1
|
Hosseini H, Abdollahzadeh E, Pilevar Z. Addition of lime juice and NaCl to minced seafood may stimulate the expression of Listeria monocytogenes virulence, adhesion, and stress response genes. Food Sci Nutr 2024; 12:4615-4622. [PMID: 39055235 PMCID: PMC11266898 DOI: 10.1002/fsn3.4064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/06/2024] [Accepted: 02/21/2024] [Indexed: 07/27/2024] Open
Abstract
Listeria monocytogenes is a ubiquitous opportunistic bacterium responsible for deadly listeriosis outbreaks. This pathogen has been recognized as a significant food-borne pathogen in seafood products. The present study aimed to investigate the transcript levels of virulence, adhesion, and stress response genes of L. monocytogenes upon exposure to sublethal levels of lime juice and NaCl in shrimp matrix. For this purpose, minced and broth shrimp samples (control, 2% NaCl, 5% NaCl, 25 μL/mL lime, and 50 μL/mL lime, as well as 2% NaCl+25 μL/mL lime) were inoculated with approximately 107 CFU/g or ml of L. monocytogenes, and subsequently, the samples were stored at 12°C or 37°C. For the minced samples, the transcription of one stress-related (sigB), two adhesion (imo1634 and imo1847), and four virulence (hly, prf, intA, and plc) genes was assessed by RT-qPCR after different storage times (0 and 48 h). Results showed that the transcript levels of sigB, imo1847, and imo1634 genes increased with increasing storage temperatures of shrimp broth (12°C to 37°C). At the beginning, the transcription of the studied genes decreased in all treatments of minced shrimp; however, after 48 h of storage at 12°C, the transcript levels of hly, prf, imo1847, imo1634, and intA genes were significantly upregulated up to 0.5-9 log2 fold-change in all treatments compared to the control group (p < .05). These results highlight that the survived L. monocytogenes after exposure to moderate salt content or lime juice could represent enhanced virulence and adhesion capabilities, posing a significant public health risk.
Collapse
Affiliation(s)
- Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food TechnoloyShahid Beheshti University of Medical SciencesTehranIran
| | - Esmail Abdollahzadeh
- International Sturgeon Research Institute, Iranian Fisheries Science Research Institute, Agricultural ResearchEducation and Extension Organization (AREEO)RashtIran
| | - Zahra Pilevar
- School of HealthArak University of Medical SciencesArakIran
| |
Collapse
|
2
|
Martín I, Rodríguez A, Alía A, Martínez-Blanco M, Lozano-Ojalvo D, Córdoba JJ. Control of Listeria monocytogenes growth and virulence in a traditional soft cheese model system based on lactic acid bacteria and a whey protein hydrolysate with antimicrobial activity. Int J Food Microbiol 2022; 361:109444. [PMID: 34749186 DOI: 10.1016/j.ijfoodmicro.2021.109444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 10/08/2021] [Accepted: 10/17/2021] [Indexed: 12/26/2022]
Abstract
"Torta del Casar" is a Spanish soft-ripened cheese made with sheep's raw milk and subjected to a short ripening process, which favors the growth of pathogenic microorganisms including Listeria monocytogenes. The development of strategies to control pathogens and minimize health risks associated with the presence of L. monocytogenes in these products is of great interest. In this regard, the anti-Listeria activity of a whey protein hydrolysate (ProH) alone or combined with six lactic acid bacteria strains isolated from cheese was evaluated in this study as a biocontrol strategy using a "Torta del Casar" cheese-based medium. The most active combinations of lactic acid bacteria assayed induced a reduction higher than two logarithmic units in the growth of L. monocytogenes (serotype 4b) compared to their respective control when they were co-inoculated in "Torta del Casar" cheese-based medium at 7 °C for 7 days. In addition, the observed downregulation of some key virulence genes of L. monocytogenes suggests that the strain Lactiplantibacillus plantarum B2 alone and combined with the strain Lactiplantibacillus spp. B4 are good candidates to be used as biocontrol agents against L. monocytogenes growth in traditional soft cheeses based on raw milk during their storage at refrigeration temperatures.
Collapse
Affiliation(s)
- Irene Martín
- Food Hygiene and Safety, Meat and Meat Products Research Institute, Faculty of Veterinary Science, University of Extremadura, Avda. de las Ciencias, s/n, 10003 Cáceres, Spain
| | - Alicia Rodríguez
- Food Hygiene and Safety, Meat and Meat Products Research Institute, Faculty of Veterinary Science, University of Extremadura, Avda. de las Ciencias, s/n, 10003 Cáceres, Spain.
| | - Alberto Alía
- Food Hygiene and Safety, Meat and Meat Products Research Institute, Faculty of Veterinary Science, University of Extremadura, Avda. de las Ciencias, s/n, 10003 Cáceres, Spain
| | - Mónica Martínez-Blanco
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Madrid, Spain
| | - Daniel Lozano-Ojalvo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Madrid, Spain
| | - Juan J Córdoba
- Food Hygiene and Safety, Meat and Meat Products Research Institute, Faculty of Veterinary Science, University of Extremadura, Avda. de las Ciencias, s/n, 10003 Cáceres, Spain
| |
Collapse
|
3
|
Effect of Enterocins A and B on the Viability and Virulence Gene Expression of Listeria monocytogenes in Sliced Dry-Cured Ham. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol2010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dry-cured ham can be contaminated with Listeria monocytogenes during its industrial processing. The use of bacteriocins could ensure the safety of such meat products, but their effect on pathogen physiology is unknown. Therefore, the impact of enterocins A and B on the L. monocytogenes population, and the expression patterns of five genes (inlA, inlB, clpC, fbpA and prfA) related to adhesion/invasion and virulence regulation have been monitored in sliced dry-cured ham during 30 d of storage in refrigeration (4 °C) and temperature-abuse conditions (20 °C). L. monocytogenes strains S2 (serotype 1/2a) and S7-2 (serotype 4b) counts were reduced by 0.5 and 0.6 log units immediately after the application of enterocins A and B, a decrease lower than previously reported. Differences in gene expression were found between the two strains. For strain S2, expression tended to increase for almost all genes up to day seven of storage, whereas this increase was observed immediately after application for strain S7-2; however, overall gene expression was repressed from day one onwards, mainly under temperature-abuse conditions. L. monocytogenes strains investigated in the present work exhibited a mild sensitivity to enterocins A and B in sliced dry-cured ham. Bacteriocins caused changes in the expression patterns of virulence genes associated with adhesion and invasion, although the potential virulence of surviving cells was not enhanced.
Collapse
|
4
|
Martín I, Alía A, Rodríguez A, Gómez F, Córdoba JJ. Growth and Expression of Virulence Genes of Listeria monocytogenes during the Processing of Dry-Cured Fermented "Salchichón" Manufactured with a Selected Lactilactobacillus sakei. BIOLOGY 2021; 10:1258. [PMID: 34943173 PMCID: PMC8698599 DOI: 10.3390/biology10121258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/11/2021] [Accepted: 11/30/2021] [Indexed: 01/13/2023]
Abstract
The effect of the dry-cured fermented processing of "salchichón" inoculated with a selected strain of Lactilactobacillus sakei (205) on the growth and transcriptional response of three virulence genes (plcA, hly, and iap) of Listeria monocytogenes was evaluated. For this, three different batches of "salchichón" were analyzed: batch B (inoculated only with L. sakei), batch L (inoculated only with L. monocytogenes), and batch L + B (inoculated with both microorganisms). Sausages were ripened for 90 days according to a traditional industrial process. The processing of "salchichón" provoked a reduction in L. monocytogenes counts of around 2 log CFU/g. The downregulation of the expression of the three genes was found at the end of ripening when the water activity (aw) of "salchichón" was <0.85 aw. The combined effect on the reduction in L. monocytogenes counts together with the downregulation in the expression of the virulence genes throughout the "salchichón" processing could be of great interest to control the hazard caused by the presence of this pathogenic bacterium.
Collapse
Affiliation(s)
| | | | - Alicia Rodríguez
- Food Hygiene and Safety, Meat and Meat Products Research Institute, Faculty of Veterinary Science, University of Extremadura, Avda. de las Ciencias, s/n, 10003 Cáceres, Spain; (I.M.); (A.A.); (F.G.); (J.J.C.)
| | | | | |
Collapse
|
5
|
Kokkoni EA, Andritsos N, Sakarikou C, Michailidou S, Argiriou A, Giaouris E. Investigating Transcriptomic Induction of Resistance and/or Virulence in Listeria monocytogenes Cells Surviving Sublethal Antimicrobial Exposure. Foods 2021; 10:foods10102382. [PMID: 34681431 PMCID: PMC8535302 DOI: 10.3390/foods10102382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 01/06/2023] Open
Abstract
The potential transcriptomic induction of resistance and/or virulence in two L. monocytogenes strains belonging to the most frequent listeriosis-associated serovars (i.e., 1/2a and 4b), following their sublethal antimicrobial exposure, was studied through qPCR determination of the relative expression of 10 selected related genes (i.e., groEL, hly, iap, inlA, inlB, lisK, mdrD, mdrL, prfA, and sigB). To induce sublethal stress, three common antimicrobials (i.e., benzalkonium chloride, thymol, and ampicillin) were individually applied for 2 h at 37 °C against stationary phase cells of each strain, each at a sublethal concentration. In general, the expression of most of the studied genes remained either stable or was significantly downregulated following the antimicrobial exposure, with some strain-specific differences to be yet recorded. Thymol provoked downregulation of most of the studied genes, significantly limiting the expression of 6/10 and 4/10 genes in the strains of ser. 1/2a and ser. 4b, respectively, including those coding for the master regulators of stress response and virulence (SigB and PrfA, respectively), in both strains. At the same time, the two genes coding for the invasion internalin proteins (InlA and InlB), with crucial role in the onset of L. monocytogenes pathogenesis, were both importantly upregulated in ser. 4b strain. The results obtained increase our knowledge of the stress physiology of L. monocytogenes under certain sublethal antimicrobial conditions that could be encountered within the food chain and in clinical settings, and may assist in better and more effective mitigation strategies.
Collapse
Affiliation(s)
- Eleni-Anna Kokkoni
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.-A.K.); (N.A.); (C.S.); (S.M.); (A.A.)
| | - Nikolaos Andritsos
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.-A.K.); (N.A.); (C.S.); (S.M.); (A.A.)
- Athens Analysis Laboratories S.A., Microbiology Laboratory, Nafpliou 29, 14452 Metamorfosi, Greece
| | - Christina Sakarikou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.-A.K.); (N.A.); (C.S.); (S.M.); (A.A.)
| | - Sofia Michailidou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.-A.K.); (N.A.); (C.S.); (S.M.); (A.A.)
- Centre for Research and Technology Hellas (CERTH), Institute of Applied Biosciences, 57001 Thessaloniki, Greece
| | - Anagnostis Argiriou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.-A.K.); (N.A.); (C.S.); (S.M.); (A.A.)
- Centre for Research and Technology Hellas (CERTH), Institute of Applied Biosciences, 57001 Thessaloniki, Greece
| | - Efstathios Giaouris
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.-A.K.); (N.A.); (C.S.); (S.M.); (A.A.)
- Correspondence: ; Tel.: +30-22540-83115
| |
Collapse
|
6
|
Effect of high pressure processing on the inactivation and the relative gene transcription patterns of Listeria monocytogenes in dry-cured ham. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Pérez-Baltar A, Alía A, Rodríguez A, Córdoba JJ, Medina M, Montiel R. Impact of Water Activity on the Inactivation and Gene Expression of Listeria monocytogenes during Refrigerated Storage of Pressurized Dry-Cured Ham. Foods 2020; 9:E1092. [PMID: 32785197 PMCID: PMC7466251 DOI: 10.3390/foods9081092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/26/2022] Open
Abstract
Listeria monocytogenes population and the expression patterns of three virulence (plcA, hly, and iap) and one stress-related (sigB) genes in dry-cured ham with different water activity (aw) values (0.92, 0.88, and 0.84) and treated with high pressure processing (HPP, 450 MPa/10 min and 600 MPa/5 min) were monitored throughout 30 days (d) at 4 °C. The antimicrobial effect of HPP at 600 MPa against L. monocytogenes S4-2 (serotype 1/2b) and S12-1 (serotype 1/2c) was greater in dry-cured ham with aw values of 0.92, with reductions of 2.5 and 2.8 log units, respectively. The efficacy of HPP treatments decreased at lower aw values. Regarding gene expression, L. monocytogenes strains responded differently to HPP. For strain S4-2, the four target genes were generally overexpressed in dry-cured ham immediately after HPP treatments at the three aw values investigated, although the extent of this induction was lower in the samples pressurized at 600 MPa and with aw values of 0.84. For strain S12-1, the expression of all target genes was repressed at the three aw values investigated. The antimicrobial efficacy of HPP against L. monocytogenes could be compromised by low aw values in food products. However, no growth of HPP-survival cells was observed during refrigerated storage in low-aw dry-cured ham, and the overexpression of virulence and stress-related genes decreased.
Collapse
Affiliation(s)
- Aida Pérez-Baltar
- Departamento de Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (A.P.-B.); (M.M.)
| | - Alberto Alía
- Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de la Universidad, s/n., 10003 Cáceres, Spain; (A.A.); (A.R.); (J.J.C.)
| | - Alicia Rodríguez
- Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de la Universidad, s/n., 10003 Cáceres, Spain; (A.A.); (A.R.); (J.J.C.)
| | - Juan José Córdoba
- Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de la Universidad, s/n., 10003 Cáceres, Spain; (A.A.); (A.R.); (J.J.C.)
| | - Margarita Medina
- Departamento de Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (A.P.-B.); (M.M.)
| | - Raquel Montiel
- Departamento de Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (A.P.-B.); (M.M.)
| |
Collapse
|
8
|
Stincone P, Miyamoto KN, Timbe PPR, Lieske I, Brandelli A. Nisin influence on the expression of Listeria monocytogenes surface proteins. J Proteomics 2020; 226:103906. [DOI: 10.1016/j.jprot.2020.103906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/01/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022]
|
9
|
Silva AS, Duarte EAA, Oliveira TASDE, Evangelista-Barreto NS. Identification of Listeria monocytogenes in cattle meat using biochemical methods and amplification of the hemolysin gene. AN ACAD BRAS CIENC 2020; 92 Suppl 1:e20180557. [PMID: 32348408 DOI: 10.1590/0001-3765202020180557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/11/2018] [Indexed: 12/18/2022] Open
Abstract
In Brazil and in other countries of the world, studies have been conducted to identify Listeria monocytogenes in cattle meat that is preferably consumed undercooked and, when marketed without meeting strict phytosanitary requirements, may cause outbreaks of listeriosis. In the such, foodborne outbreaks, the methods used for the detection of the pathogen and the efficiency associated with them are crucial for the proper assessment. In this study, we used the techniques biochemical and molecular for identification of the L. monocytogenes isolated from 30 samples of the fresh beef, marketed in ten butchers' shop of the free-fair from a municipality from the Bahia, Brazil. The results obtained from biochemical tests (catalase, motility, β-hemolysis and carbohydrate fermentation), as well as PCR analysis for the hly gene (hemolysin production is an important factor in the pathogenesis of listeriosis) revealed that 50% of butchers shops presented bovine meat contaminated with bacteria of the Listeria sp. and confirmed that 54.16% of the analyzed meat samples were positive for L. monocytogenes. This study highlights the importance of microbiological surveillance in free-fair to minimize the exposure of consumers to this foodborne pathogen.
Collapse
Affiliation(s)
- Alessandra S Silva
- Centro de Ciências Agrárias, Ambientais e Biológicas, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, BA, Brazil
| | - Elizabeth A A Duarte
- Programa de Pós-Graduação em Biotecnologia, Faculdade Maria Milza, Governador Mangabeira, BA, Brazil
| | - Thiago A S DE Oliveira
- Programa de Pós-Graduação em Biotecnologia, Faculdade Maria Milza, Governador Mangabeira, BA, Brazil
| | - Norma S Evangelista-Barreto
- Centro de Ciências Agrárias, Ambientais e Biológicas, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, BA, Brazil
| |
Collapse
|
10
|
Alía A, Córdoba JJ, Rodríguez A, García C, Andrade MJ. Evaluation of the efficacy of Debaryomyces hansenii as protective culture for controlling Listeria monocytogenes in sliced dry-cured ham. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Combined effect of temperature, water activity and salt content on the growth and gene expression of Listeria monocytogenes in a dry-cured ham model system. Meat Sci 2019; 155:16-19. [DOI: 10.1016/j.meatsci.2019.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/11/2019] [Accepted: 04/23/2019] [Indexed: 01/09/2023]
|
12
|
Wang F, Zhang S, Wei Y, Chen H, Jiao Z, Li Y. Upregulation of family with sequence similarity 83 member D expression enhances cell proliferation and motility via activation of Wnt/β-catenin signaling and predicts poor prognosis in gastric cancer. Cancer Manag Res 2019; 11:6775-6791. [PMID: 31413630 PMCID: PMC6660642 DOI: 10.2147/cmar.s203082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022] Open
Abstract
Background/aims Gastric cancer (GC) is the third most common cause of cancer-related death worldwide. The molecular mechanisms underlying the progression of gastric cancer are still not fully elucidated. In this study, we focused on exploring the role of family with sequence similarity 83, member D (FAM83D) in gastric cancer progression. Methods The expression of FAM83D in GC tissues was detected by immunohistochemistry (IHC) staining. FAM83D knockdown or overexpression were constructed in AGS and SGC-7901 cells with two distinct siRNA duplexes and lentivirus infection, respectively, to explore the role of FAM83D in gastric cancer progression. Nude mouse xenograft assay was used to further explore the role of FAM83D in tumorigenesis in vivo. Results We found that FAM83D mRNA and protein levels were higher in human GC tumor tissues and in GC cell lines, compared with the adjacent normal tissues and non-malignant gastric epithelial cell lines, respectively, and that higher FAM83D expression was correlated with worse overall survival (p<0.0001) and disease-free survival (p<0.0001) in GC patients. Additionally, our results showed that FAM83D overexpression significantly enhanced the proliferation, clonogenicity, and motility of GC cells, whereas FAM83D depletion caused a dramatic increase in the number of cells arrested at the G1 phase of the cell cycle. Consistent with these findings from in vitro experiment, our data also indicated that FAM83D knockdown significantly repressed GC tumor growth in vivo. Furthermore, we demonstrated that FAM83D depletion was associated with reduced Wnt/β-catenin signaling. Conclusions This study suggested that FAM83D overexpression enhanced the proliferation, clonogenicity, and motility of GC cells by activating Wnt/β-catenin signaling, and FAM83D may be a promising diagnostic and therapeutic target for human GC.
Collapse
Affiliation(s)
- Furong Wang
- Department of Pathology, The Second Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China.,The Key Laboratory of the Digestive System Tumors of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Sigong Zhang
- The Key Laboratory of the Digestive System Tumors of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China.,Department of Rheumatology, The Second Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yucai Wei
- The Key Laboratory of the Digestive System Tumors of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China.,Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hao Chen
- The Key Laboratory of the Digestive System Tumors of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China.,Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zuoyi Jiao
- The Key Laboratory of the Digestive System Tumors of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China.,Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yumin Li
- The Key Laboratory of the Digestive System Tumors of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China.,Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
13
|
Role and regulation of the stress activated sigma factor sigma B (σ B) in the saprophytic and host-associated life stages of Listeria monocytogenes. ADVANCES IN APPLIED MICROBIOLOGY 2019; 106:1-48. [PMID: 30798801 DOI: 10.1016/bs.aambs.2018.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The stress activated sigma factor sigma B (σB) plays a pivotal role in allowing the food-borne bacterial pathogen Listeria monocytogenes to modulate its transcriptional landscape in order to survive in a variety of harsh environments both outside and within the host. While we have a comparatively good understanding of the systems under the control of this sigma factor much less is known about how the activity of σB is controlled. In this review, we present a current model describing how this sigma factor is thought to be controlled including an overview of what is known about stress sensing and the early signal transduction events that trigger its activation. We discuss the known regulatory overlaps between σB and other protein and RNA regulators in the cell. Finally, we describe the role of σB in surviving both saprophytic and host-associated stresses. The complexity of the regulation of this sigma factor reflects the significant role that it plays in the persistence of this important pathogen in the natural environment, the food chain as well as within the host during the early stages of an infection. Understanding its regulation will be a critical step in helping to develop rational strategies to prevent its growth and survival in the food destined for human consumption and in the prevention of listeriosis.
Collapse
|
14
|
Horn N, Bhunia AK. Food-Associated Stress Primes Foodborne Pathogens for the Gastrointestinal Phase of Infection. Front Microbiol 2018; 9:1962. [PMID: 30190712 PMCID: PMC6115488 DOI: 10.3389/fmicb.2018.01962] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022] Open
Abstract
The incidence of foodborne outbreaks and product recalls is on the rise. The ability of the pathogen to adapt and survive under stressful environments of food processing and the host gastrointestinal tract may contribute to increasing foodborne illnesses. In the host, multiple factors such as bacteriolytic enzymes, acidic pH, bile, resident microflora, antimicrobial peptides, and innate and adaptive immune responses are essential in eliminating pathogens. Likewise, food processing and preservation techniques are employed to eliminate or reduce human pathogens load in food. However, sub-lethal processing or preservation treatments may evoke bacterial coping mechanisms that alter gene expression, specifically and broadly, resulting in resistance to the bactericidal insults. Furthermore, environmentally cued changes in gene expression can lead to changes in bacterial adhesion, colonization, invasion, and toxin production that contribute to pathogen virulence. The shared microenvironment between the food preservation techniques and the host gastrointestinal tract drives microbes to adapt to the stressful environment, resulting in enhanced virulence and infectivity during a foodborne illness episode.
Collapse
Affiliation(s)
- Nathan Horn
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Arun K. Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
15
|
Hadjilouka A, Paramithiotis S, Drosinos EH. Genetic Analysis of the Listeria Pathogenicity Island 1 of Listeria monocytogenes 1/2a and 4b Isolates. Curr Microbiol 2018; 75:857-865. [PMID: 29468304 DOI: 10.1007/s00284-018-1458-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/19/2018] [Indexed: 12/22/2022]
Abstract
The aim of the present study was to apply descriptive, phylogenetic, recombination, and selection analyses on alignments of the Listeria Pathogenicity Island 1 (LIPI-1) of 1/2a and 4b Listeria monocytogenes isolates of different origin in order to gain insights into the evolution of this virulence gene cluster. For that purpose, a total of 19 L. monocytogenes isolates (9 meat isolates, serotype 1/2a; 5 meat isolates, serotype 4b; 5 strawberry isolates, serotype 4b) that have been previously separated at strain level were subjected to sequencing of their LIPI-1. Descriptive analysis revealed extensive nucleotide diversity mostly in the intragenic regions. The actA gene of 1/2a and 4b meat isolates and the hly gene of the 4b strawberry isolates exhibited the higher diversity; limited diversity was observed in prfA and plcA genes of the 4b isolates and mpl gene of the 1/2a isolates. Phylogenetic analysis of the complete island resulted in two major clusters that were consistent with serotype assignment of the isolates. Moreover, effective discrimination between serotypes was obtained by plcA, plcB, mpl, actA and the intergenic regions plcA-prfA and plcA-hly. In all cases but plcB and plcA-prfA 4b isolates were also differentiated according to their source of isolation as well. Selection analysis revealed that the island consisted of randomly evolving DNA with the exception of prfA gene of 1/2a isolates and actA gene of 4b meat isolates for which purifying selection or population expansion was indicated. Finally, no statistically significant evidence for recombination has been observed.
Collapse
Affiliation(s)
- Agni Hadjilouka
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - Spiros Paramithiotis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece.
| | - Eleftherios H Drosinos
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| |
Collapse
|
16
|
Hadjilouka A, Mavrogiannis G, Mallouchos A, Paramithiotis S, Mataragas M, Drosinos EH. Effect of lemongrass essential oil on Listeria monocytogenes gene expression. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.11.080] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Guldimann C, Guariglia-Oropeza V, Harrand S, Kent D, Boor KJ, Wiedmann M. Stochastic and Differential Activation of σ B and PrfA in Listeria monocytogenes at the Single Cell Level under Different Environmental Stress Conditions. Front Microbiol 2017; 8:348. [PMID: 28352251 PMCID: PMC5349113 DOI: 10.3389/fmicb.2017.00348] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/20/2017] [Indexed: 01/03/2023] Open
Abstract
During host infection, the foodborne pathogen Listeria monocytogenes must sense and respond to rapidly changing environmental conditions. Two transcriptional regulators, the alternative sigma factor B (σB) and the Positive Regulatory Factor A (PrfA), are key contributors to the transcriptomic responses that enable bacterial survival in the host gastrointestinal tract and invasion of host duodenal cells. Increases in temperature and osmolarity induce activity of these proteins; such conditions may be encountered in food matrices as well as within the host gastrointestinal tract. Differences in PrfA and σB activity between individual cells might affect the fate of a cell during host invasion, therefore, we hypothesized that PrfA and σB activities differ among individual cells under heat and salt stress. We used fluorescent reporter fusions to determine the relative proportions of cells with active σB or PrfA following exposure to 45°C heat or 4% NaCl. Activities of both PrfA and σB were induced stochastically, with fluorescence levels ranging from below detection to high among individual cells. The proportion of cells with active PrfA was significantly higher than the proportion with active σB under all tested conditions; under some conditions, nearly all cells had active PrfA. Our findings further support the growing body of evidence illustrating the stochastic nature of bacterial gene expression under conditions that are relevant for host invasion via food-borne, oral infection.
Collapse
Affiliation(s)
- Claudia Guldimann
- Food Safety Laboratory, Department of Food Science, Cornell University Ithaca, NY, USA
| | | | - Sophia Harrand
- Food Safety Laboratory, Department of Food Science, Cornell University Ithaca, NY, USA
| | - David Kent
- Food Safety Laboratory, Department of Food Science, Cornell University Ithaca, NY, USA
| | - Kathryn J Boor
- Food Safety Laboratory, Department of Food Science, Cornell University Ithaca, NY, USA
| | - Martin Wiedmann
- Food Safety Laboratory, Department of Food Science, Cornell University Ithaca, NY, USA
| |
Collapse
|
18
|
NicAogáin K, O’Byrne CP. The Role of Stress and Stress Adaptations in Determining the Fate of the Bacterial Pathogen Listeria monocytogenes in the Food Chain. Front Microbiol 2016; 7:1865. [PMID: 27933042 PMCID: PMC5120093 DOI: 10.3389/fmicb.2016.01865] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/04/2016] [Indexed: 12/15/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes is a highly adaptable organism that can persist in a wide range of environmental and food-related niches. The consumption of contaminated ready-to-eat foods can cause infections, termed listeriosis, in vulnerable humans, particularly those with weakened immune systems. Although these infections are comparatively rare they are associated with high mortality rates and therefore this pathogen has a significant impact on food safety. L. monocytogenes can adapt to and survive a wide range of stress conditions including low pH, low water activity, and low temperature, which makes it problematic for food producers who rely on these stresses for preservation. Stress tolerance in L. monocytogenes can be explained partially by the presence of the general stress response (GSR), a transcriptional response under the control of the alternative sigma factor sigma B (σB) that reconfigures gene transcription to provide homeostatic and protective functions to cope with the stress. Within the host σB also plays a key role in surviving the harsh conditions found in the gastrointestinal tract. As the infection progresses beyond the GI tract L. monocytogenes uses an intracellular infectious cycle to propagate, spread and remain protected from the host's humoral immunity. Many of the virulence genes that facilitate this infectious cycle are under the control of a master transcriptional regulator called PrfA. In this review we consider the environmental reservoirs that enable L. monocytogenes to gain access to the food chain and discuss the stresses that the pathogen must overcome to survive and grow in these environments. The overlap that exists between stress tolerance and virulence is described. We review the principal measures that are used to control the pathogen and point to exciting new approaches that might provide improved means of control in the future.
Collapse
Affiliation(s)
| | - Conor P. O’Byrne
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, College of Science, National University of IrelandGalway, Ireland
| |
Collapse
|
19
|
Li F, Zuo S, Yu P, Zhou B, Wang L, Liu C, Wei H, Hengyi Xu. Distribution and expression of the enterotoxin genes of Bacillus cereus in food products from Jiangxi Province, China. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.02.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Lee J, Ha J, Kim S, Lee S, Lee H, Yoon Y, Choi KH. The Correlation between NaCl Adaptation and Heat Sensitivity of Listeria monocytogenes, a Foodborne Pathogen through Fresh and Processed Meat. Korean J Food Sci Anim Resour 2016; 36:469-75. [PMID: 27621687 PMCID: PMC5018506 DOI: 10.5851/kosfa.2016.36.4.469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 11/24/2022] Open
Abstract
This study examined the relationship between NaCl sensitivity and stress response of Listeria monocytogenes. Nine strains of L. monocytogenes (NCCP10805, NCCP10806, NCCP10807, NCCP10808, NCCP10809, NCCP10810, NCCP10811, NCCP10920 and NCCP 10943) were exposed to 0%, 1%, 2% and 4% NaCl, and then incubated at 60℃ for 60 min to select strains that were heat-sensitized (HS) and non-sensitized (NS) by NaCl exposure. After heat challenge, L. monocytogenes strains were categorized as HS (NCCP 10805, NCCP10806, NCCP10807, NCCP10810, NCCP10811 and NCCP10920) or NS (NCCP10808, NCCP10809 and NCCP10943). Total mRNA was extracted from a HS strain (NCCP10811) and two NS strains (NCCP10808 and NCCP10809), and then cDNA was prepared to analyze the expression of genes (inlA, inlB, opuC, betL, gbuB, osmC and ctc) that may be altered in response to NaCl stress, by qRT-PCR. The expression levels of two invasion-related genes (inlA and inlB) and two stress response genes (opuC and ctc) were increased (p<0.05) in NS strains after NaCl exposure in an NaCl concentration-dependent manner. However, only betL expression was increased (p<0.05) in the HS strains. These results indicate that the effect of NaCl on heat sensitization of L. monocytogenes is strain dependent and that opuC and ctc may prevent NS L. monocytogenes strains from being heat sensitized by NaCl. Moreover, NaCl also increases the expression of invasion-related genes (inlA and inlB).
Collapse
Affiliation(s)
| | | | | | | | | | - Yohan Yoon
- Corresponding author: Yohan Yoon, Department of Food and Nutrition, Sookmyung Women’s University, Seoul 04310, Korea. Tel: +82-2-2077-7585, E-mail: Kyoung-Hee Choi, Department of Oral Mcirobiology, College of Dentistry, Wonkwang University, Iksan 54538, Korea. Tel: +82-63-850-6911, E-mail:
| | - Kyoung-Hee Choi
- Department of Oral Mcirobiology, College of Dentistry, Wonkwang University, Iksan 54538, Korea
| |
Collapse
|
21
|
Jakočiūnė D, Herrero-Fresno A, Jelsbak L, Olsen JE. Highly expressed amino acid biosynthesis genes revealed by global gene expression analysis of Salmonella enterica serovar Enteritidis during growth in whole egg are not essential for this growth. Int J Food Microbiol 2016; 224:40-6. [DOI: 10.1016/j.ijfoodmicro.2016.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/12/2016] [Accepted: 02/21/2016] [Indexed: 01/17/2023]
|
22
|
Hadjilouka A, Molfeta C, Panagiotopoulou O, Paramithiotis S, Mataragas M, Drosinos EH. Expression of Listeria monocytogenes key virulence genes during growth in liquid medium, on rocket and melon at 4, 10 and 30 °C. Food Microbiol 2016; 55:7-15. [DOI: 10.1016/j.fm.2015.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 10/19/2015] [Accepted: 11/17/2015] [Indexed: 10/22/2022]
|
23
|
Greppi A, Rantsiou K. Methodological advancements in foodborne pathogen determination: from presence to behavior. Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Hadjilouka A, Nikolidakis K, Paramithiotis S, H. Drosinos E. Effect of co-culture with enterocinogenic E. faecium on L. monocytogenes key virulence gene expression. AIMS Microbiol 2016. [DOI: 10.3934/microbiol.2016.3.359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
25
|
Tang S, Orsi RH, den Bakker HC, Wiedmann M, Boor KJ, Bergholz TM. Transcriptomic Analysis of the Adaptation of Listeria monocytogenes to Growth on Vacuum-Packed Cold Smoked Salmon. Appl Environ Microbiol 2015; 81:6812-24. [PMID: 26209664 PMCID: PMC4561693 DOI: 10.1128/aem.01752-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/16/2015] [Indexed: 01/26/2023] Open
Abstract
The foodborne pathogen Listeria monocytogenes is able to survive and grow in ready-to-eat foods, in which it is likely to experience a number of environmental stresses due to refrigerated storage and the physicochemical properties of the food. Little is known about the specific molecular mechanisms underlying survival and growth of L. monocytogenes under different complex conditions on/in specific food matrices. Transcriptome sequencing (RNA-seq) was used to understand the transcriptional landscape of L. monocytogenes strain H7858 grown on cold smoked salmon (CSS; water phase salt, 4.65%; pH 6.1) relative to that in modified brain heart infusion broth (MBHIB; water phase salt, 4.65%; pH 6.1) at 7°C. Significant differential transcription of 149 genes was observed (false-discovery rate [FDR], <0.05; fold change, ≥2.5), and 88 and 61 genes were up- and downregulated, respectively, in H7858 grown on CSS relative to the genes in H7858 grown in MBHIB. In spite of these differences in transcriptomes under these two conditions, growth parameters for L. monocytogenes were not significantly different between CSS and MBHIB, indicating that the transcriptomic differences reflect how L. monocytogenes is able to facilitate growth under these different conditions. Differential expression analysis and Gene Ontology enrichment analysis indicated that genes encoding proteins involved in cobalamin biosynthesis as well as ethanolamine and 1,2-propanediol utilization have significantly higher transcript levels in H7858 grown on CSS than in that grown in MBHIB. Our data identify specific transcriptional profiles of L. monocytogenes growing on vacuum-packaged CSS, which may provide targets for the development of novel and improved strategies to control L. monocytogenes growth on this ready-to-eat food.
Collapse
Affiliation(s)
- Silin Tang
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Renato H Orsi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Henk C den Bakker
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Kathryn J Boor
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Teresa M Bergholz
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
26
|
Larsen N, Jespersen L. Expression of Virulence-Related Genes in Listeria monocytogenes Grown on Danish Hard Cheese as Affected by NaCl Content. Foodborne Pathog Dis 2015; 12:536-44. [DOI: 10.1089/fpd.2014.1930] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Nadja Larsen
- Faculty of Science, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Lene Jespersen
- Faculty of Science, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
27
|
Cocolin L, Ercolini D. Zooming into food-associated microbial consortia: a ‘cultural’ evolution. Curr Opin Food Sci 2015. [DOI: 10.1016/j.cofs.2015.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Differential gene expression profiling of Listeria monocytogenes in Cacciatore and Felino salami to reveal potential stress resistance biomarkers. Food Microbiol 2015; 46:408-417. [DOI: 10.1016/j.fm.2014.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 09/02/2014] [Accepted: 09/06/2014] [Indexed: 01/20/2023]
|
29
|
Christopher D, Wallace CA. The food safety impact of salt and sodium reduction initiatives. Perspect Public Health 2014; 134:216-24. [DOI: 10.1177/1757913914536701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Excessive or high salt or sodium intake is known to cause hypertension and other diseases. Within the United Kingdom voluntary targets for salt reduction have been set and laid out in the Secretary of State responsibility deal. This review considers the options available to food manufacturers to enable them to reduce salt and the potential food safety risks associated with those options. Gaps in research and knowledge within the areas of information supplied to food manufacturers, alternative solutions for salt replacement and the food safety impact of salt reduction are discussed.
Collapse
Affiliation(s)
- Deborah Christopher
- International Institute of Nutritional Sciences and Applied Food Safety Studies, School of Sport, Tourism and the Outdoors, University of Central Lancashire, Preston, UK; Allied Technical Centre, Maidenhead, UK
| | - Carol A Wallace
- International Institute of Nutritional Sciences and Applied Food Safety Studies, School of Sport, Tourism and the Outdoors, University of Central Lancashire, Preston, UK
| |
Collapse
|
30
|
Reference Gene Selection in Carnobacterium maltaromaticum, Lactobacillus curvatus, and Listeria innocua Subjected to Temperature and Salt Stress. Mol Biotechnol 2013; 56:210-22. [DOI: 10.1007/s12033-013-9697-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Choi KH, Yoon Y. The Effects of Sodium Chloride on the Physiological Characteristics of Listeria monocytogenes. Korean J Food Sci Anim Resour 2013. [DOI: 10.5851/kosfa.2013.33.3.395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
32
|
Lee JH, Yoon HJ, Lee SA, Yoon YH. Effect of NaCl on Thermal Resistance, Antibiotic Resistance, and Human Epithelial Cell Invasion of Listeria monocytogenes. Korean J Food Sci Anim Resour 2012. [DOI: 10.5851/kosfa.2012.32.5.545] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
33
|
Alessandria V, Rantsiou K, Dolci P, Zeppa G, Cocolin L. A comparison of gene expression ofListeria monocytogenes in vitroand in the soft cheese Crescenza. INT J DAIRY TECHNOL 2012. [DOI: 10.1111/1471-0307.12008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Valentina Alessandria
- DIVAPRA; Sector of Agricultural Microbiology and Food Technology; Faculty of Agriculture; University of Turin; Turin; Italy
| | - Kalliopi Rantsiou
- DIVAPRA; Sector of Agricultural Microbiology and Food Technology; Faculty of Agriculture; University of Turin; Turin; Italy
| | - Paola Dolci
- DIVAPRA; Sector of Agricultural Microbiology and Food Technology; Faculty of Agriculture; University of Turin; Turin; Italy
| | - Giuseppe Zeppa
- DIVAPRA; Sector of Agricultural Microbiology and Food Technology; Faculty of Agriculture; University of Turin; Turin; Italy
| | - Luca Cocolin
- DIVAPRA; Sector of Agricultural Microbiology and Food Technology; Faculty of Agriculture; University of Turin; Turin; Italy
| |
Collapse
|
34
|
Brul S, Bassett J, Cook P, Kathariou S, McClure P, Jasti P, Betts R. ‘Omics’ technologies in quantitative microbial risk assessment. Trends Food Sci Technol 2012. [DOI: 10.1016/j.tifs.2012.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Tessema GT, Møretrø T, Snipen L, Heir E, Holck A, Naterstad K, Axelsson L. Microarray-based transcriptome ofListeria monocytogenesadapted to sublethal concentrations of acetic acid, lactic acid, and hydrochloric acid. Can J Microbiol 2012; 58:1112-23. [DOI: 10.1139/w2012-091] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Listeria monocytogenes , an important foodborne pathogen, commonly encounters organic acids in food-related environments. The transcriptome of L. monocytogenes L502 was analyzed after adaptation to pH 5 in the presence of acetic acid, lactic acid, or hydrochloric acid (HCl) at 25 °C, representing a condition encountered in mildly acidic ready-to-eat food kept at room temperature. The acid-treated cells were compared with a reference culture with a pH of 6.7 at the time of RNA harvesting. The number of genes and magnitude of transcriptional responses were higher for the organic acids than for HCl. Protein coding genes described for low pH stress, energy transport and metabolism, virulence determinates, and acid tolerance response were commonly regulated in the 3 acid-stressed cultures. Interestingly, the transcriptional levels of histidine and cell wall biosynthetic operons were upregulated, indicating possible universal response against low pH stress in L. monocytogenes. The opuCABCD operon, coding proteins for compatible solutes transport, and the transcriptional regulator sigL were significantly induced in the organic acids, strongly suggesting key roles during organic acid stress. The present study revealed the complex transcriptional responses of L. monocytogenes towards food-related acidulants and opens the roadmap for more specific and in-depth future studies.
Collapse
Affiliation(s)
- Girum Tadesse Tessema
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, P.O. Box 210, N-1431 Ås, Norway
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway
| | - Trond Møretrø
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, P.O. Box 210, N-1431 Ås, Norway
| | - Lars Snipen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Even Heir
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, P.O. Box 210, N-1431 Ås, Norway
| | - Askild Holck
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, P.O. Box 210, N-1431 Ås, Norway
| | - Kristine Naterstad
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, P.O. Box 210, N-1431 Ås, Norway
| | - Lars Axelsson
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, P.O. Box 210, N-1431 Ås, Norway
| |
Collapse
|
36
|
Yin X, Feng Y, Lu Y, Chambers JR, Gong J, Gyles CL. Adherence and associated virulence gene expression in acid-treated Escherichia coli O157 : H7 in vitro and in ligated pig intestine. Microbiology (Reading) 2012; 158:1084-1093. [PMID: 22301912 DOI: 10.1099/mic.0.056101-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Xianhua Yin
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
- Guelph Food Research Center, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - Yanni Feng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yang Lu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai 201106, PR China
| | - James R. Chambers
- Guelph Food Research Center, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - Joshua Gong
- Guelph Food Research Center, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - Carlton L. Gyles
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
37
|
Poli VFS, Thorsen L, Olesen I, Wik MT, Jespersen L. Differentiation of the virulence potential of Campylobacter jejuni strains by use of gene transcription analysis and a Caco-2 assay. Int J Food Microbiol 2012; 155:60-8. [DOI: 10.1016/j.ijfoodmicro.2012.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 01/20/2012] [Accepted: 01/22/2012] [Indexed: 01/05/2023]
|
38
|
RANTSIOU KALLIOPI, MATARAGAS MARIOS, ALESSANDRIA VALENTINA, COCOLIN LUCA. EXPRESSION OF VIRULENCE GENES OF LISTERIA MONOCYTOGENES IN FOOD. J Food Saf 2011. [DOI: 10.1111/j.1745-4565.2011.00363.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
39
|
Rantsiou K, Mataragas M, Jespersen L, Cocolin L. Understanding the behavior of foodborne pathogens in the food chain: New information for risk assessment analysis. Trends Food Sci Technol 2011. [DOI: 10.1016/j.tifs.2011.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
40
|
Method enabling gene expression studies of pathogens in a complex food matrix. Appl Environ Microbiol 2011; 77:8456-8. [PMID: 21984236 DOI: 10.1128/aem.05471-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe a simple method for stabilizing and extracting high-quality prokaryotic RNA from meat. Heat and salt stress of Escherichia coli and Salmonella spp. in minced meat reproducibly induced dnaK and otsB expression, respectively, as observed by quantitative reverse transcription-PCR (>5-fold relative changes). Thus, the method is applicable in studies of bacterial gene expression in a meat matrix.
Collapse
|
41
|
Rantsiou K, Greppi A, Garosi M, Acquadro A, Mataragas M, Cocolin L. Strain dependent expression of stress response and virulence genes of Listeria monocytogenes in meat juices as determined by microarray. Int J Food Microbiol 2011; 152:116-22. [PMID: 21924790 DOI: 10.1016/j.ijfoodmicro.2011.08.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 08/09/2011] [Accepted: 08/10/2011] [Indexed: 12/28/2022]
Abstract
A subgenomic array, encompassing 54 probes targeting genes responsible for virulence, adhesion and stress response in Listeria monocytogenes, was used in order to study their expression in food systems. RNA extracted from L. monocytogenes inoculated in BHI and in situ (i.e. in minced meat and fermented sausage juices) and incubated at 4°C, was hybridized on the array and the results obtained were compared in order to understand the effect that the food juice has on the expression. Three different strains of L. monocytogenes were tested, in order to determine the effect of the strain provenience. As determined by cluster analysis, each strain behaved in a different way when inoculated in food juices. The goal was to respond to acidic and osmotic stresses encountered in the food, particularly in the fermented sausage juice. No differences in the expression profile between the three strains were observed, when they were inoculated in BHI. On the other hand, in the meat and sausage juices, the iap, gadC and gadE genes, together with different internalin encoding genes, were significantly differentially expressed in the three strains.
Collapse
Affiliation(s)
- Kalliopi Rantsiou
- Dipartimento di Valorizzazione e Protezione delle Risorse Agroforestali, Section of Agricultural Microbiology and Food Technology, Facoltà di Agraria, Università di Torino, Italy.
| | | | | | | | | | | |
Collapse
|
42
|
The transcriptional response of Listeria monocytogenes during adaptation to growth on lactate and diacetate includes synergistic changes that increase fermentative acetoin production. Appl Environ Microbiol 2011; 77:5294-306. [PMID: 21666015 DOI: 10.1128/aem.02976-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The organic acids lactate and diacetate are commonly used in combination in ready-to-eat foods because they show synergistic ability to inhibit the growth of Listeria monocytogenes. Full-genome microarrays were used to investigate the synergistic transcriptomic responses of two L. monocytogenes strains, H7858 (serotype 4b) and F6854 (serotype 1/2a), to these two organic acids under conditions representing osmotic and cold stress encountered in foods. Strains were exposed to brain heart infusion (BHI) broth at 7°C with 4.65% water-phase (w.p.) NaCl at pH 6.1 with (i) 2% w.p. potassium lactate, (ii) 0.14% w.p. sodium diacetate, (iii) the combination of both at the same levels, or (iv) no organic acids as a control. RNA was extracted 8 h after exposure, during lag phase, to capture gene transcription changes during adaptation to the organic acid stress. Significant differential transcription of 1,041 genes in H7858 and 640 genes in F6854 was observed in at least one pair of the 4 different treatments. The effects of combined treatment with lactate and diacetate included (i) synergistic transcription differences for 474 and 209 genes in H7858 and F6854, respectively, (ii) differential transcription of genes encoding cation transporters and ABC transporters of metals, and (iii) altered metabolism, including induction of a nutrient-limiting stress response, reduction of menaquinone biosynthesis, and a shift from fermentative production of acetate and lactate to energetically less favorable, neutral acetoin. These data suggest that additional treatments that interfere with cellular energy generation processes could more efficiently inhibit the growth of L. monocytogenes.
Collapse
|
43
|
Olesen I, Jespersen L. Relative gene transcription and pathogenicity of enterohemorrhagic Escherichia coli after long-term adaptation to acid and salt stress. Int J Food Microbiol 2010; 141:248-53. [DOI: 10.1016/j.ijfoodmicro.2010.05.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 05/18/2010] [Accepted: 05/21/2010] [Indexed: 02/02/2023]
|
44
|
Jakobsen M. Introduction to supplement issue PathogenCombat: reducing food borne disease in Europe--control and prevention of emerging pathogens at cellular and molecular level throughout the food chain. Int J Food Microbiol 2010; 141 Suppl 1:S1-3. [PMID: 20638144 DOI: 10.1016/j.ijfoodmicro.2010.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Mogens Jakobsen
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|