1
|
Hernández-García L, Manzanares P, Marcos JF, Martínez-Culebras PV. Effect of antifungal proteins (AFPs) on the viability of heat-resistant fungi (HRFs) and the preservation of fruit juices. Int J Food Microbiol 2024; 425:110886. [PMID: 39214027 DOI: 10.1016/j.ijfoodmicro.2024.110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/11/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The control of heat-resistant fungi (HRFs), which cause spoilage of heat-treated fruit products, is considered a challenge for the fruit juice and beverage industry and requires new strategies for the development of antifungal compounds. In this study, four antifungal proteins (AFPs) from Penicillium digitatum (PdAfpB) and Penicillium expansum (PeAfpA, PeAfpB and PeAfpC), were evaluated against conidia from a representative collection of HRFs. A total of 19 strains from 16 different species belonging to the genera Aspergillus, Hamigera, Paecilomyces, Rasamsonia, Sarocladium, Talaromyces and Thermoascus were included in the study. PeAfpA and PdAfpB exhibited potent antifungal activity in synthetic media, completely inhibiting the growth of most of the fungi evaluated in the range of 0.5-32 μg/mL. The efficacy of the four AFPs was also tested in fruit juices against ascospores of five HRFs relevant to the food industry, including P. fulvus, P. niveus, P. variotii, A. fischeri and T. flavus. PdAfpB was the most effective protein in fruit juices, since it completely inhibited the growth of the five species tested in at least one of the fruit juices evaluated. This is the first study to demonstrate the activity of AFPs against fungal ascospores. Finally, a challenge test study showed that PdAfpB, at a concentration of 32 μg/mL, protected apple fruit juice artificially inoculated with ascospores of P. variotii for 17 days, highlighting the potential of the protein as a preservative in the fruit juice industry.
Collapse
Affiliation(s)
- Laura Hernández-García
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Paloma Manzanares
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Jose F Marcos
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Pedro V Martínez-Culebras
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna 46980, Valencia, Spain; Departamento de Medicina Preventiva y Salud Pública, Ciencias de la Alimentación, Bromatología, Toxicología y Medicina Legal, Universitat de València, Vicente Andrès Estellès s/n, Burjassot 46100, Valencia, Spain.
| |
Collapse
|
2
|
Yang C, Peng B. Biodegradation characteristics of patulin by Saccharomyces cerevisiae during fermentation. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
da Silva Lima G, Franco Dos Santos G, Ramalho RRF, de Aguiar DVA, Roque JV, Maciel LIL, Simas RC, Pereira I, Vaz BG. Laser ablation electrospray ionization mass spectrometry imaging as a new tool for accessing patulin diffusion in mold-infected fruits. Food Chem 2022; 373:131490. [PMID: 34743054 DOI: 10.1016/j.foodchem.2021.131490] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 02/06/2023]
Abstract
This work describes the use of laser ablation electrospray ionization mass spectrometry imaging (LAESI imaging) to investigate the diffusion of the mycotoxin patulin from rotten to healthy areas of fruits. Slices of mold-infected and uninfected (control) apples and strawberries were prepared, and this was the only sample preparation step used. An infrared laser beam (2.94 μm) was used to irradiate the slices, resulting in the ablation of sample compounds directly ionized by electrospray and analyzed by mass spectrometry. Multivariate curve resolution - alternating least squares was applied in unfolded LAESI images to obtain relative quantity information. Patulin was not detected in the control samples but was seen in all mold-infected fruits. LAESI images showed the diffusion of patulin from the rotten area to unaffected parts of the fruits. This study points out the advantage of LAESI imaging over traditional analytical methods used to study the diffusion of mycotoxins in fruits.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Igor Pereira
- Chemistry Institute, Federal University of Goiás, Goiânia, GO 74690-900, Brazil.
| | - Boniek Gontijo Vaz
- Chemistry Institute, Federal University of Goiás, Goiânia, GO 74690-900, Brazil.
| |
Collapse
|
4
|
Adsorption Mechanism of Patulin from Apple Juice by Inactivated Lactic Acid Bacteria Isolated from Kefir Grains. Toxins (Basel) 2021; 13:toxins13070434. [PMID: 34206488 PMCID: PMC8309945 DOI: 10.3390/toxins13070434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
In the food industry, microbiological safety is a major concern. Mycotoxin patulin represents a potential health hazard, as it is heat-resistant and may develop at any stage during the food chain, especially in apple-based products, leading to severe effects on human health, poor quality products, and profit reductions. The target of the study was to identify and characterize an excellent adsorbent to remove patulin from apple juice efficiently and to assess its adsorption mechanism. To prevent juice fermentation and/or contamination, autoclaving was involved to inactivate bacteria before the adsorption process. The HPLC (high-performance liquid chromatography) outcome proved that all isolated strains from kefir grains could reduce patulin from apple juice. A high removal of 93% was found for juice having a 4.6 pH, 15° Brix, and patulin concentration of 100 μg/L by Lactobacillus kefiranofacien, named JKSP109, which was morphologically the smoothest and biggest of all isolates in terms of cell wall volume and surface area characterized by SEM (Scanning electron microscopy) and TEM (transmission electron microscopy). C=O, OH, C–H, and N–O were the main functional groups engaged in patulin adsorption indicated by FTIR (Fourier transform–infrared). E-nose (electronic nose) was performed to evaluate the aroma quality of the juices. PCA (Principal component analysis) results showed that no significant changes occurred between control and treated juice.
Collapse
|
5
|
Zhong L, Carere J, Mats L, Lu Z, Lu F, Zhou T. Formation of glutathione patulin conjugates associated with yeast fermentation contributes to patulin reduction. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Al Riachy R, Strub C, Durand N, Guibert B, Guichard H, Constancias F, Chochois V, Lopez-Lauri F, Fontana A, Schorr-Galindo S. Microbiome Status of Cider-Apples, from Orchard to Processing, with a Special Focus on Penicillium expansum Occurrence and Patulin Contamination. J Fungi (Basel) 2021; 7:jof7040244. [PMID: 33805022 PMCID: PMC8063962 DOI: 10.3390/jof7040244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 11/22/2022] Open
Abstract
Patulin is a secondary metabolite produced primarily by the fungus Penicillium expansum, responsible for the blue mold disease on apples. It is found in apple products including apple cider when apple juice is added after fermentation. In the present study, two hundred and twenty-five cider-apples of the variety “Bedan”, cultivated in Brittany in France, were sampled from the orchard during harvesting until the storage step, right before processing. The patulin analysis on these samples reported a low contamination at the orchard and a significantly higher-level of contamination in the cider-apples starting from the transporting bin. The percentage of positive samples increased from 6% to 47% after 12 h in the harvesting bin before transporting and reached 95% after 24 h of transporting, decreasing then to 69% at the end of the storage. Penicillium expansum was quantified on the surface of apples using real-time PCR and was observed to be mostly consistent between the harvest and post-harvest steps. It was detected on average, on the surface of 85% of all sampled apples with a mean value around 2.35 × 106Penicillium expansum DNA/g of apple. Moreover, the changes in the fungal and bacterial epiphytic microbiota in the different steps were studied using a metabarcoding approach. The alpha and beta diversity analysis revealed the presence of unique and more diverse bacterial and fungal communities on the surface of apples picked from the orchard compared to the rest of the sampling steps. Potential indigenous biological control agents were identified on the surface of sampled apples. Future perspective includes developing actions of prevention and control of the contamination by Penicillium expansum during the harvest and along the various critical post-harvest stages before transformation in a sustainable development concern.
Collapse
Affiliation(s)
- Reem Al Riachy
- Qualisud, Univ Montpellier, CIRAD, Univ d’Avignon, Institut Agro, IRD, Univ de La Réunion, F-34398 Montpellier, France; (N.D.); (B.G.); (F.C.); (V.C.); (F.L.-L.); (A.F.); (S.S.-G.)
- Correspondence: (R.A.R.); (C.S.)
| | - Caroline Strub
- Qualisud, Univ Montpellier, CIRAD, Univ d’Avignon, Institut Agro, IRD, Univ de La Réunion, F-34398 Montpellier, France; (N.D.); (B.G.); (F.C.); (V.C.); (F.L.-L.); (A.F.); (S.S.-G.)
- Correspondence: (R.A.R.); (C.S.)
| | - Noël Durand
- Qualisud, Univ Montpellier, CIRAD, Univ d’Avignon, Institut Agro, IRD, Univ de La Réunion, F-34398 Montpellier, France; (N.D.); (B.G.); (F.C.); (V.C.); (F.L.-L.); (A.F.); (S.S.-G.)
- CIRAD, UMR Qualisud, F-34398 Montpellier, France
| | - Benjamin Guibert
- Qualisud, Univ Montpellier, CIRAD, Univ d’Avignon, Institut Agro, IRD, Univ de La Réunion, F-34398 Montpellier, France; (N.D.); (B.G.); (F.C.); (V.C.); (F.L.-L.); (A.F.); (S.S.-G.)
- CIRAD, UMR Qualisud, F-34398 Montpellier, France
| | - Hugues Guichard
- French Institute for Cider Production (IFPC), Domaine de la Motte, F-35653 Le Rheu, France;
| | - Florentin Constancias
- Qualisud, Univ Montpellier, CIRAD, Univ d’Avignon, Institut Agro, IRD, Univ de La Réunion, F-34398 Montpellier, France; (N.D.); (B.G.); (F.C.); (V.C.); (F.L.-L.); (A.F.); (S.S.-G.)
- CIRAD, UMR Qualisud, F-34398 Montpellier, France
| | - Vincent Chochois
- Qualisud, Univ Montpellier, CIRAD, Univ d’Avignon, Institut Agro, IRD, Univ de La Réunion, F-34398 Montpellier, France; (N.D.); (B.G.); (F.C.); (V.C.); (F.L.-L.); (A.F.); (S.S.-G.)
- CIRAD, UMR Qualisud, F-34398 Montpellier, France
| | - Félicie Lopez-Lauri
- Qualisud, Univ Montpellier, CIRAD, Univ d’Avignon, Institut Agro, IRD, Univ de La Réunion, F-34398 Montpellier, France; (N.D.); (B.G.); (F.C.); (V.C.); (F.L.-L.); (A.F.); (S.S.-G.)
| | - Angélique Fontana
- Qualisud, Univ Montpellier, CIRAD, Univ d’Avignon, Institut Agro, IRD, Univ de La Réunion, F-34398 Montpellier, France; (N.D.); (B.G.); (F.C.); (V.C.); (F.L.-L.); (A.F.); (S.S.-G.)
| | - Sabine Schorr-Galindo
- Qualisud, Univ Montpellier, CIRAD, Univ d’Avignon, Institut Agro, IRD, Univ de La Réunion, F-34398 Montpellier, France; (N.D.); (B.G.); (F.C.); (V.C.); (F.L.-L.); (A.F.); (S.S.-G.)
| |
Collapse
|
7
|
Stefanello A, Magrini LN, Lemos JG, Garcia MV, Bernardi AO, Cichoski AJ, Copetti MV. Comparison of electrolized water and multiple chemical sanitizer action against heat-resistant molds (HRM). Int J Food Microbiol 2020; 335:108856. [DOI: 10.1016/j.ijfoodmicro.2020.108856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/20/2020] [Accepted: 08/31/2020] [Indexed: 01/13/2023]
|
8
|
Pinto CA, Moreira SA, Fidalgo LG, Inácio RS, Barba FJ, Saraiva JA. Effects of high-pressure processing on fungi spores: Factors affecting spore germination and inactivation and impact on ultrastructure. Compr Rev Food Sci Food Saf 2020; 19:553-573. [PMID: 33325178 DOI: 10.1111/1541-4337.12534] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
Food contamination with heat-resistant fungi (HRF), and their spores, is a major issue among fruit processors, being frequently found in fruit juices and concentrates, among other products, leading to considerable economic losses and food safety issues. Several strategies were developed to minimize the contamination with HRF, with improvements from harvesting to the final product, including sanitizers and new processing techniques. Considering consumers' demands for minimally processed, fresh-like food products, nonthermal food-processing technologies, such as high-pressure processing (HPP), among others, are emerging as alternatives to the conventional thermal processing techniques. As no heat is applied to foods, vitamins, proteins, aromas, and taste are better kept when compared to thermal processes. Nevertheless, HPP is only able to destroy pathogenic and spoilage vegetative microorganisms to levels of pertinence for food safety, while bacterial spores remain. Regarding HRF spores (both ascospores and conidiospores), these seem to be more pressure-sensible than bacterial spores, despite a few cases, such as the ascospores of Byssochlamys spp., Neosartorya spp., and Talaromyces spp. that are resistant to high pressures and high temperatures, requiring the combination of both variables to be inactivated. This review aims to cover the literature available concerning the effects of HPP at room-like temperatures, and its combination with high temperatures, and high-pressure cycling, to inactivate fungi spores, including the main factors affecting spores' resistance to high-pressure, such as pH, water activity, nutritional composition of the food matrix and ascospore age, as well as the changes in the spore ultrastructure, and the parameters to consider regarding their inactivation by HPP.
Collapse
Affiliation(s)
- Carlos A Pinto
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Sílvia A Moreira
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Liliana G Fidalgo
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,Escola Superior Agrária, Instituto Politécnico de Beja, Beja, Portugal
| | - Rita S Inácio
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Francisco J Barba
- Area de Nutrición y Bromatología, Facultat de Farmàcia, Universitat de València, Burjassot, Spain
| | - Jorge A Saraiva
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
9
|
Ráduly Z, Szabó L, Madar A, Pócsi I, Csernoch L. Toxicological and Medical Aspects of Aspergillus-Derived Mycotoxins Entering the Feed and Food Chain. Front Microbiol 2020; 10:2908. [PMID: 31998250 PMCID: PMC6962185 DOI: 10.3389/fmicb.2019.02908] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
Due to Earth's changing climate, the ongoing and foreseeable spreading of mycotoxigenic Aspergillus species has increased the possibility of mycotoxin contamination in the feed and food production chain. These harmful mycotoxins have aroused serious health and economic problems since their first appearance. The most potent Aspergillus-derived mycotoxins include aflatoxins, ochratoxins, gliotoxin, fumonisins, sterigmatocystin, and patulin. Some of them can be found in dairy products, mainly in milk and cheese, as well as in fresh and especially in dried fruits and vegetables, in nut products, typically in groundnuts, in oil seeds, in coffee beans, in different grain products, like rice, wheat, barley, rye, and frequently in maize and, furthermore, even in the liver of livestock fed by mycotoxin-contaminated forage. Though the mycotoxins present in the feed and food chain are well documented, the human physiological effects of mycotoxin exposure are not yet fully understood. It is known that mycotoxins have nephrotoxic, genotoxic, teratogenic, carcinogenic, and cytotoxic properties and, as a consequence, these toxins may cause liver carcinomas, renal dysfunctions, and also immunosuppressed states. The deleterious physiological effects of mycotoxins on humans are still a first-priority question. In food production and also in the case of acute and chronic poisoning, there are possibilities to set suitable food safety measures into operation to minimize the effects of mycotoxin contaminations. On the other hand, preventive actions are always better, due to the multivariate nature of mycotoxin exposures. In this review, the occurrence and toxicological features of major Aspergillus-derived mycotoxins are summarized and, furthermore, the possibilities of treatments in the medical practice to heal the deleterious consequences of acute and/or chronic exposures are presented.
Collapse
Affiliation(s)
- Zsolt Ráduly
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - László Szabó
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Anett Madar
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, Institute of Biotechnology, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
10
|
Santos JLPD, Samapundo S, Pimentel GC, Van Impe J, Sant’Ana AS, Devlieghere F. Assessment of minimum oxygen concentrations for the growth of heat-resistant moulds. Food Microbiol 2019; 84:103243. [DOI: 10.1016/j.fm.2019.103243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/20/2019] [Accepted: 06/14/2019] [Indexed: 11/29/2022]
|
11
|
|
12
|
Fruit infected with Paecilomyces niveus: A source of spoilage inoculum and patulin in apple juice concentrate? Food Control 2019. [DOI: 10.1016/j.foodcont.2018.10.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Biango-Daniels MN, Ayer KM, Cox KD, Hodge KT. Paecilomyces niveus: Pathogenicity in the Orchard and Sensitivity to Three Fungicides. PLANT DISEASE 2019; 103:125-131. [PMID: 30444468 DOI: 10.1094/pdis-04-18-0695-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Paecilomyces rot of apples is a postharvest disease caused by the thermotolerant fungus Paecilomyces niveus (Byssochlamys nivea). The etiology of disease and the activity of fungicides against P. niveus are not yet well understood. This study evaluated the ability of P. niveus to infect 'Gala' apples growing in a conventionally managed orchard. In addition, the sensitivity of P. niveus isolates to postharvest fungicides difenoconazole, fludioxonil, and pyrimethanil was characterized for isolates from both agricultural and nonagricultural environments. Apples were wounded and mock-inoculated or inoculated with P. niveus in early July. At the time of harvest, 8 weeks after wounding, the inoculated apples had significantly larger lesions than mock-inoculated apples (P < 0.005). The average diameter of lesions on wound-inoculated apples was 11.17 mm ± 6.82 SD, while the average diameter of mock-inoculated lesions was 3.34 mm ± 1.85 SD. Disease symptoms in the orchard were similar to postharvest symptoms of Paecilomyces rot. Symptoms included a brown, flattened, circular lesion with faint concentric rings. The necrosis of mesocarp was firm and roughly U-shaped. Baseline isolates of P. niveus, from nonagricultural environments, were used to determine the effective fungicide dose at which growth was inhibited by 50% (EC50). Furthermore, fungicide sensitivity of P. niveus isolates was examined using relative growth assays at the mean baseline EC50 values to compare baseline isolates with isolates obtained from commercial apple orchards where they were likely exposed to fungicides. Among the exposed isolates, reduced sensitivity to all fungicides was observed, but significant differences between baseline and exposed isolates were only observed with fludioxonil (P < 0.0001). This is the first report demonstrating that P. niveus can infect apples that are wound-inoculated in the orchard and that isolates from agricultural environments are less sensitive to common fungicides, especially fludioxonil. This finding may have implications for the control of this postharvest diseases. Whether natural infections of apples by P. niveus is initiated in the orchard or during postharvest has yet to be determined.
Collapse
Affiliation(s)
- Megan N Biango-Daniels
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Katrin M Ayer
- Section of Plant Pathology and Plant-Microbe Biology, New York State Agricultural Experiment Station, Cornell University, Geneva NY 14456
| | - Kerik D Cox
- Section of Plant Pathology and Plant-Microbe Biology, New York State Agricultural Experiment Station, Cornell University, Geneva NY 14456
| | - Kathie T Hodge
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| |
Collapse
|
14
|
Zhong L, Carere J, Lu Z, Lu F, Zhou T. Patulin in Apples and Apple-Based Food Products: The Burdens and the Mitigation Strategies. Toxins (Basel) 2018; 10:E475. [PMID: 30445713 PMCID: PMC6267208 DOI: 10.3390/toxins10110475] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 01/09/2023] Open
Abstract
Apples and apple-based products are among the most popular foods around the world for their delightful flavors and health benefits. However, the commonly found mold, Penicillium expansum invades wounded apples, causing the blue mold decay and ensuing the production of patulin, a mycotoxin that negatively affects human health. Patulin contamination in apple products has been a worldwide problem without a satisfactory solution yet. A comprehensive understanding of the factors and challenges associated with patulin accumulation in apples is essential for finding such a solution. This review will discuss the effects of the pathogenicity of Penicillium species, quality traits of apple cultivars, and environmental conditions on the severity of apple blue mold and patulin contamination. Moreover, beyond the complicated interactions of the three aforementioned factors, patulin control is also challenged by the lack of reliable detection methods in food matrices, as well as unclear degradation mechanisms and limited knowledge about the toxicities of the metabolites resulting from the degradations. As apple-based products are mainly produced with stored apples, pre- and post-harvest strategies are equally important for patulin mitigation. Before storage, disease-resistance breeding, orchard-management, and elicitor(s) application help control the patulin level by improving the storage qualities of apples and lowering fruit rot severity. From storage to processing, patulin mitigation strategies could benefit from the optimization of apple storage conditions, the elimination of rotten apples, and the safe and effective detoxification or biodegradation of patulin.
Collapse
Affiliation(s)
- Lei Zhong
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China.
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| | - Jason Carere
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China.
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China.
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| |
Collapse
|
15
|
Freire L, Guerreiro TM, Pia AKR, Lima EO, Oliveira DN, Melo CFOR, Catharino RR, Sant'Ana AS. A quantitative study on growth variability and production of ochratoxin A and its derivatives by A. carbonarius and A. niger in grape-based medium. Sci Rep 2018; 8:14573. [PMID: 30275502 PMCID: PMC6167359 DOI: 10.1038/s41598-018-32907-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/18/2018] [Indexed: 11/10/2022] Open
Abstract
Aspergillus carbonarius and Aspergillus niger are the main responsible fungi for the accumulation of ochratoxin A (OTA) in wine grapes. Some strains are able to convert the parent mycotoxin into other compounds by means of hydrolysis and/or conjugation reactions through their defense mechanisms and enzymatic activity, leading to the formation of a modified mycotoxin. Thus, the variability of growth and metabolite production are inherent to the strain, occurring distinctively even when submitted to similar conditions. In this sense, this contribution aimed at determining the variability in multiplication and production of OTA by strains of A. carbonarius and A. niger isolated from grapes, as well as investigating the formation of modified mycotoxins. Strains were incubated in grape-based medium, and the diameter of the colonies measured daily. The determination of OTA was performed by high-performance liquid chromatography and the identification of modified mycotoxins was carried out using high-resolution mass spectrometry. Variabilities in terms of growth and OTA production were assessed across five different strains. Peak production of OTA was detected on day 15, and a decline on day 21 was observed, indicating that the observed reduction may be associated with the degradation or modification of the OTA over time by the fungus. Ethylamide ochratoxin A, a modified mycotoxin identified in this study, provides evidence that there may be underreporting of total mycotoxin levels in food, increasing uncertainty concerning health risks to the population.
Collapse
Affiliation(s)
- Luísa Freire
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Tatiane M Guerreiro
- Innovare Biomarkers Laboratory, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Arthur K R Pia
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Estela O Lima
- Innovare Biomarkers Laboratory, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Diogo N Oliveira
- Innovare Biomarkers Laboratory, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Carlos F O R Melo
- Innovare Biomarkers Laboratory, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Rodrigo R Catharino
- Innovare Biomarkers Laboratory, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
16
|
Sadok I, Stachniuk A, Staniszewska M. Developments in the Monitoring of Patulin in Fruits Using Liquid Chromatography: an Overview. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1340-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Santos JL, Samapundo S, Gülay SM, Van Impe J, Sant'Ana AS, Devlieghere F. Inter- and intra-species variability in heat resistance and the effect of heat treatment intensity on subsequent growth of Byssochlamys fulva and Byssochlamys nivea. Int J Food Microbiol 2018; 279:80-87. [DOI: 10.1016/j.ijfoodmicro.2018.04.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/09/2018] [Accepted: 04/19/2018] [Indexed: 01/08/2023]
|
18
|
Santos JLPD, Samapundo S, Biyikli A, Van Impe J, Akkermans S, Höfte M, Abatih EN, Sant'Ana AS, Devlieghere F. Occurrence, distribution and contamination levels of heat-resistant moulds throughout the processing of pasteurized high-acid fruit products. Int J Food Microbiol 2018; 281:72-81. [PMID: 29870893 DOI: 10.1016/j.ijfoodmicro.2018.05.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/08/2018] [Accepted: 05/18/2018] [Indexed: 11/29/2022]
Abstract
Heat-resistant moulds (HRMs) are well known for their ability to survive pasteurization and spoil high-acid food products, which is of great concern for processors of fruit-based products worldwide. Whilst the majority of the studies on HRMs over the last decades have addressed their inactivation, few data are currently available regarding their contamination levels in fruit and fruit-based products. Thus, this study aimed to quantify and identify heat-resistant fungal ascospores from samples collected throughout the processing of pasteurized high-acid fruit products. In addition, an assessment on the effect of processing on the contamination levels of HRMs in these products was carried out. A total of 332 samples from 111 batches were analyzed from three processing plants (=three processing lines): strawberry puree (n = 88, Belgium), concentrated orange juice (n = 90, Brazil) and apple puree (n = 154, the Netherlands). HRMs were detected in 96.4% (107/111) of the batches and 59.3% (197/332) of the analyzed samples. HRMs were present in 90.9% of the samples from the strawberry puree processing line (1-215 ascospores/100 g), 46.7% of the samples from the orange juice processing line (1-200 ascospores/100 g) and 48.7% of samples from the apple puree processing line (1-84 ascospores/100 g). Despite the high occurrence, the majority (76.8%, 255/332) of the samples were either not contaminated or presented low levels of HRMs (<10 ascospores/100 g). For both strawberry puree and concentrated orange juice, processing had no statistically significant effect on the levels of HRMs (p > 0.05). On the contrary, a significant reduction (p < 0.05) in HRMs levels was observed during the processing of apple puree. Twelve species were identified belonging to four genera - Byssochlamys, Aspergillus with Neosartorya-type ascospores, Talaromyces and Rasamsonia. N. fumigata (23.6%), N. fischeri (19.1%) and B. nivea (5.5%) were the predominant species in pasteurized products. The quantitative data (contamination levels of HRMs) were fitted to exponential distributions and will ultimately be included as input to spoilage risk assessment models which would allow better control of the spoilage of heat treated fruit products caused by heat-resistant moulds.
Collapse
Affiliation(s)
- Juliana Lane Paixão Dos Santos
- Research Unit Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Belgium.
| | - Simbarashe Samapundo
- Research Unit Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Ayse Biyikli
- Laboratory of Food Microbiology and Biotechnology, Department of Food Microbiology and Technology, Institute of Science and Technology, Pamukkale University, Denizli, Turkey
| | - Jan Van Impe
- Chemical and Biochemical Process Technology and Control (BioTec+), Department of Chemical Engineering, Katholieke Universiteit Leuven, Belgium
| | - Simen Akkermans
- Chemical and Biochemical Process Technology and Control (BioTec+), Department of Chemical Engineering, Katholieke Universiteit Leuven, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Crop Protection, Ghent University, Belgium
| | - Emmanuel Nji Abatih
- FIRE Unit, Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Belgium
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Brazil
| | - Frank Devlieghere
- Research Unit Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Belgium
| |
Collapse
|
19
|
Qiu Y, Guo H, Guo C, Zheng J, Yue T, Yuan Y. One-step preparation of nano-Fe3O4 modified inactivated yeast for the adsorption of patulin. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.10.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Frisvad J. A critical review of producers of small lactone mycotoxins: patulin, penicillic acid and moniliformin. WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2017.2294] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A very large number of filamentous fungi has been reported to produce the small lactone mycotoxins patulin, penicillic acid and moniliformin. Among the 167 reported fungal producers of patulin, only production by 29 species could be confirmed. Patulin is produced by 3 Aspergillus species, 3 Paecilomyces species, 22 Penicillium species from 7 sections of Penicillium, and one Xylaria species. Among 101 reported producers of penicillic acid, 48 species could produce this mycotoxin. Penicillic acid is produced by 23 species in section Aspergillus subgenus Circumdati section Circumdati, by Malbranchea aurantiaca and by 24 Penicillium species from 9 sections in Penicillium and one species that does not actually belong to Penicillium (P. megasporum). Among 40 reported producers of moniliformin, five species have been regarded as doubtful producers of this mycotoxin or are now regarded as taxonomic synonyms. Moniliformin is produced by 34 Fusarium species and one Penicillium species. All the accepted producers of patulin, penicillic acid and moniliformin were revised according to the new one fungus – one name nomenclatural system, and the most recently accepted taxonomy of the species.
Collapse
Affiliation(s)
- J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 221, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
21
|
Sadok I, Szmagara A, Staniszewska MM. The validated and sensitive HPLC-DAD method for determination of patulin in strawberries. Food Chem 2017; 245:364-370. [PMID: 29287382 DOI: 10.1016/j.foodchem.2017.10.093] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/18/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022]
Abstract
This work outlines HPLC coupled with DAD detection for accurate quantification of patulin (mycotoxin) in strawberries. The optimized extraction of fruit samples through the modified QuEChERS technique in acetonitrile acidified with acetic acid (1%, v/v) and citrate-buffered salts followed by dispersive solid phase extraction using a primary secondary amine and graphitized carbon is described. The method presents LOD and LOQ of 1.5 and 5µg/kg, respectively and has been validated in strawberry matrix at three concentration levels (5, 10 and 50µg/kg), according to SANTE/11945/2015 and the 2002/657/EC Decision requirements. All validated patulin levels show high percentage of patulin recovery. The validation procedure also includes the intermediate precision performed within three successive days in samples spiked with patulin. The developed method was applied for analysis of fresh and frozen strawberries purchased at local markets. Patulin level in analyzed samples was below the level of detection.
Collapse
Affiliation(s)
- Ilona Sadok
- Laboratory of Separation and Spectroscopic Method Applications, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Konstantynow 1J, 20-708 Lublin, Poland.
| | - Agnieszka Szmagara
- Laboratory of Composite and Biomimetic Materials, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Konstantynow 1J, 20-708 Lublin, Poland.
| | - Magdalena Maria Staniszewska
- Laboratory of Separation and Spectroscopic Method Applications, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Konstantynow 1J, 20-708 Lublin, Poland; Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland.
| |
Collapse
|
22
|
Basak S. The use of fuzzy logic to determine the concentration of betel leaf essential oil and its potency as a juice preservative. Food Chem 2017; 240:1113-1120. [PMID: 28946231 DOI: 10.1016/j.foodchem.2017.08.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/11/2017] [Accepted: 08/15/2017] [Indexed: 10/19/2022]
Abstract
The present study was attempted to determine organoleptically acceptable concentration of betel leaf essential oil (BLEO) in raw apple juice using fuzzy logic approach, and to evaluate the efficacy of the acceptable concentration in the juice under refrigerated storage. The presence of BLEO components in treated juice was confirmed by FTIR spectroscopy. Based on similarity values, the acceptable concentration in the juice was found to be 0.19µl/ml of BLEO. Total antioxidant capacity of untreated juice was found to be 16% less than treated juice at the end of storage. The treated juice exceeded total aerobic plate count of 2 log10 (cfu/ml) on 15th day of storage. Based on safe limits of microbial load, the shelf life of treated juice was extended by 6days as compared to untreated juice under refrigerated storage. BLEO contributes to green consumerism and its application as food preservative will add value to the product.
Collapse
Affiliation(s)
- Suradeep Basak
- Indian Institute of Technology Kharagpur, Agricultural and Food Engineering Department, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
23
|
Evelyn, Silva FV. Resistance of Byssochlamys nivea and Neosartorya fischeri mould spores of different age to high pressure thermal processing and thermosonication. J FOOD ENG 2017. [DOI: 10.1016/j.jfoodeng.2017.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Tremarin A, Aragão GMF, Salomão BCM, Brandão TRS, Silva CLM. Modeling the Soluble Solids and Storage Temperature Effects on Byssochlamys fulva Growth in Apple Juices. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-016-1854-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
|
26
|
Azeredo DR, Alvarenga V, Sant'Ana AS, Sabaa Srur AU. An overview of microorganisms and factors contributing for the microbial stability of carbonated soft drinks. Food Res Int 2016. [DOI: 10.1016/j.foodres.2016.01.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Antifungal effect of cinnamon essential oil on Byssochlamys fulva in liquid medium and tomato sauce. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2015. [DOI: 10.1007/s11694-015-9267-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Inactivation of Byssochlamys nivea ascospores in strawberry puree by high pressure, power ultrasound and thermal processing. Int J Food Microbiol 2015; 214:129-136. [PMID: 26280285 DOI: 10.1016/j.ijfoodmicro.2015.07.031] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 07/08/2015] [Accepted: 07/30/2015] [Indexed: 11/20/2022]
Abstract
Byssochlamys nivea is a mold that can spoil processed fruit products and produce mycotoxins. In this work, high pressure processing (HPP, 600 MPa) and power ultrasound (24 kHz, 0.33 W/mL; TS) in combination with 75°C for the inactivation of four week old B. nivea ascospores in strawberry puree for up to 30 min was investigated and compared with 75°C thermal processing alone. TS and thermal processing can activate the mold ascospores, but HPP-75°C resulted in 2.0 log reductions after a 20 min process. For a 10 min process, HPP-75°C was better than 85°C alone in reducing B. nivea spores (1.4 vs. 0.2 log reduction), demonstrating that a lower temperature in combination with HPP is more effective for spore inactivation than heat alone at a higher temperature. The ascospore inactivation by HPP-thermal, TS and thermal processing was studied at different temperatures and modeled. Faster inactivation was achieved at higher temperatures for all the technologies tested, indicating the significant role of temperature in spore inactivation, alone or combined with other physical processes. The Weibull model described the spore inactivation by 600 MPa HPP-thermal (38, 50, 60, 75°C) and thermal (85, 90°C) processing, whereas the Lorentzian model was more appropriate for TS treatment (65, 70, 75°C). The models obtained provide a useful tool to design and predict pasteurization processes targeting B. nivea ascospores.
Collapse
|
29
|
Modeling and simulation of Byssochlamys fulva growth on papaya pulp subjected to evaporative cooling. Chem Eng Sci 2014. [DOI: 10.1016/j.ces.2014.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
de Cássia Martins Salomão B, Muller C, do Amparo HC, de Aragão GMF. Survey of molds, yeast and Alicyclobacillus spp. from a concentrated apple juice productive process. Braz J Microbiol 2014; 45:49-58. [PMID: 24948913 PMCID: PMC4059325 DOI: 10.1590/s1517-83822014000100008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/09/2013] [Indexed: 11/22/2022] Open
Abstract
Bacteria and molds may spoil and/or contaminate apple juice either by direct microbial action or indirectly by the uptake of metabolites as off-flavours and toxins. Some of these microorganisms and/or metabolites may remain in the food even after extensive procedures. This study aim to identify the presence of molds (including heat resistant species) and Alicyclobacillus spp., during concentrated apple juice processing. Molds were isolated at different steps and then identified by their macroscopic and microscopic characteristics after cultivation on standard media at 5, 25 and 37 °C, during 7 days. Among the 19 isolated found, 63% were identified as Penicillium with 50% belonging to the P. expansum specie. With regards to heat resistant molds, the species Neosartorya fischeri, Byssochlamys fulva and also the genus Eupenicillium sp., Talaromyces sp. and Eurotium sp. were isolated. The thermoacidophilic spore-forming bacteria were identified as A. acidoterrestris by a further investigation based on 16S rRNA sequence similarity. The large contamination found indicates the need for methods to eliminate or prevent the presence of these microorganisms in the processing plants in order to avoid both spoilage of apple juice and toxin production.
Collapse
Affiliation(s)
| | - Chalana Muller
- Núcleo de BiotecnologiaUniversidade do Oeste de Santa CatarinaVideiraSCBrazil
| | | | | |
Collapse
|
31
|
Bernáldez V, Rodríguez A, Martín A, Lozano D, Córdoba JJ. Development of a multiplex qPCR method for simultaneous quantification in dry-cured ham of an antifungal-peptide Penicillium chrysogenum strain used as protective culture and aflatoxin-producing moulds. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.08.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
|
33
|
Li P, Zhang Z, Hu X, Zhang Q. Advanced hyphenated chromatographic-mass spectrometry in mycotoxin determination: current status and prospects. MASS SPECTROMETRY REVIEWS 2013; 32:420-452. [PMID: 23804155 DOI: 10.1002/mas.21377] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/04/2013] [Indexed: 06/02/2023]
Abstract
Mass spectrometric techniques are essential for advanced research in food safety and environmental monitoring. These fields are important for securing the health of humans and animals, and for ensuring environmental security. Mycotoxins, toxic secondary metabolites of filamentous fungi, are major contaminants of agricultural products, food and feed, biological samples, and the environment as a whole. Mycotoxins can cause cancers, nephritic and hepatic diseases, various hemorrhagic syndromes, and immune and neurological disorders. Mycotoxin-contaminated food and feed can provoke trade conflicts, resulting in massive economic losses. Risk assessment of mycotoxin contamination for humans and animals generally depends on clear identification and reliable quantitation in diversified matrices. Pioneering work on mycotoxin quantitation using mass spectrometry (MS) was performed in the early 1970s. Now, unambiguous confirmation and quantitation of mycotoxins can be readily achieved with a variety hyphenated techniques that combine chromatographic separation with MS, including liquid chromatography (LC) or gas chromatography (GC). With the advent of atmospheric pressure ionization, LC-MS has become a routine technique. Recently, the co-occurrence of multiple mycotoxins in the same sample has drawn an increasing amount of attention. Thus, modern analyses must be able to detect and quantitate multiple mycotoxins in a single run. Improvements in tandem MS techniques have been made to achieve this purpose. This review describes the advanced research that has been done regarding mycotoxin determination using hyphenated chromatographic-MS techniques, but is not a full-circle survey of all the literature published on this topic. The present work provides an overview of the various hyphenated chromatographic-MS-based strategies that have been applied to mycotoxin analysis, with a focus on recent developments. The use of chromatographic-MS to measure levels of mycotoxins, including aflatoxins, ochratoxins, patulin, trichothecenes, zearalenone, and fumonisins, is discussed in detail. Both free and masked mycotoxins are included in this review due to different methods of sample preparation. Techniques are described in terms of sample preparation, internal standards, LC/ultra performance LC (UPLC) optimization, and applications and survey. Several future hyphenated MS techniques are discussed as well, including multidimensional chromatography-MS, capillary electrophoresis-MS, and surface plasmon resonance array-MS.
Collapse
Affiliation(s)
- Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, P.R. China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, P.R. China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, P.R. China; Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan 430062, P.R. China; Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture, Wuhan 430062, P.R. China
| | | | | | | |
Collapse
|
34
|
da Silva PRS, Tessaro IC, Marczak LDF. Integrating a kinetic microbial model with a heat transfer model to predict Byssochlamys fulva growth in refrigerated papaya pulp. J FOOD ENG 2013. [DOI: 10.1016/j.jfoodeng.2013.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
|
36
|
Effect of Penicillium nalgiovense as protective culture in processing of dry-fermented sausage “salchichón”. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.11.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
37
|
Rodríguez A, Werning ML, Rodríguez M, Bermúdez E, Córdoba JJ. Quantitative real-time PCR method with internal amplification control to quantify cyclopiazonic acid producing molds in foods. Food Microbiol 2012; 32:397-405. [DOI: 10.1016/j.fm.2012.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/26/2012] [Accepted: 08/05/2012] [Indexed: 11/25/2022]
|
38
|
Evaluation of hazard of aflatoxin B1, ochratoxin A and patulin production in dry-cured ham and early detection of producing moulds by qPCR. Food Control 2012. [DOI: 10.1016/j.foodcont.2012.03.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Aspergillus and Penicillium identification using DNA sequences: barcode or MLST? Appl Microbiol Biotechnol 2012; 95:339-44. [PMID: 22639145 DOI: 10.1007/s00253-012-4165-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/09/2012] [Accepted: 05/10/2012] [Indexed: 10/28/2022]
Abstract
Current methods in DNA technology can detect single nucleotide polymorphisms with measurable accuracy using several different approaches appropriate for different uses. If there are even single nucleotide differences that are invariant markers of the species, we can accomplish identification through rapid DNA-based tests. The question of whether we can reliably detect and identify species of Aspergillus and Penicillium turns mainly upon the completeness of our alpha taxonomy, our species concepts, and how well the available DNA data coincide with the taxonomic diversity in the family Trichocomaceae. No single gene is yet known that is invariant within species and variable between species as would be optimal for the barcode approach. Data are published that would make an MLST approach to isolate identification possible in the most well-studied clades of Aspergillus and Penicillium.
Collapse
|
40
|
Delgado DA, de Souza Sant’Ana A, Granato D, Rodriguez de Massaguer P. Inactivation of Neosartorya fischeri and Paecilomyces variotii on paperboard packaging material by hydrogen peroxide and heat. Food Control 2012. [DOI: 10.1016/j.foodcont.2011.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Rodríguez A, Córdoba JJ, Werning ML, Andrade MJ, Rodríguez M. Duplex real-time PCR method with internal amplification control for quantification of verrucosidin producing molds in dry-ripened foods. Int J Food Microbiol 2011; 153:85-91. [PMID: 22119450 DOI: 10.1016/j.ijfoodmicro.2011.10.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/06/2011] [Accepted: 10/25/2011] [Indexed: 11/28/2022]
Abstract
Verrucosidin, which is a tremorgenic mycotoxin responsible for neurological diseases, has been detected in different dry-ripened foods as consequence of the growth of toxigenic molds. To improve food safety, the presence of verrucosidin producing molds in these kind foods should be quantified. The aim of this study was to design a duplex real-time PCR (qPCR) protocol based on TaqMan methodology with an internal amplification control (IAC). Eleven verrucosidin producing and 11 non producing strains belonging to different species often reported in food products were used. Verrucosidin production was tested by micellar electrokinetic capillary electrophoresis (MECE) and high-pressure liquid chromatography-mass spectrometry (HPLC-MS). A primer pair (VerF1/VerR1) and a TaqMan probe (Verprobe) were designed from the SVr1 probe sequence of a verrucosidin producing Penicillium polonicum. The conserved regions of the β-tubulin gene were used to design primers (TubF1/TubR1) and probe (Tubprobe) of the non-competitive IAC. The functionality of the developed method was demonstrated by the high linear relationship of the standard curves which relating Ct values and DNA template of the tested verrucosidin producers using the verrucosidin and IAC primers. The ability to quantify verrucosidin producers of the developed TaqMan assay in all artificially inoculated food samples was successful, with a minimum detection limit of 1 log cfu per gram of food. This qPCR protocol including an IAC could be very useful to quantify verrucosidin producing molds in dry-ripened foods avoiding false negative results. This method should be proposed to monitor the target molds in HACCP programs to prevent the risk of verrucosidin formation and consequently avoid its presence in the food chain.
Collapse
Affiliation(s)
- Alicia Rodríguez
- Food Hygiene and Safety, Faculty of Veterinary Science, University of Extremadura, Avda. de Universidad, s/n. 10003-Cáceres, Spain
| | | | | | | | | |
Collapse
|