1
|
Disli HB, Hizlisoy H, Gungor C, Barel M, Dishan A, Gundog DA, Al S, Onmaz NE, Yildirim Y, Gonulalan Z. Investigation and characterization of Aliarcobacter spp. isolated from cattle slaughterhouse in Türkiye. Int Microbiol 2024; 27:1321-1332. [PMID: 38206523 DOI: 10.1007/s10123-023-00478-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/31/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
Aliarcobacter spp. have been isolated from numerous food products at retail and from animal carcasses and feces at slaughter. The objectives of this study were as follows: (i) to isolate Aliarcobacter species from different slaughterhouses' samples and (ii) to detect genetic diversity, antibiotic resistance, biofilm ability, and putative virulence gene profiles of the isolates. A molecular investigation of antibiotic resistance and virulence factors was also conducted using polymerase chain reaction (PCR). Among 150 samples, a total of 22 (14.6%) Aliarcobacter spp. isolates were obtained, with varying levels of antibiotic resistance observed. The genes tetO, tetW, and gyrA were detected in 0%, 31.8%, and 27.2% of the isolates, respectively. All isolates were resistant to ampicillin, rifampin, and erythromycin, while tetracycline was found to be the most effective antibiotic, with 81.8% of the isolates showing susceptibility to it. All isolates (100%) harbored more than one of the nine putative virulence genes tested, with 18.1% of isolates carrying more than three. Regarding biofilm formation, 7 (31.8%) and 4 (18.1%) isolates were found to form strong and moderate biofilms, respectively, while one (4.5%) isolate was classified as a weak biofilm producer. ERIC-PCR band patterns suggested that the isolated Aliarcobacter spp. from slaughterhouses had different sources of contamination. These findings highlight the potential risk posed by pathogenic and multidrug-resistant Aliarcobacter spp. in food and the need for control measures throughout the food chain to prevent the spread of these strains. The results indicate that foods of animal origin and cattle slaughterhouses are significant sources of antimicrobial resistant Aliarcobacter.
Collapse
Affiliation(s)
- Huseyin Burak Disli
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey.
| | - Harun Hizlisoy
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Candan Gungor
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Mukaddes Barel
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Adalet Dishan
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Dursun Alp Gundog
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Serhat Al
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Nurhan Ertas Onmaz
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Yeliz Yildirim
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Zafer Gonulalan
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
2
|
Botta C, Buzzanca D, Chiarini E, Chiesa F, Rubiola S, Ferrocino I, Fontanella E, Rantsiou K, Houf K, Alessandria V. Microbial contamination pathways in a poultry abattoir provided clues on the distribution and persistence of Arcobacter spp. Appl Environ Microbiol 2024; 90:e0029624. [PMID: 38647295 PMCID: PMC11107157 DOI: 10.1128/aem.00296-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024] Open
Abstract
The consumption of contaminated poultry meat is a significant threat for public health, as it implicates in foodborne pathogen infections, such as those caused by Arcobacter. The mitigation of clinical cases requires the understanding of contamination pathways in each food process and the characterization of resident microbiota in the productive environments, so that targeted sanitizing procedures can be effectively implemented. Nowadays these investigations can benefit from the complementary and thoughtful use of culture- and omics-based analyses, although their application in situ is still limited. Therefore, the 16S-rRNA gene-based sequencing of total DNA and the targeted isolation of Arcobacter spp. through enrichment were performed to reconstruct the environmental contamination pathways within a poultry abattoir, as well as the dynamics and distribution of this emerging pathogen. To that scope, broiler's neck skin and caeca have been sampled during processing, while environmental swabs were collected from surfaces after cleaning and sanitizing. Metataxonomic survey highlighted a negligible impact of fecal contamination and a major role of broiler's skin in determining the composition of the resident abattoir microbiota. The introduction of Arcobacter spp. in the environment was mainly conveyed by this source rather than the intestinal content. Arcobacter butzleri represented one of the most abundant species and was extensively detected in the abattoir by both metataxonomic and enrichment methods, showing higher prevalence than other more thermophilic Campylobacterota. In particular, Arcobacter spp. was recovered viable in the plucking sector with high frequency, despite the adequacy of the sanitizing procedure.IMPORTANCEOur findings have emphasized the persistence of Arcobacter spp. in a modern poultry abattoir and its establishment as part of the resident microbiota in specific environmental niches. Although the responses provided here are not conclusive for the identification of the primary source of contamination, this biogeographic assessment underscores the importance of monitoring Arcobacter spp. from the early stages of the production chain with the integrative support of metataxonomic analysis. Through such combined detection approaches, the presence of this pathogen could be soon regarded as hallmark indicator of food safety and quality in poultry slaughtering.
Collapse
Affiliation(s)
- Cristian Botta
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | - Davide Buzzanca
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | - Elisabetta Chiarini
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | - Francesco Chiesa
- Department of Veterinary Sciences, University of Torino, Torino, Italy
| | - Selene Rubiola
- Department of Veterinary Sciences, University of Torino, Torino, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | | | - Kalliopi Rantsiou
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | - Kurt Houf
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Valentina Alessandria
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| |
Collapse
|
3
|
Akkemik Y, Güner A. Determination of the presence and antimicrobial resistance of Arcobacter species in broiler carcasses at different stages of slaughter line. Food Sci Nutr 2024; 12:3461-3468. [PMID: 38726459 PMCID: PMC11077200 DOI: 10.1002/fsn3.4013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 05/12/2024] Open
Abstract
In this study, to investigate Arcobacter spp. contamination post-scalding and de-feathering, post-evisceration, post-chilling, and packaged products, which are the most essential contamination stages of broiler slaughter, a total of 108 samples were taken from three different broiler slaughterhouses at different times. Isolates obtained by cultural methods in 104 of 108 samples were analyzed by mPCR method to identify pathogen Arcobacter spp. Arcobacter butzleri, Arcobacter cryaerophilus, and mixed contamination of both Arcobacter species were detected in 51 samples. Of the 51 isolates, 27 (52.9%) were A. butzleri, 16 (31.4%) were A. cryaerophilus, and 8 (15.7%) were mixed contamination of A. butzleri and A. cryaerophilus, while Arcobacter skirrowii was not detected. A. butzleri and A. cryaerophilus contamination was 59.2% post-scalding and de-feathering, 43.4% post-evisceration, 44.4% and 48.1% post-chilling and in packaged products, respectively. All A. butzleri strains were found to be 100% resistant to cefoperazone and penicillin and sensitive to tetracycline. A. cryaerophilus strains were 100% resistant to cefoperazone, penicillin, and cloxacillin and susceptible to tetracycline and erythromycin. In the study, it was determined that Arcobacter spp. caused a very intense contamination (85.18%-100%) and also contamination rates of identified pathogen strains (A. butzleri and A. cryaerophilus) were very high (59.2% and 43.4%) in broiler slaughtering stages. Considering that each step in broiler slaughter could contaminate the next stage, developing a safe slaughter and minimizing the risk toward the final product, it was concluded that critical control points could not be well managed in broiler slaughterhouses, and broiler meat may pose a significant risk to public health.
Collapse
Affiliation(s)
- Yasin Akkemik
- Department of Food Hygiene and TechnologyKastamonu University Faculty of Veterinary MedicineKastamonuTurkey
| | - Ahmet Güner
- Department of Food Hygiene and TechnologySelcuk University Faculty of Veterinary MedicineKonyaTurkey
| |
Collapse
|
4
|
Buelow E, Dauga C, Carrion C, Mathé-Hubert H, Achaibou S, Gaschet M, Jové T, Chesneau O, Kennedy SP, Ploy MC, Da Re S, Dagot C. Hospital and urban wastewaters shape the matrix and active resistome of environmental biofilms. WATER RESEARCH 2023; 244:120408. [PMID: 37678036 DOI: 10.1016/j.watres.2023.120408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 09/09/2023]
Abstract
Understanding the dynamics of antibiotic resistance gene (ARG) transfer and dissemination in natural environments remains challenging. Biofilms play a crucial role in bacterial survival and antimicrobial resistance (AMR) dissemination in natural environments, particularly in aquatic systems. This study focused on hospital and urban wastewater (WW) biofilms to investigate the potential for ARG dissemination through mobile genetic elements (MGEs). The analysis included assessing the biofilm extracellular polymeric substances (EPS), microbiota composition as well as metatranscriptomic profiling of the resistome and mobilome. We produced both in vitro and in situ biofilms and performed phenotypic and genomic analyses. In the in vitro setup, untreated urban and hospital WW was used to establish biofilm reactors, with ciprofloxacin added as a selective agent at minimal selective concentration. In the in situ setup, biofilms were developed directly in hospital and urban WW pipes. We first showed that a) the composition of EPS differed depending on the growth environment (in situ and in vitro) and the sampling origin (hospital vs urban WW) and that b) ciprofloxacin impacted the composition of the EPS. The metatranscriptomic approach showed that a) expression of several ARGs and MGEs increased upon adding ciprofloxacin for biofilms from hospital WW only and b) that the abundance and type of plasmids that carried individual or multiple ARGs varied depending on the WW origins of the biofilms. When the same plasmids were present in both, urban and hospital WW biofilms, they carried different ARGs. We showed that hospital and urban wastewaters shaped the structure and active resistome of environmental biofilms, and we confirmed that hospital WW is an important hot spot for the dissemination and selection of antimicrobial resistance. Our study provides a comprehensive assessment of WW biofilms as crucial hotspots for ARG transfer. Hospital WW biofilms exhibited distinct characteristics, including higher eDNA abundance and expression levels of ARGs and MGEs, highlighting their role in antimicrobial resistance dissemination. These findings emphasize the importance of understanding the structural, ecological, functional, and genetic organization of biofilms in anthropized environments and their contribution to antibiotic resistance dynamics.
Collapse
Affiliation(s)
- Elena Buelow
- INSERM, CHU Limoges, RESINFIT, U1092, Univ. Limoges, F-87000, Limoges, France; CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Univ. Grenoble Alpes, 38000, Grenoble, France.
| | - Catherine Dauga
- Institut Pasteur, Département Biologie Computationnelle, Université Paris Cité, F-75015, Paris, France; Biomics Pole, CITECH, Institut Pasteur, F-75015, Paris, France
| | - Claire Carrion
- CNRS, INSERM, CHU Limoges, BISCEm, UAR 2015, US 42, Univ. Limoges, F-87000, Limoges, France
| | - Hugo Mathé-Hubert
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Sophia Achaibou
- Biomics Pole, CITECH, Institut Pasteur, F-75015, Paris, France
| | - Margaux Gaschet
- INSERM, CHU Limoges, RESINFIT, U1092, Univ. Limoges, F-87000, Limoges, France
| | - Thomas Jové
- INSERM, CHU Limoges, RESINFIT, U1092, Univ. Limoges, F-87000, Limoges, France
| | - Olivier Chesneau
- Collection de l'Institut Pasteur (CIP), Microbiology Department, Institut Pasteur, Paris, 75015, France
| | - Sean P Kennedy
- Institut Pasteur, Département Biologie Computationnelle, Université Paris Cité, F-75015, Paris, France
| | - Marie-Cecile Ploy
- INSERM, CHU Limoges, RESINFIT, U1092, Univ. Limoges, F-87000, Limoges, France
| | - Sandra Da Re
- INSERM, CHU Limoges, RESINFIT, U1092, Univ. Limoges, F-87000, Limoges, France
| | - Christophe Dagot
- INSERM, CHU Limoges, RESINFIT, U1092, Univ. Limoges, F-87000, Limoges, France
| |
Collapse
|
5
|
Mateus C, Maia CJ, Domingues F, Bücker R, Oleastro M, Ferreira S. Evaluation of Bile Salts on the Survival and Modulation of Virulence of Aliarcobacter butzleri. Antibiotics (Basel) 2023; 12:1387. [PMID: 37760684 PMCID: PMC10525121 DOI: 10.3390/antibiotics12091387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Aliarcobacter butzleri is a Gram-negative bacterium associated with infections of the gastrointestinal tract and widely distributed in various environments. For successful infection, A. butzleri should be able to tolerate various stresses during gastrointestinal passage, such as bile. Bile represents an antimicrobial host barrier that acts against external noxious agents and consists of a variety of bile salts. The intestinal bile salts act as detergents involved in the antimicrobial host defense; although, on the bacterial side, they could also serve as a signal to activate virulence mechanisms. The aim of this work was to understand the effects of bile salts on the survival and virulence of A. butzleri. In our study, A. butzleri was able to survive in the presence of human physiological concentrations of bile salts. Regarding the virulence features, an increase in cellular hydrophobicity, a decrease in motility and expression of flaA gene, as well as an increase in biofilm formation with a concomitant change in the type of biofilm structure were observed in the presence of sub-inhibitory concentration of bile salts. Concerning adhesion and invasion ability, no significant difference was observed. Overall, the results demonstrated that A. butzleri is able to survive in physiological concentrations of bile salts and that exposure to bile salts could change its virulence mechanisms.
Collapse
Affiliation(s)
- Cristiana Mateus
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (C.J.M.); (F.D.)
| | - Cláudio J. Maia
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (C.J.M.); (F.D.)
| | - Fernanda Domingues
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (C.J.M.); (F.D.)
| | - Roland Bücker
- Clinical Physiology/Nutritional Medicine, Medical Department of Gastroenterology, Infectiology, Rheumatology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany;
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal;
| | - Susana Ferreira
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (C.J.M.); (F.D.)
| |
Collapse
|
6
|
Cui H, Zhang C, Zhao K, Liu J, Pu J, Kong Y, Dong S, Chen L, Zhao Y, Chen Y, Chen Z, Zhang L, Wang Z, Guo Z. Effects of different laying periods on airborne bacterial diversity and antibiotic resistance genes in layer hen houses. Int J Hyg Environ Health 2023; 251:114173. [PMID: 37119673 DOI: 10.1016/j.ijheh.2023.114173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023]
Abstract
Poultry farms are a complex environment for close contact between humans and animals. Accumulating evidence has indicated that pathogens and drug resistance genes in chicken houses may pose a serious threat to public health and economic concerns. However, insufficient knowledge of the indoor aerosol microbiome and resistome profiles of layer hen houses hampers the understanding of their health effects. Environmental surveillance of antibiotic resistance may contribute to a better understanding and management of the human exposure risk of bioaerosols under the environmental conditions of chicken houses. In addition, the chicken house has a long operation cycle, and the bacterial diversity and antibiotic resistance genes of aerosols in different periods may be different. In this study, air samples were collected from 18 chicken houses on three farms, including the early laying period (EL), peak laying period (PL), and late laying period (LL). 16S rRNA gene sequencing and metagenomics were used to study the composition of the bacteria and resistome in aerosols of layer hen houses and the results showed that they varied with laying period. The highest alpha diversity of bacteria was observed in PL bioaerosols. The dominant bacterial phyla included Firmicutes, Bacteroidetes and Proteobacteria. Three potential pathogenic bacterial genera (Bacteroides, Corynebacterium and Fusobacterium) were found. The most abundant ARG type was aminoglycosides in all laying periods. In total, 22 possible ARG host genera were detected. ARG subtypes and abundance were both higher in LL. Network analysis also showed higher co-occurrence patterns between the bacteria and resistome in bioaerosols. The laying period plays an important role in the bacterial community and resistome in layer house aerosols.
Collapse
Affiliation(s)
- Huan Cui
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 573 Tulip Street, Changchun, 130122, Jilin, China; College of Veterinary Medicine, Jilin University, 5333 Xi'an Avenue, Changchun, 130062, Jilin, China
| | - Cheng Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 573 Tulip Street, Changchun, 130122, Jilin, China; College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding, 071000, Hebei, China
| | - Kui Zhao
- College of Veterinary Medicine, Jilin University, 5333 Xi'an Avenue, Changchun, 130062, Jilin, China
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding, 071000, Hebei, China
| | - Jie Pu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 573 Tulip Street, Changchun, 130122, Jilin, China
| | - Yunyi Kong
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 573 Tulip Street, Changchun, 130122, Jilin, China
| | - Shishan Dong
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding, 071000, Hebei, China
| | - Ligong Chen
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding, 071000, Hebei, China
| | - Yanbin Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 573 Tulip Street, Changchun, 130122, Jilin, China
| | - Yanyan Chen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 573 Tulip Street, Changchun, 130122, Jilin, China
| | - Zhaoliang Chen
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding, 071000, Hebei, China
| | - Lei Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 573 Tulip Street, Changchun, 130122, Jilin, China
| | - Zhongyi Wang
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - Zhendong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 573 Tulip Street, Changchun, 130122, Jilin, China.
| |
Collapse
|
7
|
Ruiz de Alegría Puig C, Fernández Martínez M, Pablo Marcos D, Agüero Balbín J, Calvo Montes J. Outbreak of Arcobacter butzleri? An emerging enteropathogen. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2023; 41:169-172. [PMID: 36870733 DOI: 10.1016/j.eimce.2021.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/14/2021] [Indexed: 03/06/2023]
Abstract
BACKGROUND Arcobacter butzleri is a gram-negative rod, with microaerobic growth at an optimal temperature of 37°C. It was reported to be the fourth most common Campylobacter-like organism isolated from patients with diarrhoea. OBJECTIVE Characterise a potential outbreak of A. butzleri detected in a short period of time in the University Hospital Marqués de Valdecilla. METHODS Eight strains of A. butzleri were detected in our hospital in only two months. Isolates were identified by MALDI-TOF MS system and 16S rDNA sequencing. Enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) and Pulsed Field Gel Electrophoresis (PFGE) were carried out to assess clonal relationship. Gradient strips (Etest) were used to determine susceptibility by agar diffusion. RESULTS ERIC-PCR and PFGE confirmed the lack of clonal relationship between strains. Erythromycin or ciprofloxacin might be appropriate for antibiotic treatment of infections. CONCLUSIONS A. butzleri is an emerging pathogen with increasing incidence, and may be underestimated.
Collapse
Affiliation(s)
| | | | - Daniel Pablo Marcos
- Service of Microbiology, University Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Jesús Agüero Balbín
- Service of Microbiology, University Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain; Department of Molecular Biology, University of Cantabria, Santander, Spain
| | - Jorge Calvo Montes
- Service of Microbiology, University Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
| |
Collapse
|
8
|
Martins I, Mateus C, Domingues F, Oleastro M, Ferreira S. Putative Role of an ABC Efflux System in Aliarcobacter butzleri Resistance and Virulence. Antibiotics (Basel) 2023; 12:antibiotics12020339. [PMID: 36830250 PMCID: PMC9951867 DOI: 10.3390/antibiotics12020339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Aliarcobacter butzleri is considered a ubiquitous microorganism and emergent pathogen, for which increasing rates of multidrug resistance have been described. In line with this, the present work aimed to evaluate for the first time the contribution of an ABC efflux system, the YbhFSR, in the resistance and virulence of this bacterium. Following the in silico characterization of the YbhFSR transporter, a mutant strain was constructed by inactivating the gene responsible for ATP-binding. After ensuring that the mutation did not have an impact on bacterial growth, the resistance profile of parental and mutant strains to different antimicrobial agents was evaluated. The results suggest that the efflux pump may influence the resistance to benzalkonium chloride, ethidium bromide, and cadmium, and several other compounds were identified as potential substrates. Regarding the evaluation of the accumulation of ethidium bromide, a slight increase was observed for the mutant strain, demonstrating a potential role of the YbhFSR efflux pump in the extrusion of toxic compounds from A. butzleri. Subsequently, the role of this efflux pump on the A. butzleri known virulence properties was evaluated, but no difference was seen among mutant and parental strains for the motility, biofilm formation ability, susceptibility to oxidative stress, or the ability to adhere and invade Caco-2 cells. However, in contrast to the parental strain, the mutant strain showed a resistance to human serum. Overall, the results support the role of efflux pumps in A. butzleri resistance to antimicrobials, highlighting the particular role of the YbhFSR system.
Collapse
Affiliation(s)
- Inês Martins
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Cristiana Mateus
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Fernanda Domingues
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Susana Ferreira
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Correspondence:
| |
Collapse
|
9
|
Gungor C, Hizlisoy H, Ertas Onmaz N, Gundog DA, Barel M, Disli HB, Dishan A, Al S, Yildirim Y, Gonulalan Z. Profile of Aliarcobacter spp. from edible giblets: Genetic diversity, antibiotic resistance, biofilm formation. Int J Food Microbiol 2023; 386:110047. [PMID: 36512969 DOI: 10.1016/j.ijfoodmicro.2022.110047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/10/2022]
Abstract
Aliarcobacter spp. are recognized as emerging foodborne pathogens and consumption of foods contaminated with them can be a hazard to human and animal health. This study was conducted to investigate the prevalence of Aliarcobacter spp. in edible internal organs of different animal species from retail markets and giblet sellers. Additionally, this study was focused on the antimicrobial resistance, virulence profiles, biofilm-forming capabilities, and phylogenetic relationships of obtained isolates. A total of 270 samples were analyzed from which, 28 (10.4 %) were isolated as Aliarcobacter spp. by conventional methods. Within the 28 Aliarcobacter spp. isolates, 17 (60.7 %) were identified as A. butzleri, 10 (35.7 %) were A. cryaerophilus and one (3.5 %) was A. skirrowii by PCR method. The disc diffusion method showed that the highest resistance rate of Aliarcobacter spp. was seen against oxacillin (78.5 %), and 20 (71.4 %) out of the 28 isolates exhibited multidrug resistance (MDR). Out of the 28 isolates, mviN, pldA, tlyA, and hecB virulence genes were detected in 85.7 %, 46.4 %, 46.4 %, and 3.5 %, respectively, but irgA, Cj1349, ciaB, cadF, and hecA genes were not detected. According to the microplate test, 27 (96.4 %) isolates had weak biofilm ability while one A. cryaerophilus isolate (3.6 %) exhibited strong biofilm formation. ERIC-PCR band patterns suggested that isolated Aliarcobacter spp. from giblets, have different contamination sources. The presence of pathogenic and multidrug-resistant Aliarcobacter spp. in food poses a potential risk to public health and control measures throughout the food chain are necessary to prevent the spread of these strains.
Collapse
Affiliation(s)
- Candan Gungor
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye.
| | - Harun Hizlisoy
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye
| | - Nurhan Ertas Onmaz
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye
| | - Dursun Alp Gundog
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye
| | - Mukaddes Barel
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye
| | - H Burak Disli
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye
| | - Adalet Dishan
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye
| | - Serhat Al
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye
| | - Yeliz Yildirim
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye
| | - Zafer Gonulalan
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye
| |
Collapse
|
10
|
Zautner AE, Riedel T, Bunk B, Spröer C, Boahen KG, Akenten CW, Dreyer A, Färber J, Kaasch AJ, Overmann J, May J, Dekker D. Molecular characterization of Arcobacter butzleri isolates from poultry in rural Ghana. Front Cell Infect Microbiol 2023; 13:1094067. [PMID: 36761899 PMCID: PMC9905251 DOI: 10.3389/fcimb.2023.1094067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
In recent years, Arcobacter butzleri has gained clinical significance as an emerging diarrheagenic pathogen associated with poultry and water reservoirs. The full clinical significance of Arcobacter remains rather speculative due to variable virulence and antibiotic susceptibility of individual strains. The aims of the present study were (i) to identify antibiotic resistance genes (ARGs) in the genome sequences of two multidrug-resistant A. butzleri isolates, (ii) to use multilocus-sequence typing (MLST) to generate a guiding phylogeny of A. butzleri isolates collected in Kumasi, Ghana, (iii) to examine the distribution of ARGs in the test cohort, and (iv) to assess the strain's virulence and possible antibiotic treatment options for arcobacteriosis based on the genome sequences and the ARG distribution. A total of 48 A. butzleri isolates obtained from poultry were included in the analysis. These isolates were genotyped by MLST and the antibiotic susceptibilities of isolates to ampicillin, ciprofloxacin, tetracycline, gentamicin, and erythromycin were tested by disk diffusion. Whole genome sequence data of two multidrug-resistant (MDR) A. butzleri isolates were obtained by a combination of single-molecule real-time (SMRT) and Illumina sequencing technology. A total of 14 ARGs were identified in the two generated genome sequences. For all 48 isolates, the frequency of these 14 ARGs was investigated by PCR or amplicon sequencing. With 44 different sequence types found among 48 isolates, strains were phylogenetically heterogeneous. Four of 48 isolates showed an ARG constellation indicating a multidrug-resistant phenotype. The virulence genes in the two A. butzleri genomes showed that the species might be characterized by a somewhat lower virulence as Campylobacter species. The phenotypic susceptibility data combined with the distribution of the particular ARGs especially oxa-464 and the T81I point mutation of the quinolone resistance determining region (QRDR) in a significant percentage of isolates indicated that macrolides and tetracycline can be recommended for calculated antibiotic treatment of arcobacteriosis in Ghana, but not ampicillin and quinolones.
Collapse
Affiliation(s)
- Andreas E. Zautner
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Universitätsklinikum Magdeburg, Magdeburg, Germany,*Correspondence: Andreas E. Zautner,
| | - Thomas Riedel
- Abteilung Mikrobielle Ökologie und Diversitätsforschung, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany,Deutsches Zentrum für Infektionsforschung (DZIF), Hannover–Braunschweig, Germany
| | - Boyke Bunk
- Abteilung Bioinformatik und Datenbanken, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany
| | - Cathrin Spröer
- Abteilung Bioinformatik und Datenbanken, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany
| | - Kennedy G. Boahen
- One Health Bacteriology Group, Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Charity Wiafe Akenten
- One Health Bacteriology Group, Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Annika Dreyer
- Institut für Medizinische Mikrobiologie und Virology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Jacqueline Färber
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Universitätsklinikum Magdeburg, Magdeburg, Germany
| | - Achim J. Kaasch
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Universitätsklinikum Magdeburg, Magdeburg, Germany
| | - Jörg Overmann
- Abteilung Mikrobielle Ökologie und Diversitätsforschung, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany,Deutsches Zentrum für Infektionsforschung (DZIF), Hannover–Braunschweig, Germany
| | - Jürgen May
- Abteilung für Infektionsepidemiologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany,Deutsches Zentrum für Infektionsforschung (DZIF), Hamburg-Borstel-Lübeck, Germany
| | - Denise Dekker
- Abteilung für Infektionsepidemiologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany,Deutsches Zentrum für Infektionsforschung (DZIF), Hamburg-Borstel-Lübeck, Germany
| |
Collapse
|
11
|
Çelik C, Pınar O, Sipahi N. The Prevalence of Aliarcobacter Species in the Fecal Microbiota of Farm Animals and Potential Effective Agents for Their Treatment: A Review of the Past Decade. Microorganisms 2022; 10:microorganisms10122430. [PMID: 36557682 PMCID: PMC9787757 DOI: 10.3390/microorganisms10122430] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
There is an endless demand for livestock-originated food, so it is necessary to elucidate the hazard points for livestock breeding. Pathogens are one of the hazard points that threaten the biosecurity of farm-animal breeding and public health. As a potential foodborne pathogen, Aliarcobacter is a member of the intestinal microbiota of farm animals with and without diarrhea. Aliarcobacter spp. are capable of colonizing livestock intestines and are transmitted through the feces. Hence, they endanger slaughterhouses and milk products with fecal contamination. They also have other, rarer, vertical and horizontal transmission routes, including the offspring that abort in farm animals. Gastrointestinal symptoms and abort cases demonstrate potential financial losses to the industry. Viewed from this perspective, the global circulation of farm-animal products is a significant route for zoonotic agents, including Aliarcobacter. In the last decade, worldwide prevalence of Aliarcobacter in fecal samples has ranged from 0.8% in Italy to 100% in Turkey. Furthermore, antibiotic resistance is recognized as a new type of environmental pollutant and has become a hot topic in animal breeding and the food industry. Increasing antibiotic resistance has become a significant problem impacting productivity. The increase in antimicrobial resistance rates in Aliarcobacter is caused by the misuse of antimicrobial drugs in livestock animals, leading to the acquiring of resistance genes from other bacteria, as well as mutations in current resistance genes. The most resistant strains are A. butzleri, A. cryaerophilus, and A. skirrowii. This review analyzes recent findings from the past decade on the prevalence of Aliarcobacter in the intestinal microbiota and the current effective antibiotics against Aliarcobacter. The paper also highlights that A. cryaerophilus and A. skirrowii are found frequently in diarrheal feces, indicating that Aliarcobacter should be studied further in livestock diarrheal diseases. Moreover, Aliarcobacter-infected farm animals can be treated with only a limited number of antibiotics, such as enrofloxacin, doxycycline, oxytetracycline, and gentamicin.
Collapse
Affiliation(s)
- Cansu Çelik
- Food Technology Program, Food Processing Department, Vocational School of Veterinary Medicine, Istanbul University-Cerrahpasa, 34320 Istanbul, Türkiye
- Correspondence:
| | - Orhan Pınar
- Equine and Equine Training Program, Vocational School of Veterinary Medicine, Istanbul University-Cerrahpasa, 34320 Istanbul, Türkiye
| | - Nisa Sipahi
- Traditional and Complementary Medicine Applied and Research Centre, Duzce University, 81620 Duzce, Türkiye
| |
Collapse
|
12
|
Effect of Atmospheric Conditions on Pathogenic Phenotypes of Arcobacter butzleri. Microorganisms 2022; 10:microorganisms10122409. [PMID: 36557662 PMCID: PMC9785646 DOI: 10.3390/microorganisms10122409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Arcobacter butzleri is an emergent gram-negative enteropathogenic bacterium widespread in different environments and hosts. During the colonization of the gastrointestinal tract, bacteria face a variety of environmental conditions to successfully establish infection in a new host. One of these challenges is the fluctuation of oxygen concentrations encountered not only throughout the host gastrointestinal tract and defences but also in the food industry. Oxygen fluctuations can lead to modulations in the virulence of the bacterium and possibly increase its pathogenic potential. In this sense, eight human isolates of A. butzleri were studied to evaluate the effects of microaerobic and aerobic atmospheric conditions in stressful host conditions, such as oxidative stress, acid survival, and human serum survival. In addition, the effects on the modulation of virulence traits, such as haemolytic activity, bacterial motility, biofilm formation ability, and adhesion and invasion of the Caco-2 cell line, were also investigated. Overall, aerobic conditions negatively affected the susceptibility to oxygen reactive species and biofilm formation ability but improved the isolates' haemolytic ability and motility while other traits showed an isolate-dependent response. In summary, this work demonstrates for the first time that oxygen levels can modulate the potential pathogenicity of A. butzleri, although the response to stressful conditions was very heterogeneous among different strains.
Collapse
|
13
|
Molecular Cut-off Values for Aliarcobacter butzleri Susceptibility Testing. Microbiol Spectr 2022; 10:e0100322. [PMID: 35862990 PMCID: PMC9430808 DOI: 10.1128/spectrum.01003-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aliarcobacter butzleri is an emerging gastrointestinal pathogen found in many countries worldwide. In France, it has become the third most commonly isolated bacterial species from the stools of patients with intestinal infections. No interpretative criteria for antimicrobial susceptibility testing have been proposed for A. butzleri, and most strains are categorized using the recommendations of the Clinical and Laboratory Standards Institute or the European Committee on Antimicrobial Susceptibility Testing for Campylobacter or Enterobacterales. In the present study, the genomes of 30 resistant A. butzleri isolates were analyzed to propose specific epidemiological cut-off values for ampicillin, ciprofloxacin, erythromycin, and tetracycline. The identification of a β-lactamase and the T85I GyrA mutation associated with ampicillin and ciprofloxacin resistance, respectively, allowed us to adjust the disk diffusion (DD) and MIC cut-off values for these molecules. However, epidemiological cut-off values for erythromycin and tetracycline could not be estimated due to the absence of known resistance mechanisms. The present study paves the way for building a consensus for antimicrobial susceptibility testing for this concerning pathogen. IMPORTANCEAliarcobacter butzleri is an emerging and concerning intestinal pathogen. Very few studies have focused on this particular species, and antimicrobial susceptibility testing (AST) is based on methods that have been mostly developed for Campylobacter spp. In fact, no disk diffusion and E-tests adapted cut-offs for A. butzleri are available which leads to misinterpretations. We have shown here that NGS approach to identify genes and mutations in close relation to phenotypic resistance levels is a robust way to solve that issue and precisely differentiate WT and NWT A. butzleri isolates for frequently used antimicrobials. MIC and DD cut-off values have been significantly adjusted and answer the need for a global consensus regarding AST for A. butzleri.
Collapse
|
14
|
Salazar-Sánchez A, Baztarrika I, Alonso R, Fernández-Astorga A, Martínez-Ballesteros I, Martinez-Malaxetxebarria I. Arcobacter butzleri Biofilms: Insights into the Genes Beneath Their Formation. Microorganisms 2022; 10:1280. [PMID: 35888999 PMCID: PMC9324650 DOI: 10.3390/microorganisms10071280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/19/2022] Open
Abstract
Arcobacter butzleri, the most prevalent species of the genus, has the demonstrated ability to adhere to various surfaces through biofilm production. The biofilm formation capability has been related to the expression of certain genes, which have not been characterized in A. butzleri. In order to increase the knowledge of this foodborne pathogen, the aim of this study was to assess the role of six biofilm-associated genes in campylobacteria (flaA, flaB, fliS, luxS, pta and spoT) in the biofilm formation ability of A. butzleri. Knockout mutants were constructed from different foodborne isolates, and static biofilm assays were conducted on polystyrene (PS), reinforced glass and stainless steel. Additionally, motility and Congo red binding assays were performed. In general, mutants in flaAB, fliS and luxS showed a decrease in the biofilm production irrespective of the surface; mutants in spoT showed an increase on stainless steel, and mutants in pta and spoT showed a decrease on reinforced glass but an increase on PS. Our work sheds light on the biofilm-related pathogenesis of A. butzleri, although future studies are necessary to achieve a satisfactory objective.
Collapse
Affiliation(s)
- Adrián Salazar-Sánchez
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
| | - Itsaso Baztarrika
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
| | - Rodrigo Alonso
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Aurora Fernández-Astorga
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
| | - Ilargi Martínez-Ballesteros
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Irati Martinez-Malaxetxebarria
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
15
|
Martinez-Malaxetxebarria I, Girbau C, Salazar-Sánchez A, Baztarrika I, Martínez-Ballesteros I, Laorden L, Alonso R, Fernández-Astorga A. Genetic characterization and biofilm formation of potentially pathogenic foodborne Arcobacter isolates. Int J Food Microbiol 2022; 373:109712. [DOI: 10.1016/j.ijfoodmicro.2022.109712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022]
|
16
|
Švarcová K, Pejchalová M, Šilha D. The Effect of Antibiotics on Planktonic Cells and Biofilm Formation Ability of Collected Arcobacter-like Strains and Strains Isolated within the Czech Republic. Antibiotics (Basel) 2022; 11:antibiotics11010087. [PMID: 35052964 PMCID: PMC8772874 DOI: 10.3390/antibiotics11010087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/07/2022] Open
Abstract
The purpose of this study was to test the in vitro effects of ampicillin, ciprofloxacin, clindamycin, erythromycin, gentamicin, and tetracycline on planktonic cells of Arcobacter-like microorganisms and on their biofilm formation ability. The minimum inhibitory concentrations (MICs) were determined by the microdilution method. Further, biofilm formation ability in the presence of various concentrations of antibiotics was evaluated by a modified Christensen method. Most of the 60 strains exhibited high susceptibility to gentamicin (98.3%), ciprofloxacin (95.0%), and erythromycin (100.0%). High level of resistance was observed to clindamycin and tetracycline with MIC50 and MIC90 in range of 4–32 mg/L and 32–128 mg/L, respectively. Combined resistance to both clindamycin and tetracycline was found in 38.3% of tested strains. In general, higher biofilm formation was observed especially at lower concentrations of antibiotics (0.13–2 mg/L). However, a significant decrease in biofilm formation ability of Pseudarcobacter defluvii LMG 25694 was exhibited with ampicillin and clindamycin at concentrations above 32 or 8 mg/L, respectively. Biofilm formation represents a potential danger of infection and also a risk to human health, in particular due to antimicrobial-resistant strains and the ability to form a biofilm structure at a concentration that is approximately the MIC determined for planktonic cells.
Collapse
|
17
|
Ruiz de Alegría Puig C, Fernández Martínez M, Pablo Marcos D, Agüero Balbín J, Calvo Montes J. Outbreak of Arcobacter butzleri? An emerging enteropathogen. Enferm Infecc Microbiol Clin 2021. [DOI: 10.1016/j.eimc.2021.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Li Z, Zhou J, Yuan X, Xu Y, Xu D, Zhang D, Feng D, Wang F. Marine Biofilms with Significant Corrosion Inhibition Performance by Secreting Extracellular Polymeric Substances. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47272-47282. [PMID: 34570482 DOI: 10.1021/acsami.1c14746] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of environmentally friendly and sustainable corrosion protection technologies is a longstanding yet difficult problem, especially for the marine environment. The utilization of living biofilms isolated from local environments is an effective strategy for infrastructure protection. In this study, three aerobic marine bacteria, Tenacibaculum mesophilum D-6, Tenacibaculum litoreum W-4, and Bacillus sp. Y-6, with strong biofilm-forming abilities were isolated and evaluated for the corrosion protection of X80 carbon steel. The corrosion inhibitory effect of the bacteria was found to be closely related to their biofilm-forming abilities. This conclusion was corroborated by biofilm characterization, electrochemical tests, weight loss analysis, and corrosion product analysis. Moreover, secreted extracellular polymeric substances were identified to play significant roles in corrosion inhibition. Herein, we proposed a novel, eco-friendly, and cost-effective method for corrosion protection of carbon steels in the marine environment, providing guiding principles for identifying corrosion inhibitory bacteria from the local marine environment.
Collapse
Affiliation(s)
- Zhong Li
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
| | - Jianyuan Zhou
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
| | - Xinyi Yuan
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
| | - Yan Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
| | - Dawei Zhang
- BRI Southeast Asia Network for Corrosion and Protection (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Danqing Feng
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361000, China
| | - Fuhui Wang
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
| |
Collapse
|
19
|
Mateus C, Martins R, Luís Â, Oleastro M, Domingues F, Pereira L, Ferreira S. Prevalence of Arcobacter: From farm to retail – A systematic review and meta-analysis. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Biofilm Formation Ability of Arcobacter-like and Campylobacter Strains under Different Conditions and on Food Processing Materials. Microorganisms 2021; 9:microorganisms9102017. [PMID: 34683338 PMCID: PMC8538277 DOI: 10.3390/microorganisms9102017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 11/23/2022] Open
Abstract
Campylobacter jejuni is the most frequent cause of bacterial gastrointestinal food-borne infection worldwide. The transmission of Campylobacter and Arcobacter-like species is often made possible by their ability to adhere to various abiotic surfaces. This study is focused on monitoring the biofilm ability of 69 strains of Campylobacter spp. and lesser described species of the Arcobacteraceae family isolated from food, water, and clinical samples within the Czech Republic. Biofilm formation was monitored and evaluated under an aerobic/microaerophilic atmosphere after cultivation for 24 or 72 h depending on the surface material. An overall higher adhesion ability was observed in arcobacters. A chi-squared test showed no association between the origin of the strains and biofilm activity (p > 0.05). Arcobacter-like species are able to form biofilms under microaerophilic and aerobic conditions; however, they prefer microaerophilic environments. Biofilm formation has already been demonstrated at refrigerator temperatures (5 °C). Arcobacters also showed higher biofilm formation ability at the temperature of 30 °C. This is in contrast to Campylobacter jejuni NP 2896, which showed higher biofilm formation ability at temperatures of 5–30 °C. Overall, the results demonstrated the biofilm formation ability of many strains, which poses a considerable risk to the food industry, medical practice, and human health.
Collapse
|
21
|
Tomioka N, Yoochatchaval W, Takemura Y, Matsuura N, Danshita T, Srisang P, Mungjomklang N, Syutsubo K. Detection of potentially pathogenic Arcobacter spp. in Bangkok canals and the Chao Phraya River. JOURNAL OF WATER AND HEALTH 2021; 19:657-670. [PMID: 34371501 DOI: 10.2166/wh.2021.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The management of pathogenic bacteria in waterways is a public health issue. Here, we investigated the concentrations of potentially pathogenic bacteria, Arcobacter spp. and Campylobacter spp., and Escherichia coli, by quantifying species-specific genes in surface water samples from canals and the Chao Phraya River from June 2017 to June 2018 in Bangkok, Thailand. We assessed the relationship between the specific bacterial concentrations, water quality, and seasonal changes. Arcobacter spp. were detected at high density in all samples and showed seasonal fluctuations according to analyses based on 16S rDNA and the invasion gene ciaB. High levels of 16S rDNA and dut gene of E. coli were detected in the polluted drainage canals. A high correlation was observed between E. coli and chemical and biochemical oxygen demand (COD and BOD), suggesting that untreated domestic wastewater was the source of the E. coli. In contrast, Arcobacter spp. were detected with high density even in water samples with relatively low COD, suggesting that Arcobacter spp. are more likely than E. coli to survive in the water environment. The analysis of 16S rDNA and ciaB gene sequence analyses indicated that the Arcobacter spp. isolated from the drainage canals were A. butzleri and A. cryaerophilus.
Collapse
Affiliation(s)
- Noriko Tomioka
- Regional Environment Conservation Division, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan E-mail:
| | - Wilasinee Yoochatchaval
- Faculty of Engineering, Department of Environmental Engineering, Kasetsart University, 50 Ngam Wong Wan Rd, Ladyaow Chatuchak, Bangkok 10900, Thailand
| | - Yasuyuki Takemura
- Regional Environment Conservation Division, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan E-mail:
| | - Norihisa Matsuura
- Faculty of Geoscience and Civil Engineering, Kanazawa University, Ishikawa 920-1192, Japan
| | - Tsuyoshi Danshita
- Department of Civil Engineering and Architecture, National Institute of Technology, Tokuyama College, Gakuendai Shunan, Yamaguchi 745-8585, Japan
| | - Pornpawee Srisang
- Faculty of Engineering, Department of Environmental Engineering, Kasetsart University, 50 Ngam Wong Wan Rd, Ladyaow Chatuchak, Bangkok 10900, Thailand
| | - Noppamas Mungjomklang
- Faculty of Engineering, Department of Environmental Engineering, Kasetsart University, 50 Ngam Wong Wan Rd, Ladyaow Chatuchak, Bangkok 10900, Thailand
| | - Kazuaki Syutsubo
- Regional Environment Conservation Division, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan E-mail:
| |
Collapse
|
22
|
Mateus C, Nunes AR, Oleastro M, Domingues F, Ferreira S. RND Efflux Systems Contribute to Resistance and Virulence of Aliarcobacter butzleri. Antibiotics (Basel) 2021; 10:823. [PMID: 34356744 PMCID: PMC8300790 DOI: 10.3390/antibiotics10070823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Aliarcobacter butzleri is an emergent enteropathogen that can be found in a range of environments. This bacterium presents a vast repertoire of efflux pumps, such as the ones belonging to the resistance nodulation cell division family, which may be associated with bacterial resistance, as well as virulence. Thus, this work aimed to evaluate the contribution of three RND efflux systems, AreABC, AreDEF and AreGHI, in the resistance and virulence of A. butzleri. Mutant strains were constructed by inactivation of the gene that encodes the inner membrane protein of these systems. The bacterial resistance profile of parental and mutant strains to several antimicrobials was assessed, as was the intracellular accumulation of the ethidium bromide dye. Regarding bacterial virulence, the role of these three efflux pumps on growth, strain fitness, motility, biofilm formation ability, survival in adverse conditions (oxidative stress and bile salts) and human serum and in vitro adhesion and invasion to Caco-2 cells was evaluated. We observed that the mutants from the three efflux pumps were more susceptible to several classes of antimicrobials than the parental strain and presented an increase in the accumulation of ethidium bromide, indicating a potential role of the efflux pumps in the extrusion of antimicrobials. The mutant strains had no bacterial growth defects; nonetheless, they presented a reduction in relative fitness. For the three mutants, an increase in the susceptibility to oxidative stress was observed, while only the mutant for AreGHI efflux pump showed a relevant role in bile stress survival. All the mutant strains showed an impairment in biofilm formation ability, were more susceptible to human serum and were less adherent to intestinal epithelial cells. Overall, the results support the contribution of the efflux pumps AreABC, AreDEF and AreGHI of A. butzleri to antimicrobial resistance, as well as to bacterial virulence.
Collapse
Affiliation(s)
- Cristiana Mateus
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (A.R.N.); (F.D.)
| | - Ana Rita Nunes
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (A.R.N.); (F.D.)
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal;
| | - Fernanda Domingues
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (A.R.N.); (F.D.)
| | - Susana Ferreira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (A.R.N.); (F.D.)
| |
Collapse
|
23
|
Umiralieva L, Chizhayeva A, Ibraikhan A, Avylov C, Velyamov M. Investigation of the Sanitary State of Air and Refrigeration Equipment of Meat Processing Enterprises in Kazakhstan Using the Method of Metagenomic Analysis. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2021. [DOI: 10.11118/actaun.2021.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
24
|
Golden CE, Rothrock MJ, Mishra A. Mapping foodborne pathogen contamination throughout the conventional and alternative poultry supply chains. Poult Sci 2021; 100:101157. [PMID: 34089937 PMCID: PMC8182426 DOI: 10.1016/j.psj.2021.101157] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Recently, there has been a consumer push for natural and organic food products. This has caused alternative poultry production, such as organic, pasture, and free-range systems, to grow in popularity. Due to the stricter rearing practices of alternative poultry production systems, different types of levels of microbiological risks might be present for these systems when compared to conventional production systems. Both conventional and alternative production systems have complex supply chains that present many different opportunities for flocks of birds or poultry meat to be contaminated with foodborne pathogens. As such, it is important to understand the risks involved during each step of production. The purpose of this review is to detail the potential routes of foodborne pathogen transmission throughout the conventional and alternative supply chains, with a special emphasis on the differences in risk between the two management systems, and to identify gaps in knowledge that could assist, if addressed, in poultry risk-based decision making.
Collapse
Affiliation(s)
- Chase E Golden
- Department of Food Science and Technology, University of Georgia, 100 Cedar St., Athens, GA, USA
| | - Michael J Rothrock
- Egg Safety and Quality Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, USA
| | - Abhinav Mishra
- Department of Food Science and Technology, University of Georgia, 100 Cedar St., Athens, GA, USA.
| |
Collapse
|
25
|
Chaves M, Vazquez-Valverde D, Fernández-Jaramillo H, Arias-Echandi ML. The ability of Aliarcobacter butzleri strains isolated from foods of animal origin in Costa Rica to form biofilm. Ital J Food Saf 2021; 10:9020. [PMID: 34268142 PMCID: PMC8256308 DOI: 10.4081/ijfs.2021.9020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 03/22/2021] [Indexed: 11/23/2022] Open
Abstract
Aliarcobacter butzleri is a zoonotic emerging food and waterborne pathogen widely distributed in nature. It is present in food processing environments and can easily be spread through the food industry because of its ability to form biofilm. The aim of this work was to determine the ability of strains isolated in Costa Rica from different food matrixes of animal origin to form biofilm. Thirty-eight A. butzleri strains previously isolated and identified from animal origin products were analyzed using the method described by Stepmovic et al. (2000), in three culture broths, brain heart infusion broth, Boer broth and Houf broth. Results showed that 67% of poultry origin strains, 62.5% of meat origin strains and just 8% of milk origin strains showed ability to form biofilm. The findings of this study confirm the adherence ability of A. butzleri to form biofilm, a characteristic that can promote dispersion and cross contamination along food industry processing lines.
Collapse
Affiliation(s)
- Marco Chaves
- Microbiology Faculty and Tropical Diseases Research Center (CIET), University of Costa Rica, San José, Costa Rica
| | - Daniel Vazquez-Valverde
- Microbiology Faculty and Tropical Diseases Research Center (CIET), University of Costa Rica, San José, Costa Rica
| | | | - María Laura Arias-Echandi
- Microbiology Faculty and Tropical Diseases Research Center (CIET), University of Costa Rica, San José, Costa Rica
| |
Collapse
|
26
|
Koutsoumanis K, Allende A, Álvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Argüello H, Berendonk T, Cavaco LM, Gaze W, Schmitt H, Topp E, Guerra B, Liébana E, Stella P, Peixe L. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA J 2021; 19:e06651. [PMID: 34178158 PMCID: PMC8210462 DOI: 10.2903/j.efsa.2021.6651] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of food-producing environments in the emergence and spread of antimicrobial resistance (AMR) in EU plant-based food production, terrestrial animals (poultry, cattle and pigs) and aquaculture was assessed. Among the various sources and transmission routes identified, fertilisers of faecal origin, irrigation and surface water for plant-based food and water for aquaculture were considered of major importance. For terrestrial animal production, potential sources consist of feed, humans, water, air/dust, soil, wildlife, rodents, arthropods and equipment. Among those, evidence was found for introduction with feed and humans, for the other sources, the importance could not be assessed. Several ARB of highest priority for public health, such as carbapenem or extended-spectrum cephalosporin and/or fluoroquinolone-resistant Enterobacterales (including Salmonella enterica), fluoroquinolone-resistant Campylobacter spp., methicillin-resistant Staphylococcus aureus and glycopeptide-resistant Enterococcus faecium and E. faecalis were identified. Among highest priority ARGs bla CTX -M, bla VIM, bla NDM, bla OXA -48-like, bla OXA -23, mcr, armA, vanA, cfr and optrA were reported. These highest priority bacteria and genes were identified in different sources, at primary and post-harvest level, particularly faeces/manure, soil and water. For all sectors, reducing the occurrence of faecal microbial contamination of fertilisers, water, feed and the production environment and minimising persistence/recycling of ARB within animal production facilities is a priority. Proper implementation of good hygiene practices, biosecurity and food safety management systems is very important. Potential AMR-specific interventions are in the early stages of development. Many data gaps relating to sources and relevance of transmission routes, diversity of ARB and ARGs, effectiveness of mitigation measures were identified. Representative epidemiological and attribution studies on AMR and its effective control in food production environments at EU level, linked to One Health and environmental initiatives, are urgently required.
Collapse
|
27
|
Buzzanca D, Botta C, Ferrocino I, Alessandria V, Houf K, Rantsiou K. Functional pangenome analysis reveals high virulence plasticity of Aliarcobacter butzleri and affinity to human mucus. Genomics 2021; 113:2065-2076. [PMID: 33961980 DOI: 10.1016/j.ygeno.2021.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022]
Abstract
Aliarcobacter butzleri is an emerging pathogen that may cause enteritis in humans, however, the incidence of disease caused by this member of the Campylobacteriaceae family is still underestimated. Furthermore, little is known about the precise virulence mechanism and behavior during infection. Therefore, in the present study, through complementary use of comparative genomics and physiological tests on human gut models, we sought to elucidate the genetic background of a set of 32 A. butzleri strains of diverse origin and to explore the correlation with the ability to colonize and invade human intestinal cells in vitro. The simulated infection of human intestinal models showed a higher colonization rate in presence of mucus-producing cells. For some strains, human mucus significantly improved the resistance to physical removal from the in vitro mucosa, while short time-frame growth was even observed. Pangenome analysis highlighted a hypervariable accessory genome, not strictly correlated to the isolation source. Likewise, the strain phylogeny was unrelated to their shared origin, despite a certain degree of segregation was observed among strains isolated from different segments of the intestinal tract of pigs. The putative virulence genes detected in all strains were mostly encompassed in the accessory fraction of the pangenome. The LPS biosynthesis and in particular the chain glycosylation of the O-antigen is harbored in a region of high plasticity of the pangenome, which would indicate frequent horizontal gene transfer phenomena, as well as the involvement of this hypervariable structure in the adaptive behavior and sympatric evolution of A. butzleri. Results of the present study deepen the current knowledge on A. butzleri pangenome by extending the pool of genes regarded as virulence markers and provide bases to develop new diagnostic approaches for the detection of those strains with a higher virulence potential.
Collapse
Affiliation(s)
- Davide Buzzanca
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Italy; Department of Veterinary Public Health, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Cristian Botta
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Italy
| | - Valentina Alessandria
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Italy
| | - Kurt Houf
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Kalliopi Rantsiou
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Italy.
| |
Collapse
|
28
|
Hänel I, Müller E, Santamarina BG, Tomaso H, Hotzel H, Busch A. Antimicrobial Susceptibility and Genomic Analysis of Aliarcobacter cibarius and Aliarcobacter thereius, Two Rarely Detected Aliarcobacter Species. Front Cell Infect Microbiol 2021; 11:532989. [PMID: 33816322 PMCID: PMC8010192 DOI: 10.3389/fcimb.2021.532989] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 01/19/2021] [Indexed: 01/06/2023] Open
Abstract
Aliarcobacter cibarius and Aliarcobacter thereius are two rarely detected Aliarcobacter species. In the study, we analyzed the antimicrobial susceptibility and provide detailed insights into the genotype and phylogeny of both species using whole-genome sequencing. Thermophilic Campylobacter species are the most common bacterial foodborne pathogens causing gastroenteritis in humans worldwide. The genus Aliarcobacter is part of the Campylobacteraceae family and includes the species Aliarcobacter butzleri, Aliarcobacter cryaerophilus, Aliarcobacter skirrowii, and the rarely described Aliarcobacter cibarius, Aliarcobacter faecis, Aliarcobacter lanthieri, Aliarcobacter thereius, and Acrobarter trophiarum. Aliarcobacter are emergent enteropathogens and potential zoonotic agents. Here, we generated, analyzed, and characterized whole-genome sequences of Aliarcobacter cibarius and Aliarcobacter thereius. They were isolated from water poultry farms in Germany, cultured and identified by MALDI-TOF MS. With PCR the identity was verified. Antibiotic susceptibility testing was carried out with erythromycin, ciprofloxacin, doxycycline, tetracycline, gentamicin, streptomycin, ampicillin, and cefotaxime using the gradient strip method (E-test). Whole-genome sequences were generated including those of reference strains. Complete genomes for six selected strains are reported. These provide detailed insights into the genotype. With these, we predicted in silico known AMR genes, virulence-associated genes, and plasmid replicons. Phenotypic analysis of resistance showed differences between the presence of resistance genes and the prediction of phenotypic resistance profiles. In Aliarcobacter butzleri, the nucleotide sequence of the gyrA gene (DQ464331) can show a signature mutation resulting in an amino acid change T85>I. Acrobarter cibarius and Acrobarter thereius showed the same gene as assessed by similarity annotation of the mutations 254C>G. Most of the isolates were found to be sensitive to ciprofloxacin. The ciprofloxacin-resistant Aliarcobacter thereius isolate was associated with the amino acid change T85>I. But this was not predicted with antibiotic resistance databases, before. Ultimately, a phylogenetic analysis was done to facilitate in future outbreak analysis.
Collapse
Affiliation(s)
- Ingrid Hänel
- IBIZ, Friedrich-Loeffler-Institut Jena, Jena, Germany
| | - Eva Müller
- IBIZ, Friedrich-Loeffler-Institut Jena, Jena, Germany
| | | | | | - Helmut Hotzel
- IBIZ, Friedrich-Loeffler-Institut Jena, Jena, Germany
| | - Anne Busch
- IBIZ, Friedrich-Loeffler-Institut Jena, Jena, Germany.,Department of Anaesthesiology and Intensive Care Medicine, University Hospital Jena, Jena, Germany
| |
Collapse
|
29
|
Sciortino S, Arculeo P, Alio V, Cardamone C, Nicastro L, Arculeo M, Alduina R, Costa A. Occurrence and Antimicrobial Resistance of Arcobacter spp. Recovered from Aquatic Environments. Antibiotics (Basel) 2021; 10:antibiotics10030288. [PMID: 33802125 PMCID: PMC7998538 DOI: 10.3390/antibiotics10030288] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/26/2021] [Accepted: 03/07/2021] [Indexed: 12/03/2022] Open
Abstract
Arcobacter spp. are emerging waterborne and foodborne zoonotic pathogens responsible for gastroenteritis in humans. In this work, we evaluated the occurrence and the antimicrobial resistance profile of Arcobacter isolates recovered from different aquatic sources. Besides, we searched for Arcobacter spp. in seaweeds and the corresponding seawater samples. Bacteriological and molecular methods applied to 100 samples led to the isolation of 28 Arcobacter isolates from 27 samples. The highest prevalence was detected in rivers followed by artificial ponds, streams, well waters, and spring waters. Seaweeds contained a higher percentage of Arcobacter than the corresponding seawater samples. The isolates were identified as Arcobacter butzleri (96.4%) and Arcobacter cryaerophilus (3.6%). All the isolates showed a multi-drug resistance profile, being resistant to at least three different classes of antibiotics. Molecular analysis of genetic determinants responsible for tetracycline resistance in nine randomly chosen isolates revealed the presence of tetO and/or tetW. This work confirms the occurrence and the continuous emergence of antibiotic-resistant Arcobacter strains in environmental samples; also, the presence of quinolone-resistant Arcobacter spp. in aquatic sources used for water supply and irrigation represents a potential risk for human health.
Collapse
Affiliation(s)
- Sonia Sciortino
- Food Microbiology Section, Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Via G. Marinuzzi 3, 90129 Palermo, Italy; (P.A.); (V.A.); (C.C.); (L.N.); (A.C.)
- Correspondence: (S.S.); (R.A.)
| | - Pietro Arculeo
- Food Microbiology Section, Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Via G. Marinuzzi 3, 90129 Palermo, Italy; (P.A.); (V.A.); (C.C.); (L.N.); (A.C.)
| | - Vincenzina Alio
- Food Microbiology Section, Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Via G. Marinuzzi 3, 90129 Palermo, Italy; (P.A.); (V.A.); (C.C.); (L.N.); (A.C.)
| | - Cinzia Cardamone
- Food Microbiology Section, Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Via G. Marinuzzi 3, 90129 Palermo, Italy; (P.A.); (V.A.); (C.C.); (L.N.); (A.C.)
| | - Luisa Nicastro
- Food Microbiology Section, Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Via G. Marinuzzi 3, 90129 Palermo, Italy; (P.A.); (V.A.); (C.C.); (L.N.); (A.C.)
| | - Marco Arculeo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Bd. 16, 90128 Palermo, Italy;
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Bd. 16, 90128 Palermo, Italy;
- Correspondence: (S.S.); (R.A.)
| | - Antonella Costa
- Food Microbiology Section, Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Via G. Marinuzzi 3, 90129 Palermo, Italy; (P.A.); (V.A.); (C.C.); (L.N.); (A.C.)
| |
Collapse
|
30
|
Müller E, Hotzel H, Linde J, Hänel I, Tomaso H. Antimicrobial Resistance and in silico Virulence Profiling of Aliarcobacter butzleri Strains From German Water Poultry. Front Microbiol 2020; 11:617685. [PMID: 33381106 PMCID: PMC7767855 DOI: 10.3389/fmicb.2020.617685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/27/2020] [Indexed: 11/13/2022] Open
Abstract
Aliarcobacter butzleri is an emerging foodborne and zoonotic pathogen that is usually transmitted via contaminated food or water. A. butzleri is not only the most prevalent Aliarcobacter species, it is also closely related to thermophilic Campylobacter, which have shown increasing resistance in recent years. Therefore, it is important to assess its resistance and virulence profiles. In this study, 45 Aliarcobacter butzleri strains from water poultry farms in Thuringia, Germany, were subjected to an antimicrobial susceptibility test using the gradient strip diffusion method and whole-genome sequencing. In the phylogenetic analysis, the genomes of the German strains showed high genetic diversity. Thirty-three isolates formed 11 subgroups containing two to six strains. The antimicrobial susceptibility testing showed that 32 strains were resistant to erythromycin, 26 to doxycycline, and 20 to tetracycline, respectively. Only two strains were resistant to ciprofloxacin, while 39 strains were resistant to streptomycin. The in silico prediction of the antimicrobial resistance profiles identified a large repertoire of potential resistance mechanisms. A strong correlation between a gyrA point mutation (Thr-85-Ile) and ciprofloxacin resistance was found in 11 strains. A partial correlation was observed between the presence of the bla3 gene and ampicillin resistance. In silico virulence profiling revealed a broad spectrum of putative virulence factors, including a complete lipid A cluster in all studied genomes.
Collapse
Affiliation(s)
- Eva Müller
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany
| | - Helmut Hotzel
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany
| | - Jörg Linde
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany
| | - Ingrid Hänel
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany
| | - Herbert Tomaso
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany
| |
Collapse
|
31
|
Müller E, Abdel-Glil MY, Hotzel H, Hänel I, Tomaso H. Aliarcobacter butzleri from Water Poultry: Insights into Antimicrobial Resistance, Virulence and Heavy Metal Resistance. Genes (Basel) 2020; 11:genes11091104. [PMID: 32967159 PMCID: PMC7564025 DOI: 10.3390/genes11091104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Aliarcobacter butzleri is the most prevalent Aliarcobacter species and has been isolated from a wide variety of sources. This species is an emerging foodborne and zoonotic pathogen because the bacteria can be transmitted by contaminated food or water and can cause acute enteritis in humans. Currently, there is no database to identify antimicrobial/heavy metal resistance and virulence-associated genes specific for A. butzleri. The aim of this study was to investigate the antimicrobial susceptibility and resistance profile of two A. butzleri isolates from Muscovy ducks (Cairina moschata) reared on a water poultry farm in Thuringia, Germany, and to create a database to fill this capability gap. The taxonomic classification revealed that the isolates belong to the Aliarcobacter gen. nov. as A. butzleri comb. nov. The antibiotic susceptibility was determined using the gradient strip method. While one of the isolates was resistant to five antibiotics, the other isolate was resistant to only two antibiotics. The presence of antimicrobial/heavy metal resistance genes and virulence determinants was determined using two custom-made databases. The custom-made databases identified a large repertoire of potential resistance and virulence-associated genes. This study provides the first resistance and virulence determinants database for A. butzleri.
Collapse
|
32
|
Improved culture enrichment broth for isolation of Arcobacter-like species from the marine environment. Sci Rep 2020; 10:14547. [PMID: 32884057 PMCID: PMC7471115 DOI: 10.1038/s41598-020-71442-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
Arcobacter-like species are found associated with many matrices, including shellfish in marine environments. The culture media and conditions play a major role in the recovery of new Arcobacter-like species. This study was aimed to develop a culture media for isolation and enhanced growth of Arcobacter-like spp. from marine and shellfish matrices. For this purpose, 14 different Arcobacter-like spp. mostly isolated from shellfish, were grown in 24 different formulations of enrichment broths. The enrichment broths consisted of five main groups based on the organic contents (fresh oyster homogenate, lyophilized oyster either alone or in combination with other standard media), combined with artificial seawater (ASW) or 2.5% NaCl. Optical density (OD420nm) measurements after every 24 h were compared with the growth in control media (Arcobacter broth) in parallel. The mean and standard deviation were calculated for each species in each broth and statistical differences (p < 0.05) among broths were calculated by ANOVA. The results indicated that shellfish-associated Arcobacter-like species growth was significantly higher in Arcobacter broth + 50% ASW and the same media supplemented with lyophilized oysters. This is the first study to have used fresh or lyophilized oyster flesh in the enrichment broth for isolation of shellfish-associated Arcobacter-like spp.
Collapse
|
33
|
Schönknecht A, Alter T, Gölz G. Detection of Arcobacter species in different intestinal compartments of broiler chicken during slaughter and processing. Microbiologyopen 2020; 9:e1106. [PMID: 32830916 PMCID: PMC7568255 DOI: 10.1002/mbo3.1106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/17/2020] [Accepted: 07/25/2020] [Indexed: 11/11/2022] Open
Abstract
Arcobacter spp. are commonly present on meat products. However, the source of contamination on chicken meat is under dispute. Since different studies reported contradictory results on the occurrence of Arcobacter spp. inside the intestinal tract of chicken, our study examined four intestinal compartments at four significant production steps during broiler slaughter and processing in the slaughterhouse. Altogether, 157 intestinal tracts from 19 flocks were examined qualitatively and semiquantitatively applying a selective enrichment. Further verification was performed by mPCR and rpoB sequencing. Arcobacter spp. were only detected sporadically in intestinal contents after bleeding (2/32) and in none after scalding (0/32). After defeathering, Arcobacter spp. were detected in 62% (18/29) of the intestinal contents with 28% (8/29) of the duodenal, 21% (6/29) of the jejunal, 3% (1/29) of the cecal, and 55% (16/29) of the colonic samples tested positive with loads up to 24,000 MPN/g in the colonic content. Further 88% (7/8) of colonic tissue samples were tested positive. After evisceration, the prevalences (58/64) and loads of Arcobacter spp. display comparable levels in the intestinal contents like after defeathering. In conclusion, our data point out that Arcobacter spp. are most likely detected in the colonic intestinal compartment of the chicken after defeathering and evisceration. Therefore, not only cross-contamination originating from the environment inside the slaughterhouse may cause carcass contamination with Arcobacter spp. on broiler chicken carcasses. The detection of Arcobacter spp. in duodenal and jejunal contents as well as in the colonic tissue indicates that there possibly exists an Arcobacter reservoir inside the chicken.
Collapse
Affiliation(s)
- Antje Schönknecht
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Thomas Alter
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Greta Gölz
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
34
|
Chieffi D, Fanelli F, Fusco V. Arcobacter butzleri: Up-to-date taxonomy, ecology, and pathogenicity of an emerging pathogen. Compr Rev Food Sci Food Saf 2020; 19:2071-2109. [PMID: 33337088 DOI: 10.1111/1541-4337.12577] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/19/2022]
Abstract
Arcobacter butzleri, recently emended to the Aliarcobacter butzleri comb. nov., is an emerging pathogen causing enteritis, severe diarrhea, septicaemia, and bacteraemia in humans and enteritis, stillbirth, and abortion in animals. Since its recognition as emerging pathogen on 2002, advancements have been made in elucidating its pathogenicity and epidemiology, also thanks to advent of genomics, which, moreover, contributed in emending its taxonomy. In this review, we provide an overview of the up-to-date taxonomy, ecology, and pathogenicity of this emerging pathogen. Moreover, the implication of A. butzleri in the safety of foods is pinpointed, and culture-dependent and independent detection, identification, and typing methods as well as strategies to control and prevent the survival and growth of this pathogen are provided.
Collapse
Affiliation(s)
- Daniele Chieffi
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), Bari, Italy
| | - Francesca Fanelli
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), Bari, Italy
| | - Vincenzina Fusco
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), Bari, Italy
| |
Collapse
|
35
|
Lianou A, Nychas GJE, Koutsoumanis KP. Strain variability in biofilm formation: A food safety and quality perspective. Food Res Int 2020; 137:109424. [PMID: 33233106 DOI: 10.1016/j.foodres.2020.109424] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022]
Abstract
The inherent differences in microbial behavior among identically treated strains of the same microbial species, referred to as "strain variability", are regarded as an important source of variability in microbiological studies. Biofilms are defined as the structured multicellular communities with complex architecture that enable microorganisms to grow adhered to abiotic or living surfaces and constitute a fundamental aspect of microbial ecology. The research studies assessing the strain variability in biofilm formation are relatively few compared to the ones evaluating other aspects of microbial behavior such as virulence, growth and stress resistance. Among the available research data on intra-species variability in biofilm formation, compiled and discussed in the present review, most of them refer to foodborne pathogens as compared to spoilage microorganisms. Molecular and physiological aspects of biofilm formation potentially related to strain-specific responses, as well as information on the characterization and quantitative description of this type of biological variability are presented and discussed. Despite the considerable amount of available information on the strain variability in biofilm formation, there are certain data gaps and still-existing challenges that future research should cover and address. Current and future advances in systems biology and omics technologies are expected to aid significantly in the explanation of phenotypic strain variability, including biofilm formation variability, allowing for its integration in microbiological risk assessment.
Collapse
Affiliation(s)
- Alexandra Lianou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens 11855, Greece
| | - George-John E Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens 11855, Greece
| | - Konstantinos P Koutsoumanis
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
36
|
Reyes-Jurado F, Munguía-Pérez R, Cid-Pérez TS, Hernández-Carranza P, Ochoa-Velasco CE, Avila-Sosa R. Inhibitory Effect of Mexican Oregano (Lippia berlandieri Schauer) Essential Oil on Pseudomonas aeruginosa and Salmonella Thyphimurium Biofilm Formation. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
Oluwaseun Alegbeleye O, Sant’Ana AS. Understanding the public health burden of unconventional produce-associated enteropathogens. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Isidro J, Ferreira S, Pinto M, Domingues F, Oleastro M, Gomes JP, Borges V. Virulence and antibiotic resistance plasticity of Arcobacter butzleri: Insights on the genomic diversity of an emerging human pathogen. INFECTION GENETICS AND EVOLUTION 2020; 80:104213. [PMID: 32006709 DOI: 10.1016/j.meegid.2020.104213] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/06/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023]
Abstract
Arcobacter butzleri is a foodborne emerging human pathogen, frequently displaying a multidrug resistant character. Still, the lack of comprehensive genome-scale comparative analysis has limited our knowledge on A. butzleri diversification and pathogenicity. Here, we performed a deep genome analysis of A. butzleri focused on decoding its core- and pan-genome diversity and specific genetic traits underlying its pathogenic potential and diverse ecology. A. butzleri (genome size 2.07-2.58 Mbp) revealed a large open pan-genome with 7474 genes (about 50% being singletons) and a small but diverse core-genome with 1165 genes. It presents a plastic virulome (including newly identified determinants), marked by the differential presence of multiple adaptation-related virulence factors, such as the urease cluster ureD(AB)CEFG (phenotypically confirmed), the hypervariable hemagglutinin-encoding hecA, a type I secretion system (T1SS) harboring another agglutinin and a novel VirB/D4 T4SS likely linked to interbacterial competition and cytotoxicity. In addition, A. butzleri harbors a large repertoire of efflux pumps (EPs) and other antibiotic resistant determinants. We unprecedentedly describe a genetic mechanism of A. butzleri macrolides resistance, (inactivation of a TetR repressor likely regulating an EP). Fluoroquinolones resistance correlated with Thr-85-Ile in GyrA and ampicillin resistance was linked to an OXA-15-like β-lactamase. Remarkably, by decoding the polymorphism pattern of the main antigen PorA, we show that A. butzleri is able to exchange porA as a whole and/or hypervariable epitope-encoding regions separately, leading to a multitude of chimeric PorA presentations that can impact pathogen-host interaction during infection. Ultimately, our unprecedented screening of short sequence repeats indicates that phase variation likely modulates A. butzleri key adaptive functions. In summary, this study constitutes a turning point on A. butzleri comparative genomics revealing that this human gastrointestinal pathogen is equipped with vast and diverse virulence and antibiotic resistance arsenals that open a multitude of phenotypic fingerprints for environmental/host adaptation and pathogenicity.
Collapse
Affiliation(s)
- Joana Isidro
- Bioinformatics Unit, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Susana Ferreira
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal.
| | - Miguel Pinto
- Bioinformatics Unit, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Fernanda Domingues
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - João Paulo Gomes
- Bioinformatics Unit, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Vítor Borges
- Bioinformatics Unit, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal.
| |
Collapse
|
39
|
Fanelli F, Chieffi D, Di Pinto A, Mottola A, Baruzzi F, Fusco V. Phenotype and genomic background of Arcobacter butzleri strains and taxogenomic assessment of the species. Food Microbiol 2020; 89:103416. [PMID: 32138986 DOI: 10.1016/j.fm.2020.103416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/08/2019] [Accepted: 01/08/2020] [Indexed: 11/29/2022]
Abstract
In this study the phenotypic and genomic characterization of two Arcobacter butzleri (Ab) strains (Ab 34_O and Ab 39_O) isolated from pre-cut ready-to-eat vegetables were performed. Results provided useful data about their taxonomy and their overall virulence potential with particular reference to the antibiotic and heavy metal susceptibility. These features were moreover compared with those of two Ab strains isolated from shellfish and a genotaxonomic assessment of the Ab species was performed. The two Ab isolated from vegetables were confirmed to belong to the Aliarcobacter butzleri species by 16S rRNA gene sequence analysis, MLST and genomic analyses. The genome-based taxonomic assessment of the Ab species brought to the light the possibility to define different subspecies reflecting the source of isolation, even though further genomes from different sources should be available to support this hypothesis. The strains isolated from vegetables in the same geographic area shared the same distribution of COGs with a prevalence of the cluster "inorganic ion transport and metabolism", consistent with the lithotrophic nature of Arcobacter spp. None of the Ab strains (from shellfish and from vegetables) metabolized carbohydrates but utilized organic acids and amino acids as carbon sources. The metabolic fingerprinting of Ab resulted less discriminatory than the genome-based approach. The Ab strains isolated from vegetables and those isolated from shellfish endowed multiple resistance to several antibiotics and heavy metals.
Collapse
Affiliation(s)
- Francesca Fanelli
- Institute of Sciences of Food Production of the National Research Council of Italy (CNR-ISPA), Bari, 70126, Italy
| | - Daniele Chieffi
- Institute of Sciences of Food Production of the National Research Council of Italy (CNR-ISPA), Bari, 70126, Italy
| | - Angela Di Pinto
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, 70010, Italy
| | - Anna Mottola
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, 70010, Italy
| | - Federico Baruzzi
- Institute of Sciences of Food Production of the National Research Council of Italy (CNR-ISPA), Bari, 70126, Italy
| | - Vincenzina Fusco
- Institute of Sciences of Food Production of the National Research Council of Italy (CNR-ISPA), Bari, 70126, Italy.
| |
Collapse
|
40
|
Fanelli F, Di Pinto A, Mottola A, Mule G, Chieffi D, Baruzzi F, Tantillo G, Fusco V. Genomic Characterization of Arcobacter butzleri Isolated From Shellfish: Novel Insight Into Antibiotic Resistance and Virulence Determinants. Front Microbiol 2019; 10:670. [PMID: 31057492 PMCID: PMC6477937 DOI: 10.3389/fmicb.2019.00670] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/18/2019] [Indexed: 12/21/2022] Open
Abstract
Arcobacter (A.) butzleri is an emerging pathogenic microorganism, whose taxonomy has been recently suggested to be emended to the Aliarcobacter (Al.) butzleri comb. nov. Despite extensive taxonomic analysis, only few fragmented studies have investigated the occurrence and the prevalence of virulence and antibiotic resistance determinants of this species in strains isolated from shellfish. Herein we report for the first time the whole genome sequencing and genomic characterization of two A. butzleri strains isolated from shellfish, with particular reference to the antibiotic, heavy metals and virulence determinants. This study supported the taxonomic assignment of these strains to the Al. butzleri species, and allowed us to identify antibiotic and metal resistance along with virulence determinants, also additional to those previously reported for the only two A. butzleri strains from different environments genomically characterized. Moreover, both strains showed resistance to β-lactams, vanocomycin, tetracycline and erythromycin and susceptibility to aminoglycosides and ciprofloxacin. Beside enlarging the availability of genomic data to perform comparative studies aimed at correlating phenotypic differences associated with ecological niche and geographic distribution with the genetic diversity of A. butzleri spp., this study reports the endowment of antibiotic and heavy metal resistance and virulence determinants of these shellfish-isolated strains. This leads to hypothesize a relatively high virulence of A. butzleri isolated from shellfish and prompt the need for a wider genomic analysis and for in vitro and in vivo studies of more strains isolated from this and other ecological niches, to unravel the mechanism of pathogenicity of this species, and the potential risk associated to their consumption.
Collapse
Affiliation(s)
- Francesca Fanelli
- Institute of Sciences of Food Production (CNR-ISPA), National Research Council of Italy, Bari, Italy
| | - Angela Di Pinto
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Anna Mottola
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppina Mule
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (CNR-IBIOM), National Research Council of Italy, Bari, Italy
| | - Daniele Chieffi
- Institute of Sciences of Food Production (CNR-ISPA), National Research Council of Italy, Bari, Italy
| | - Federico Baruzzi
- Institute of Sciences of Food Production (CNR-ISPA), National Research Council of Italy, Bari, Italy
| | - Giuseppina Tantillo
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzina Fusco
- Institute of Sciences of Food Production (CNR-ISPA), National Research Council of Italy, Bari, Italy
| |
Collapse
|
41
|
Ferreira S, Oleastro M, Domingues F. Current insights on Arcobacter butzleri in food chain. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Kim NH, Park SM, Kim HW, Cho TJ, Kim SH, Choi C, Rhee MS. Prevalence of pathogenic Arcobacter species in South Korea: Comparison of two protocols for isolating the bacteria from foods and examination of nine putative virulence genes. Food Microbiol 2019; 78:18-24. [DOI: 10.1016/j.fm.2018.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 11/16/2022]
|
43
|
Sousa V, Luís Â, Oleastro M, Domingues F, Ferreira S. Polyphenols as resistance modulators in Arcobacter butzleri. Folia Microbiol (Praha) 2019; 64:547-554. [PMID: 30637574 DOI: 10.1007/s12223-019-00678-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 01/04/2019] [Indexed: 12/21/2022]
Abstract
Arcobacter butzleri is an emerging human and animal pathogen for which an increased prevalence of resistance to antibiotics has been observed, and so alternative compounds to modulate resistance of A. butzleri are required. This work aims to study the potential use of several polyphenols as efflux pump inhibitors (EPIs) and to evaluate their interaction with antibiotics, in order to enhance antibiotic activity against A. butzleri. The minimum inhibitory concentration (MIC) of (-)-epicatechin, (+)-catechin, rutin, gallic acid, caffeic acid, chlorogenic acid, resveratrol, pterostilbene, and pinosylvin was determined, in absence and presence of four known EPIs. Subsequently, ethidium bromide accumulation in presence of subinhibitory concentrations of polyphenols was evaluated, and the synergistic potential of the compounds with antibiotics was assessed by checkerboard dilution test. Only stilbenes presented activity against A. butzleri, with MIC values ranging between 64 and 512 μg/mL. The MIC determination of the polyphenols in the presence of subinhibitory concentrations of known EPIs showed that efflux pumps play a role in the resistance to these compounds. Stilbenes also induced a higher intracellular accumulation of ethidium bromide, indicating that they may inhibit the activity of efflux pumps. Checkerboard assays showed that several combinations of polyphenol/antibiotic had an additive effect against A. butzleri. Overall, the results indicate that some polyphenols reduce A. butzleri resistance to antibiotics, suggesting the potential of stilbenes as EPIs. The potential of resveratrol and pinosylvin as resistance modulators was evidenced, insofar as these compounds can even revert antibiotic resistance. Therefore, the use of polyphenols as resistance modulators could be an alternative to overcome the decreasing susceptibility of A. butzleri to antibiotics.
Collapse
Affiliation(s)
- Vanessa Sousa
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Ângelo Luís
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Mónica Oleastro
- Department of Infectious Diseases, National Reference Laboratory for Gastrointestinal Infections, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, Lisbon, Portugal
| | - Fernanda Domingues
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Susana Ferreira
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506, Covilhã, Portugal.
| |
Collapse
|
44
|
Riesenberg A, Frömke C, Stingl K, Feßler AT, Gölz G, Glocker EO, Kreienbrock L, Klarmann D, Werckenthin C, Schwarz S. Antimicrobial susceptibility testing of Arcobacter butzleri: development and application of a new protocol for broth microdilution. J Antimicrob Chemother 2018; 72:2769-2774. [PMID: 29091194 DOI: 10.1093/jac/dkx211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/02/2017] [Indexed: 11/13/2022] Open
Abstract
Objectives To develop a standard reference broth microdilution method for antimicrobial susceptibility testing (AST) of Arcobacter butzleri. The protocol was subsequently applied to a collection of A. butzleri isolates from different sources. Methods Broth microdilution susceptibility testing was performed on eight A. butzleri isolates in three media: non-supplemented CAMHB, CAMHB + 2% FBS and CAMHB + 5% FBS. The MIC values were read after 24 and 48 h of incubation at 35 ± 2 °C in ambient air. A logistic regression model was used to determine the combination of medium and incubation time yielding the most homogeneous results. Subsequently, the protocol was applied to 65 A. butzleri isolates to determine their MICs of 31 antimicrobial agents. Results The statistical analysis revealed that the most homogeneous MIC values were obtained with CAMHB + 5% FBS and reading of MIC values after 24 h of incubation. The standardized method was successful for AST of all 65 A. butzleri isolates. MIC values were distributed unimodally for most antimicrobial agents. However, one field isolate showed elevated MIC values of gentamicin, streptomycin, tetracycline and trimethoprim/sulfamethoxazole. Conclusions This study presents a new protocol for AST of A. butzleri by broth microdilution and shows the distribution of MIC values of 31 antimicrobial agents for a collection of A. butzleri isolates from different origins.
Collapse
Affiliation(s)
- Anne Riesenberg
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food and Veterinary Institute Oldenburg, Oldenburg, Germany.,Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| | - Cornelia Frömke
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training in Veterinary Public Health, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Kerstin Stingl
- National Reference Laboratory for Campylobacter, Federal Institute for Risk Assessment, Berlin, Germany
| | - Andrea T Feßler
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany.,Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Greta Gölz
- Institute of Food Safety and Food Hygiene, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Erik-Oliver Glocker
- Institute of Medical Microbiology and Hygiene, University Medical Center Freiburg, Freiburg, Germany.,Institute of Laboratory Medicine, Brandenburg Hospital, Brandenburg Medical School, Brandenburg, Germany
| | - Lothar Kreienbrock
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training in Veterinary Public Health, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Dieter Klarmann
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food and Veterinary Institute Oldenburg, Oldenburg, Germany
| | - Christiane Werckenthin
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food and Veterinary Institute Oldenburg, Oldenburg, Germany
| | - Stefan Schwarz
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany.,Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
45
|
Gobbi DD, Spindola MG, Moreno LZ, Matajira CE, Oliveira MG, Paixão R, Ferreira TS, Moreno AM. Isolation and molecular characterization of Arcobacter butzleri and Arcobacter cryaerophilus from the pork production chain in Brazil. PESQUISA VETERINARIA BRASILEIRA 2018. [DOI: 10.1590/1678-5150-pvb-4709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: Arcobacter is an emerging zoonotic pathogen, and the major transmission routes to humans are the handling or consumption of contaminated raw/undercooked food products of animal origin, water and seafood. The isolation and identification of Arcobacter species are not routine in clinical laboratories; therefore, its true incidence in human infections may be underestimated. The present study aimed to isolate and characterize Arcobacter from carcasses and fecal samples collected at swine slaughterhouses and from meat markets in São Paulo State, Brazil. The isolates were identified using multiplex-PCR to differentiate the species and analyzed by single-enzyme amplified fragment length polymorphism (SE-AFLP). Arcobacter spp. were isolated from 73.0% of swine carcasses, 4% of fecal samples and 10% of pork samples. A. butzleri was the most prevalent species identified, followed by A. cryaerophilus. Interestingly, the carcasses presented higher frequency of A. butzleri isolation, whereas only A. cryaerophilus was isolated from fecal samples. SE-AFLP enabled the characterization of A. butzleri and A. cryaerophilus into 51 and 63 profiles, respectively. The great genetic heterogeneity observed for both species corroborates previous reports. This study confirms the necessity for a standard isolation protocol and the improvement of molecular tools to further elucidate Arcobacter epidemiology.
Collapse
|
46
|
Vicente-Martins S, Oleastro M, Domingues FC, Ferreira S. Arcobacter spp. at retail food from Portugal: Prevalence, genotyping and antibiotics resistance. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.09.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Ferreira S, Correia DR, Oleastro M, Domingues FC. Arcobacter butzleri Ciprofloxacin Resistance: Point Mutations in DNA Gyrase A and Role on Fitness Cost. Microb Drug Resist 2018; 24:915-922. [PMID: 29336679 DOI: 10.1089/mdr.2017.0295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Arcobacter butzleri is a widely distributed emerging pathogen resistant to various classes of antimicrobial agents, namely fluoroquinolones. A. butzleri resistance to fluoroquinolones is conferred by point mutations at the antibiotic target. The aim of this study was to evaluate mutations at gyrA associated with ciprofloxacin resistance and evaluate whether acquisition of resistance impacts on fitness and stress tolerance of A. butzleri. A. butzleri ciprofloxacin mutants were generated by laboratory induction. Identification of mutations associated with ciprofloxacin resistance was performed by gyrA sequencing. Growth kinetics, cost of fitness, biofilm formation ability, and stress tolerance were assessed. Two amino acid substitutions in the quinolone resistance-determining region of GyrA were identified in the mutant strains, one previously described (Thr-85-Ile) and a new substitution (Asp-89-Tyr). No differences in growth kinetics were recorded between parental and mutant strains; however, fitness cost was variable, according to the genetic background of the strains, and independently of ciprofloxacin resistance. Overall, the ciprofloxacin resistance development did not significantly affect stress tolerance, motility, or biofilm-forming ability. In conclusion, acquisition of ciprofloxacin resistance in A. butzleri is associated with mutations in gyrA and is likely well compensated, with cost of fitness reflecting the diversity in genetic background of this bacterium.
Collapse
Affiliation(s)
- Susana Ferreira
- 1 CICS-UBI-Health Sciences Research Center, University of Beira Interior , Covilhã, Portugal
| | - Daniela R Correia
- 1 CICS-UBI-Health Sciences Research Center, University of Beira Interior , Covilhã, Portugal
| | - Mónica Oleastro
- 2 Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge , National Reference Laboratory for Gastrointestinal Infections, Lisbon, Portugal
| | - Fernanda C Domingues
- 1 CICS-UBI-Health Sciences Research Center, University of Beira Interior , Covilhã, Portugal
| |
Collapse
|
48
|
Rathlavath S, Kohli V, Singh AS, Lekshmi M, Tripathi G, Kumar S, Nayak BB. Virulence genotypes and antimicrobial susceptibility patterns of Arcobacter butzleri isolated from seafood and its environment. Int J Food Microbiol 2017; 263:32-37. [DOI: 10.1016/j.ijfoodmicro.2017.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/05/2017] [Accepted: 10/03/2017] [Indexed: 11/28/2022]
|
49
|
Jia S, Zhang XX, Miao Y, Zhao Y, Ye L, Li B, Zhang T. Fate of antibiotic resistance genes and their associations with bacterial community in livestock breeding wastewater and its receiving river water. WATER RESEARCH 2017; 124:259-268. [PMID: 28763642 DOI: 10.1016/j.watres.2017.07.061] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 07/16/2017] [Accepted: 07/23/2017] [Indexed: 05/12/2023]
Abstract
Large amounts of antibiotics are currently used in livestock breeding, which is the main driving factor contributing to the occurrence, spread and proliferation of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the environment. In this study, high-throughput sequencing based metagenomic approaches were employed to characterize the tempo-spacial changes of antibiotic resistome, bacterial community and their correlations in pig farming wastewater and its receiving river. A total of 194 ARG subtypes within 14 ARG types were detectable in all the samples, and their total relative abundance increased in the river water after receiving wastewater discharge, while decreased in the downstream river water. Network analysis showed that 25.26% ARGs within the same type or among the different types showed higher incidences of non-random co-occurrence. The wastewater discharge evidently increased bacterial diversity and induced bacterial community shift in the receiving river water. The genera of Treponema, Prevotella, Pseudomonas, Bacteroides, Oscillibacter and Acholeplasma dominated in the wastewater samples and almost disappeared in the receiving river water, but bacterial pathogens Clostridium difficile and Arcobacter butzleri still occurred in the receiving water. Correlation analysis and host analysis consistently showed that the changes in the abundances of several key genera like Prevotella and Treponema were significantly and positively correlated with the antibiotic resistome alteration. Variation partitioning analysis indicated that bacterial community played a more important role in the resistome alteration than mobile genetic elements. This study may help to understand the correlations among antibiotic resistome, microbiota and environmental conditions in the wastewater-receiving river water.
Collapse
Affiliation(s)
- Shuyu Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Yu Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yanting Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Bing Li
- Environmental Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Tong Zhang
- Environmental Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
50
|
Ferreira S, Oleastro M, Domingues FC. Occurrence, genetic diversity and antibiotic resistance of Arcobacter sp. in a dairy plant. J Appl Microbiol 2017; 123:1019-1026. [PMID: 28712149 DOI: 10.1111/jam.13538] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 11/28/2022]
Abstract
AIMS The aim of this study was to evaluate the occurrence, diversity and resistance to antibiotics of Arcobacter sp. in a dairy plant samples. METHODS AND RESULTS A total of 75 samples from dairy plant surfaces and materials and several food products collected in different steps of the cheese production process were analysed by culture, under aerobic and microaerobic atmospheric conditions, and by enrichment molecular detection. Isolates were identified and genotyped by ERIC-PCR, and their susceptibility to nine antibiotics was evaluated by agar dilution. Global prevalence of Arcobacter sp. was 42·7%, where 20 of the 42 food samples analysed were positive for A. butzleri by both culture and molecular detection, one for A. marinus by culture and one for A. cryaerophilus by molecular detection only; 10 of the 30 analysed materials and plant surfaces were positive for A. butzleri. All A. butzleri isolates were resistant to nalidixic acid and showed high resistance rates to ampicillin (56·2%) and cefotaxime (97·9%), being all strains susceptible to gentamicin and erythromycin. CONCLUSIONS Contamination of dairy plant environment with A. butzleri and its progression along cheese production process were observed, however, the cheese ripening process may have a relevant role in the reduction of the contamination. SIGNIFICANCE AND IMPACT OF THE STUDY This study showed the presence of Arcobacter sp. in a dairy plant, displaying its high prevalence and genetic diversity and highlighting its high resistance rates. The data obtained could contribute to further acknowledge the Arcobacter food contamination as a potential health hazard.
Collapse
Affiliation(s)
- S Ferreira
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - M Oleastro
- Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, National Reference Laboratory for Gastrointestinal Infections, Lisbon, Portugal
| | - F C Domingues
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|