1
|
Carslaw N, Aghaji J, Budisulistiorini SH, Carslaw DC, Chatzidiakou L, Cheung RW, Dillon TJ, Edwards P, Genes D, Giorio C, Hamilton JF, Ikeda E, Jones RL, Lee J, Lewis AC, Kumar A, McEachan R, McFiggans G, Murrels T, Pleace N, Ruangkanit A, Shao Y, O'Meara SP, Shaw DR, Shaw M, Waiblinger D, Warburton T, West S, Wood C, Yang T. The INGENIOUS project: towards understanding air pollution in homes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:355-372. [PMID: 39851239 DOI: 10.1039/d4em00634h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
This paper provides an overview of the INGENIOUS (UnderstandING the sourcEs, traNsformations and fates of IndOor air pollUtantS) project, aiming to better understand air pollution in homes. Although our homes are the microenvironment in which we spend most of our time, we know relatively little about the sources, transformation processes and fates of indoor air pollutants, or our exposure to them. INGENIOUS aims to address this knowledge gap by delivering: an indoor emissions inventory for UK homes; comprehensive air pollutant measurements in 310 homes in Bradford using a combination of low cost-sensors and more advanced air quality instrumentation; an analysis of the impact of indoor air pollution on outdoor air quality and vice versa using mobile measurements; insight into future indoor air quality using detailed air pollution models; identification of indoor air pollutants that warrant further toxicological study; and better understanding of the barriers and facilitators for behaviour that drives improved indoor air quality. Median daily PM2.5 and CO2 concentrations varied from 7.8 μg m-3 and 666 ppm in the summer, to 16.4 μg m-3 and 857 ppm in the winter respectively in our sampled homes. Peak daily PM2.5 concentrations above 150 μg m-3 were frequently observed across all seasons, and were driven by cooking. Cooking activities also generated high concentrations of volatile organic compounds during emissions measurements, such as harmful aldehydes (up to ∼50 ppb), and alcohols (up to ∼600 ppb) from a chicken stir-fry. Our sampled homes displayed a wide variation in indoor pollutant concentrations, with a strong link to behaviour, including frequency and type of cooking activities, and use of ventilation.
Collapse
Affiliation(s)
- Nicola Carslaw
- Department of Environment and Geography, University of York, UK.
| | | | | | - David C Carslaw
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, UK
| | - Lia Chatzidiakou
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Rachael W Cheung
- Centre for Health Data Science, Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, UK
- Born in Bradford, Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, UK
| | - Terry J Dillon
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, UK
| | - Pete Edwards
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, UK
| | - Denisa Genes
- School of Psychology, University of Sheffield, UK
| | - Chiara Giorio
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jacqueline F Hamilton
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, UK
- National Centre for Atmospheric Science, UK
| | - Erika Ikeda
- Born in Bradford, Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, UK
| | - Roderic L Jones
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - James Lee
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, UK
- National Centre for Atmospheric Science, UK
| | - Alastair C Lewis
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, UK
| | - Ashish Kumar
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, UK
| | - Rosemary McEachan
- Born in Bradford, Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, UK
- Population Health Improvement UK (PHI-UK), UK
| | - Gordon McFiggans
- Department of Earth and Environmental Sciences, University of Manchester, UK
| | | | | | - Athina Ruangkanit
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, UK
- National Centre for Atmospheric Science, UK
| | - Yunqi Shao
- Department of Earth and Environmental Sciences, University of Manchester, UK
| | - Simon P O'Meara
- National Centre for Atmospheric Science, UK
- Department of Earth and Environmental Sciences, University of Manchester, UK
| | - David R Shaw
- Department of Environment and Geography, University of York, UK.
- National Centre for Atmospheric Science, UK
| | - Marvin Shaw
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, UK
- National Centre for Atmospheric Science, UK
| | - Dagmar Waiblinger
- Born in Bradford, Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, UK
| | - Tom Warburton
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, UK
- National Centre for Atmospheric Science, UK
| | - Sarah West
- Stockholm Environment Institute, University of York, UK
| | | | - Tiffany Yang
- Centre for Health Data Science, Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, UK
- Born in Bradford, Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, UK
- Population Health Improvement UK (PHI-UK), UK
| |
Collapse
|
2
|
Santoro M, Costabile F, Gualtieri M, Rinaldi M, Paglione M, Busetto M, Di Iulio G, Di Liberto L, Gherardi M, Pelliccioni A, Monti P, Barbara B, Grollino MG. Associations between fine particulate matter, gene expression, and promoter methylation in human bronchial epithelial cells exposed within a classroom under air-liquid interface. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124471. [PMID: 38950846 DOI: 10.1016/j.envpol.2024.124471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
Associations between indoor air pollution from fine particulate matter (PM with aerodynamic diameter dp < 2.5 μm) and human health are poorly understood. Here, we analyse the concentration-response curves for fine and ultrafine PM, the gene expression, and the methylation patterns in human bronchial epithelial cells (BEAS-2B) exposed at the air-liquid interface (ALI) within a classroom in downtown Rome. Our results document the upregulation of aryl hydrocarbon receptor (AhR) and genes associated with xenobiotic metabolism (CYP1A1 and CYP1B1) in response to single exposure of cells to fresh urban aerosols at low fine PM mass concentrations within the classroom. This is evidenced by concentrations of ultrafine particles (UFPs, dp < 0.1 μm), polycyclic aromatic hydrocarbons (PAH), and ratios of black carbon (BC) to organic aerosol (OA). Additionally, an interleukin 18 (IL-18) down-regulation was found during periods of high human occupancy. Despite the observed gene expression dysregulation, no changes were detected in the methylation levels of the promoter regions of these genes, indicating that the altered gene expression is not linked to changes in DNA methylation and suggesting the involvement of another epigenetic mechanism in the gene regulation. Gene expression changes at low exposure doses have been previously reported. Here, we add the possibility that lung epithelial cells, when singly exposed to real environmental concentrations of fine PM that translate into ultra-low doses of treatment, may undergo epigenetic alteration in the expression of genes related to xenobiotic metabolism. Our findings provide a perspective for future indoor air quality regulations. We underscore the potential role of indoor UFPs as carriers of toxic molecules with low-pressure weather conditions, when rainfall and strong winds may favour low levels of fine PM.
Collapse
Affiliation(s)
- Massimo Santoro
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123, Rome, Italy
| | - Francesca Costabile
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Fosso del Cavaliere, 00133, Rome, Italy; NBFC - National Biodiversity Future Center, NBFC, 90133, Palermo, Italy.
| | - Maurizio Gualtieri
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Matteo Rinaldi
- NBFC - National Biodiversity Future Center, NBFC, 90133, Palermo, Italy; Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Gobetti, 40129, Bologna, Italy
| | - Marco Paglione
- NBFC - National Biodiversity Future Center, NBFC, 90133, Palermo, Italy; Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Gobetti, 40129, Bologna, Italy
| | - Maurizio Busetto
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Gobetti, 40129, Bologna, Italy
| | - Gianluca Di Iulio
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Fosso del Cavaliere, 00133, Rome, Italy; Department of Public Health and Infectious Disease - University of Rome "La Sapienza", via Eudossiana 18, 00184, Rome, Italy
| | - Luca Di Liberto
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Fosso del Cavaliere, 00133, Rome, Italy
| | - Monica Gherardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Monte Porzio Catone, 00078, Rome, Italy
| | - Armando Pelliccioni
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Monte Porzio Catone, 00078, Rome, Italy
| | - Paolo Monti
- Department of Civil, Building and Environmental Engineering - University of Rome "La Sapienza", via Eudossiana 18, 00184, Rome, Italy
| | - Benassi Barbara
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123, Rome, Italy
| | - Maria Giuseppa Grollino
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123, Rome, Italy
| |
Collapse
|
3
|
Verstraelen S, Maes F, Jacobs A, Remy S, Frijns E, Goelen E, Nelissen I. In vitro assessment of acute airway effects from real-life mixtures of ozone-initiated oxidation products of limonene and printer exhaust. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 59:403-419. [PMID: 39327753 DOI: 10.1080/10934529.2024.2406113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024]
Abstract
In indoor air the reaction of ozone (O3) with terpenes may lead to the formation of irritating gas-phase products which may induce acute airway effects (i.e. sudden, short-term changes or symptoms related to the respiratory system). We aimed to perform an in vitro study on possible health effects of products from the O3-initiated reaction of limonene with printer exhaust, representing real-life mixtures in offices. Human bronchial epithelial cells were exposed for 1 hour (h) to limonene and O3, combined with printer exhaust. The resulting concentrations represented 34% and 6% of the generated initial concentrations of limonene (400 µg/m³) and O3 (417 µg/cm³), respectively, which were in range of high end realistic indoor concentrations. We observed that the reaction of limonene with O3 generated an increase of ultrafine particles within 1 h, with a significant increase of secondary reaction products 4-oxopentanal and 3-isopropenyl-6-oxo-heptanal at high end indoor air levels. Simultaneous printing activity caused the additional release of micron-sized particles and a further increase in reaction products. Relevant cellular endpoints to evaluate the possible induction of acute airway effects were measured. However, none of the test atmospheres representing office air was observed to induce these effects.
Collapse
Affiliation(s)
- Sandra Verstraelen
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO nv), Mol, Belgium
| | - Frederick Maes
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO nv), Mol, Belgium
| | - An Jacobs
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO nv), Mol, Belgium
| | - Sylvie Remy
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO nv), Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Evelien Frijns
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO nv), Mol, Belgium
| | - Eddy Goelen
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO nv), Mol, Belgium
| | - Inge Nelissen
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO nv), Mol, Belgium
| |
Collapse
|
4
|
López LR, Dessì P, Cabrera-Codony A, Rocha-Melogno L, Kraakman B, Naddeo V, Balaguer MD, Puig S. CO 2 in indoor environments: From environmental and health risk to potential renewable carbon source. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159088. [PMID: 36181799 DOI: 10.1016/j.scitotenv.2022.159088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/10/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
In the developed world, individuals spend most of their time indoors. Poor Indoor Air Quality (IAQ) has a wide range of effects on human health. The burden of disease associated with indoor air accounts for millions of premature deaths related to exposure to Indoor Air Pollutants (IAPs). Among them, CO2 is the most common one, and is commonly used as a metric of IAQ. Indoor CO2 concentrations can be significantly higher than outdoors due to human metabolism and activities. Even in presence of ventilation, controlling the CO2 concentration below the Indoor Air Guideline Values (IAGVs) is a challenge, and many indoor environments including schools, offices and transportation exceed the recommended value of 1000 ppmv. This is often accompanied by high concentration of other pollutants, including bio-effluents such as viruses, and the importance of mitigating the transmission of airborne diseases has been highlighted by the COVID-19 pandemic. On the other hand, the relatively high CO2 concentration of indoor environments presents a thermodynamic advantage for direct air capture (DAC) in comparison to atmospheric CO2 concentration. This review aims to describe the issues associated with poor IAQ, and to demonstrate the potential of indoor CO2 DAC to purify indoor air while generating a renewable carbon stream that can replace conventional carbon sources as a building block for chemical production, contributing to the circular economy.
Collapse
Affiliation(s)
- L R López
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain.
| | - P Dessì
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| | - A Cabrera-Codony
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| | - L Rocha-Melogno
- ICF, 2635 Meridian Parkway Suite 200, Durham, NC 27713, United States
| | - B Kraakman
- Jacobs Engineering, Templey Quay 1, Bristol BAS1 6DG, UK; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., 47011 Valladolid, Spain
| | - V Naddeo
- Sanitary Environmental Engineering Division, Department of Civil Engineering, University of Salerno, 84084 Fisciano, SA, Italy
| | - M D Balaguer
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| | - S Puig
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| |
Collapse
|
5
|
Guo X, Ehindero T, Lau C, Zhao R. Impact of glycol-based solvents on indoor air quality-Artificial fog and exposure pathways of formaldehyde and various carbonyls. INDOOR AIR 2022; 32:e13100. [PMID: 36168228 DOI: 10.1111/ina.13100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/20/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
Artificial fog is commonly employed in the entertainment industry and indoor household celebrations. The fog is generated from glycol-based solvents, which can also be found in e-cigarettes and personal care products. Although potential health impacts of glycol inhalation are frequently cited by studies of e-cigarette smoking, the dynamics and the chemical composition of glycol-based aerosols have never been studied systematically. The objective of this work is to investigate the impact of glycol-based aerosol on indoor air quality. Specifically, we targeted artificial fogs generated with common glycols, including propylene glycol (PG) and triethylene glycol (TEG). With the aid of a novel aerosol collecting and monitoring instrument setup, we obtained time-resolved aerosol profiles and their chemical compositions in an experimental room. Artificial fog has given rise to a significant amount of ultra-fine particulate matter, demonstrating its negative impact on indoor air quality. Additionally, we found a high concentration (9.75 mM) of formaldehyde and other carbonyls in fog machine fluids stored for months. These compounds are introduced to the indoor air upon artificial fog application. We propose that carbonyls have accumulated from the oxidative decomposition of glycols, initiated by OH radicals and singlet oxygens (1 O2 ) and likely sustained by autooxidation. Oxidation of glycols by indoor oxidants has never been reported previously. Such chemical processes can represent an unrecognized source of toxic carbonyl compounds which is also applicable to other glycol-based solvents.
Collapse
Affiliation(s)
- Xinyang Guo
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Toluwatise Ehindero
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Chester Lau
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ran Zhao
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Coffaro B, Weisel CP. Reactions and Products of Squalene and Ozone: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7396-7411. [PMID: 35648815 PMCID: PMC9231367 DOI: 10.1021/acs.est.1c07611] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 05/15/2023]
Abstract
This critical review describes the squalene-ozone (SqOz) reaction, or squalene ozonolysis. Ambient ozone penetrates indoors and drives indoor air chemistry. Squalene, a component of human skin oil, contains six carbon-carbon double bonds and is very reactive with ozone. Bioeffluents from people contribute to indoor air chemistry and affect the indoor air quality, resulting in exposures because people spend the majority of their time indoors. The SqOz reaction proceeds through various formation pathways and produces compounds that include aldehydes, ketones, carboxylic acids, and dicarbonyl species, which have a range of volatilities. In this critical review of SqOz chemistry, information on the mechanism of reaction, reaction probability, rate constants, and reaction kinetics are compiled. Characterizations of SqOz reaction products have been done in laboratory experiments and real-world settings. The effect of multiple environmental parameters (ozone concentration, air exchange rate (AER), temperature, and relative humidity (RH)) in indoor settings are summarized. This critical review concludes by identifying the paucity of available exposure, health, and toxicological data for known reaction products. Key knowledge gaps about SqOz reactions leading to indoor exposures and adverse health outcomes are provided as well as an outlook on where the field is headed.
Collapse
Affiliation(s)
- Breann Coffaro
- Environmental
and Health Sciences Institute and Graduate Program in Exposure Science, Rutgers, The State University of New Jersey, Piscataway Township, New
Jersey 08854, United
States
| | - Clifford P. Weisel
- Environmental
and Health Sciences Institute and School of Public Health, Rutgers, The State University of New Jersey, Piscataway Township, New
Jersey 08854, United
States
| |
Collapse
|
7
|
Ferreira A, Barros N. COVID-19 and Lockdown: The Potential Impact of Residential Indoor Air Quality on the Health of Teleworkers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106079. [PMID: 35627615 PMCID: PMC9141392 DOI: 10.3390/ijerph19106079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/03/2022] [Accepted: 05/15/2022] [Indexed: 02/01/2023]
Abstract
In addition to outdoor atmospheric contamination, indoor exposure to pollutants is a prime contributor to the overall human exposure, and may condition the expressiveness and severity of respiratory, cardiovascular, and allergic diseases. This situation has worsened due to COVID-19, as people have spent more time indoors to comply with social isolation and mandatory telework. The primary purpose of this study was to assess and compare indoor air quality (IAQ) in a significant sample of dwellings of workers from a Higher Education Institution (HEI) in Portugal who were teleworking and their usual workplace. The levels of carbon dioxide, carbon monoxide, and formaldehyde, particles with equivalent diameters of less than 10 μm, 5 μm, 2.5 μm, 1 μm, 0.5 μm, and 0.3 μm, and ultrafine particles, as well as the level of thermal comfort, were measured at both of the sites assessed. It was found that most of the houses studied, as well as the HEI, had good IAQ, although there were places where the concentrations of some pollutants were above the legal standards. On the other hand, a link was identified between the IAQ and the symptoms and diseases observed in the workers who participated in the study. These results offer the opportunity to make corrective interventions, thereby controlling the sources of pollutants and promoting better ventilation in order to reduce the risk for workers.
Collapse
Affiliation(s)
- Ana Ferreira
- Department of Environmental Health, Coimbra Health School, Polytechnic of Coimbra, Rua 5 de Outubro—São Martinho do Bispo, Apartado 7006, 3046-854 Coimbra, Portugal
- Correspondence:
| | - Nelson Barros
- UFP Energy, Environment and Health Research Unit (FP-ENAS), Universidade Fernando Pessoa (UFP), Praça Nove de Abril, 349, 4249-004 Porto, Portugal;
| |
Collapse
|
8
|
Tagorti G, Kaya B. Genotoxic effect of microplastics and COVID-19: The hidden threat. CHEMOSPHERE 2022; 286:131898. [PMID: 34411929 DOI: 10.1016/j.chemosphere.2021.131898] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/26/2021] [Accepted: 08/12/2021] [Indexed: 05/10/2023]
Abstract
Microplastics (MPs) are ubiquitous anthropogenic contaminants, and their abundance in the entire ecosystem raises the question of how far is the impact of these MPs on the biota, humans, and the environment. Recent research has overemphasized the occurrence, characterization, and direct toxicity of MPs; however, determining and understanding their genotoxic effect is still limited. Thus, the present review addresses the genotoxic potential of these emerging contaminants in aquatic organisms and in human peripheral lymphocytes and identified the research gaps in this area. Several genotoxic endpoints were implicated, including the frequency of micronuclei (MN), nucleoplasmic bridge (NPB), nuclear buds (NBUD), DNA strand breaks, and the percentage of DNA in the tail (%Tail DNA). In addition, the mechanism of MPs-induced genotoxicity seems to be closely associated with reactive oxygen species (ROS) production, inflammatory responses, and DNA repair interference. However, the gathered information urges the need for more studies that present environmentally relevant conditions. Taken into consideration, the lifestyle changes within the COVID-19 pandemic, we discussed the impact of the pandemic on enhancing the genotoxic potential of MPs whether through increasing human exposure to MPs via inappropriate disposal and overconsumption of plastic-based products or by disrupting the defense system owing to unhealthy food and sleep deprivation as well as stress. Overall, this review provided a reference for the genotoxic effect of MPs, their mechanism of action, as well as the contribution of COVID-19 to increase the genotoxic risk of MPs.
Collapse
Affiliation(s)
- Ghada Tagorti
- Akdeniz University, Faculty of Sciences, Department of Biology, 07058-Campus, Antalya, Turkey
| | - Bülent Kaya
- Akdeniz University, Faculty of Sciences, Department of Biology, 07058-Campus, Antalya, Turkey.
| |
Collapse
|
9
|
Chavarrio Cañas JE, Monge-Palacios M, Grajales-González E, Sarathy SM. Early Chemistry of Nicotine Degradation in Heat-Not-Burn Smoking Devices and Conventional Cigarettes: Implications for Users and Second- and Third-Hand Smokers. J Phys Chem A 2021; 125:3177-3188. [PMID: 33834773 PMCID: PMC8154610 DOI: 10.1021/acs.jpca.1c01650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nicotine exposure results in health risks not only for smokers but also for second- and third-hand smokers. Unraveling nicotine's degradation mechanism and the harmful chemicals that are produced under different conditions is vital to assess exposure risks. We performed a theoretical study to describe the early chemistry of nicotine degradation by investigating two important reactions that nicotine can undergo: hydrogen abstraction by hydroxyl radicals and unimolecular dissociation. The former contributes to the control of the degradation mechanism below 800 K due to a non-Arrhenius kinetics, which implies an enhancement of reactivity as temperature decreases. The latter becomes important at higher temperatures due to its larger activation energy. This change in the degradation mechanism is expected to affect the composition of vapors inhaled by smokers and room occupants. Conventional cigarettes, which operate at temperatures higher than 1000 K, are more prone to yield harmful pyridinyl radicals via nicotine dissociation, while nicotine in electronic cigarettes and vaporizers, with operating temperatures below 600 K, will be more likely degraded by hydroxyl radicals, resulting in a vapor with a different composition. Although low-temperature nicotine delivery devices have been claimed to be less harmful due to their nonburning operating conditions, the non-Arrhenius kinetics that we observed for the degradation mechanism below 873 K suggests that nicotine degradation may be more rapidly initiated as temperature is reduced, indicating that these devices may be more harmful than it is commonly assumed.
Collapse
Affiliation(s)
- Javier E Chavarrio Cañas
- Clean Combustion Research Center (CCRC), Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - M Monge-Palacios
- Clean Combustion Research Center (CCRC), Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - E Grajales-González
- Clean Combustion Research Center (CCRC), Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - S Mani Sarathy
- Clean Combustion Research Center (CCRC), Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
10
|
Zhou S, Liu Z, Wang Z, Young CJ, VandenBoer TC, Guo BB, Zhang J, Carslaw N, Kahan TF. Hydrogen Peroxide Emission and Fate Indoors during Non-bleach Cleaning: A Chamber and Modeling Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15643-15651. [PMID: 33258369 DOI: 10.1021/acs.est.0c04702] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Activities such as household cleaning can greatly alter the composition of air in indoor environments. We continuously monitored hydrogen peroxide (H2O2) from household non-bleach surface cleaning in a chamber designed to simulate a residential room. Mixing ratios of up to 610 ppbv gaseous H2O2 were observed following cleaning, orders of magnitude higher than background levels (sub-ppbv). Gaseous H2O2 levels decreased rapidly and irreversibly, with removal rate constants (kH2O2) 17-73 times larger than air change rate (ACR). Increasing the surface-area-to-volume ratio within the room caused peak H2O2 mixing ratios to decrease and kH2O2 to increase, suggesting that surface uptake dominated H2O2 loss. Volatile organic compound (VOC) levels increased rapidly after cleaning and then decreased with removal rate constants 1.2-7.2 times larger than ACR, indicating loss due to surface partitioning and/or chemical reactions. We predicted photochemical radical production rates and steady-state concentrations in the simulated room using a detailed chemical model for indoor air (the INDCM). Model results suggest that, following cleaning, H2O2 photolysis increased OH concentrations by 10-40% to 9.7 × 105 molec cm-3 and hydroperoxy radical (HO2) concentrations by 50-70% to 2.3 × 107 molec cm-3 depending on the cleaning method and lighting conditions.
Collapse
Affiliation(s)
- Shan Zhou
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Zhenlei Liu
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Zixu Wang
- Department of Environment and Geography, University of York, York YO10 5DD, U.K
| | - Cora J Young
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | | | - B Beverly Guo
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Jianshun Zhang
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Nicola Carslaw
- Department of Environment and Geography, University of York, York YO10 5DD, U.K
| | - Tara F Kahan
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
11
|
Ault AP, Grassian VH, Carslaw N, Collins DB, Destaillats H, Donaldson DJ, Farmer DK, Jimenez JL, McNeill VF, Morrison GC, O'Brien RE, Shiraiwa M, Vance ME, Wells JR, Xiong W. Indoor Surface Chemistry: Developing a Molecular Picture of Reactions on Indoor Interfaces. Chem 2020; 6:3203-3218. [PMID: 32984643 PMCID: PMC7501779 DOI: 10.1016/j.chempr.2020.08.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemical reactions on indoor surfaces play an important role in air quality in indoor environments, where humans spend 90% of their time. We focus on the challenges of understanding the complex chemistry that takes place on indoor surfaces and identify crucial steps necessary to gain a molecular-level understanding of environmental indoor surface chemistry: (1) elucidate key surface reaction mechanisms and kinetics important to indoor air chemistry, (2) define a range of relevant and representative surfaces to probe, and (3) define the drivers of surface reactivity, particularly with respect to the surface composition, light, and temperature. Within the drivers of surface composition are the roles of adsorbed/absorbed water associated with indoor surfaces and the prevalence, inhomogeneity, and properties of secondary organic films that can impact surface reactivity. By combining laboratory studies, field measurements, and modeling we can gain insights into the molecular processes necessary to further our understanding of the indoor environment.
Collapse
Affiliation(s)
- Andrew P Ault
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.,Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92037, USA.,Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicola Carslaw
- Department of Environment and Geography, University of York, York, North Yorkshire YO10 5NG, UK
| | - Douglas B Collins
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.,Department of Chemistry, Bucknell University, Lewisburg, PA 17837, USA
| | - Hugo Destaillats
- Indoor Environment Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - D James Donaldson
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.,Department of Physical and Environmental Sciences, University of Toronto, Toronto, ON M1C 1A4, Canada
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Jose L Jimenez
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO 80309, USA
| | - V Faye McNeill
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Glenn C Morrison
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rachel E O'Brien
- Department of Chemistry, College of William and Mary, Williamsburg, VA 23185, USA
| | - Manabu Shiraiwa
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Marina E Vance
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - J R Wells
- National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Wei Xiong
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.,Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
12
|
Chen Y, Wang W, Lian C, Peng C, Zhang W, Li J, Liu M, Shi B, Wang X, Ge M. Evaluation and impact factors of indoor and outdoor gas-phase nitrous acid under different environmental conditions. J Environ Sci (China) 2020; 95:165-171. [PMID: 32653176 DOI: 10.1016/j.jes.2020.03.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/30/2019] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
As an important indoor pollutant, nitrous acid (HONO) can contribute to the concentration of indoor OH radicals by photolysis via sunlight penetrating into indoor environments, thus affecting the indoor oxidizing capability. In order to investigate the concentration of indoor HONO and its impact factors, three different indoor environments and two different locations in urban and suburban areas were selected to monitor indoor and outdoor pollutants simultaneously, including HONO, NO, NO2, nitrogen oxides (NOx), O3, and particle mass concentration. In general, the concentration of indoor HONO was higher than that outdoors. In the urban area, indoor HONO with high average concentration (7.10 ppbV) was well-correlated with the temperature. In the suburban area, the concentration of indoor HONO was only about 1-2 ppbV, and had a good correlation with indoor relative humidity. It was mainly attributed to the heterogeneous reaction of NO2 on indoor surfaces. The sunlight penetrating into indoor environments from outside had a great influence on the concentration of indoor HONO, leading to a concentration of indoor HONO close to that outdoors.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chaofan Lian
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Peng
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenyu Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junling Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyuan Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Shi
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuefei Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Science, Xiamen 361021, China
| |
Collapse
|
13
|
Wolkoff P. Indoor air chemistry: Terpene reaction products and airway effects. Int J Hyg Environ Health 2020; 225:113439. [PMID: 32044535 DOI: 10.1016/j.ijheh.2019.113439] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/04/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022]
Abstract
Reactive chemistry is ubiquitous indoors with a wealth of complex oxidation reactions; some of these are initiated by both homogeneous and heterogeneous reaction of ozone with unsaturated organic compounds and subsequent the hydroxyl radical, either in the gas-phase or on reactive surfaces. One major focus has been the reaction of common and abundant terpene-based fragrances in indoor air emitted from many wood-based materials, a variety of consumer products, and citrus fruits and flowers. Inhalation of the terpenes themselves are generally not considered a health concern (both acute and long-term) due to their low indoor air concentrations; however, their gas- and surface reactions with ozone and the hydroxyl radical produce a host of products, both gaseous, i. a. formaldehyde, and ultrafine particles formed by condensation/nucleation processes. These reaction products may be of health concern. Human cell bioassays with key reaction products from ozone-initiated terpene reactions have shown some inflammatory reactions, but results are difficult to interpret for human exposure and risk assessment. Acute effects like sensory irritation in eyes and airways are unlikely or present at very low intensity in real life conditions based on rodent and human exposure studies and known thresholds for sensory irritation in eyes and airways and derived human reference values for airflow limitation and pulmonary irritation. Some fragrances and their ozone-initiated reaction products may possess anti-inflammatory properties. However, long-term effects of the reaction products as ultrafine particles are poorly explored. Material and product surfaces with high ozone deposition velocities may significantly impact the perceived air quality by altered emissions from both homogeneous and heterogeneous surface reactions.
Collapse
Affiliation(s)
- Peder Wolkoff
- National Research Centre for the Working Environment, NRCWE, Lersø Parkallé 105, 2920, Copenhagen, Denmark.
| |
Collapse
|
14
|
Kalimeri KK, Bartzis JG, Sakellaris IA, de Oliveira Fernandes E. Investigation of the PM 2.5, NO 2 and O 3 I/O ratios for office and school microenvironments. ENVIRONMENTAL RESEARCH 2019; 179:108791. [PMID: 31605869 DOI: 10.1016/j.envres.2019.108791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/03/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Differentiation of the exposure to PM2.5 (particulate matter less than 2.5 μm in aerodynamic diameter), NO2 and O3 i.e. pollutants of outdoor origin, due to the occupation of office and school microenvironments, was investigated through the quantification of the respective Indoor to Outdoor (I/O) ratios, in simple statistical terms. For that cause, indoor and outdoor observation data were retrieved from the HEALS EDMS database, and more specifically the data from the OFFICAIR and the SINPHONIE EU projects. The I/O ratios were produced and were statistically analyzed in order to be able to study the influence of the indoor environment against the pollutants coming from outdoors. The present statistical approach highlighted also the differences of I/O ratios between the two studied microenvironments for each pollutant. For exposure estimation to the above-mentioned pollutants, the probability and cumulative distribution function (pdf/cdf) empirical approximations led to the conclusion that for offices the I/O ratios of PM2.5 follow a normal distribution, while NO2 and O3 a gamma distribution. Respectively, for schools the I/O ratios of all pollutants follow a lognormal distribution.
Collapse
Affiliation(s)
- Krystallia K Kalimeri
- Environmental Technology Laboratory, Dep. of Mechanical Engineering, University of Western Macedonia, Bakola & Sialvera, 50132, Kozani, Greece.
| | - John G Bartzis
- Environmental Technology Laboratory, Dep. of Mechanical Engineering, University of Western Macedonia, Bakola & Sialvera, 50132, Kozani, Greece.
| | - Ioannis A Sakellaris
- Environmental Technology Laboratory, Dep. of Mechanical Engineering, University of Western Macedonia, Bakola & Sialvera, 50132, Kozani, Greece.
| | - Eduardo de Oliveira Fernandes
- Institute of Science and Innovation in Mechanical Engineering and Industrial Management, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal.
| |
Collapse
|
15
|
Liu Y, Sun Y, Hao J, Wang W, Song Y, Zhou Z. Interface Bonding Properties and Mechanism of Poplar Board-Veneered Wood Fiber/Polypropylene Composites with Chlorinated Polypropylene Films as an Intermediate Layer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13934-13941. [PMID: 31571491 DOI: 10.1021/acs.langmuir.9b02241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It is difficult to decorate wood plastic composites with wood veneer because their surface energy is low and there are no pores on the surface. In the present study, we developed an environmentally friendly and convenient method to decorate the wood fiber/polypropylene (WF/PP) composite board. We used chlorinated polypropylene (CPP) as an intermediate film to laminate wood veneer to WF/PP composite boards by hot-pressing at 110 °C and then cooling down. The interface bonding mechanism between the wood veneer, CPP layer, and WF/PP composite was analyzed using scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDS), surface roughness test, and attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). The results indicated that CPP penetrated the wood pores and formed a firm anchor structure. SEM images showed small cracks at the interface between CPP and PP when WF/PP contained less WF. The results of SEM-EDS and ATR-FTIR showed that WF/PP composites with a higher WF content would have more fibers exposed at the surface, thus making the surface rough and providing more specific surface area. The veneered WF/PP composite with 80% WF content had the highest surface bond strength and water resistance.
Collapse
Affiliation(s)
- Yinan Liu
- Key Laboratory of Bio-Based Material Science and Technology (Chinese Ministry of Education) , Northeast Forestry University , Harbin 150040 , China
- Heilongjiang Institute of Wood Science , Harbin 150040 , China
| | - Yanan Sun
- Key Laboratory of Bio-Based Material Science and Technology (Chinese Ministry of Education) , Northeast Forestry University , Harbin 150040 , China
| | - Jianxiu Hao
- Key Laboratory of Bio-Based Material Science and Technology (Chinese Ministry of Education) , Northeast Forestry University , Harbin 150040 , China
| | - Weihong Wang
- Key Laboratory of Bio-Based Material Science and Technology (Chinese Ministry of Education) , Northeast Forestry University , Harbin 150040 , China
| | - Yongming Song
- Key Laboratory of Bio-Based Material Science and Technology (Chinese Ministry of Education) , Northeast Forestry University , Harbin 150040 , China
| | - Zhifang Zhou
- Heilongjiang Institute of Wood Science , Harbin 150040 , China
| |
Collapse
|
16
|
Xiang J, Weschler CJ, Zhang J, Zhang L, Sun Z, Duan X, Zhang Y. Ozone in urban China: Impact on mortalities and approaches for establishing indoor guideline concentrations. INDOOR AIR 2019; 29:604-615. [PMID: 31077433 DOI: 10.1111/ina.12565] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/12/2019] [Accepted: 05/07/2019] [Indexed: 05/03/2023]
Abstract
Reducing indoor ozone levels may be an effective strategy to reduce total exposure and associated mortality. Here we estimate (a) premature mortalities attributable to ozone for China's urban population ≥25 years of age; (b) the fraction of total exposure occurring indoors; and (c) mortalities that can be potentially avoided through meeting current and more stringent indoor ozone standards/guidelines based on 1-hour daily maxima. To estimate ozone-attributable premature mortalities, we used hourly outdoor ozone concentrations measured at 1497 monitoring stations located in 339 Chinese cities and a published concentration-response model. We proceeded to estimate province-specific infiltration factors and co-occurring hourly indoor ozone concentrations. For the year 2015, we estimated that indoor exposures accounted for 59% (95% confidence interval (CI): 26%-79%) of the total ozone exposure that resulted in 70800 (95% CI: 35 900-137 700) premature all-cause mortalities in urban China. If the current Chinese indoor ozone standards (80 ppbv (160 µg/m3 ); 56 ppbv (112 µg/m3 )) were met, the mean estimates of reduction in mortalities would be indistinguishable from zero. With stricter 1-hour indoor ozone guidelines, the expected mortality reductions increase exponentially per unit decrease in indoor ozone. The analysis in this paper should help facilitate formulating present and future indoor ozone guidelines.
Collapse
Affiliation(s)
- Jianbang Xiang
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Charles J Weschler
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey
| | - Junfeng Zhang
- Global Health Institute and the Nicholas School of Environment, Duke University, Durham, North Carolina
- Global and Environmental Health, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Lin Zhang
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, Guangdong, China
| | - Zhiwei Sun
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| |
Collapse
|
17
|
Farmer DK. Analytical Challenges and Opportunities For Indoor Air Chemistry Field Studies. Anal Chem 2019; 91:3761-3767. [DOI: 10.1021/acs.analchem.9b00277] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Delphine K. Farmer
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
18
|
Lundgren Kownacki K, Gao C, Kuklane K, Wierzbicka A. Heat Stress in Indoor Environments of Scandinavian Urban Areas: A Literature Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E560. [PMID: 30769945 PMCID: PMC6406735 DOI: 10.3390/ijerph16040560] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/05/2019] [Accepted: 02/10/2019] [Indexed: 01/02/2023]
Abstract
Climate change increases the risks of heat stress, especially in urban areas where urban heat islands can develop. This literature review aims to describe how severe heat can occur and be identified in urban indoor environments, and what actions can be taken on the local scale. There is a connection between the outdoor and the indoor climate in buildings without air conditioning, but the pathways leading to the development of severe heat levels indoors are complex. These depend, for example, on the type of building, window placement, the residential area's thermal outdoor conditions, and the residents' influence and behavior. This review shows that only few studies have focused on the thermal environment indoors during heat waves, despite the fact that people commonly spend most of their time indoors and are likely to experience increased heat stress indoors in the future. Among reviewed studies, it was found that the indoor temperature can reach levels 50% higher in °C than the outdoor temperature, which highlights the importance of assessment and remediation of heat indoors. Further, most Heat-Health Warning Systems (HHWS) are based on the outdoor climate only, which can lead to a misleading interpretation of the health effects and associated solutions. In order to identify severe heat, six factors need to be taken into account, including air temperature, heat radiation, humidity, and air movement as well as the physical activity and the clothes worn by the individual. Heat stress can be identified using a heat index that includes these six factors. This paper presents some examples of practical and easy to use heat indices that are relevant for indoor environments as well as models that can be applied in indoor environments at the city level. However, existing indexes are developed for healthy workers and do not account for vulnerable groups, different uses, and daily variations. As a result, this paper highlights the need for the development of a heat index or the adjustment of current thresholds to apply specifically to indoor environments, its different uses, and vulnerable groups. There are several actions that can be taken to reduce heat indoors and thus improve the health and well-being of the population in urban areas. Examples of effective measures to reduce heat stress indoors include the use of shading devices such as blinds and vegetation as well as personal cooling techniques such as the use of fans and cooling vests. Additionally, the integration of innovative Phase Change Materials (PCM) into facades, roofs, floors, and windows can be a promising alternative once no negative health and environmental effects of PCM can be ensured.
Collapse
Affiliation(s)
- Karin Lundgren Kownacki
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, 221 00 Lund, Sweden.
| | - Chuansi Gao
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, 221 00 Lund, Sweden.
| | - Kalev Kuklane
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, 221 00 Lund, Sweden.
| | - Aneta Wierzbicka
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, 221 00 Lund, Sweden.
| |
Collapse
|
19
|
López de León LR, Deaton KE, Deshusses MA. Miniaturized Biotrickling Filters and Capillary Microbioreactors for Process Intensification of VOC Treatment with Intended Application to Indoor Air. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1518-1526. [PMID: 30590918 DOI: 10.1021/acs.est.8b05209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Typical biofilters and biotrickling filters used for volatile organic compounds (VOCs) control have treatment rates limited to 30-200 g m-3 h-1, mostly because they are exposed to dilute VOC streams, have moderate biomass density and activity, and moderate mass transfer coefficients. For these reasons and the concern over releasing bioaerosols and humidity, traditional biofilters and biotrickling filters are not ideal for the treatment of indoor air. Here we report on the development and evaluation of microbioreactors for the intensive treatment of VOCs that could be used for indoor air quality control, when coupled with a VOC microconcentrator (developed separately). The microconcentrator will function to adsorb VOCs from indoor air and release them to the microbioreactor at a higher concentration. The miniaturized bioreactors, with maximized surface area-to-volume ratios, allow for increased mixing and mass transfer of pollutants to the biofilm, resulting in a greater degradation rate of the VOCs. Three different microbioreactors were designed, constructed and their performance for removing vapors of toluene and methanol was assessed. Results showed that they were able to achieve maximum elimination capacities (ECs) for methanol around 1000 g m-3 h-1, 780 g m-3 h-1, and 12 600 g m-3 h-1 for the glass beads packed bed, polyurethane (PU) foam biotrickling filters and capillary microbioreactor, respectively, and around 120 g m-3 h-1, 250 g m-3 h-1 and 3050 g m-3 h-1, respectively, when treating toluene vapors. These values, especially for the capillary microbioreactor, are 40-80 times greater than the rates generally obtained in conventional biofilters and biotrickling filters. The interphase mass transfer coefficient (KLa) was determined. The capillary microbioreactor had values 13-17 times greater than the other two bioreactors, suggesting that improved mass transfer could have contributed to the very high performance observed in the capillary microbioreactor. The results demonstrate that microbioreactors are promising novel technologies for controlling small amounts of organic pollutants.
Collapse
Affiliation(s)
- Luis Rafael López de León
- Department of Civil and Environmental Engineering 127C Hudson Hall , Box 90287, Duke University . Durham , North Carolina 27708-0287 , United States
| | - Kelsey E Deaton
- Department of Civil and Environmental Engineering 127C Hudson Hall , Box 90287, Duke University . Durham , North Carolina 27708-0287 , United States
| | - Marc A Deshusses
- Department of Civil and Environmental Engineering 127C Hudson Hall , Box 90287, Duke University . Durham , North Carolina 27708-0287 , United States
| |
Collapse
|
20
|
Wierzbicka A, Pedersen E, Persson R, Nordquist B, Stålne K, Gao C, Harderup LE, Borell J, Caltenco H, Ness B, Stroh E, Li Y, Dahlblom M, Lundgren-Kownacki K, Isaxon C, Gudmundsson A, Wargocki P. Healthy Indoor Environments: The Need for a Holistic Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1874. [PMID: 30200196 PMCID: PMC6163607 DOI: 10.3390/ijerph15091874] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/31/2022]
Abstract
Indoor environments have a large impact on health and well-being, so it is important to understand what makes them healthy and sustainable. There is substantial knowledge on individual factors and their effects, though understanding how factors interact and what role occupants play in these interactions (both causative and receptive) is lacking. We aimed to: (i) explore interactions between factors and potential risks if these are not considered from holistic perspective; and (ii) identify components needed to advance research on indoor environments. The paper is based on collaboration between researchers from disciplines covering technical, behavioural, and medical perspectives. Outcomes were identified through literature reviews, discussions and workshops with invited experts and representatives from various stakeholder groups. Four themes emerged and were discussed with an emphasis on occupant health: (a) the bio-psycho-social aspects of health; (b) interaction between occupants, buildings and indoor environment; (c) climate change and its impact on indoor environment quality, thermal comfort and health; and (d) energy efficiency measures and indoor environment. To advance the relevant research, the indoor environment must be considered a dynamic and complex system with multiple interactions. This calls for a transdisciplinary and holistic approach and effective collaboration with various stakeholders.
Collapse
Affiliation(s)
- Aneta Wierzbicka
- Ergonomics and Aerosol Technology, Lund University, P.O. Box 118, 221 00 Lund, Sweden.
| | - Eja Pedersen
- Environmental Psychology, Department of Architecture and Built Environment, Lund University, P.O. Box 118, 221 00 Lund, Sweden.
| | - Roger Persson
- Department of Psychology, Lund University, P.O. Box 213, 221 00 Lund, Sweden.
| | | | - Kristian Stålne
- Materials Science and Applied Mathematics, Malmö University, SE-205 06 Malmö, Sweden.
| | - Chuansi Gao
- Ergonomics and Aerosol Technology, Lund University, P.O. Box 118, 221 00 Lund, Sweden.
| | | | - Jonas Borell
- Ergonomics and Aerosol Technology, Lund University, P.O. Box 118, 221 00 Lund, Sweden.
| | | | - Barry Ness
- Centre for Sustainability Studies (LUCSUS), Lund University, P.O. Box 170, 22 100 Lund, Sweden.
| | - Emilie Stroh
- Occupational and Environmental Medicine, Lund University, Scheelevägen 2, 22 363 Lund, Sweden.
| | - Yujing Li
- Materials Science and Applied Mathematics, Malmö University, SE-205 06 Malmö, Sweden.
| | - Mats Dahlblom
- Building Services, Lund University, P.O. Box 118, 221 00 Lund, Sweden.
| | | | - Christina Isaxon
- Ergonomics and Aerosol Technology, Lund University, P.O. Box 118, 221 00 Lund, Sweden.
| | - Anders Gudmundsson
- Ergonomics and Aerosol Technology, Lund University, P.O. Box 118, 221 00 Lund, Sweden.
| | - Pawel Wargocki
- Centre for Indoor Environment and Energy (CIEE), Danish University of Technology, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
21
|
Carrer P, Wolkoff P. Assessment of Indoor Air Quality Problems in Office-Like Environments: Role of Occupational Health Services. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15040741. [PMID: 29649167 PMCID: PMC5923783 DOI: 10.3390/ijerph15040741] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 03/31/2018] [Accepted: 04/09/2018] [Indexed: 11/30/2022]
Abstract
There is an increasing concern about indoor air quality (IAQ) and its impact on health, comfort, and work-performance in office-like environments and their workers, which account for most of the labor force. The Scientific Committee on Indoor Air Quality and Health of the ICOH (Int. Comm. Occup. Health) has discussed the assessment and management of IAQ problems and proposed a stepwise approach to be conducted by a multidisciplinary team. It is recommended to integrate the building assessment, inspection by walk-through of the office workplace, questionnaire survey, and environmental measurements, in that order. The survey should cover perceived IAQ, symptoms, and psychosocial working aspects. The outcome can be used for mapping the IAQ and to prioritize the order in which problems should be dealt with. Individual health surveillance in relation to IAQ is proposed only when periodical health surveillance is already performed for other risks (e.g., video display units) or when specific clinical examination of workers is required due to the occurrence of diseases that may be linked to IAQ (e.g., Legionnaire’s disease), recurrent inflammation, infections of eyes, respiratory airway effects, and sensorial disturbances. Environmental and personal risk factors should also be compiled and assessed. Workplace health promotion should include programs for smoking cessation and stress and IAQ management.
Collapse
Affiliation(s)
- Paolo Carrer
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, 20157 Milan, Italy.
| | - Peder Wolkoff
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
22
|
Abstract
This review aims to encapsulate the importance, ubiquity, and complexity of indoor chemistry. We discuss the many sources of indoor air pollutants and summarize their chemical reactions in the air and on surfaces. We also summarize some of the known impacts of human occupants, who act as sources and sinks of indoor chemicals, and whose activities (e.g., cooking, cleaning, smoking) can lead to extremely high pollutant concentrations. As we begin to use increasingly sensitive and selective instrumentation indoors, we are learning more about chemistry in this relatively understudied environment.
Collapse
Affiliation(s)
- Charles J Weschler
- Environmental and Occupational Health Sciences Institute , Rutgers University , Piscataway , New Jersey 08854 , United States
- International Centre for Indoor Environment and Energy, Department of Civil Engineering , Technical University of Denmark , Lyngby , Denmark
| | - Nicola Carslaw
- Environment Department , University of York , York , North Yorkshire YO10 5NG , U.K
| |
Collapse
|
23
|
Environment and Human Health: The Challenge of Uncertainty in Risk Assessment. GEOSCIENCES 2018. [DOI: 10.3390/geosciences8010024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|