1
|
Bolinger AA, Li J, Xie X, Li H, Zhou J. Lessons learnt from broad-spectrum coronavirus antiviral drug discovery. Expert Opin Drug Discov 2024; 19:1023-1041. [PMID: 39078037 PMCID: PMC11390334 DOI: 10.1080/17460441.2024.2385598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION Highly pathogenic coronaviruses (CoVs), such as severe acute respiratory syndrome CoV (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV), and the most recent SARS-CoV-2 responsible for the COVID-19 pandemic, pose significant threats to human populations over the past two decades. These CoVs have caused a broad spectrum of clinical manifestations ranging from asymptomatic to severe distress syndromes (ARDS), resulting in high morbidity and mortality. AREAS COVERED The accelerated advancements in antiviral drug discovery, spurred by the COVID-19 pandemic, have shed new light on the imperative to develop treatments effective against a broad spectrum of CoVs. This perspective discusses strategies and lessons learnt in targeting viral non-structural proteins, structural proteins, drug repurposing, and combinational approaches for the development of antivirals against CoVs. EXPERT OPINION Drawing lessons from the pandemic, it becomes evident that the absence of efficient broad-spectrum antiviral drugs increases the vulnerability of public health systems to the potential onslaught by highly pathogenic CoVs. The rapid and sustained spread of novel CoVs can have devastating consequences without effective and specifically targeted treatments. Prioritizing the effective development of broad-spectrum antivirals is imperative for bolstering the resilience of public health systems and mitigating the potential impact of future highly pathogenic CoVs.
Collapse
Affiliation(s)
- Andrew A. Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jun Li
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hongmin Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
2
|
Liu Y, Deng Y, Niu S, Zhu N, Song J, Zhang X, Su W, Nie W, Lu R, Irwin DM, Gao GF, Wang W, Wang Q, Tan W, Zhang S. Discovery and identification of a novel canine coronavirus causing a diarrhea outbreak in Vulpes. Sci Bull (Beijing) 2023; 68:2598-2606. [PMID: 37758615 DOI: 10.1016/j.scib.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/03/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
Cross-species transmission of viruses from wildlife animal reservoirs, such as bats, poses a threat to human and domestic animal health. Previous studies have shown that domestic animals have important roles as intermediate hosts, enabling the transmission of genetically diverse coronaviruses from natural hosts to humans. Here, we report the identification and characterization of a novel canine coronavirus (VuCCoV), which caused an epidemic of acute diarrhea in Vulpes (foxes) in Shenyang, China. The epidemic started on November 8, 2019, and caused more than 39,600 deaths by January 1, 2022. Full-length viral genomic sequences were obtained from 15 foxes with diarrhea at the early stage of this outbreak. The VuCCoV genome shared more than 90% nucleotide identity with canine coronavirus (CCoV) for three of the four structural genes, with the S gene showing a larger amount of divergence. In addition, 67% (10/15) of the VuCCoV genomes contained an open reading frame (ORF3) gene, which was previously only detected in CCoV-I genomes. Notably, VuCCoV had only two to three amino acid differences at the partial RNA-dependent RNA polymerase (RdRp) level to bat CoV, suggesting a close genetic relationship. Therefore, these novel VuCCoV genomes represent a previously unsampled lineage of CCoVs. We also show that the VuCCoV spike protein binds to canine and fox aminopeptidase N (APN), which may allow this protein to serve as an entry receptor. In addition, cell lines were identified that are sensitive to VuCCoV using a pseudovirus system. These data highlight the importance of identifying the diversity and distribution of coronaviruses in domestic animals, which could mitigate future outbreaks that could threaten livestock, public health, and economic growth.
Collapse
Affiliation(s)
- Yuting Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yao Deng
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Sheng Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Na Zhu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jingdong Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiaoshuang Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | | | | | - Roujian Lu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - David M Irwin
- Kunming Cell Bank, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - George Fu Gao
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Wenling Wang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Qihui Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
3
|
Neyama D, Fakhruddin SMB, Inoue KY, Kurita H, Osana S, Miyamoto N, Tayama T, Chiba D, Watanabe M, Shiku H, Narita F. Batteryless wireless magnetostrictive Fe 30Co 70/Ni clad plate for human coronavirus 229E detection. SENSORS AND ACTUATORS. A, PHYSICAL 2023; 349:114052. [PMID: 36447950 PMCID: PMC9686060 DOI: 10.1016/j.sna.2022.114052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/21/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been garnered increasing for its rapid worldwide spread. Each country had implemented city-wide lockdowns and immigration regulations to prevent the spread of the infection, resulting in severe economic consequences. Materials and technologies that monitor environmental conditions and wirelessly communicate such information to people are thus gaining considerable attention as a countermeasure. This study investigated the dynamic characteristics of batteryless magnetostrictive alloys for energy harvesting to detect human coronavirus 229E (HCoV-229E). Light and thin magnetostrictive Fe-Co/Ni clad plate with rectification, direct current (DC) voltage storage capacitor, and wireless information transmission circuits were developed for this purpose. The power consumption was reduced by improving the energy storage circuit, and the magnetostrictive clad plate under bending vibration stored a DC voltage of 1.9 V and wirelessly transmitted a signal to a personal computer once every 5 min and 10 s under bias magnetic fields of 0 and 10 mT, respectively. Then, on the clad plate surface, a novel CD13 biorecognition layer was immobilized using a self-assembled monolayer of -COOH groups, thus forming an amide bond with -NH2 groups for the detection of HCoV-229E. A bending vibration test demonstrated the resonance frequency changes because of HCoV-229E binding. The fluorescence signal demonstrated that HCoV-229E could be successfully detected. Thus, because HCoV-229E changed the dynamic characteristics of this plate, the CD13-modified magnetostrictive clad plate could detect HCoV-229E from the interval of wireless communication time. Therefore, a monitoring system that transmits/detects the presence of human coronavirus without batteries will be realized soon.
Collapse
Key Words
- AC, alternating current
- APS, aminopropyl silane
- BSA, bovine serum albumin
- CD13
- CTF, corrected total fluorescence
- DC, direct current
- EDC, 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide
- Energy harvesting
- Fluorescence microscopy
- HCoV, human coronavirus
- IC, integrated circuit
- IoT, Internet of things
- MES, 2-(N-morpholino) ethanesulfonic acid
- MUA, mercaptoundecanoic acid
- NHS, N-hydroxysulfosuccinimide
- PBS, phosphate-buffered saline
- RC, rectifier circuit
- SAM, self-assembled monolayer
- SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2
- Virrari effect
- Virus detection
- Wireless communications
Collapse
Affiliation(s)
- Daiki Neyama
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Siti Masturah Binti Fakhruddin
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Kumi Y Inoue
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
- Center for Basic Education, Faculty of Engineering, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Kofu, Japan
| | - Hiroki Kurita
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Shion Osana
- Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Naoto Miyamoto
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Tsuyoki Tayama
- Advanced Material Division, Tohoku Steel Co. Ltd., Muratamachi, Shibatagun, Japan
| | - Daiki Chiba
- Advanced Material Division, Tohoku Steel Co. Ltd., Muratamachi, Shibatagun, Japan
| | - Masahito Watanabe
- Research and Development Department, Tohoku Steel Co. Ltd., Muratamachi, Shibatagun, Japan
| | - Hitoshi Shiku
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Fumio Narita
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| |
Collapse
|
4
|
Tortorici MA, Walls AC, Joshi A, Park YJ, Eguia RT, Miranda MC, Kepl E, Dosey A, Stevens-Ayers T, Boeckh MJ, Telenti A, Lanzavecchia A, King NP, Corti D, Bloom JD, Veesler D. Structure, receptor recognition, and antigenicity of the human coronavirus CCoV-HuPn-2018 spike glycoprotein. Cell 2022; 185:2279-2291.e17. [PMID: 35700730 PMCID: PMC9135795 DOI: 10.1016/j.cell.2022.05.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/24/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023]
Abstract
The isolation of CCoV-HuPn-2018 from a child respiratory swab indicates that more coronaviruses are spilling over to humans than previously appreciated. We determined the structures of the CCoV-HuPn-2018 spike glycoprotein trimer in two distinct conformational states and showed that its domain 0 recognizes sialosides. We identified that the CCoV-HuPn-2018 spike binds canine, feline, and porcine aminopeptidase N (APN) orthologs, which serve as entry receptors, and determined the structure of the receptor-binding B domain in complex with canine APN. The introduction of an oligosaccharide at position N739 of human APN renders cells susceptible to CCoV-HuPn-2018 spike-mediated entry, suggesting that single-nucleotide polymorphisms might account for viral detection in some individuals. Human polyclonal plasma antibodies elicited by HCoV-229E infection and a porcine coronavirus monoclonal antibody inhibit CCoV-HuPn-2018 spike-mediated entry, underscoring the cross-neutralizing activity among ɑ-coronaviruses. These data pave the way for vaccine and therapeutic development targeting this zoonotic pathogen representing the eighth human-infecting coronavirus.
Collapse
Affiliation(s)
| | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Anshu Joshi
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Rachel T Eguia
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Marcos C Miranda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth Kepl
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Annie Dosey
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Terry Stevens-Ayers
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Michael J Boeckh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Antonio Lanzavecchia
- Istituto Nazionale Genetica Molecolare, 20122 Milano, Italy; Humabs Biomed SA-a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Davide Corti
- Humabs Biomed SA-a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Jesse D Bloom
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
5
|
Velázquez-Enríquez JM, Ramírez-Hernández AA, Navarro LMS, Reyes-Avendaño I, González-García K, Jiménez-Martínez C, Castro-Sánchez L, Sánchez-Chino XM, Vásquez-Garzón VR, Baltiérrez-Hoyos R. Proteomic Analysis Reveals Differential Expression Profiles in Idiopathic Pulmonary Fibrosis Cell Lines. Int J Mol Sci 2022; 23:ijms23095032. [PMID: 35563422 PMCID: PMC9105114 DOI: 10.3390/ijms23095032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, irreversible lung disorder of unknown cause. This disease is characterized by profibrotic activation of resident pulmonary fibroblasts resulting in aberrant deposition of extracellular matrix (ECM) proteins. However, although much is known about the pathophysiology of IPF, the cellular and molecular processes that occur and allow aberrant fibroblast activation remain an unmet need. To explore the differentially expressed proteins (DEPs) associated with aberrant activation of these fibroblasts, we used the IPF lung fibroblast cell lines LL97A (IPF-1) and LL29 (IPF-2), compared to the normal lung fibroblast cell line CCD19Lu (NL-1). Protein samples were quantified and identified using a label-free quantitative proteomic analysis approach by liquid chromatography-tandem mass spectrometry (LC-MS/MS). DEPs were identified after pairwise comparison, including all experimental groups. Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein–Protein Interaction (PPI) network construction were used to interpret the proteomic data. Eighty proteins expressed exclusively in the IPF-1 and IPF-2 clusters were identified. In addition, 19 proteins were identified up-regulated in IPF-1 and 10 in IPF-2; 10 proteins were down-regulated in IPF-1 and 2 in IPF-2 when compared to the NL-1 proteome. Using the search tool for retrieval of interacting genes/proteins (STRING) software, a PPI network was constructed between the DEPs and the 80 proteins expressed exclusively in the IPF-2 and IPF-1 clusters, containing 115 nodes and 136 edges. The 10 hub proteins present in the IPP network were identified using the CytoHubba plugin of the Cytoscape software. GO and KEGG pathway analyses showed that the hub proteins were mainly related to cell adhesion, integrin binding, and hematopoietic cell lineage. Our results provide relevant information on DEPs present in IPF lung fibroblast cell lines when compared to the normal lung fibroblast cell line that could play a key role during IPF pathogenesis.
Collapse
Affiliation(s)
- Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico; (J.M.V.-E.); (A.A.R.-H.); (I.R.-A.); (K.G.-G.)
| | - Alma Aurora Ramírez-Hernández
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico; (J.M.V.-E.); (A.A.R.-H.); (I.R.-A.); (K.G.-G.)
| | | | - Itayetzi Reyes-Avendaño
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico; (J.M.V.-E.); (A.A.R.-H.); (I.R.-A.); (K.G.-G.)
| | - Karina González-García
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico; (J.M.V.-E.); (A.A.R.-H.); (I.R.-A.); (K.G.-G.)
| | - Cristian Jiménez-Martínez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico;
| | - Luis Castro-Sánchez
- Conacyt-Centro Universitario de Investigaciones Biomédicas “CUIB”, Universidad de Colima, Colima 28045, Mexico;
| | - Xariss Miryam Sánchez-Chino
- Catedra-Conacyt, Departamento de Salud El Colegio de La Frontera Sur, Unidad Villahermosa, Tabasco 86280, Mexico;
| | | | - Rafael Baltiérrez-Hoyos
- Conacyt-Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico;
- Correspondence:
| |
Collapse
|
6
|
Glotov OS, Chernov AN, Scherbak SG, Baranov VS. Genetic Risk Factors for the Development of COVID-19 Coronavirus Infection. RUSS J GENET+ 2021; 57:878-892. [PMID: 34483599 PMCID: PMC8404752 DOI: 10.1134/s1022795421080056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/28/2020] [Accepted: 01/18/2021] [Indexed: 01/08/2023]
Abstract
The COVID-19 coronavirus pandemic has spread to 215 countries around the world and caused tens of millions of infections and more than a million deaths worldwide. In the midst of COVID-19 infection, it is extremely important to identify new protein and gene targets that may be highly sensitive diagnostic and prognostic markers of the severity and outcome of the disease for combating this pandemic. Identification of individual genetic predisposition allows personalizing programs of medical rehabilitation and therapy. It has now been shown that the transmissibility and severity of COVID-19 infection can be affected by gene variants in both the human body (ACE2, HLA-B*4601, FcγRIIA, MBL, TMPRSS2, TNFA, IL6, blood group A antigen, etc.) and the virus itself (ORF8 in RNA polymerase, ORF6 in RNA primase, S, N, E proteins). The presence of mutations in the proteins of the virus can change the affinity and specificity for the binding of targeted drugs to them, being the molecular basis of individual differences in the response of the human body to antiviral drugs and/or vaccines. The review summarizes the data on the variants of the genomes of the coronavirus and humans associated with an individual predisposition to an increased or decreased risk of transmission, severity, and outcome of COVID-19 infection. Targeted drugs and vaccines being developed for the therapy of COVID-19 infection are briefly reviewed.
Collapse
Affiliation(s)
- O. S. Glotov
- City Hospital no. 40, Sestroretsk, 197706 St. Petersburg, Russia
- Ott Research Institute of Obstetrics, Gynecology, and Reproductology, 199034 St. Petersburg, Russia
| | - A. N. Chernov
- City Hospital no. 40, Sestroretsk, 197706 St. Petersburg, Russia
| | - S. G. Scherbak
- City Hospital no. 40, Sestroretsk, 197706 St. Petersburg, Russia
- St. Petersburg State University, 199034 St. Petersburg, Russia
| | - V. S. Baranov
- Ott Research Institute of Obstetrics, Gynecology, and Reproductology, 199034 St. Petersburg, Russia
| |
Collapse
|
7
|
Lu C, Amin MA, Fox DA. CD13/Aminopeptidase N Is a Potential Therapeutic Target for Inflammatory Disorders. THE JOURNAL OF IMMUNOLOGY 2020; 204:3-11. [PMID: 31848300 DOI: 10.4049/jimmunol.1900868] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/01/2019] [Indexed: 02/05/2023]
Abstract
CD13/aminopeptidase N is a widely expressed ectoenzyme with multiple functions. As an enzyme, CD13 regulates activities of numerous cytokines by cleaving their N-terminals and is involved in Ag processing by trimming the peptides bound to MHC class II. Independent of its enzymatic activity, cell membrane CD13 functions by cross-linking-induced signal transduction, regulation of receptor recycling, enhancement of FcγR-mediated phagocytosis, and acting as a receptor for cytokines. Moreover, soluble CD13 has multiple proinflammatory roles mediated by binding to G-protein-coupled receptors. CD13 not only modulates development and activities of immune-related cells, but also regulates functions of inflammatory mediators. Therefore, CD13 is important in the pathogenesis of various inflammatory disorders. Inhibitors of CD13 have shown impressive anti-inflammatory effects, but none of them has yet been used for clinical therapy of human inflammatory diseases. We reevaluate CD13's regulatory role in inflammation and suggest that CD13 could be a potential therapeutic target for inflammatory disorders.
Collapse
Affiliation(s)
- Chenyang Lu
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109; and.,Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Mohammad A Amin
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109; and
| | - David A Fox
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109; and
| |
Collapse
|
8
|
Coronavirus Infections in Children Including COVID-19: An Overview of the Epidemiology, Clinical Features, Diagnosis, Treatment and Prevention Options in Children. Pediatr Infect Dis J 2020. [PMID: 32310621 DOI: 10.1097/inf.0000000000002660)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Coronaviruses (CoVs) are a large family of enveloped, single-stranded, zoonotic RNA viruses. Four CoVs commonly circulate among humans: HCoV2-229E, -HKU1, -NL63 and -OC43. However, CoVs can rapidly mutate and recombine leading to novel CoVs that can spread from animals to humans. The novel CoVs severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 and Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012. The 2019 novel coronavirus (SARS-CoV-2) is currently causing a severe outbreak of disease (termed COVID-19) in China and multiple other countries, threatening to cause a global pandemic. In humans, CoVs mostly cause respiratory and gastrointestinal symptoms. Clinical manifestations range from a common cold to more severe disease such as bronchitis, pneumonia, severe acute respiratory distress syndrome, multi-organ failure and even death. SARS-CoV, MERS-CoV and SARS-CoV-2 seem to less commonly affect children and to cause fewer symptoms and less severe disease in this age group compared with adults, and are associated with much lower case-fatality rates. Preliminary evidence suggests children are just as likely as adults to become infected with SARS-CoV-2 but are less likely to be symptomatic or develop severe symptoms. However, the importance of children in transmitting the virus remains uncertain. Children more often have gastrointestinal symptoms compared with adults. Most children with SARS-CoV present with fever, but this is not the case for the other novel CoVs. Many children affected by MERS-CoV are asymptomatic. The majority of children infected by novel CoVs have a documented household contact, often showing symptoms before them. In contrast, adults more often have a nosocomial exposure. In this review, we summarize epidemiologic, clinical and diagnostic findings, as well as treatment and prevention options for common circulating and novel CoVs infections in humans with a focus on infections in children.
Collapse
|
9
|
Zimmermann P, Curtis N. Coronavirus Infections in Children Including COVID-19: An Overview of the Epidemiology, Clinical Features, Diagnosis, Treatment and Prevention Options in Children. Pediatr Infect Dis J 2020; 39:355-368. [PMID: 32310621 PMCID: PMC7158880 DOI: 10.1097/inf.0000000000002660] [Citation(s) in RCA: 672] [Impact Index Per Article: 168.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Coronaviruses (CoVs) are a large family of enveloped, single-stranded, zoonotic RNA viruses. Four CoVs commonly circulate among humans: HCoV2-229E, -HKU1, -NL63 and -OC43. However, CoVs can rapidly mutate and recombine leading to novel CoVs that can spread from animals to humans. The novel CoVs severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 and Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012. The 2019 novel coronavirus (SARS-CoV-2) is currently causing a severe outbreak of disease (termed COVID-19) in China and multiple other countries, threatening to cause a global pandemic. In humans, CoVs mostly cause respiratory and gastrointestinal symptoms. Clinical manifestations range from a common cold to more severe disease such as bronchitis, pneumonia, severe acute respiratory distress syndrome, multi-organ failure and even death. SARS-CoV, MERS-CoV and SARS-CoV-2 seem to less commonly affect children and to cause fewer symptoms and less severe disease in this age group compared with adults, and are associated with much lower case-fatality rates. Preliminary evidence suggests children are just as likely as adults to become infected with SARS-CoV-2 but are less likely to be symptomatic or develop severe symptoms. However, the importance of children in transmitting the virus remains uncertain. Children more often have gastrointestinal symptoms compared with adults. Most children with SARS-CoV present with fever, but this is not the case for the other novel CoVs. Many children affected by MERS-CoV are asymptomatic. The majority of children infected by novel CoVs have a documented household contact, often showing symptoms before them. In contrast, adults more often have a nosocomial exposure. In this review, we summarize epidemiologic, clinical and diagnostic findings, as well as treatment and prevention options for common circulating and novel CoVs infections in humans with a focus on infections in children.
Collapse
Affiliation(s)
- Petra Zimmermann
- From the Department of Paediatrics, Fribourg Hospital HFR and Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Department of Paediatrics, The University of Melbourne
- Infectious Diseases Research Group, Murdoch Children’s Research Institute
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne
- Infectious Diseases Research Group, Murdoch Children’s Research Institute
- Infectious Diseases Unit, The Royal Children’s Hospital Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Antimicrobial, Cytotoxic, and Anti-Inflammatory Activities of Pimenta dioica and Rosmarinus officinalis Essential Oils. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1639726. [PMID: 31205934 PMCID: PMC6530202 DOI: 10.1155/2019/1639726] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022]
Abstract
Essential oils (EOs) are natural products composed of a mixture of volatile and aromatic compounds extracted from different parts of plants that have shown antimicrobial activities against pathogens. In this study, EOs extracted from Pimenta dioica (Myrtaceae) and Rosmarinus officinalis (Lamiaceae) were assessed for their antimicrobial activities using a panel of pathogenic Gram-positive, Gram-negative, and fungal strains. The antimicrobial activity was measured by the minimal inhibitory concentration required for the growth inhibition of the microorganisms. The cytotoxicity of the EOs was tested ex vivo using the model of human-derived macrophage THP-1 cells. In addition, an inflammatory response was evaluated using the anti-inflammatory cytokine IL-10 and the proinflammatory cytokines IL-6 and TNF-α. Results showed that both EOs had antimicrobial activity and different pathogens were exposed to concentrations ranging between 600 and 2000 μg/mL. In addition, the EOs showed no inflammatory activity when exposed to human macrophages, but a potent anti-inflammatory activity was measured when the oil from Rosmarinus officinalis was exposed to macrophages. This study demonstrates that the use of EOs is an effective alternative for pathogenic bacterial and fungal control, alone or in combination with antibiotic therapy. Moreover, the oil extracted from Rosmarinus officinalis could be used as potent anti-inflammatory agent.
Collapse
|
11
|
Meyerson HJ, Osei E, Schweitzer K, Blidaru G, Edinger A, Schlegelmilch J, Awadallah A, Goyal T. CD1c(+) myeloid dendritic cells in myeloid neoplasia. CYTOMETRY PART B-CLINICAL CYTOMETRY 2015; 90:337-48. [DOI: 10.1002/cyto.b.21332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/26/2015] [Accepted: 10/19/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Howard J. Meyerson
- Department of Pathology; University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University; Cleveland Ohio 44106
| | - Ebenezer Osei
- Department of Pathology; University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University; Cleveland Ohio 44106
| | - Karen Schweitzer
- Department of Pathology; University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University; Cleveland Ohio 44106
| | - Georgetta Blidaru
- Department of Pathology; University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University; Cleveland Ohio 44106
| | - Alison Edinger
- Department of Pathology; University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University; Cleveland Ohio 44106
| | - June Schlegelmilch
- Department of Pathology; University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University; Cleveland Ohio 44106
| | - Amad Awadallah
- Department of Pathology; University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University; Cleveland Ohio 44106
| | - Tanu Goyal
- Department of Pathology; University Hospitals Case Medical Center and Seidman Cancer Center Case Western Reserve University; Cleveland Ohio 44106
| |
Collapse
|
12
|
Human coronaviruses: Clinical features and phylogenetic analysis. Biomedicine (Taipei) 2013; 3:43-50. [PMID: 32289002 PMCID: PMC7103958 DOI: 10.1016/j.biomed.2012.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/23/2012] [Accepted: 12/19/2012] [Indexed: 12/19/2022] Open
Abstract
Strains of human coronavirus (HCoV), namely HCoV-OC43, HCoV-229E, HCoV-NL63, and HCoV-HKU1, primarily infect the upper respiratory and gastrointestinal tracts and are the most common cause of non-rhinovirus-induced common cold in humans. Although the manifestations of coronavirus infection (i.e., rhinorrhea, sneezing, cough, nasal obstruction, and bronchitis) are generally self-limiting in healthy adults, certain strains such as HCoV-NL63 and HCoV-HKU1 can cause severe lower respiratory tract infection and febrile seizure, especially in infants, people of advanced age, and immunocompromised hosts. In 2003, a novel HCoV strain was identified as the causative agent of the severe acute respiratory syndrome (SARS) epidemic that began in Asia in 2002. The strain has hence been referred to as SARS-CoV. In addition, as recently as September 2012, another novel HCoV, human betacoronavirus 2c EMC2012, was identified as being the cause of fever, renal failure, pneumonia, and severe respiratory distress in two patients in the Middle East. Phylogenetic analysis has revealed highly conserved sequences of ORF1ab, spike, nucleocapsid, and envelope protein genes, but not membrane protein genes, between human betacoronavirus 2c EMC2012 and SARS-CoV. This review focuses on the differences in the genomes of certain HCoV strains, the pathogenesis of said strains, and recent developments in the establishment of therapeutic agents that might aid in the treatment of patients with such infections.
Collapse
|
13
|
Liu DQ, Ge JW, Qiao XY, Jiang YP, Liu SM, Li YJ. High-level mucosal and systemic immune responses induced by oral administration with Lactobacillus-expressed porcine epidemic diarrhea virus (PEDV) S1 region combined with Lactobacillus-expressed N protein. Appl Microbiol Biotechnol 2011; 93:2437-46. [PMID: 22134641 PMCID: PMC7080084 DOI: 10.1007/s00253-011-3734-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/31/2011] [Accepted: 11/15/2011] [Indexed: 12/14/2022]
Abstract
To develop effective mucosal vaccine formulation against porcine epidemic diarrhea virus (PEDV) infection, the DNA fragments encoding spike protein immunodominant region S1 and nucleocapsid N of PEDV were inserted into pPG1 (surface-displayed) or pPG2 (secretory) plasmids followed by electrotransformation into Lactobacillus casei (Lc) to yield four recombinant strains: PG1-S1, PG2-S1, PG1-N, and PG2-N. After intragastric administration, it was observed that live Lc-expressing S1 protein combined with Lc-expressing N protein could elicit much more potent mucosal and systemic immune responses than the former alone (P < 0.001), however slightly inferior to the latter alone (P > 0.05). Furthermore, the surface-displayed mixture (PG1-S1+ PG1-N) revealed stronger immunogenicity than the secretory mixture (PG2-S1+ PG2-N) as well as PEDV-neutralizing potency in vitro (P < 0.001). On 49th day after the last immunization, splenocytes were prepared from mice immunized with surface-displayed mixture, secretory mixture and negative control to be stimulated by purified N and S protein, respectively. The results of ELISA analysis showed that N protein was capable of inducing a higher level of IL-4 (P < 0.001) and IFN-γ (P < 0.001) than S1 protein in the immunized mice. Taken together, Lc-expressed N protein as molecular adjuvant or immunoenhancer was able to effectively facilitate the induction of mucosal and systemic immune responses by Lc-expressing S1 region.
Collapse
Affiliation(s)
- Di-qiu Liu
- Veterinary Microbiology Department, Veterinary Medicine College, Northeast Agricultural University, Harbin, People's Republic of China
| | | | | | | | | | | |
Collapse
|
14
|
Elucidating the molecular physiopathology of acute respiratory distress syndrome in severe acute respiratory syndrome patients. Virus Res 2009; 145:260-9. [PMID: 19635508 PMCID: PMC7114434 DOI: 10.1016/j.virusres.2009.07.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 07/19/2009] [Accepted: 07/19/2009] [Indexed: 02/06/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe form of acute lung injury. It is a response to various diseases of variable etiology, including SARS-CoV infection. To date, a comprehensive study of the genomic physiopathology of ARDS (and SARS) is lacking, primarily due to the difficulty of finding suitable materials to study the disease process at a tissue level (instead of blood, sputa or swaps). Hereby we attempt to provide such study by analyzing autopsy lung samples from patient who died of SARS and showed different degrees of severity of the pulmonary involvement. We performed real-time quantitative PCR analysis of 107 genes with functional roles in inflammation, coagulation, fibrosis and apoptosis; some key genes were confirmed at a protein expression level by immunohistochemistry and correlated to the degree of morphological severity present in the individual samples analyzed. Significant expression levels were identified for ANPEP (a receptor for CoV), as well as inhibition of the STAT1 pathway, IFNs production and CXCL10 (a T-cell recruiter). Other genes unassociated to date with ARDS/SARS include C1Qb, C5R1, CASP3, CASP9, CD14, CD68, FGF7, HLA-DRA, IGF1, IRF3, MALAT-1, MSR1, NFIL3, SLPI, USP33, CLC, GBP1 and TAC1. As a result, we proposed to therapeutically target some of these genes with compounds such as ANPEP inhibitors, SLPI and dexamethasone. Ultimately, this study may serve as a model for future, tissue-based analyses of fibroinflammatory conditions affecting the lung.
Collapse
|
15
|
Baric RS, Sims AC. Humanized mice develop coronavirus respiratory disease. Proc Natl Acad Sci U S A 2005; 102:8073-4. [PMID: 15928078 PMCID: PMC1149438 DOI: 10.1073/pnas.0503091102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Ralph S Baric
- Departments of Epidemiology and Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599-7435, USA.
| | | |
Collapse
|
16
|
Kasman LM. CD13/aminopeptidase N and murine cytomegalovirus infection. Virology 2005; 334:1-9. [PMID: 15749117 PMCID: PMC7172656 DOI: 10.1016/j.virol.2005.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 10/11/2004] [Accepted: 01/26/2005] [Indexed: 11/19/2022]
Abstract
CD13/aminopeptidase N is a membrane-bound metalloproteinase implicated in human cytomegalovirus (HCMV) infection and pathogenesis. Anti-CD13 antibodies can neutralize HCMV infectivity, and HCMV viremia after bone marrow transplantation induces anti-CD13 autoantibodies which correlate with development of chronic graft vs. host disease. We examined whether murine CD13/APN was similarly implicated in murine cytomegalovirus (MCMV) disease. MCMV infection did induce anti-CD13 antibodies in mice in a strain-specific manner. ICR and 129S mice developed high titers of anti-CD13 antibodies and anti-MCMV antibodies after MCMV infection, whereas CBA and CBAxC57BL/6 f1 hybrid mice produced antibodies against MCMV only. Unlike HCMV, no evidence was found for a correlation between host cell CD13/APN expression and infection, or for the presence of CD13/APN on MCMV particles, although APN inhibitors decreased MCMV plaque formation. Reproduction of CD13/APN autoantibody production in the murine system should make it possible to determine if these antibodies contribute to CMV pathogenesis.
Collapse
Affiliation(s)
- Laura M Kasman
- Department of Microbiology and Immunology, Medical University of South Carolina, BSB-201, PO Box 250504, 173 Ashley Avenue, Charleston, SC 29425, USA.
| |
Collapse
|