1
|
Venkatesan RM, Muthusamy K, Iruthayasamy J, Prithiviraj B, Kumaresan PV, Lakshmanan P, Perianadar IV. First Report of Clonostachys rosea as a Mycoparasite on Sclerotinia sclerotiorum Causing Head Rot of Cabbage in India. PLANTS (BASEL, SWITZERLAND) 2023; 12:199. [PMID: 36616328 PMCID: PMC9824872 DOI: 10.3390/plants12010199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Clonostachys rosea, an ascomycetous, omnipresent, cellulose-decaying soil fungus, has been reported to be a well-known mycoparasitic biological control agent. In this study, we isolated C. rosea, a mycoparasitic fungus for the first time in India from sclerotia of the notorious plant pathogen Sclerotinia sclerotiorum, causing head rot disease in cabbage. A total of five mycoparasitic fungi were isolated from the sclerotial bodies of S. sclerotiorum (TNAU-CR 01, 02, 03, 04 and 05). All the isolates were tested under morpho-molecular characterization. Among them, TNAU-CR 02 showed the greatest mycelial inhibition of 79.63% over the control. Similarly, the SEM imaging of effective C. rosea isolates indicated the presence of numerous conidia destroying the outer cortex layers of sclerotia. Metabolite fingerprinting of C. rosea TNAU-CR 02 identified 18 chemical compounds using GC-MS analysis. The crude antibiotics of C. rosea TNAU-CR 02 were verified for their antifungal activity against S. sclerotiorum and the results revealed 97.17% mycelial inhibition compared with the control. Similarly, foliar application of TNAU-CR 02 at 5 mL/litre on 30, 45 and 60 days after transplanting showed the lowest disease incidence of 15.1 PDI compared to the control. This discovery expands our understanding of the biology and the dissemination of C. rosea, providing a way for the exploitation of C. rosea against cabbage head rot pathogens.
Collapse
Affiliation(s)
- Ruppavalli M. Venkatesan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore 641003, India
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Karthikeyan Muthusamy
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Johnson Iruthayasamy
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Balakrishnan Prithiviraj
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Parthiban V. Kumaresan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Pugalendhi Lakshmanan
- Department of Vegetable Sciences, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| | - Irene Vethamoni Perianadar
- Department of Vegetable Sciences, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| |
Collapse
|
2
|
Mishra J, Mishra I, Arora NK. 2,4-Diacetylphloroglucinol producing Pseudomonas fluorescens JM-1 for management of ear rot disease caused by Fusarium moniliforme in Zea mays L. 3 Biotech 2022; 12:138. [PMID: 35646503 DOI: 10.1007/s13205-022-03201-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 03/05/2022] [Indexed: 11/27/2022] Open
Abstract
Maize (Zea mays L.) is a major cereal crop grown in a large number of countries. Loss in maize yield due to biotic stresses including fungal phytopathogens is a matter of immense concern. Control measures applied for eradication of fungal phytopathogens in maize are not up to the mark and more often involve harsh chemical(s)/pesticide(s) that cause deleterious effects both in humans and soil biota. Greener alternatives, such as the use of rhizosphere microbes in the form of bioinoculants, have proven to be very successful in terms of enhancing crop yield and suppressing fungal phytopathogens. In the present study, fluorescent pseudomonads were isolated from the maize rhizosphere and monitored for their plant growth-promoting (PGP) and biocontrol activities against Fusarium moniliforme. Based on various PGP traits and biocontrol potential, isolate JM-1 was found to be most effective and as per 16S rRNA gene sequencing analysis was identified as Pseudomonas fluorescens. Further experiments showed that the biocontrol potential of JM-1 against ear rot fungus involved the production of antifungal compound 2,4-diacetylphloroglucinol (DAPG). When examined for antagonistic interaction under scanning electron microscopy (SEM), structural abnormality, hyphal lysis, and deformity in fungal mycelium were observed. In the pot experiment, application of talc-based JM-1 containing bioformulation (in pot trials) showed significant enhancement in maize growth parameters (including the seed number and weight) in comparison to control even in presence of the phytopathogen. Ear fresh weight, dry weight, number of seeds per plant, and 100-grain weight were found to increase significantly by 34, 34, 52, and 18% respectively, in comparison to control. P. fluorescens JM-1 can therefore be used as a bioinoculant for ear rot disease control and sustainably enhancing maize yield. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03201-7.
Collapse
Affiliation(s)
- Jitendra Mishra
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP 226025 India
| | - Isha Mishra
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP 226025 India
| | - Naveen Kumar Arora
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP 226025 India
| |
Collapse
|
3
|
Lin F, Zhu X, Sun J, Meng F, Lu Z, Lu Y. Bacillomycin D-C16 inhibits growth of Fusarium verticillioides and production of fumonisin B 1 in maize kernels. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 181:105015. [PMID: 35082038 DOI: 10.1016/j.pestbp.2021.105015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Fusarium verticillioides causes ear and kernel rot in maize and produces mycotoxins, like fumonisin B1 (FB1). Bacillomycin D-C16 is a natural antimicrobial lipopeptide produced by Bacillus subtilis. In this study, the inhibitory effects of Bacillomycin D-C16 on the growth of F. verticillioides and on the production of FB1 in maize were investigated. Bacillomycin D-C16 displayed strong fungicidal activity against F. verticillioides, with a minimum inhibitory concentration (MIC) of 32 g/L. Scanning electron microscopy (SEM) showed that Bacillomycin D-C16 altered the morphology of F. verticillioides mycelia. Bacillomycin D-C16 reduced the ergosterol content, increased the release of nucleic acids and proteins, and increased the levels of reactive oxygen species (ROS) in fungal mycelia. Bacillomycin D-C16 also significantly inhibited the production of FB1 by inhibiting mycelial growth and decreasing the levels of fumonisin biosynthetic genes 1 (fum1), fum6 and fum14. The application of Bacillomycin D-C16 on maize kernels prior to storage inhibited the growth of F. verticillioides and the production of FB1. Our results suggested that Bacillomycin D-C16 has a significant antifungal activity that could be used as a potential natural antimicrobial agent to control food contamination and to ensure food safety.
Collapse
Affiliation(s)
- Fuxing Lin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China; School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Xiaoyu Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Fanqiang Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China.
| |
Collapse
|
4
|
Tatsch ÉF, Meyer K, Vogel RF, Niessen L. Characterization of the influence of carbon sources on fum1 gene expression in the fumonisin producer Fusarium verticillioides using RT - LAMP assay. Int J Food Microbiol 2021; 354:109323. [PMID: 34298484 DOI: 10.1016/j.ijfoodmicro.2021.109323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/11/2021] [Accepted: 06/26/2021] [Indexed: 11/25/2022]
Abstract
Fusarium verticillioides is one of the major fumonisin producers. The ingestion of this mycotoxin represents a risk for both human and animal health. The development of F. verticillioides is associated with environmental conditions, especially carbon sources. We developed a reliable and fast reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay and determined fum1 gene expression upon growth of two F. verticillioides strains isolated from maize and wheat in Czapek's medium containing four different sugars as sole carbon sources. Fumonisin B1 (FB1) production was determined by LC-MS/MS analysis. High growth and production of FB1 were observed in fructose-containing medium for the strain that originated from maize. Less production of FB1 occurred using maltose as sole carbon source for both strains. The fum1 gene expression started between 2 and 4 days of incubation, and positive signals were detected prior to the initial production of FB1. The RT-LAMP assay was effective in the detection of fum1 gene expression at very early stages of F. verticillioides growth and allowed the prediction of FB1 formation.
Collapse
Affiliation(s)
- Évelin F Tatsch
- Chair of Technical Microbiology, Technical University of Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany
| | - Karsten Meyer
- Chair of Animal Hygiene, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Rudi F Vogel
- Chair of Technical Microbiology, Technical University of Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany
| | - Ludwig Niessen
- Chair of Technical Microbiology, Technical University of Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany.
| |
Collapse
|
5
|
Perrone G, Ferrara M, Medina A, Pascale M, Magan N. Toxigenic Fungi and Mycotoxins in a Climate Change Scenario: Ecology, Genomics, Distribution, Prediction and Prevention of the Risk. Microorganisms 2020; 8:E1496. [PMID: 33003323 PMCID: PMC7601308 DOI: 10.3390/microorganisms8101496] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 12/17/2022] Open
Abstract
Toxigenic fungi and mycotoxins are very common in food crops, with noticeable differences in their host specificity in terms of pathogenicity and toxin contamination. In addition, such crops may be infected with mixtures of mycotoxigenic fungi, resulting in multi-mycotoxin contamination. Climate represents the key factor in driving the fungal community structure and mycotoxin contamination levels pre- and post-harvest. Thus, there is significant interest in understanding the impact of interacting climate change-related abiotic factors (especially increased temperature, elevated CO2 and extremes in water availability) on the relative risks of mycotoxin contamination and impacts on food safety and security. We have thus examined the available information from the last decade on relative risks of mycotoxin contamination under future climate change scenarios and identified the gaps in knowledge. This has included the available scientific information on the ecology, genomics, distribution of toxigenic fungi and intervention strategies for mycotoxin control worldwide. In addition, some suggestions for prediction and prevention of mycotoxin risks are summarized together with future perspectives and research needs for a better understanding of the impacts of climate change scenarios.
Collapse
Affiliation(s)
- Giancarlo Perrone
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), 70126 Bari, Italy; (M.F.); (M.P.)
| | - Massimo Ferrara
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), 70126 Bari, Italy; (M.F.); (M.P.)
| | - Angel Medina
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield MK43 0AL, UK;
| | - Michelangelo Pascale
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), 70126 Bari, Italy; (M.F.); (M.P.)
| | - Naresh Magan
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield MK43 0AL, UK;
| |
Collapse
|
6
|
A loop-mediated isothermal amplification (LAMP) based assay for the rapid and sensitive group-specific detection of fumonisin producing Fusarium spp. Int J Food Microbiol 2020; 325:108627. [PMID: 32334331 DOI: 10.1016/j.ijfoodmicro.2020.108627] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 04/01/2020] [Accepted: 04/10/2020] [Indexed: 02/01/2023]
Abstract
Fumonisins are mycotoxins that contaminate maize and maize-based food products, and feed. They have been associated with nerve system disorders in horses, pulmonary edema in swine as well as neural tube defects and esophageal cancer in humans. The fum1 gene codes for a polyketide synthase involved in the biosynthesis of fumonisins. It is present in the genomes of all fumonisin producing Fusarium spp. Reliable detection of fum1 can provide an estimate of the toxicological potential of cultures and food sources. Therefore, a fum1 specific LAMP assay was developed and tested with purified DNA of 48 different species from the Fusarium fujikuroi species complex (FFSC). The fum1 gene was detected in 22 species among which F. fujikuroi, F. globosum, F. nygamai, F. proliferatum, F. subglutinans and F. verticillioides were the most prominent fumonisin producers. None out of 92 tested non-Fusarium species showed cross reactions with the new assay. The lowest limit of detection (LOD) was 5 pg of genomic DNA per reaction for F. fujikuroi, F. nygamai and F. verticillioides. Higher LODs were found for other LAMP positive species. Apart from pure genomic DNA, the LAMP assay detected fumonisin-producers when 103 conidia/reaction were used as template after mechanical lysis. LAMP-results were well correlated with FB1 production. This is the first report on fumonisin production in strains of F. annanatum, F. coicis, F. mundagurra, F. newnesense, F. pininemorale, F. sororula, F. tjataeba, F. udum and F. werrikimbe. Usefulness of the LAMP assay was demonstrated by analyzing fumonisin contaminated maize grains. The new LAMP assay is rapid, sensitive and reliable for the diagnosis of typical fumonisin producers and can be a versatile tool in HACCP concepts that target the reduction of fumonisins in the food and feed chain.
Collapse
|
7
|
Sun ZB, Li SD, Ren Q, Xu JL, Lu X, Sun MH. Biology and applications of Clonostachys rosea. J Appl Microbiol 2020; 129:486-495. [PMID: 32115828 DOI: 10.1111/jam.14625] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 01/07/2023]
Abstract
Clonostachys rosea is a promising saprophytic filamentous fungus that belongs to phylum Ascomycota. Clonostachys rosea is widespread around the world and exists in many kinds of habitats, with the highest frequency in soil. As an excellent mycoparasite, C. rosea exhibits strong biological control ability against numerous fungal plant pathogens, nematodes and insects. These behaviours are based on the activation of multiple mechanisms such as secreted cell-wall-degrading enzymes, production of antifungal secondary metabolites and induction of plant defence systems. Besides having significant biocontrol activity, C. rosea also functions in the biodegradation of plastic waste, biotransformation of bioactive compounds, as a bioenergy sources and in fermentation. This mini review summarizes information about the biology and various applications of C. rosea and expands on its possible uses.
Collapse
Affiliation(s)
- Z-B Sun
- School of Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - S-D Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Q Ren
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - J-L Xu
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - X Lu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - M-H Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Yazid SNE, Jinap S, Ismail SI, Magan N, Samsudin NIP. Phytopathogenic organisms and mycotoxigenic fungi: Why do we control one and neglect the other? A biological control perspective in Malaysia. Compr Rev Food Sci Food Saf 2020; 19:643-669. [DOI: 10.1111/1541-4337.12541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Siti Nur Ezzati Yazid
- Laboratory of Food Safety and Food IntegrityInstitute of Tropical Agriculture and Food Security, Universiti Putra Malaysia Serdang Malaysia
| | - Selamat Jinap
- Laboratory of Food Safety and Food IntegrityInstitute of Tropical Agriculture and Food Security, Universiti Putra Malaysia Serdang Malaysia
- Department of Food Science, Faculty of Food Science and TechnologyUniversiti Putra Malaysia Serdang Malaysia
| | - Siti Izera Ismail
- Laboratory of Climate‐Smart Food Crop ProductionInstitute of Tropical Agriculture and Food Security, Universiti Putra Malaysia Serdang Malaysia
- Department of Plant ProtectionFaculty of AgricultureUniversiti Putra Malaysia Serdang Malaysia
| | - Naresh Magan
- Applied Mycology GroupCranfield Soil and AgriFood InstituteCranfield University Cranfield UK
| | - Nik Iskandar Putra Samsudin
- Laboratory of Food Safety and Food IntegrityInstitute of Tropical Agriculture and Food Security, Universiti Putra Malaysia Serdang Malaysia
- Department of Food Science, Faculty of Food Science and TechnologyUniversiti Putra Malaysia Serdang Malaysia
| |
Collapse
|
9
|
Gasperini AM, Rodriguez-Sixtos A, Verheecke-Vaessen C, Garcia-Cela E, Medina A, Magan N. Resilience of Biocontrol for Aflatoxin Minimization Strategies: Climate Change Abiotic Factors May Affect Control in Non-GM and GM-Maize Cultivars. Front Microbiol 2019; 10:2525. [PMID: 31787944 PMCID: PMC6856084 DOI: 10.3389/fmicb.2019.02525] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/21/2019] [Indexed: 01/16/2023] Open
Abstract
There has been significant interest in the development of formulations of non-toxigenic strains of Aspergillus flavus for control of toxigenic strains to reduce the aflatoxin B1 (AFB1) contamination of maize. In the future, climate change (CC) abiotic conditions of temperature (+2–4°C), CO2 (existing levels of 400 vs. 800–1,200 ppb), and drought stress will impact on the agronomy and control of pests and diseases. This study has examined (1) the effect of two-way interacting factors of water activity × temperature on colonization and AFB1 contamination of maize cobs of different ripening ages; (2) the effect of non-toxigenic strains of A. flavus (50:50 inoculum ratio) on relative control of toxigenic A. flavus and AFB1 contamination of ripening cobs; (3) post-harvest control of AFB1 by non-toxigenic strains of A. flavus in non-GM and isogenic GM maize cultivars using the same inoculum ratio; and (4) the impact of three-way interacting CC factors on relative control of AFB1 in maize cobs pre-harvest and in stored non-GM/GM cultivars. Pre-harvest colonization and AFB1 production by a toxigenic A. flavus strain was conserved at 37°C when compared with 30°C, at the three ripening stages of cob development examined: milk ripe (R3), dough (R4), and dent (R5). However, pre-harvest biocontrol with a non-toxigenic strain was only effective at the R3 and R4 stages and not at the R5 stage. This was supported by relative expression of the aflR regulatory biosynthetic gene in the different treatments. When exposed to three-way interacting CC factors for control of AFB1 pre-harvest, the non-toxigenic A. flavus strain was effective at R3 and £4 stages but not at the R5 stage. Post-harvest storage of non-GM and GM cultivars showed that control was achievable at 30°C, with slightly better control in GM-cultivars in terms of the overall inhibition of AFB1 production. However, in stored maize, the non-toxigenic strains of A. flavus had conserved biocontrol of AFB1 contamination, especially in the GM-maize cultivars under three-way interacting CC conditions (37°C × 1,000 ppm CO2 and drought stress). This was supported by the relative expression of the aflR gene in these treatments. This study suggests that the choice of the biocontrol strains, for pre- or post-harvest control, needs to take into account their resilience in CC-related abiotic conditions to ensure that control of AFB1 contamination can be conserved.
Collapse
Affiliation(s)
- Alessandra Marcon Gasperini
- Applied Mycology Group, Cranfield Soil and Agrifood Institute, Environment and Agrifood Theme, Cranfield University, Bedford, United Kingdom
| | - Alicia Rodriguez-Sixtos
- Applied Mycology Group, Cranfield Soil and Agrifood Institute, Environment and Agrifood Theme, Cranfield University, Bedford, United Kingdom
| | - Carol Verheecke-Vaessen
- Applied Mycology Group, Cranfield Soil and Agrifood Institute, Environment and Agrifood Theme, Cranfield University, Bedford, United Kingdom
| | - Esther Garcia-Cela
- Applied Mycology Group, Cranfield Soil and Agrifood Institute, Environment and Agrifood Theme, Cranfield University, Bedford, United Kingdom
| | - Angel Medina
- Applied Mycology Group, Cranfield Soil and Agrifood Institute, Environment and Agrifood Theme, Cranfield University, Bedford, United Kingdom
| | - Naresh Magan
- Applied Mycology Group, Cranfield Soil and Agrifood Institute, Environment and Agrifood Theme, Cranfield University, Bedford, United Kingdom
| |
Collapse
|
10
|
New insights into fumonisin production and virulence of Fusarium proliferatum underlying different carbon sources. Food Res Int 2019; 116:397-407. [DOI: 10.1016/j.foodres.2018.08.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/08/2018] [Accepted: 08/18/2018] [Indexed: 01/09/2023]
|
11
|
Ndemera M, De Boevre M, De Saeger S. Mycotoxin management in a developing country context: A critical review of strategies aimed at decreasing dietary exposure to mycotoxins in Zimbabwe. Crit Rev Food Sci Nutr 2018; 60:529-540. [PMID: 30501517 DOI: 10.1080/10408398.2018.1543252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mycotoxins are unavoidable environmental contaminants, which are found throughout the food chain, particularly in cereals. Mycotoxin management is not effective in developing countries, such as Zimbabwe, due to resource constraints, yet human health risk is evident. Various practical mitigation strategies that can be employed to decrease human dietary exposure to mycotoxins as a means of preliminary steps towards risk management are discussed. These strategies were stratified into two categories. First, crop/commodity-centred strategies, mainly the pre-harvest actions of cultivar selection, bio-control, as well as good agricultural practices (GAP), and the post-harvest actions including timeous harvesting, appropriate drying and storage technologies, are elaborated making use of hazard analysis critical control points (HACCP) principles. The role of legislation is also explored as a crop/commodity centred mitigation strategy. Second, human-centred strategies anchored on dietary diversity and the use of socio-cultural approaches as a direct means of reducing mycotoxin exposure are discussed. Finally, an integrated science-based mycotoxin management strategy, encompassing targeted legislation on mycotoxins, consumer education and information sharing, human and institutional capacity building, training and financing, is suggested in addition to GAP, as a means of reducing human health risk associated with mycotoxin exposure in Zimbabwe.HighlightsFarm-to-fork HACCP-based mycotoxin managementHuman-centred mycotoxin management approaches are keyAgronomy, technology and legislation critical in reducing mycotoxin exposure.
Collapse
Affiliation(s)
- Melody Ndemera
- Laboratory of Food Analysis, Ghent University, Ghent, Belgium.,Department of Food, Nutrition and Family Sciences, University of Zimbabwe, Mount Pleasant, Harare, Zimbabwe
| | | | - Sarah De Saeger
- Laboratory of Food Analysis, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Garcia-Cela E, Verheecke-Vaessen C, Magan N, Medina A. The ``-omics’’ contributions to the understanding of mycotoxin production under diverse environmental conditions. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Bernáldez V, Córdoba JJ, Delgado J, Bermúdez E, Rodríguez A. Gene expression analysis to predict aflatoxins B1 and G1 contamination in some plant origin foods. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Lappa IK, Mparampouti S, Lanza B, Panagou EZ. Control of Aspergillus carbonarius in grape berries by Lactobacillus plantarum: A phenotypic and gene transcription study. Int J Food Microbiol 2018; 275:56-65. [PMID: 29635101 DOI: 10.1016/j.ijfoodmicro.2018.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/21/2018] [Accepted: 04/02/2018] [Indexed: 02/06/2023]
Abstract
The in vitro and in situ antifungal activity of Lactobacillus plantarum against the ochratoxigenic fungus Aspergillus carbonarius was investigated in this study. Four different fungal isolates from grape berries were co-cultured with four different strains of L. plantarum on Malt Extract Agar (MEA) plates at 30 °C. Bacterial strains inhibited fungal growth up to 88% and significantly reduced toxin production up to 100%. In addition, L. plantarum was evaluated as biocontrol agent against A. carbonarius growth and OTA production on table grapes. Temporal studies of bacterial antagonism were performed with two different grape cultivars. Artificially wounded and unwounded berries were pre-treated with 108 CFU/mL bacteria and inoculated with 106 spores/mL of A. carbonarius ochratoxigenic isolates. Biocontrol agents displayed high rate of colonization on grapes during 5 days of incubation at 30 °C. Scanning electron microscopy (SEM) also determined the presence of microorganisms on grape surface. Bacterial strains were effective in controlling fungal infection reaching up to 71% inhibition rates. However the presence of wounds on grape skin facilitated infection of berries by A. carbonarius, since unwounded berries showed lower levels of infection. Results also revealed significant reduction in mycotoxin production ranging between 32% and 92%. Transcriptome analysis following exposure to co-cultivation, exhibited differential expression for each gene studied of AcOTAnrps (Aspergillus carbonarius OTA nonribosomal), AcOTApks (Aspergillus carbonarius OTA polyketide synthase) and laeA, emphasizing the significance of strain variability. The genes AcOTAnrps and laeA were most influenced by the presence of L. plantarum. This work is a contribution for the potential biocontrol of toxigenic fungi in table grapes by lactic acid bacteria (LAB). The above findings underline the significance of bacterial strain variability on the effectiveness of biopreservative features of L. plantarum strains.
Collapse
Affiliation(s)
- Iliada K Lappa
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Agricultural University of Athens (AUA), Iera Odos 75, 11855 Athens, Greece
| | - Sevasti Mparampouti
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Agricultural University of Athens (AUA), Iera Odos 75, 11855 Athens, Greece
| | - Barbara Lanza
- Laboratory of Electron Microscopy, Research Centre for Engineering and Agro-food Processing (CREA-IT), Council for Agricultural Research and Economics (CREA), Via Nazionale 38, I-65012 Cepagatti, PE, Italy
| | - Efstathios Z Panagou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Agricultural University of Athens (AUA), Iera Odos 75, 11855 Athens, Greece.
| |
Collapse
|
15
|
Castaño SM, Medina A, Magan N. Impact of storage environment on respiration, dry matter losses and fumonisin B1 contamination of stored paddy and brown rice. WORLD MYCOTOXIN J 2017. [DOI: 10.3920/wmj2017.2237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objective of this study was to compare the effect of different storage moisture conditions (0.90 and 0.95 water activity, aw) and temperatures (25, 30 °C) on (1) respiration rates (CO2; R), (2) dry matter loss (DML) of paddy and brown rice, (3) inoculation of both rice types with Fusarium verticillioides under these storage conditions on R, DML, and (4) effects on fumonisin B1 (FB1) contamination of these rice types. There was an increase in temporal CO2 production with wetter and warmer conditions in naturally contaminated rice. Higher R and consequently, percentage (%) DML were generally observed for brown rice (up to 21%) while in paddy rice this was only up to 3.5% DML. The FB1 production in paddy rice was low and similar in all treatments regardless of aw × temperature conditions. In the dehusked brown rice there were higher levels of contamination with FB1, with a maximum at 0.95 aw and 25 °C. A significant correlation between %DMLs and FB1 contamination was obtained (R=0.7454, P<0.01). These results suggest that monitoring of CO2 may provide an early indication of fungal activity in moist rice and help in evaluating the relative risk of spoilage and potential for mycotoxin contamination.
Collapse
Affiliation(s)
- S. Martín Castaño
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Beds., MK43 0AL, United Kingdom
| | - A. Medina
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Beds., MK43 0AL, United Kingdom
| | - N. Magan
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Beds., MK43 0AL, United Kingdom
| |
Collapse
|
16
|
Medina A, Mohale S, Samsudin NIP, Rodriguez-Sixtos A, Rodriguez A, Magan N. Biocontrol of mycotoxins: dynamics and mechanisms of action. Curr Opin Food Sci 2017. [DOI: 10.1016/j.cofs.2017.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|