1
|
Hopf NB, Rousselle C, Poddalgoda D, Lamkarkach F, Bessems J, Schmid K, Jones K, Takaki K, Casteleyn L, Zare Jeddi M, Bader M, Koller M, Browne P, FitzGerald R, Viegas S, Göen T, Santonen T, Väänänen V, Duca RC, Pasanen-Kase R. A harmonized occupational biomonitoring approach. ENVIRONMENT INTERNATIONAL 2024; 191:108990. [PMID: 39244955 DOI: 10.1016/j.envint.2024.108990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
Biomonitoring has been widely used in assessing exposures in both occupational and public health complementing chemical risk assessments because it measures the concentrations of chemical substances in human body fluids (e.g., urine and blood). Biomonitoring considers all routes and sources of exposure. An occupational biomonitoring guidance document has been elaborated (OECD Occupational Biomonitoring Guidance) within the OECD framework and specifically, the Working Parties on Exposure and Hazard Assessment by scientific experts from 40 institutes and organizations representing 15 countries. The guidance provides practical information for assessing chemical exposures in occupational settings including the three common routes of exposure: inhalation, skin absorption and ingestion due to hand to mouth contact. The elaborated stepwise approach for conducting biomonitoring is tailored for occupational health professionals, scientists, risk assessors, and regulators. It includes methods for selecting appropriate biomarkers, devising sampling strategies, and assessing laboratories for validated analytical methods for the biomarker of interest, and ensuring timely feedback of results. Furthermore, it describes procedures for setting up efficient biomonitoring programs based on the Similar Exposure Group (SEG) approaches. Derived health-based human exposure biomarker assessment values called Occupational Biomonitoring Levels (OBLs) are proposed for use in occupational exposure and risk assessment. It also helps with the interpretation of biomonitoring results routinely collected and procedures for communicating biomonitoring results at individual, collective, and workplace levels. Ethical considerations associated with biomonitoring are also discussed. The ultimate goal of this biomonitoring approach is to promote harmonized application and interpretation of biomarkers as well as evidence-based occupational risk management measures.
Collapse
Affiliation(s)
- Nancy B Hopf
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche 2, 1011 Epalinges-Lausanne, Switzerland.
| | - Christophe Rousselle
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 94701 Maisons‑Alfort, France.
| | - Devika Poddalgoda
- Existing Substances Risk Assessment Bureau, Healthy Environment and Consumer Safety Branch, Health Canada, Government of Canada, Canada.
| | - Farida Lamkarkach
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 94701 Maisons Alfort, France.
| | | | - Kaspar Schmid
- State Secretariat for Economic Affairs (SECO), Section Chemicals and Occupational Health, Holzikofenweg 36, 3003 Bern, Switzerland.
| | - Kate Jones
- Health and Safety Executive, Harpur Hill, Buxton, SK17 9JN, UK.
| | | | | | | | - Michael Bader
- BASF SE, ESG/CB - Medical Center Z130, Carl-Bosch-Str. 38, 67056 Ludwigshafen am Rhein, Germany.
| | | | | | | | - Susana Viegas
- ENSP/UNL, NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Portugal.
| | - Thomas Göen
- University of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nuremberg, Schillerstrasse 25, 91054, Erlangen, Germany.
| | - Tiina Santonen
- Finnish Institute of Occupational Health, Helsinki, Finland.
| | - Virpi Väänänen
- European Chemicals Agency, Telakkakatu 6, P.O. Box 400, FI-00121 Helsinki, Finland.
| | - Radu-Corneliu Duca
- Katholieke Universiteit Leuven, Belgium; Laboratoire National de Santé (LNS), Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, 1, Rue Louis Rech, L-3555 Dudelange, Luxembourg.
| | - Robert Pasanen-Kase
- State Secretariat for Economic Affairs (SECO), Section Chemicals and Occupational Health, Holzikofenweg 36, 3003 Bern, Switzerland.
| |
Collapse
|
2
|
Zhang J, Hu Y, Wang X, Ding X, Cen X, Wang B, Yang S, Ye Z, Qiu W, Chen W, Zhou M. Associations of personal PM 2.5-bound heavy metals and heavy metal mixture with lung function: Results from a panel study in Chinese urban residents. CHEMOSPHERE 2024; 364:143084. [PMID: 39142394 DOI: 10.1016/j.chemosphere.2024.143084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND There are a few reports on the associations between fine particulate matter (PM2.5)-bound heavy metals and lung function. OBJECTIVES To evaluate the associations of single and mixed PM2.5-bound heavy metals with lung function. METHODS This study included 316 observations of 224 Chinese adults from the Wuhan-Zhuhai cohort over two study periods, and measured participants' personal PM2.5-bound heavy metals and lung function. Three linear mixed models, including the single constituent model, the PM2.5-adjusted constituent model, and the constituent residual model were used to evaluate the association between single metal and lung function. Mixed exposure models including Bayesian kernel machine regression (BKMR) model, weighted quantile sum (WQS) model, and Explainable Machine Learning model were used to assess the relationship between PM2.5-bound heavy metal mixtures and lung function. RESULTS In the single exposure analyses, significant negative associations of PM2.5-bound lead, antimony, and cadmium with peak expiratory flow (PEF) were observed. In the mixed exposure analyses, significant decreases in forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC), maximal mid-expiratory flow (MMF), and forced expiratory flow at 75% of the pulmonary volume (FEF75) were associated with the increased PM2.5-bound heavy metal mixture. The BKMR models suggested negative associations of PM2.5-bound lead and antimony with lung function. In addition, PM2.5-bound copper was positively associated with FEV1/FVC, MMF, and FEF75. The Explainable Machine Learning models suggested that FEV1/FVC, MMF, and FEF75 decreased with the elevated PM2.5-bound lead, manganese, and vanadium, and increased with the elevated PM2.5-bound copper. CONCLUSIONS The negative relationships were detected between PM2.5-bound heavy metal mixture and FEV1/FVC, MMF, as well as FEF75. Among the PM2.5-bound heavy metal mixture, PM2.5-bound lead, antimony, manganese, and vanadium were negatively associated with FEV1/FVC, MMF, and FEF75, while PM2.5-bound copper was positively associated with FEV1/FVC, MMF, and FEF75.
Collapse
Affiliation(s)
- Jiake Zhang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuxiang Hu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xing Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xuejie Ding
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xingzu Cen
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shijie Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zi Ye
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Qiu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
3
|
Zeng F, Pang G, Hu L, Sun Y, Peng W, Chen Y, Xu D, Xia Q, Zhao L, Li Y, He M. Subway Fine Particles (PM 2.5)-Induced Pro-Inflammatory Response Triggers Airway Epithelial Barrier Damage Through the TLRs/NF-κB-Dependent Pathway In Vitro. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 39189708 DOI: 10.1002/tox.24403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/19/2024] [Accepted: 08/10/2024] [Indexed: 08/28/2024]
Abstract
Subways are widely used in major cities around the world, and subway fine particulate matter (PM2.5) is the main source of daily PM2.5 exposure for urban residents. Exposure to subway PM2.5 leads to acute inflammatory damage in humans, which has been confirmed in mouse in vivo studies. However, the concrete mechanism by which subway PM2.5 causes airway damage remains obscure. In this study, we found that subway PM2.5 triggered release of pro-inflammatory cytokines such as interleukin 17E, tumor necrosis factor α, transforming growth factor β, and thymic stromal lymphopoietin from human bronchial epithelial cells (BEAS-2B) in a dose-effect relationship. Subsequently, supernatant recovered from the subway PM2.5 group significantly increased expression of the aforementioned cytokines in BEAS-2B cells compared with the subway PM2.5 group. Additionally, tight junctions (TJs) of BEAS-2B cells including zonula occludens-1, E-cadherin, and occludin were decreased by subway PM2.5 in a dose-dependent manner. Moreover, supernatant recovered from the subway PM2.5 group markedly decreased the expression of these TJs compared with the control group. Furthermore, inhibitors of toll-like receptors (TLRs) and nuclear factor-kappa B (NF-κB), as well as chelate resins (e.g., chelex) and deferoxamine, remarkably ameliorated the observed changes of cytokines and TJs caused by subway PM2.5 in BEAS-2B cells. Therefore, these results suggest that subway PM2.5 induced a decline of TJs after an initial ascent of cytokine expression, and subway PM2.5 altered expression of both cytokines and TJs by activating TLRs/NF-κB-dependent pathway in BEAS-2B cells. The metal components of subway PM2.5 may contribute to the airway epithelial injury.
Collapse
Affiliation(s)
- Fanmei Zeng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Guanhua Pang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Liwen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Yuan Sun
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Wen Peng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Yuwei Chen
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Dan Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Qing Xia
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Luwei Zhao
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Yifei Li
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Miao He
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Shenyang, China
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, China
| |
Collapse
|
4
|
Panizzolo M, Barbero F, Ghelli F, Garzaro G, Bellisario V, Guseva Canu I, Fenoglio I, Bergamaschi E, Bono R. Assessing the inhaled dose of nanomaterials by nanoparticle tracking analysis (NTA) of exhaled breath condensate (EBC) and its relationship with lung inflammatory biomarkers. CHEMOSPHERE 2024; 358:142139. [PMID: 38688349 DOI: 10.1016/j.chemosphere.2024.142139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/26/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
The widespread and increasing use of nanomaterials has resulted in a higher likelihood of exposure by inhalation for nanotechnology workers. However, tracking the internal dose of nanoparticles deposited at the airways level, is still challenging. To assess the suitability of particle number concentration determination as biomarker of internal dose, we carried out a cross sectional investigation involving 80 workers handling nanomaterials. External exposure was characterized by portable counters of particles DISCminiTM (Testo, DE), allowing to categorize 51 workers as exposed and 29 as non-exposed (NE) to nanoparticles. Each subject filled in a questionnaire reporting working practices and health status. Exhaled breath condensate was collected and analysed for the number of particles/ml as well as for inflammatory biomarkers. A clear-cut relationship between the number of airborne particles in the nano-size range determined by the particle counters and the particle concentration in exhaled breath condensate (EBC) was apparent. Moreover, inflammatory cytokines (IL-1β, IL-10, and TNF-α) measured in EBC, were significantly higher in the exposed subjects as compared to not exposed. Finally, significant correlations were found between external exposure, the number concentration of particles measured by the nanoparticle tracking analysis (NTA) and inflammatory cytokines. As a whole, the present study, suggests that NTA can be regarded as a reliable tool to assess the inhaled dose of particles and that this dose can effectively elicit inflammatory effects.
Collapse
Affiliation(s)
- Marco Panizzolo
- Department of Public Health and Pediatrics. University of Torino, Italy
| | | | - Federica Ghelli
- Department of Public Health and Pediatrics. University of Torino, Italy.
| | - Giacomo Garzaro
- Department of Public Health and Pediatrics. University of Torino, Italy
| | | | - Irina Guseva Canu
- Department of Occupational and Environmental Health, UniSanté, Lausanne, Switzerland
| | | | | | - Roberto Bono
- Department of Public Health and Pediatrics. University of Torino, Italy
| |
Collapse
|
5
|
Sauvain JJ, Hemmendinger M, Charreau T, Jouannique V, Debatisse A, Suárez G, Hopf NB, Guseva Canu I. Metal and oxidative potential exposure through particle inhalation and oxidative stress biomarkers: a 2-week pilot prospective study among Parisian subway workers. Int Arch Occup Environ Health 2024; 97:387-400. [PMID: 38504030 PMCID: PMC10999389 DOI: 10.1007/s00420-024-02054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/05/2024] [Indexed: 03/21/2024]
Abstract
OBJECTIVE In this pilot study on subway workers, we explored the relationships between particle exposure and oxidative stress biomarkers in exhaled breath condensate (EBC) and urine to identify the most relevant biomarkers for a large-scale study in this field. METHODS We constructed a comprehensive occupational exposure assessment among subway workers in three distinct jobs over 10 working days, measuring daily concentrations of particulate matter (PM), their metal content and oxidative potential (OP). Individual pre- and post-shift EBC and urine samples were collected daily. Three oxidative stress biomarkers were measured in these matrices: malondialdehyde (MDA), 8-hydroxy-2'deoxyguanosine (8-OHdG) and 8-isoprostane. The association between each effect biomarker and exposure variables was estimated by multivariable multilevel mixed-effect models with and without lag times. RESULTS The OP was positively associated with Fe and Mn, but not associated with any effect biomarkers. Concentration changes of effect biomarkers in EBC and urine were associated with transition metals in PM (Cu and Zn) and furthermore with specific metals in EBC (Ba, Co, Cr and Mn) and in urine (Ba, Cu, Co, Mo, Ni, Ti and Zn). The direction of these associations was both metal- and time-dependent. Associations between Cu or Zn and MDAEBC generally reached statistical significance after a delayed time of 12 or 24 h after exposure. Changes in metal concentrations in EBC and urine were associated with MDA and 8-OHdG concentrations the same day. CONCLUSION Associations between MDA in both EBC and urine gave opposite response for subway particles containing Zn versus Cu. This diverting Zn and Cu pattern was also observed for 8-OHdG and urinary concentrations of these two metals. Overall, MDA and 8-OHdG responses were sensitive for same-day metal exposures in both matrices. We recommend MDA and 8-OHdG in large field studies to account for oxidative stress originating from metals in inhaled particulate matter.
Collapse
Affiliation(s)
- Jean-Jacques Sauvain
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University Lausanne, Route de la Corniche 2, 1066, Epalinges, Switzerland.
| | - Maud Hemmendinger
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University Lausanne, Route de la Corniche 2, 1066, Epalinges, Switzerland
| | - Thomas Charreau
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University Lausanne, Route de la Corniche 2, 1066, Epalinges, Switzerland
| | - Valérie Jouannique
- Service Santé-Travail, Régie autonome des transports parisiens (RATP), 88 Boulevard Sébastopol, 75003, Paris, France
| | - Amélie Debatisse
- Service Santé-Travail, Régie autonome des transports parisiens (RATP), 88 Boulevard Sébastopol, 75003, Paris, France
| | - Guillaume Suárez
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University Lausanne, Route de la Corniche 2, 1066, Epalinges, Switzerland
| | - Nancy B Hopf
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University Lausanne, Route de la Corniche 2, 1066, Epalinges, Switzerland
| | - Irina Guseva Canu
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University Lausanne, Route de la Corniche 2, 1066, Epalinges, Switzerland
| |
Collapse
|
6
|
Guseva Canu I, Wild P, Charreau T, Freund R, Toto A, Pralong J, Sakthithasan K, Jouannique V, Debatisse A, Suarez G. Long-term exposure to PM 10 and respiratory health among Parisian subway workers. Int J Hyg Environ Health 2024; 256:114316. [PMID: 38159498 DOI: 10.1016/j.ijheh.2023.114316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Exposure to ambient PM10 may increase the risk of chronic obstructive pulmonary disease (COPD) and lung function decline. We evaluated the long-term exposure to PM10 and its relationship with COPD prevalence and lung function in Parisian subway workers. Participants were randomly selected from a 15,000-subway worker cohort. Individual annual external exposure to PM10 (ePM10) was estimated using a company-specific job-exposure-matrix based on PM10 measurements conducted between 2004 and 2019 in the Parisian subway network. Mean annual inhaled PM10 exposure (iPM10) was modeled as function of ePM10 exposure, inhalation rate, and filtration efficiency of the respiratory protection used. COPD diagnosis was performed in March-May 2021 based on post-bronchodilator spirometry. The relationship between iPM10 and outcomes was assessed using logistic and linear regression models, adjusted for exposure duration and potential confounders. Amongst 254 participants with complete data, 17 were diagnosed as COPD. The mean employment duration was 23.2 ± 7.3years, with annual mean ePM10 of 71.8 ± 33.7 μg/m3 and iPM10 of 0.59 ± 0.27 μg/shift, respectively. A positive but statistically non-significant association was found for COPD prevalence with iPM10 (OR = 1.034, 95%-CI = 0.781; 1.369, per 100 ng/shift) and ePM10 (OR = 1.029, 95%-CI = 0.879; 1.207, per 10 μg/m3). No decline in lung function was associated with PM10 exposure. However, forced expiratory volume during the first second and forced vital capacity lower than normal were positively associated with exposure duration (OR = 1.125, 95%-CI = 1.004; 1.260 and OR = 1.171, 95%-CI = 0.989; 1.386 per year, respectively). Current smoking was strongly associated with COPD prevalence (OR = 6.85, 95%-CI = 1.87; 25.10) and most lung function parameters. This is the first study assessing the relationship between long-term exposure to subway PM10 and respiratory health in subway workers. The risk estimates related with subway PM10 exposure are compatible with those related to outdoor PM10 exposure in the large recent studies. Large cohorts of subway workers are necessary to confirm these findings.
Collapse
Affiliation(s)
- Irina Guseva Canu
- Center from Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland.
| | - Pascal Wild
- Center from Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland
| | - Thomas Charreau
- Center from Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland
| | - Romain Freund
- Center from Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland
| | - Antonio Toto
- Center from Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland
| | - Jacques Pralong
- Faculty of Medicine, University of Geneva, Switzerland; SwissMedPro Health Services, Switzerland; Hôpital de la Tour, Geneva, Switzerland
| | | | | | | | - Guillaume Suarez
- Center from Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland
| |
Collapse
|
7
|
Zhang J, Chen Z, Shan D, Wu Y, Zhao Y, Li C, Shu Y, Linghu X, Wang B. Adverse effects of exposure to fine particles and ultrafine particles in the environment on different organs of organisms. J Environ Sci (China) 2024; 135:449-473. [PMID: 37778818 DOI: 10.1016/j.jes.2022.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 10/03/2023]
Abstract
Particulate pollution is a global risk factor that seriously threatens human health. Fine particles (FPs) and ultrafine particles (UFPs) have small particle diameters and large specific surface areas, which can easily adsorb metals, microorganisms and other pollutants. FPs and UFPs can enter the human body in multiple ways and can be easily and quickly absorbed by the cells, tissues and organs. In the body, the particles can induce oxidative stress, inflammatory response and apoptosis, furthermore causing great adverse effects. Epidemiological studies mainly take the population as the research object to study the distribution of diseases and health conditions in a specific population and to focus on the identification of influencing factors. However, the mechanism by which a substance harms the health of organisms is mainly demonstrated through toxicological studies. Combining epidemiological studies with toxicological studies will provide a more systematic and comprehensive understanding of the impact of PM on the health of organisms. In this review, the sources, compositions, and morphologies of FPs and UFPs are briefly introduced in the first part. The effects and action mechanisms of exposure to FPs and UFPs on the heart, lungs, brain, liver, spleen, kidneys, pancreas, gastrointestinal tract, joints and reproductive system are systematically summarized. In addition, challenges are further pointed out at the end of the paper. This work provides useful theoretical guidance and a strong experimental foundation for investigating and preventing the adverse effects of FPs and UFPs on human health.
Collapse
Affiliation(s)
- Jianwei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Zhao Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Dan Shan
- Department of Medical, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Yang Wu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Yue Zhao
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Chen Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; National Demonstration Center for Experimental Preventive Medicine Education (Tianjin Medical University), Tianjin 300070, China
| | - Yue Shu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoyu Linghu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Baiqi Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; National Demonstration Center for Experimental Preventive Medicine Education (Tianjin Medical University), Tianjin 300070, China.
| |
Collapse
|
8
|
Ben Rayana T, Wild P, Debatisse A, Jouannique V, Sakthithasan K, Suarez G, Guseva Canu I. Job Exposure Matrix, a Solution for Retrospective Assessment of Particle Exposure in a Subway Network and Their Long-Term Effects. TOXICS 2023; 11:836. [PMID: 37888686 PMCID: PMC10610788 DOI: 10.3390/toxics11100836] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
INTRODUCTION Health effects after long-term exposure to subway particulate matter (PM) remain unknown due to the lack of individual PM exposure data. This study aimed to apply the job exposure matrix (JEM) approach to retrospectively assess occupational exposure to PM in the Parisian subway. METHODS Job, the line and sector of the transport network, as well as calendar period were four JEM dimensions. For each combination of these dimensions, we generated statistical models to estimate the annual average PM10 concentration using data from an exhaustive inventory of the PM measurement campaigns conducted between 2004 and 2020 in the Parisian subway and historical data from the Parisian air pollution monitoring network. The resulting JEM and its exposure estimates were critically examined by experts using the uncertainty analysis framework. RESULTS The resulting JEM allows for the assignment of the estimated annual PM10 concentration to three types of professionals working in the subway: locomotive operators, station agents, and security guards. The estimates' precision and validity depend on the amount and quality of PM10 measurement data used in the job-, line-, and sector-specific models. Models using large amounts of personal exposure measurement data produced rather robust exposure estimates compared to models with lacunary data (i.e., in security guards). The analysis of uncertainty around the exposure estimates allows for the identification of the sources of uncertainty and parameters to be addressed in the future in order to refine and/or improve the JEM. CONCLUSIONS The JEM approach seems relevant for the retrospective exposure assessment of subway workers. When applied to available data on PM10, it allows for the estimation of this exposure in locomotive operators and station agents with an acceptable validity. Conversely, for security guards, the current estimates have insufficient validity to recommend their use in an epidemiological study. Therefore, the current JEM should be considered as a valid prototype, which shall be further improved using more robust measurements for some jobs. This JEM can also be further refined by considering additional exposure determinants.
Collapse
Affiliation(s)
- Tesnim Ben Rayana
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1066 Epalinges-Lausanne, Switzerland
- Autonomous Parisian Transportation Administration (RATP), 75012 Paris, France
| | - Pascal Wild
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1066 Epalinges-Lausanne, Switzerland
| | - Amélie Debatisse
- Autonomous Parisian Transportation Administration (RATP), 75012 Paris, France
| | - Valérie Jouannique
- Autonomous Parisian Transportation Administration (RATP), 75012 Paris, France
| | | | - Guillaume Suarez
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1066 Epalinges-Lausanne, Switzerland
| | - Irina Guseva Canu
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1066 Epalinges-Lausanne, Switzerland
| |
Collapse
|
9
|
Guseva Canu I, Plys E, Velarde Crézé C, Fito C, Hopf NB, Progiou A, Riganti C, Sauvain JJ, Squillacioti G, Suarez G, Wild P, Bergamaschi E. A harmonized protocol for an international multicenter prospective study of nanotechnology workers: the NanoExplore cohort. Nanotoxicology 2023; 17:1-19. [PMID: 36927342 DOI: 10.1080/17435390.2023.2180220] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Nanotechnology applications are fast-growing in many industrial fields. Consequently, health effects of engineered nanomaterials (ENMs) should be investigated. Within the EU-Life project NanoExplore, we developed a harmonized protocol of an international multicenter prospective cohort study of workers in ENM-producing companies. This article describes the development of the protocol, sample size calculation, data collection and management procedures and discusses its relevance with respect to research needs. Within this protocol, workers' ENM exposure will be assessed over four consecutive working days during the initial recruitment campaign and the subsequent follow-up campaigns. Biomonitoring using noninvasive sampling of exhaled breath condensate (EBC), exhaled air, and urine will be collected before and after 4-day exposure monitoring. Both exposure and effect biomarkers, will be quantified along with pulmonary function tests and diagnosed diseases reported using a standardized epidemiological questionnaire available in four languages. Until now, this protocol was implemented at seven companies in Switzerland, Spain and Italy. The protocol is well standardized, though sufficiently flexible to include company-specific conditions and occupational hygiene measures. The recruitment, to date, of 140 participants and collection of all data and samples, enabled us launching the first international cohort of nanotechnology workers. All companies dealing with ENMs could join the NanoExplore Consortium, apply this harmonized protocol and enter in the cohort, concieved as an open cohort. Its protocol meets all requirements of a hypotheses-driven prospective study, which will assess and reassess effects of ENM exposure on workers' health by updating the follow-up of the cohort. New hypothesis could be also considered.
Collapse
Affiliation(s)
- Irina Guseva Canu
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Ekaterina Plys
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Camille Velarde Crézé
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Carlos Fito
- Institutotecnológico del embalaje, transporte y logística (ITENE), Paterna, Spain
| | - Nancy B Hopf
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | | | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy
| | - Jean-Jacques Sauvain
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Giulia Squillacioti
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | - Guillaume Suarez
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Pascal Wild
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| |
Collapse
|
10
|
Guseva Canu I, Hemmendinger M, Toto A, Wild P, Veys-Takeuchi C, Bochud M, Suárez G. Oxidative Potential in Exhaled Air (OPEA) as a Tool for Predicting Certain Respiratory Disorders in the General Adult Population: Cross-Sectional Analysis Nested in the Swiss Health Study. Antioxidants (Basel) 2022; 11:2079. [PMID: 36290803 PMCID: PMC9598404 DOI: 10.3390/antiox11102079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
In a pilot clinical study, OPEA allowed for distinguishing participants with and without chronic obstructive pulmonary disease. This study aimed to assess whether abnormal spirometry parameters and immunity against SARS-CoV-2 are associated with increased OPEA and estimating the OPEA reference interval. Swiss adult residents of the Vaud Canton aged 20-69 years randomly selected from the Federal Statistical Office's registries, speaking French or German, were included and examined between 1 October 2020 and 31 December 2021. General health status and presence of respiratory diseases were assessed by questionnaire and spirometry. Spirometric results were compared with the predicted values and their lower limits of norms of the Global Lung Function Initiative. SARS-CoV-2-seroprevalence was assessed using the Luminex-based test of IgG. Statistical analysis consisted of unilateral t-tests and ANOVA. Lower and upper limit of OPEA reference interval with associated 90%-confidence interval (90%CI) were estimated for the sub-sample of healthy adults by bootstrap, after excluding outliers. The study sample included 247 participants. SARS-CoV-2-seropositive participants and those with an obstructive syndrome had a significantly higher OPEA than seronegative and healthy participants. The estimated reference interval was: -0.0516 (90%CI = -0.0735; -0.0316); -0.0044 (90%CI = -0.0224; 0.0153). OPEA could predict inflammatory-based respiratory disorders, but needs further validation in different settings and for other pathologies.
Collapse
Affiliation(s)
- Irina Guseva Canu
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1066 Epalinges, Switzerland
| | - Maud Hemmendinger
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1066 Epalinges, Switzerland
| | - Antonio Toto
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1066 Epalinges, Switzerland
| | - Pascal Wild
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1066 Epalinges, Switzerland
| | - Caroline Veys-Takeuchi
- Department of Epidemiology and Health Systems, Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1015 Lausanne, Switzerland
| | - Murielle Bochud
- Department of Epidemiology and Health Systems, Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1015 Lausanne, Switzerland
| | - Guillaume Suárez
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1066 Epalinges, Switzerland
| |
Collapse
|
11
|
Single and Combined Associations of Plasma and Urine Essential Trace Elements (Zn, Cu, Se, and Mn) with Cardiovascular Risk Factors in a Mediterranean Population. Antioxidants (Basel) 2022; 11:antiox11101991. [PMID: 36290714 PMCID: PMC9598127 DOI: 10.3390/antiox11101991] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Trace elements are micronutrients that are required in very small quantities through diet but are crucial for the prevention of acute and chronic diseases. Despite the fact that initial studies demonstrated inverse associations between some of the most important essential trace elements (Zn, Cu, Se, and Mn) and cardiovascular disease, several recent studies have reported a direct association with cardiovascular risk factors due to the fact that these elements can act as both antioxidants and pro-oxidants, depending on several factors. This study aims to investigate the association between plasma and urine concentrations of trace elements and cardiovascular risk factors in a general population from the Mediterranean region, including 484 men and women aged 18−80 years and considering trace elements individually and as joint exposure. Zn, Cu, Se, and Mn were determined in plasma and urine using an inductively coupled plasma mass spectrometer (ICP-MS). Single and combined analysis of trace elements with plasma lipid, blood pressure, diabetes, and anthropometric variables was undertaken. Principal component analysis, quantile-based g-computation, and calculation of trace element risk scores (TERS) were used for the combined analyses. Models were adjusted for covariates. In single trace element models, we found statistically significant associations between plasma Se and increased total cholesterol and systolic blood pressure; plasma Cu and increased triglycerides and body mass index; and urine Zn and increased glucose. Moreover, in the joint exposure analysis using quantile g-computation and TERS, the combined plasma levels of Zn, Cu, Se (directly), and Mn (inversely) were strongly associated with hypercholesterolemia (OR: 2.03; 95%CI: 1.37−2.99; p < 0.001 per quartile increase in the g-computation approach). The analysis of urine mixtures revealed a significant relationship with both fasting glucose and diabetes (OR: 1.91; 95%CI: 1.01−3.04; p = 0.046). In conclusion, in this Mediterranean population, the combined effect of higher plasma trace element levels (primarily Se, Cu, and Zn) was directly associated with elevated plasma lipids, whereas the mixture effect in urine was primarily associated with plasma glucose. Both parameters are relevant cardiovascular risk factors, and increased trace element exposures should be considered with caution.
Collapse
|
12
|
Sixteen-Year Monitoring of Particulate Matter Exposure in the Parisian Subway: Data Inventory and Compilation in a Database. ATMOSPHERE 2022. [DOI: 10.3390/atmos13071061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The regularly reported associations between particulate matter (PM) exposure, and morbidity and mortality due to respiratory, cardiovascular, cancer, and metabolic diseases have led to the reduction in recommended outdoor PM10 and PM2.5 exposure limits. However, indoor PM10 and PM2.5 concentrations in subway systems in many cities are often higher than outdoor concentrations. The effects of these exposures on subway workers and passengers are not well known, mainly because of the challenges in exposure assessment and the lack of longitudinal studies combining comprehensive exposure and health surveillance. To fulfill this gap, we made an inventory of the PM measurement campaigns conducted in the Parisian subway since 2004. We identified 5856 PM2.5 and 18,148 PM10 results from both personal and stationary air sample measurements that we centralized in a database along with contextual information of each measurement. This database has extensive coverage of the subway network and will enable descriptive and analytical studies of indoor PM exposure in the Parisian subway and its potential effects on human health.
Collapse
|
13
|
Pétremand R, Suárez G, Besançon S, Dil JH, Guseva Canu I. A Real-Time Comparison of Four Particulate Matter Size Fractions in the Personal Breathing Zone of Paris Subway Workers: A Six-Week Prospective Study. SUSTAINABILITY 2022; 14:5999. [PMID: 35909454 PMCID: PMC9170000 DOI: 10.3390/su14105999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/13/2022] [Indexed: 01/11/2023]
Abstract
We developed a Bayesian spline model for real-time mass concentrations of particulate matter (PM10, PM2.5, PM1, and PM0.3) measured simultaneously in the personal breathing zone of Parisian subway workers. The measurements were performed by GRIMM, a gravimetric method, and DiSCmini during the workers’ work shifts over two consecutive weeks. The measured PM concentrations were analyzed with respect to the working environment, the underground station, and any specific events that occurred during the work shift. Overall, PM0.3 concentrations were more than an order of magnitude lower compared to the other PM concentrations and showed the highest temporal variation. The PM2.5 levels raised the highest exposure concern: 15 stations out of 37 had higher mass concentrations compared to the reference. Station PM levels were not correlated with the annual number of passengers entering the station, the year of station opening or renovation, or the number of platforms and tracks. The correlation with the number of station entrances was consistently negative for all PM sizes, whereas the number of correspondence concourses was negatively correlated with PM0.3 and PM10 levels and positively correlated with PM1 and PM2.5 levels. The highest PM10 exposure was observed for the station platform, followed by the subway cabin and train, while ticket counters had the highest PM0.3, PM1, and PM2.5 mass concentrations. We further found that compared to gravimetric and DiSCmini measurements, GRIMM results showed some discrepancies, with an underestimation of exposure levels. Therefore, we suggest using GRIMM, calibrated by gravimetric methods, for PM sizes above 1μm, and DiSCmini for sizes below 700 nm.
Collapse
Affiliation(s)
- Rémy Pétremand
- Department of Occupational and Environmental Health, Center of Primary Care and Public Health (Unisanté), University of Lausanne, Epalinges, 1066 Lausanne, Switzerland; (R.P.); (G.S.)
| | - Guillaume Suárez
- Department of Occupational and Environmental Health, Center of Primary Care and Public Health (Unisanté), University of Lausanne, Epalinges, 1066 Lausanne, Switzerland; (R.P.); (G.S.)
| | - Sophie Besançon
- Régie Automne de Transport Parisien (RATP), 75012 Paris, France;
| | - J Hugo Dil
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland;
| | - Irina Guseva Canu
- Department of Occupational and Environmental Health, Center of Primary Care and Public Health (Unisanté), University of Lausanne, Epalinges, 1066 Lausanne, Switzerland; (R.P.); (G.S.)
| |
Collapse
|
14
|
Hemmendinger M, Sauvain JJ, Hopf NB, Suárez G, Guseva Canu I. Challenges in Quantifying 8-OHdG and 8-Isoprostane in Exhaled Breath Condensate. Antioxidants (Basel) 2022; 11:antiox11050830. [PMID: 35624694 PMCID: PMC9138069 DOI: 10.3390/antiox11050830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022] Open
Abstract
Exhaled breath condensate (EBC) has attracted substantial interest in the last few years, enabling the assessment of airway inflammation with a non-invasive method. Concentrations of 8-Hydroxydesoxyguanosine (8-OHdG) and 8-isoprostane in EBC have been suggested as candidate biomarkers for lung diseases associated with inflammation and oxidative stress. EBC is a diluted biological matrix and consequently, requires highly sensitive chemical analytic methods (picomolar range) for biomarker quantification. We developed a new liquid chromatography coupled to tandem mass spectrometry method to quantify 8-OHdG and 8-isoprostane in EBC simultaneously. We applied this novel biomarker method in EBC obtained from 10 healthy subjects, 7 asthmatic subjects, and 9 subjects with chronic obstructive pulmonary disease. Both biomarkers were below the limit of detection (LOD) despite the good sensitivity of the chemical analytical method (LOD = 0.5 pg/mL for 8-OHdG; 1 pg/mL for 8-isoprostane). This lack of detection might result from factors affecting EBC collections. These findings are in line with methodological concerns already raised regarding the reliability of EBC collection for quantification of 8-OHdG and 8-isoprostane. Precaution is therefore needed when comparing literature results without considering methodological issues relative to EBC collection and analysis. Loss of analyte during EBC collection procedures still needs to be resolved before using these oxidative stress biomarkers in EBC.
Collapse
|
15
|
Applying the exposome concept to working life health. Environ Epidemiol 2022; 6:e185. [PMID: 35434456 PMCID: PMC9005258 DOI: 10.1097/ee9.0000000000000185] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/14/2021] [Indexed: 12/14/2022] Open
Abstract
Exposures at work have a major impact on noncommunicable diseases (NCDs). Current risk reduction policies and strategies are informed by existing scientific evidence, which is limited due to the challenges of studying the complex relationship between exposure at work and outside work and health. We define the working life exposome as all occupational and related nonoccupational exposures. The latter includes nonoccupational exposures that may be directly or indirectly influenced by or interact with the working life of the individual in their relation to health. The Exposome Project for Health and Occupational Research aims to advance knowledge on the complex working life exposures in relation to disease beyond the single high exposure–single health outcome paradigm, mapping and relating interrelated exposures to inherent biological pathways, key body functions, and health. This will be achieved by combining (1) large-scale harmonization and pooling of existing European cohorts systematically looking at multiple exposures and diseases, with (2) the collection of new high-resolution external and internal exposure data. Methods and tools to characterize the working life exposome will be developed and applied, including sensors, wearables, a harmonized job exposure matrix (EuroJEM), noninvasive biomonitoring, omics, data mining, and (bio)statistics. The toolbox of developed methods and knowledge will be made available to policy makers, occupational health practitioners, and scientists. Advanced knowledge on working life exposures in relation to NCDs will serve as a basis for evidence-based and cost-effective preventive policies and actions. The toolbox will also enable future scientists to further expand the working life exposome knowledge base.
Collapse
|
16
|
Li A, Zhao J, Liu L, Mei Y, Zhou Q, Zhao M, Xu J, Ge X, Xu Q. Association of Metals and Metalloids With Urinary Albumin/Creatinine Ratio: Evidence From a Cross-Sectional Study Among Elderly in Beijing. Front Public Health 2022; 10:832079. [PMID: 35433578 PMCID: PMC9008350 DOI: 10.3389/fpubh.2022.832079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Background Environmental exposure to toxic elements contributes to the pathogenesis of chronic kidney disease (CKD). Few studies focus on the association of urinary metals and metalloids concentrations with the urinary albumin/creatinine ratio (UACR) among elderly, especially in areas and seasons with severe air pollution. Objective We aimed to evaluate the associations of urinary metals and metalloids concentration with UACR, which is an early and sensitive indicator of CKD. Method We conducted a cross-sectional study among 275 elderly people in Beijing from November to December 2016, which has experienced the most severe air pollution in China. We measured 15 urinary metals and metalloids concentration and estimated their association with UACR using a generalized linear model (GLM). Bayesian kernel machine regression (BKMR) and quantile g-computation (qgcomp) models were also conducted to evaluate the combined effect of metal and metalloid mixtures concentration. Results Of the 275 elderly people included in the analysis, we found that higher urinary Cu concentration was positively associated with UACR using GLM (β = 0.36, 95% CI: 0.25, 0.46). Using the BKMR model, we found that the change in UACR was positively associated with a change in urinary Cu concentration from its 25th to 75th percentile value with all other metals and metalloids concentration fixed at their 25th, 50th, or 75th percentile levels. Urinary Cu concentration had the most significant positive contribution (59.15%) in the qgcomp model. Our finding was largely robust in three mixture modeling approaches: GLM, qgcomp, and BKMR. Conclusion This finding suggests that urinary Cu concentration was strongly positively associated with UACR. Further analyses in cohort studies are required to corroborate this finding.
Collapse
Affiliation(s)
- Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Liu Liu
- Chaoyang District Center for Disease Control and Prevention, Beijing, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaoyu Ge
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Qun Xu
| |
Collapse
|
17
|
Sauvain JJ, Hemmendinger M, Suárez G, Creze C, Hopf NB, Jouannique V, Debatisse A, Pralong JA, Wild P, Canu IG. Malondialdehyde and anion patterns in exhaled breath condensate among subway workers. Part Fibre Toxicol 2022; 19:16. [PMID: 35216613 PMCID: PMC8876786 DOI: 10.1186/s12989-022-00456-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Underground transportation systems can contribute to the daily particulates and metal exposures for both commuter and subway workers. The redox and metabolic changes in workers exposed to such metal-rich particles have yet to be characterized. We hypothesize that the distribution of nitrosative/oxidative stress and related metabolic biomarkers in exhaled breath condensate (EBC) are modified depending on exposures. RESULTS Particulate number and size as well as mass concentration and airborne metal content were measured in three groups of nine subway workers (station agents, locomotive operators and security guards). In parallel, pre- and post-shift EBC was collected daily during two consecutive working weeks. In this biological matrix, malondialdehyde, lactate, acetate, propionate, butyrate, formate, pyruvate, the sum of nitrite and nitrate (ΣNOx) and the ratio nitrite/nitrate as well as metals and nanoparticle concentrations was determined. Weekly evolution of the log-transformed selected biomarkers as well as their association with exposure variables was investigated using linear mixed effects models with the participant ID as random effect. The professional activity had a strong influence on the pattern of anions and malondialdehyde in EBC. The daily number concentration and the lung deposited surface area of ultrafine particles was consistently and mainly associated with nitrogen oxides variations during the work-shift, with an inhibitory effect on the ΣNOx. We observed that the particulate matter (PM) mass was associated with a decreasing level of acetate, lactate and ΣNOx during the work-shift, suggestive of a build-up of these anions during the previous night in response to exposures from the previous day. Lactate was moderately and positively associated with some metals and with the sub-micrometer particle concentration in EBC. CONCLUSIONS These results are exploratory but suggest that exposure to subway PM could affect concentrations of nitrogen oxides as well as acetate and lactate in EBC of subway workers. The effect is modulated by the particle size and can correspond to the body's cellular responses under oxidative stress to maintain the redox and/or metabolic homeostasis.
Collapse
Affiliation(s)
- Jean-Jacques Sauvain
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University Lausanne, Route de la Corniche 2, 1066, Epalinges, Switzerland.
| | - Maud Hemmendinger
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University Lausanne, Route de la Corniche 2, 1066, Epalinges, Switzerland
| | - Guillaume Suárez
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University Lausanne, Route de la Corniche 2, 1066, Epalinges, Switzerland
| | - Camille Creze
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University Lausanne, Route de la Corniche 2, 1066, Epalinges, Switzerland
| | - Nancy B Hopf
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University Lausanne, Route de la Corniche 2, 1066, Epalinges, Switzerland
| | - Valérie Jouannique
- Service Santé-Travail, Autonomous Paris Transport Authority (RATP), 88 Boulevard Sébastopol, 75003, Paris, France
| | - Amélie Debatisse
- Service Santé-Travail, Autonomous Paris Transport Authority (RATP), 88 Boulevard Sébastopol, 75003, Paris, France
| | - Jacques A Pralong
- Division of Pulmonary Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Rue Gabrielle Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Pascal Wild
- Division of Research Management, National Research and Safety Institute (INRS), Rue du Morvan, CS 60027, 54519, Vandoeuvre Cedex, France
| | - Irina Guseva Canu
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University Lausanne, Route de la Corniche 2, 1066, Epalinges, Switzerland
| |
Collapse
|