, and co-culture ability. The eight isolates showed important phenotypic and genotypic traits enabling them to be promising probiotic candidates or food bio-conservers and starter cultures.
Collapse
Affiliation(s)
- Sarah Cheriet
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis 1006, Tunisia; (S.C.); (S.L.); (A.R.)
- Laboratory of Neurophysiology Cellular Physiopathology and Biomolecule Valorisation LR18ES03, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis 2092, Tunisia;
| | - Sana Lengliz
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis 1006, Tunisia; (S.C.); (S.L.); (A.R.)
- Laboratory of Materials, Molecules and Application LR11ES22, Preparatory Institute for Scientific and Technical Studies, University of Carthage, Tunis 1054, Tunisia
| | - Amel Romdhani
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis 1006, Tunisia; (S.C.); (S.L.); (A.R.)
| | - Paul Hynds
- Environmental Sustainability and Health Institute (ESHI), Technological University Dublin, Grangegorman, Dublin 7, D07 H6K8 Dublin, Ireland;
| | - Mohamed Salah Abbassi
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis 1006, Tunisia; (S.C.); (S.L.); (A.R.)
- Research Laboratory «Antimicrobial Resistance» LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia
| | - Taoufik Ghrairi
- Laboratory of Neurophysiology Cellular Physiopathology and Biomolecule Valorisation LR18ES03, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis 2092, Tunisia;
| |
Collapse
|
22
|
Todman H, Arya S, Baker M, Stekel DJ. A model of antibiotic resistance genes accumulation through lifetime exposure from food intake and antibiotic treatment. PLoS One 2023; 18:e0289941. [PMID: 37590256 PMCID: PMC10434901 DOI: 10.1371/journal.pone.0289941] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/30/2023] [Indexed: 08/19/2023] Open
Abstract
Antimicrobial resistant bacterial infections represent one of the most serious contemporary global healthcare crises. Acquisition and spread of resistant infections can occur through community, hospitals, food, water or endogenous bacteria. Global efforts to reduce resistance have typically focussed on antibiotic use, hygiene and sanitation and drug discovery. However, resistance in endogenous infections, e.g. many urinary tract infections, can result from life-long acquisition and persistence of resistance genes in commensal microbial flora of individual patients, which is not normally considered. Here, using individual based Monte Carlo models calibrated using antibiotic use data and human gut resistomes, we show that the long-term increase in resistance in human gut microbiomes can be substantially lowered by reducing exposure to resistance genes found food and water, alongside reduced medical antibiotic use. Reduced dietary exposure is especially important during patient antibiotic treatment because of increased selection for resistance gene retention; inappropriate use of antibiotics can be directly harmful to the patient being treated for the same reason. We conclude that a holistic approach to antimicrobial resistance that additionally incorporates food production and dietary considerations will be more effective in reducing resistant infections than a purely medical-based approach.
Collapse
Affiliation(s)
- Henry Todman
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Nottingham, United Kingdom
| | - Sankalp Arya
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Nottingham, United Kingdom
| | - Michelle Baker
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Nottingham, United Kingdom
| | - Dov Joseph Stekel
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Nottingham, United Kingdom
- Department of Mathematics and Applied Mathematics, University of Johannesburg, Rossmore, South Africa
| |
Collapse
|
23
|
Kammara R, Nellikka A. Acquiring bifidobacteria species from formula-fed and breast-fed newborns: identifying, quantifying and creating an antibiogram. Access Microbiol 2023; 5:acmi000590.v3. [PMID: 37691835 PMCID: PMC10484311 DOI: 10.1099/acmi.0.000590.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/04/2023] [Indexed: 09/12/2023] Open
Abstract
After examining the Bifidobacterium spp. population in faeces samples from breast-fed and formula-fed infants, an antibiogram was created. The prevalence of Bifidobacterium spp. in faeces was determined using common bacterial growth media, including Man Rogos Sharpe (MRS), Brain Heart Infusion (BHI), Luria Bertani (LB) broth and Bifidobacteria agar. According to the findings, formula-fed babies had a low population of Bifidobacterium spp. in their stools while breast-fed babies had a high population. By using phylogenetic analysis of the 16S rRNA and xfp (xylose/fructose 6-phosphate phosphoketolase) genes, and RFLP mapping of Bifidobacterium isolates, it was possible to identify a new and unique Bifidobacterium species. The intensity of the reddish brown colour produced during the F6PPK (fructose 6-phosphate phosphoketolase) assay is an accurate indicator of the proportion of various bifidobacteria present. Bifidobacteria agar media produced the greatest amounts of bifidobacteria diversity and recovery. Small (SCV) and Big colony variations (BCV) were formed during growth on different media. The various antibiotic MIC values changed depending on the use of different media, growth circumstances, bile salt treatment and low pH. The findings of this study demonstrate that test conditions also impact the diversity of microbiological conditions that distinguish between resistant and susceptible bacteria.
Collapse
Affiliation(s)
- Rajagopal Kammara
- Department of Microbiology and Fermentation Technology, Council of Scientific and Industrial Research (CSIR) - Central Food Technological Research Institute (CFTRI), Mysore, Karnataka, India
| | - Anagha Nellikka
- Department of Microbiology and Fermentation Technology, Council of Scientific and Industrial Research (CSIR) - Central Food Technological Research Institute (CFTRI), Mysore, Karnataka, India
| |
Collapse
|
24
|
Icer MA, Özbay S, Ağagündüz D, Kelle B, Bartkiene E, Rocha JMF, Ozogul F. The Impacts of Acidophilic Lactic Acid Bacteria on Food and Human Health: A Review of the Current Knowledge. Foods 2023; 12:2965. [PMID: 37569234 PMCID: PMC10418883 DOI: 10.3390/foods12152965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The need to improve the safety/quality of food and the health of the hosts has resulted in increasing worldwide interest in acidophilic lactic acid bacteria (LAB) for the food, livestock as well as health industries. In addition to the use of acidophilic LAB with probiotic potential for food fermentation and preservation, their application in the natural disposal of acidic wastes polluting the environment is also being investigated. Considering this new benefit that has been assigned to probiotic microorganisms in recent years, the acceleration in efforts to identify new, efficient, promising probiotic acidophilic LAB is not surprising. One of these effots is to determine both the beneficial and harmful compounds synthesized by acidophilic LAB. Moreover, microorganisms are of concern due to their possible hemolytic, DNase, gelatinase and mucinolytic activities, and the presence of virulence/antibiotic genes. Hence, it is argued that acidophilic LAB should be evaluated for these parameters before their use in the health/food/livestock industry. However, this issue has not yet been fully discussed in the literature. Thus, this review pays attention to the less-known aspects of acidophilic LAB and the compounds they release, clarifying critical unanswered questions, and discussing their health benefits and safety.
Collapse
Affiliation(s)
- Mehmet Arif Icer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, Amasya 05100, Turkey;
| | - Sena Özbay
- Department of Food Technology, Kaman Vocational School, Kırşehir Ahi Evran University, Kırşehir 40360, Turkey;
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey
| | - Bayram Kelle
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Cukurova University, Adana 01330, Turkey;
| | - Elena Bartkiene
- Department of Food Safety and Quality, Lithuanian University of Health Sciences Tilzes 18, LT-47181 Kaunas, Lithuania;
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
| | - João Miguel F. Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Cukurova University, Balcalı, Adana 01330, Turkey;
- Biotechnology Research and Application Center, Cukurova University, Adana 01330, Turkey
| |
Collapse
|
25
|
Duche RT, Singh A, Wandhare AG, Sangwan V, Sihag MK, Nwagu TNT, Panwar H, Ezeogu LI. Antibiotic resistance in potential probiotic lactic acid bacteria of fermented foods and human origin from Nigeria. BMC Microbiol 2023; 23:142. [PMID: 37208603 DOI: 10.1186/s12866-023-02883-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/06/2023] [Indexed: 05/21/2023] Open
Abstract
INTRODUCTION Probiotic lactobacilli are generally recognized as safe (GRAS) and are being used in several food and pharma formulations. However, growing concern of antibiotic resistance in bacterial strains of food origin and its possible transmission via functional foods is increasingly being emphasized. OBJECTIVES This study screened potential probiotic lactic acid bacteria (LAB) strains for their phenotypic and genotypic antibiotic resistance profiles. METHODS Susceptibility to different antibiotics was assayed by the Kirby Bauer standard disc diffusion protocol. Both conventional and SYBR-RTq-PCR were used for detection of resistance coding genes. RESULTS A variable susceptibility pattern was documented against different antibiotic classes. LAB strains irrespective of origin displayed marked phenotypic resistance against cephalosporins, aminoglycosides, quinolones, glycopeptides; and methicillin among beta-lactams with few exceptions. In contrast, high sensitivity was recorded against macrolides, sulphonamides and carbapenems sub-group of beta-lactams with some variations. parC, associated with ciprofloxacin resistance was detected in 76.5% of the strains. Other prevalent resistant determinants observed were aac(6?)Ii (42.1%), ermB, ermC (29.4%), and tetM (20.5%). Six (?17.6%) of the isolates were free from genetic resistance determinants screened in this study. CONCLUSION Study revealed presence of antibiotic resistance determinants among lactobacilli from both fermented foods and human sources.
Collapse
Affiliation(s)
- Rachael T Duche
- Department of Dairy Microbiology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
- Department of Microbiology, Federal University of Agriculture Makurdi-Nigeria, Makurdi, Nigeria
- Department of Microbiology, University of Nigeria Nsukka, Nsukka, Nigeria
- UNESCO International Centre for Biotechnology, Nsukka, Nigeria
| | - Anamika Singh
- Department of Dairy Microbiology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Arundhati Ganesh Wandhare
- Department of Dairy Microbiology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Vikas Sangwan
- Department of Dairy Microbiology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Manvesh Kumar Sihag
- Department of Dairy Chemistry, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Tochukwu N T Nwagu
- Department of Microbiology, University of Nigeria Nsukka, Nsukka, Nigeria
| | - Harsh Panwar
- Department of Dairy Microbiology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India.
| | - Lewis I Ezeogu
- Department of Microbiology, University of Nigeria Nsukka, Nsukka, Nigeria.
- UNESCO International Centre for Biotechnology, Nsukka, Nigeria.
| |
Collapse
|
26
|
Sylvere N, Mustopa AZ, Budiarti S, Meilina L, Hertati A, Handayani I. Whole-genome sequence analysis and probiotic characteristics of Lactococcus lactis Subsp. lactis strain Lac3 isolated from traditional fermented buffalo milk (Dadih). J Genet Eng Biotechnol 2023; 21:49. [PMID: 37127774 PMCID: PMC10151293 DOI: 10.1186/s43141-023-00503-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Probiotics are live microorganisms that provide beneficial effects on the host's health when exploited in adequate amounts. This study aimed at carrying out whole-genome sequence analysis and in vitro potential probiotic characteristics of Lactococcus lactis subsp. lactis strain Lac3 isolated from the spontaneously fermented buffalo milk named Dadih. RESULTS The results from de novo assembly indicated that the assembled genome consisted of 55 contigs with a genome size of 2,441,808 bp ~ (2.44 Mb), and GC % content of 34.85%. The evolution history result showed that the strain Lac3 was closely related to Lactococcus lactis species deposited in NCBI with a sequence similarity ≥ 99.93%. L. lactis subsp. lactis Lac3 was non-pathogenic with a probability of 0.21 out of 1 and had a pathogenicity score of zero (0), and neither harbored virulence factors nor acquired antibiotic resistance phenotypes. L. lactis subsp. lactis Lac3 exhibited the potential probiotic characteristics to tolerate acid at pH (2.0 and 5.0), salinity (1-5% NaCl), bile salt of (0.3-1.0%) and had auto-aggregation capacity increased from 6.0 to 13.1%. CONCLUSION This study described a novel strain of Lactococcus lactis subsp. lactis called Lac3, which exhibits probiotic properties that could be beneficial in the development of probiotics.
Collapse
Affiliation(s)
| | - Apon Zaenal Mustopa
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia.
| | - Sri Budiarti
- School of Biotechnology, IPB University, Bogor, Indonesia
- Indonesia Research Center for Bioresources and Biotechnology, IPB University, Bogor, Indonesia
| | - Lita Meilina
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Ai Hertati
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Ira Handayani
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| |
Collapse
|
27
|
Lee JY, An M, Heo H, Park JY, Lee J, Kang CH. Limosilactobacillus fermentum MG4294 and Lactiplantibacillus plantarum MG5289 Ameliorates Nonalcoholic Fatty Liver Disease in High-Fat Diet-Induced Mice. Nutrients 2023; 15:nu15082005. [PMID: 37111223 PMCID: PMC10143775 DOI: 10.3390/nu15082005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease and the leading cause of liver-related deaths worldwide. It has been established that microorganisms are involved in the interaction between the intestinal lumen and the liver; therefore, studies on probiotics as potential candidates are increasing. This study evaluated the effects of Limosilactobacillus fermentum MG4294 and Lactiplantibacillus plantarum MG5289 on NAFLD. The MG4294 and MG5289 reduced lipid accumulation in FFA-induced HepG2 by suppressing the adipogenic proteins through the regulation of AMP-activated protein kinase (AMPK). The administration of these strains in the HFD-induced mice model lowered body weight, serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and cholesterol levels. In particular, MG4294 and MG5289 restored liver TG and TC to normal levels by lowering lipid and cholesterol-related proteins via the modulation of AMPK in the liver tissue. In addition, the administration of MG4294 and MG5289 reduced pro-inflammatory cytokines (tumor necrosis factor (TNF)-α and interleukin (IL)-1β-, and IL6) in the intestinal tissues of the HFD-induced mouse model. In conclusion, MG4294 and MG5289 can be presented as probiotics with the potential to prevent NAFLD.
Collapse
Affiliation(s)
- Ji Yeon Lee
- MEDIOGEN, Co., Ltd., Biovalley 1-ro, Jecheon-si 27159, Republic of Korea
| | - Minju An
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju-si 28644, Republic of Korea
| | - Huijin Heo
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju-si 28644, Republic of Korea
| | - Jeong-Yong Park
- MEDIOGEN, Co., Ltd., Biovalley 1-ro, Jecheon-si 27159, Republic of Korea
| | - Junsoo Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju-si 28644, Republic of Korea
| | - Chang-Ho Kang
- MEDIOGEN, Co., Ltd., Biovalley 1-ro, Jecheon-si 27159, Republic of Korea
| |
Collapse
|
28
|
Ban O, Bang WY, Jeon HJ, Jung YH, Yang J, Kim DH. Potential of Bifidobacterium lactis IDCC 4301 isolated from breast milk-fed infant feces as a probiotic and functional ingredient. Food Sci Nutr 2023; 11:1952-1964. [PMID: 37051343 PMCID: PMC10084967 DOI: 10.1002/fsn3.3230] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/07/2022] [Accepted: 01/07/2023] [Indexed: 02/10/2023] Open
Abstract
Probiotics provide important health benefits to the host by improving intestinal microbial balance and have been widely consumed as dietary supplements. In this study, we investigated whether Bifidobacterium lactis IDCC 4301 (BL), isolated from feces of breast milk-fed infants, is safe to consume. Based on the guidelines established by the European Food Safety Authority (EFSA), safety tests such as antibiotic susceptibility, hemolysis, toxic compound formation (i.e., biogenic amine and d-lactate), single-dose acute oral toxicity, and extracellular enzymatic activities were performed. In addition, toxigenic genes, antibiotic resistance genes, and mobile genetic elements were investigated by analyzing the genome sequence of BL. BL was susceptible to eight antibiotics except for vancomycin and the absence of transferable resistance in the genome of this strain implied that vancomycin resistance is likely to be intrinsic. With regard to phenotypic characteristics, there was no concern of toxicity of this strain. Furthermore, BL utilized various carbohydrates and their conjugates through the activity of various endogenous carbohydrate-utilizing enzymes. Interestingly, the supernatant of the BL showed strong antipathogenic activity against various infectious pathogens. Therefore, we suggest that BL should be a safe probiotic and can be used as a functional ingredient in the food, cosmetic, and pharmaceutical industries.
Collapse
Affiliation(s)
- O‐Hyun Ban
- Ildong BioscienceGyeonggi‐doSouth Korea
- School of Food Science and BiotechnologyKyungpook National UniversityDaeguSouth Korea
| | | | - Hyeon Ji Jeon
- School of Food Science and BiotechnologyKyungpook National UniversityDaeguSouth Korea
| | - Young Hoon Jung
- School of Food Science and BiotechnologyKyungpook National UniversityDaeguSouth Korea
| | | | - Dong Hyun Kim
- School of Food Science and BiotechnologyKyungpook National UniversityDaeguSouth Korea
| |
Collapse
|
29
|
Kruasuwan W, Jenjaroenpun P, Arigul T, Chokesajjawatee N, Leekitcharoenphon P, Foongladda S, Wongsurawat T. Nanopore Sequencing Discloses Compositional Quality of Commercial Probiotic Feed Supplements. Sci Rep 2023; 13:4540. [PMID: 36941307 PMCID: PMC10027865 DOI: 10.1038/s41598-023-31626-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
The market for the application of probiotics as a livestock health improvement supplement has increased in recent years. However, most of the available products are quality-controlled using low-resolution techniques and un-curated databases, resulting in misidentification and incorrect product labels. In this work, we deployed two workflows and compared results obtained by full-length 16S rRNA genes (16S) and metagenomic (Meta) data to investigate their reliability for the microbial composition of both liquid and solid forms of animal probiotic products using Oxford Nanopore long-read-only (without short-read). Our result revealed that 16S amplicon data permits to detect the bacterial microbiota even with the low abundance in the samples. Moreover, the 16S approach has the potential to provide species-level resolution for prokaryotes but not for assessing yeast communities. Whereas, Meta data has more power to recover of high-quality metagenome-assembled genomes that enables detailed exploration of both bacterial and yeast populations, as well as antimicrobial resistance genes, and functional genes in the population. Our findings clearly demonstrate that implementing these workflows with long-read-only monitoring could be applied to assessing the quality and safety of probiotic products for animals and evaluating the quality of probiotic products on the market. This would benefit the sustained growth of the livestock probiotic industry.
Collapse
Affiliation(s)
- Worarat Kruasuwan
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Long-Read Lab (Si-LoL), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Long-Read Lab (Si-LoL), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Tantip Arigul
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Long-Read Lab (Si-LoL), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nipa Chokesajjawatee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Pimlapas Leekitcharoenphon
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Suporn Foongladda
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thidathip Wongsurawat
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Siriraj Long-Read Lab (Si-LoL), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
30
|
Exploring the Inhibitory Activity of Selected Lactic Acid Bacteria against Bread Rope Spoilage Agents. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
In this study, a wide pool of lactic acid bacteria strains deposited in two recognized culture collections was tested against ropy bread spoilage bacteria, specifically belonging to Bacillus spp., Paenibacillus spp., and Lysinibacillus spp. High-throughput and ex vivo screening assays were performed to select the best candidates. They were further investigated to detect the production of active antimicrobial metabolites and bacteriocins. Moreover, technological and safety features were assessed to value their suitability as biocontrol agents for the production of clean-label bakery products. The most prominent inhibitory activities were shown by four strains of Lactiplantibacillus plantarum (NFICC19, NFICC 72, NFICC163, and NFICC 293), two strains of Pediococcus pentosaceus (NFICC10 and NFICC341), and Leuconostoc citreum NFICC28. Moreover, the whole genome sequencing of the selected LAB strains and the in silico analysis showed that some of the strains contain operons for bacteriocins; however, no significant evidence was observed phenotypically.
Collapse
|
31
|
Protective and Therapeutic Capacities of Lactic Acid Bacteria Postmetabolites against Koi Herpesvirus Infection In Vitro. Life (Basel) 2023; 13:life13030739. [PMID: 36983894 PMCID: PMC10054248 DOI: 10.3390/life13030739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Background: The accumulation of data on beneficial biological effects of probiotics and their metabolic products favors their potential use in the prevention and treatment of various malaises. Methods: Nine postmetabolites from Lactic acid bacteria (LAB) of human or dairy origin and their antiviral activity were studied using the cytopathic effect inhibition test. The virucidal capacity, their influence on the adsorption stage of Koi herpes virus (KHV) and their preventive role against subsequent viral challenge on intact Common carp brain (CCB) cells were also determined by titration assay. Residual viral infectivity in postmetabolites-treated samples was compared to mock-treated controls and Δlgs were calculated. Results: When administered during KHV replication, the microbial products isolated from Lactiplantibacillus plantarum showed remarkable activity with a selectivity index (SI) between 26.5 and 221.4, as those effects were dependent on the sample-virus incubation time. Postmetabolites from Lactobacillus gasseri and Lactiplantibacillus plantarum also demonstrated significant inhibition of KHV replication with SI of 24 and 16, respectively. The bioactive metabolites isolated from Limosilactobacillus fermentum had a minor effect on the viral replicative cycle. Compounds, produced during the fermentation by lactobacilli, grown on different nutritive media and collected at different time points, significantly inhibited extracellular KHV virions. All investigated postmetabolites remarkably blocked KHV attachment to the host cell (CCB), leading to a drop in viral titers by Δlg = 4.25–5.25, and exerted protective effects on CCB cells before they were subjected to viral infection. Conclusions: Our results open new horizons and promote LAB and their postbiotic products to be used in the prophylaxis and therapy of viral infections.
Collapse
|
32
|
Wolfe BE. Are fermented foods an overlooked reservoir and vector of antimicrobial resistance? Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
33
|
Probiotic properties and safety aspect of three antifungal lactic acid bacteria strains isolated from wheat and camel milk. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
34
|
Jin Y, Wu J, Hu D, Li J, Zhu W, Yuan L, Chen X, Yao J. Gamma-Aminobutyric Acid-Producing Levilactobacillus brevis Strains as Probiotics in Litchi Juice Fermentation. Foods 2023; 12:foods12020302. [PMID: 36673393 PMCID: PMC9857889 DOI: 10.3390/foods12020302] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Levilactobacillus brevis strains can be isolated from traditional Chinese pickles and used as the starter cultures to improve the nutritional profiles of fermented juices. Three L. brevis strains (LBG-29, LBG-24, LBD−14) that produce high levels of gamma-aminobutyric acid (GABA; >300 mg/L) were isolated from traditional Chinese pickles. The strains showed tolerance to low pH and high bile salts and exhibited safety in vitro. Litchi juice was fermented using each strain at 37 °C for 48 h. The litchi juice was determined to be a good substrate for fermentation as the process enhanced its functional profile. Overall, cell vitality increased (above 8.7 log10 CFU/mL), the antioxidant activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric ion-reducing antioxidant power (FRAP) were significantly increased, and the antioxidant capacity of the 2,2′-amino-di(3-ethyl-benzothiazoline sulphonic acid-6)ammonium salt (ABTS) was decreased. There was also a significant increase in the GABA and acetic acid content after LBG-29 and LBG-24 fermentation. It was thus determined that the LBG-29 and LBG-24 strains could be used to improve beverage functionality and aid in the development of new products. This is the first report of litchi fermentation using L. brevis as a starter culture. Further research is required to elucidate the functional benefits for the human body and the nutritional and functional properties during its shelf life.
Collapse
Affiliation(s)
- Yiwen Jin
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School of USTC, Hefei 230026, China
| | - Jinyong Wu
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei CAS Health Bio-Industrial Technology Co., Ltd., Hefei 230031, China
| | - Dan Hu
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School of USTC, Hefei 230026, China
| | - Jun Li
- Hefei CAS Health Bio-Industrial Technology Co., Ltd., Hefei 230031, China
| | - Weiwei Zhu
- Wuhan Zhongke Optics Valley Green Biotechnology Co., Ltd., Wuhan 430075, China
| | - Lixia Yuan
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei CAS Health Bio-Industrial Technology Co., Ltd., Hefei 230031, China
| | - Xiangsong Chen
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei CAS Health Bio-Industrial Technology Co., Ltd., Hefei 230031, China
- Correspondence: or (X.C.); (J.Y.); Tel.: +86-551-65591399 (X.C. & J.Y.)
| | - Jianming Yao
- Science Island Branch, Graduate School of USTC, Hefei 230026, China
- Correspondence: or (X.C.); (J.Y.); Tel.: +86-551-65591399 (X.C. & J.Y.)
| |
Collapse
|
35
|
Probiotic Potential of the Marine Isolate Enterococcus faecium EA9 and In Vivo Evaluation of Its Antisepsis Action in Rats. Mar Drugs 2023; 21:md21010045. [PMID: 36662218 PMCID: PMC9860781 DOI: 10.3390/md21010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
This study aims to obtain a novel probiotic strain adapted to marine habitats and to assess its antisepsis properties using a cecal ligation and puncture (CLP) model in rodents. The marine Enterococcus faecium EA9 was isolated from marine shrimp samples and evaluated for probiotic potential after phenotypical and molecular identification. In septic animals, hepatic and renal tissues were histologically and biochemically evaluated for inflammation and oxidative stress following the probiotic treatment. Moreover, gene expressions of multiple signaling cascades were determined using RT-PCR. EA9 was identified and genotyped as Enterococcus faecium with a 99.88% identity. EA9 did not exhibit any signs of hemolysis and survived at low pH and elevated concentrations of bile salts. Moreover, EA9 isolate had antibacterial activity against different pathogenic bacteria and could thrive in 6.5% NaCl. Septic animals treated with EA9 had improved liver and kidney functions, lower inflammatory and lipid peroxidation biomarkers, and enhanced antioxidant enzymes. The CLP-induced necrotic histological changes and altered gene expressions of IL-10, IL-1β, INF-γ, COX-2, SOD-1, SOD-2, HO-1, AKT, mTOR, iNOS, and STAT-3 were abolished by the EA9 probiotic in septic animals. The isolate Enterococcus faecium EA9 represents a promising marine probiotic. The in vivo antisepsis testing of EA9 highlighted its potential and effective therapeutic approach.
Collapse
|
36
|
Denkova-Kostova R, Goranov B, Tomova T, Yanakieva V, Blazheva D, Denkova Z, Kostov G. Investigation of probiotic properties of Lactobacillus helveticus 2/20 isolated from rose blossom of Rosa damascena Mill. BIO WEB OF CONFERENCES 2023. [DOI: 10.1051/bioconf/20235802002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
A Lactobacillus strain was isolated from rose blossom of Rosa damascena Mill. and it was identified as belonging to the species Lactobacillus helveticus by the application of physiological-biochemical (API 50 CHL) and molecular-genetic methods (sequencing of the 16S rRNA gene). The presence of a number of probiotic properties of L. helveticus 2/20 was investigated. The strain exhibited high antimicrobial activity against pathogenic microorganisms that cause food toxicoinfections and intoxications. L. helveticus 2/20 survived in the simulated conditions of the gastrointestinal tract – pH = 2 and pepsin, pH = 4.5 and pancreatin and pH = 8 and pancreatin, as well as in the presence of up to 0.3% bile salts, retaining a significant concentration of viable cells. It has been shown that L. helveticus 2/20 cells begin multiplying after removing the extreme conditions. The strain allowed bioreactor cultivation and freeze-drying of the obtained concentrates, with the concentration of active cells in the lyophilic preparations exceeding 1012 cfu/g. The kinetic parameters of the batch cultivation process in a bioreactor with stirring and the maximum growth rate were determined, revealing the possibilities for scaling up of the fermentation process from laboratory to industrial conditions, as well as its management. After further research on the probiotic properties of L. helveticus 2/20, it can be included in the composition of probiotics and functional foods.
Collapse
|
37
|
Homayouni Rad A, Pourjafar H, Mirzakhani E. A comprehensive review of the application of probiotics and postbiotics in oral health. Front Cell Infect Microbiol 2023; 13:1120995. [PMID: 36968114 PMCID: PMC10031100 DOI: 10.3389/fcimb.2023.1120995] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Oral diseases are among the most common diseases around the world that people usually suffer from during their lifetime. Tooth decay is a multifactorial disease, and the composition of oral microbiota is a critical factor in its development. Also, Streptococcus mutans is considered the most important caries-causing species. It is expected that probiotics, as they adjust the intestinal microbiota and reduce the number of pathogenic bacteria in the human intestine, can exert their health-giving effects, especially the anti-pathogenic effect, in the oral cavity, which is part of the human gastrointestinal tract. Therefore, numerous in vitro and in vivo studies have been conducted on the role of probiotics in the prevention of tooth decay. In this review, while investigating the effect of different strains of probiotics Lactobacillus and Bifidobacteria on oral diseases, including dental caries, candida yeast infections, periodontal diseases, and halitosis, we have also discussed postbiotics as novel non-living biological compounds derived from probiotics.
Collapse
Affiliation(s)
- Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
- *Correspondence: Esmaeel Mirzakhani, ; Hadi Pourjafar,
| | - Esmaeel Mirzakhani
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Esmaeel Mirzakhani, ; Hadi Pourjafar,
| |
Collapse
|
38
|
Lando V, Valduga NZ, Moroni LS. Functional characterization of Lactobacilli strains with antimicrobial activity against Salmonella spp. and cell viability in fermented dairy product. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
39
|
Lopez CM, Rocchetti G, Fontana A, Lucini L, Rebecchi A. Metabolomics and gene-metabolite networks reveal the potential of Leuconostoc and Weissella strains as starter cultures in the manufacturing of bread without baker’s yeast. Food Res Int 2022; 162:112023. [DOI: 10.1016/j.foodres.2022.112023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/04/2022]
|
40
|
Haryani Y, Halid NA, Guat GS, Nor-Khaizura MAR, Hatta MAM, Sabri S, Radu S, Hasan H. High prevalence of multiple antibiotic resistance in fermented food-associated lactic acid bacteria in Malaysia. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Ojha AK, Shah NP, Mishra V. Characterization and Transferability of erm and tet Antibiotic Resistance Genes in Lactobacillus spp. Isolated from Traditional Fermented Milk. Curr Microbiol 2022; 79:339. [PMID: 36209320 DOI: 10.1007/s00284-022-02980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/18/2022] [Indexed: 11/03/2022]
Abstract
Lactobacillus is a widely used bacteria and consumed through various fermented foods and beverages. Strains have been shown to carry resistance genes and mobile genetic elements with their ability to transfer the resistance to sensitive pathogenic strains. To study this, 4 cultures of Lactobacillus were isolated from traditional fermented milk. The isolates were able to grow up to 4% (w/v) NaCl concentration and 45 °C temperature, and showed > 97% 16S rRNA gene similarities with Lactobacillus fermentum. All the isolates were phenotypically screened for the presence of antibiotic resistance. Minimum inhibitory concentration (MIC) as microbiological breakpoints were observed against a varied class of antibiotics. Isolates AKO 94.6, DVM 95.7, and NIFTEM 95.8 were explicitly resistant to ampicillin, ciprofloxacin and vancomycin with MIC well beyond the maximum range of 256 µg/ml in the E-strip test. While isolate SKL1 was sensitive to ampicillin and showed MIC at 0.25 µg/ml but resistant to streptomycin and trimethoprim (MIC > 256 µg/ml). Molecular characterization showed the presence of tet(M) gene in three isolates SKL1, DVM 95.7, and NIFTEM 95.8 which was chromosomally associated resistance determinants while erm(B) resistance gene was detected in isolates DVM 95.7 and NIFTEM 95.8 only which was a plasmid associated gene and could be transferrable conjugally. Gene for Tn916 family (xis) was also observed in isolates DVM 95.7 and NIFTEM 95.8. Transferability of antibiotic resistance to pathogenic recipient strains was examined in isolates DVM 95.7 and NIFTEM 95.8 in different food matrices. The highest conjugation frequency with ~ 10-1 was obtained in alfalfa seed sprouts. This study reports the presence of acquired gene resistance in Lactobacillus species and dissemination to susceptible strains of bacteria in different food matrices. 16S rRNA gene sequences of isolates were uploaded to the NCBI GenBank database to retrieve the accession number.
Collapse
Affiliation(s)
- Anup Kumar Ojha
- National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana, 131028, India
| | - Nagendra Prasad Shah
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, China.
| | - Vijendra Mishra
- National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana, 131028, India
| |
Collapse
|
42
|
Antimicrobial Susceptibility of Fresh Produce-Associated Enterobacteriaceae and Enterococci in Oman. Foods 2022; 11:foods11193085. [PMID: 36230161 PMCID: PMC9562674 DOI: 10.3390/foods11193085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022] Open
Abstract
Fresh produce bacteria may have phenotypic and/or genotypic antimicrobial resistance traits that may lead to various consequences on the environment and human health. This study evaluated the susceptibility of fresh produce bacteria (banana, cabbage, capsicum, carrots, cucumber, dates, lettuce, mango, papaya, pomegranate, radish, tomato and watermelon) to chlorhexidine and the antibiotic resistance of enterococci. Eighty-eight Enterobacteriaceae bacteria and 31 enterococci were screened for their susceptibility to chlorhexidine using the broth microdilution method. Susceptibility of enterococci to various antibiotics was determined using agar dilution, colorimetric, and Kirby-Bauer disc diffusion methods. Enterococci were more susceptible to chlorhexidine than Enterobacteriaceae indicated by chlorhexidine minimum inhibitory concentration (MIC) of 1 to 8 µg/mL for the former and 1 to 64 µg/mL for the latter. The IntI 1, qacEΔ1, qacE and qacG genes were distributed weakly in three, two, two, and three Enterobacteriaceae isolates, respectively. Enterococci had resistance to chloramphenicol (3%), tetracycline (19%), erythromycin (68%), ciprofloxacin (55%), and vancomycin (10%) while 19% of them were multi-drug resistant. In conclusion, this research detected a low to moderate level of antibiotic resistance in enterococci. Some Enterobacteriaceae bacteria had reduced chlorhexidine MICs that were not 10x less than the recommended concentration (100–200 µg/mL) in food production areas which might challenge the success of the disinfection processes or have clinical implications if the involved bacteria are pathogens. The prevalence of antimicrobial-resistant bacteria in fresh produce should be monitored in the future.
Collapse
|
43
|
Yarahmadi N, Halimi S, Moradi P, Zamanian MH, Rezaei A, Vaziri S, Akya A, Alvandi A, Yazdani S, Ghadimi D, Moradi J. Prevalence of Antibiotic-Resistant Lactobacilli in Sepsis Patients with Long-Term Antibiotic Therapy. Curr Microbiol 2022; 79:318. [DOI: 10.1007/s00284-022-03010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 08/24/2022] [Indexed: 11/03/2022]
|
44
|
Fhoula I, Boumaiza M, Tayh G, Rehaiem A, Klibi N, Ouzari I. Antimicrobial activity and safety features assessment of Weissella spp. from environmental sources. Food Sci Nutr 2022; 10:2896-2910. [PMID: 36171785 PMCID: PMC9469857 DOI: 10.1002/fsn3.2885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/06/2022] [Accepted: 04/03/2022] [Indexed: 11/23/2022] Open
Abstract
Weissella strains have been reported to be useful in biotechnological and probiotic determinations, and some of them are considered opportunistic pathogens. Given the widespread interest about antimicrobial susceptibilities, transmission of resistances, and virulence factors, there is little research available on such topics for Weissella. The aim of this study was to assess the safety aspects and antimicrobial potential of 54 Weissella spp. strains from different environmental sources. Antibiotic susceptibility, hemolytic activity, horizontal transfer, and antibacterial activity were studied, as well as the detection of biogenic amine BA production on decarboxylase medium and PCR was performed. All the strains were nonhemolytic and sensitive to chloramphenicol and ampicillin. Several strains were classified as resistant to fusidic acid, and very low resistance rates were detected to ciprofloxacin, tetracycline, streptomycin, lincomycin, erythromycin, and rifampicin, although all strains had intrinsic resistance to vancomycin, nalidixic acid, kanamycin, and teicoplanin. Two BA-producing strains (W. halotolerans FAS30 and FAS29) exhibited tyrosine decarboxylase activity, and just one W. confusa FS077 produced both tyramine and histamine, and their genetic determinants were identified. Ornithine decarboxylase/odc gene was found in 16 of the Weissella strains, although 3 of them synthesize putrescine. Interestingly, eight strains with good properties displayed antibacterial activity. Conjugation frequencies of erythromycin from Bacillus to Weissella spp. varied in the average of 3 × 10-9 transconjugants/recipient. However, no tetracycline-resistant transconjugant was obtained with Enterococcus faecalis JH2-2 as recipient. The obtained results support the safe status of Weissella strains, derived from environmental sources, when used as probiotics in animal feed.
Collapse
Affiliation(s)
- Imene Fhoula
- Laboratoire Microorganismes et Biomolécules Actives (LR03ES03)Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
| | - Mohamed Boumaiza
- Laboratoire Microorganismes et Biomolécules Actives (LR03ES03)Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
| | - Ghassan Tayh
- Laboratoire Microorganismes et Biomolécules Actives (LR03ES03)Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
- Service de Microbiologie et d’ImmunologieEcole Nationale de Médecine VétérinaireUniversité ManoubaSidi ThabetTunisia
| | - Amel Rehaiem
- Faculty of Medicine of TunisResearch Laboratory “Antimicrobial Resistance” LR99ES09University of Tunis El ManarTunisTunisia
- Laboratory of MicrobiologyCharles Nicolle HospitalTunisTunisia
| | - Naouel Klibi
- Laboratoire Microorganismes et Biomolécules Actives (LR03ES03)Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
| | - Imene‐Hadda Ouzari
- Laboratoire Microorganismes et Biomolécules Actives (LR03ES03)Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
| |
Collapse
|
45
|
Abstract
Antibiotics have long been used for the prevention and treatment of common diseases and for prophylactic purposes in dairy animals. However, in recent decades it has become a matter of concern due to the widespread belief that there has been an abuse or misuse of these drugs in animals and that this misuse has led to the presence of residues in derived foods, such as milk and dairy products. Therefore, this review aims to compile the scientific literature published to date on the presence of antibiotic residues in these products worldwide. The focus is on the reasons that lead to their presence in food, on the potential problems caused by residues in the characteristics of dairy products and in their manufacturing process, on the development and spread of antibiotic-resistant bacteria, and on the effects that both residues and resistant bacteria can cause on human and environmental health.
Collapse
|
46
|
Bozdemir M, Gümüş T, Altan Kamer DD. Technological and beneficial features of lactic acid bacteria isolated from Boza A cereal-based fermented beverage. FOOD BIOTECHNOL 2022. [DOI: 10.1080/08905436.2022.2092128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Merve Bozdemir
- Agriculture Faculty, Department of Food Engineering, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Tuncay Gümüş
- Agriculture Faculty, Department of Food Engineering, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Deniz Damla Altan Kamer
- Agriculture Faculty, Department of Food Engineering, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| |
Collapse
|
47
|
Zheng L, Gu B, Li S, Luo B, Wen Y, Chen M, Li X, Zha Z, Zhang HT, Wang X. An antibacterial hemostatic AuNPs@corn stalk/chitin composite sponge with shape recovery for promoting wound healing. Carbohydr Polym 2022; 296:119924. [DOI: 10.1016/j.carbpol.2022.119924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/07/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022]
|
48
|
Taj R, Masud T, Sohail A, Sammi S, Naz R, Sharma Khanal BK, Nawaz MA. In vitro screening of EPS-producing Streptococcus thermophilus strains for their probiotic potential from Dahi. Food Sci Nutr 2022; 10:2347-2359. [PMID: 35844909 PMCID: PMC9281939 DOI: 10.1002/fsn3.2843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/09/2022] Open
Abstract
Dahi is a very common and traditional fermented dairy product in Pakistan and its neighboring countries, it represents a rich source for the isolation of many new strains of lactic acid bacteria (LAB). The major objective of this study was to evaluate the probiotic potential of novel exopolysaccharide (EPS)-producing strains of S. thermophilus isolated from Dahi, sold in the local markets of Rawalpindi and Islamabad, Pakistan. In this study, 32 isolates of S. thermophilus were initially isolated from Dahi and out of these, 10 identified strains were further screened for their EPS-producing ability. Maximum EPS production was estimated for RIY strain (133.0 ± 0.06), followed by RIH4 strain (103.83 ± 0.76) and RIRT2 strain (95.77 ± 0.22), respectively. Thereafter, in vitro studies revealed that these newly identified EPS-producing strains of S. thermophilus fulfilled the basic requirements for probiotic functions; including resistance to harsh conditions of GIT, good cell surface hydrophobicity, auto-aggregation, and co-aggregation, especially against L. monocytogenes. Finally, the safety assessment displayed that these strains were also sensitive to clinical antibiotics, including vancomycin. Thus, these selected EPS strains of S. thermophilus act as potential candidates for biostabilizers in the preparation of consumer-friendly fermented probiotic milk products.
Collapse
Affiliation(s)
- Robina Taj
- Institute of Food and Nutritional SciencesPMAS Arid Agricultural University RawalpindiRawalpindiPakistan
| | - Tariq Masud
- Institute of Food and Nutritional SciencesPMAS Arid Agricultural University RawalpindiRawalpindiPakistan
| | - Asma Sohail
- Institute of Food and Nutritional SciencesPMAS Arid Agricultural University RawalpindiRawalpindiPakistan
| | - Shehla Sammi
- Department of Food Science and TechnologyThe University of HaripurKhyber PakhtunkhwaPakistan
| | - Rooma Naz
- Abbasyn University Islamabad CampusIslamabadPakistan
| | - Bal Kumari Sharma Khanal
- Ministry of Agriculture and Livestock DevelopmentGovernment of NepalSinghadurbar, KathmanduNepal
| | - Malik Adil Nawaz
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationWerribeeVictoriaAustralia
| |
Collapse
|
49
|
Human Breast Milk: A Source of Potential Probiotic Candidates. Microorganisms 2022; 10:microorganisms10071279. [PMID: 35888998 PMCID: PMC9319366 DOI: 10.3390/microorganisms10071279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
This study focuses on the isolation of lactobacilli/bifidobacteria from human breast milk and their first characterization, in the perspective to find new probiotic candidates to be included in food products. More specifically, breast-milk-isolated strains demonstrated a very good aptitude to adhere to intestinal cells, in comparison with L. rhamnosus GG strain, taken as reference. The same behavior has been found for hydrophobicity/auto-aggregation properties. A remarkable antagonistic activity was detected for these isolates not only against spoilage and pathogenic species of food interest, but also against the principal etiological agents of intestinal infections. Indeed, isolated strains impaired spoilage and pathogenic species growth, as well as biofilm formation by gut pathogens. In addition, breast milk strains were characterized for their antibiotic susceptibility, displaying species-specific and strain-specific susceptibility patterns. Finally, to assess their technological potential, the fermentation kinetics and viability of breast milk strains in pasteurized milk were investigated, also including the study of the volatile molecule profiles. In this regard, all the strains pointed out the release of aroma compounds frequently associated with the sensory quality of several dairy products such as acetic acid, diacetyl, acetoin, acetaldehyde. Data here reported point up the high potential of breast-milk-isolated strains as probiotics.
Collapse
|
50
|
Kahraman M, Karahan AG, Terzioğlu ME. Characterization of Some Microorganisms from Human Stool Samples and Determination of Their Effects on CT26 Colorectal Carcinoma Cell Line. Curr Microbiol 2022; 79:225. [PMID: 35704105 DOI: 10.1007/s00284-022-02915-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/23/2022] [Indexed: 12/26/2022]
Abstract
The present study aimed to isolate and identify the potential probiotic, pathobiont, and pathogenic microorganisms in the stool samples of 12 healthy individuals and evaluate their in vitro effects on cancer formation. A total of 83 strains were isolated from the stool samples and identified using MALDI-Biotyper. Fourteen of the isolates were identified as Candida spp., three isolates were identified as Cryptococcus neoformans, 55 isolates were identified as lactic acid bacteria, and the remaining isolates belonged to different 11 bacterial genera. Important microbial properties for cancer prevention and some probiotic properties were examined. All strains maintained their viability under acidic conditions and in media containing bile salts. Of the bacterial strains, 62.5% were resistant to ampicillin, chloramphenicol, gentamicin, erythromycin, kanamycin, penicillin, streptomycin, tetracycline, and vancomycin. All yeast strains were resistant to ketoconazole and susceptible to nystatin. The susceptibility of the strains to fluconazole, voriconazole, amphotericin B, and itraconazole varied. Fifty-nine percent of the strains produced EPS and 21.7% showed proteolytic activity (PA). Of the strains, 15.7% both produced exopolysaccharides (EPS) and had PA. The antioxidant activity (AOA) varied depending on the strains. The pathobiont and pathogenic microorganisms promoted tumor formation, while potential probiotic microorganisms had a suppressive effect on tumor formation (P > 0.01). One yeast (Candida kefyr MK17) and three lactic acid bacteria strains (Lacticaseibacillus paracasei MK73, Lactiplantibacillus plantarum MK55, Limosilactobacillus mucosae MK45) have superior potential thanks to their anticarcinogenic properties as well as tolerance to gastrointestinal tract conditions. Stool samples of each individual contain various potential probiotic, pathobiont, and pathogenic microorganisms.
Collapse
Affiliation(s)
- Münevver Kahraman
- Department of Food Engineering, Faculty of Engineering, Süleyman Demirel University, Isparta, Turkey
| | - Aynur Gül Karahan
- Department of Food Engineering, Faculty of Engineering, Süleyman Demirel University, Isparta, Turkey.
| | | |
Collapse
|