1
|
Ruengket P, Roytrakul S, Tongthainan D, Taruyanon K, Sangkharak B, Limudomporn P, Pongsuchart M, Udom C, Fungfuang W. Serum proteomic profile of wild stump-tailed macaques (Macaca arctoides) infected with malaria parasites in Thailand. PLoS One 2023; 18:e0293579. [PMID: 37910477 PMCID: PMC10619813 DOI: 10.1371/journal.pone.0293579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
The number of patients infected with simian malaria is gradually increasing in many countries of Southeast Asia and South America. The most important risk factor for a zoonotic spillover event of malarial infection is mostly influenced by the interaction between humans, monkeys, and vectors. In this study, we determine the protein expression profile of a wild stump-tailed macaque (Macaca arctoides) from a total of 32 blood samples collected from Prachuap Kiri Khan Province, Thailand. The malarial parasite was analyzed using nested polymerase chain reaction (PCR) assays by dividing the samples into three groups: non-infected, mono-infected, and multiple-infected. The identification and differential proteomic expression profiles were determined using liquid chromatography with tandem mass spectrometry (LC-MS/MS) and bioinformatics tools. A total of 9,532 proteins (total proteins) were identified with the filter-based selection methods analysis, and a subset of 440 proteins were found to be different between each group. Within these proteins, the GhostKOALA functional enrichment analysis indicated that 142 important proteins were associated with either of the organismal system (28.87%), genetic information processing (23.24%), environmental information processing (16.20%), metabolism (13.38%), cellular processes (11.97%), or causing human disease (6.34%). Additionally, using interaction network analysis, nine potential reporter proteins were identified. Here, we report the first study on the protein profiles differentially expressed in the serum of wild stump-tailed macaques between non, mono, and multiple malarial infected living in a natural transmission environment. Our findings demonstrate that differentially expressed proteins implicated in host defense through lipid metabolism, involved with TGF pathway were suppressed, while those with the apoptosis pathway, such as cytokines and proinflammation signals were increased. Including the parasite's response via induced hemolysis and disruption of myeloid cells. A greater understanding of the fundamental processes involved in a malarial infection and host response can be crucial for developing diagnostic tools, medication development, and therapies to improve the health of those affected by the disease.
Collapse
Affiliation(s)
- Pakorn Ruengket
- Genetic Engineering and Bioinformatics Program, Graduate School, Kasetsart University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Daraka Tongthainan
- Faculty of Veterinary Medicine, Rajamongala University of Technology Tawan-ok, Chonburi, Thailand
| | - Kanokwan Taruyanon
- Department of National Parks, Wildlife Conservation Division Protected Areas Regional Office, Wildlife and Plant Conservation, Ratchaburi, Thailand
| | - Bencharong Sangkharak
- Department of National Parks, Wildlife Conservation Division, Wildlife and Plant Conservation, Bangkok, Thailand
| | - Paviga Limudomporn
- Faculty of Science, Department of Zoology, Kasetsart University, Bangkok, Thailand
| | - Mongkol Pongsuchart
- Faculty of Science, Department of Zoology, Kasetsart University, Bangkok, Thailand
| | - Chanya Udom
- Faculty of Science, Department of Zoology, Kasetsart University, Bangkok, Thailand
| | - Wirasak Fungfuang
- Faculty of Science, Department of Zoology, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
2
|
Horak P, Auer H, Wiedermann U, Walochnik J. Malaria in Austria : A retrospective analysis of malaria cases diagnosed at a reference center in 2010-2020. Wien Klin Wochenschr 2023; 135:617-624. [PMID: 37069405 PMCID: PMC10108813 DOI: 10.1007/s00508-023-02179-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/25/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND Although malaria is not endemic to Austria, each year infections are imported by travellers, migrants and refugees. This study aims to provide an overview of malaria cases diagnosed at an Austrian institute for tropical medicine between 2010 and 2020. METHODS A retrospective, descriptive study was conducted based on the data of malaria cases confirmed at the Institute of Specific Prophylaxis and Tropical Medicine of the Medical University of Vienna. Laboratory diagnostics included microscopy, polymerase chain reaction (PCR) and real-time quantitative PCR. RESULTS Overall, 122 cases were identified. Annual case numbers were consistently higher from 2016 to 2020 than during the first half of the decade. Most malaria cases were diagnosed during summer and early autumn. This seasonal trend was not observed during the year 2020. With 55.1% (65/118) Plasmodium falciparum was the most common species, followed by Plasmodium vivax (19.5%, 23/118). The majority of patients were male (71.1%, 86/121) and the median age was 34.5 years (interquartile range, IQR 22.5-47.0 years). With a median age of 20.0 years (IQR 14.0-32.0 years), patients with P. vivax infections were younger than those infected with other Plasmodium species. Moreover, they were mostly male (82.6%, 19/23). CONCLUSION From 2010 to 2020, the number of malaria cases diagnosed at the center increased. Growing international mobility and changing travel behavior could at least partly be responsible for this trend and there are indications that particularly P. vivax infections were imported by migrants and refugees.
Collapse
Affiliation(s)
- Paul Horak
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Herbert Auer
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Julia Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria.
| |
Collapse
|
3
|
Jajosky RP, Wu SC, Jajosky PG, Stowell SR. Plasmodium knowlesi ( Pk) Malaria: A Review & Proposal of Therapeutically Rational Exchange (T-REX) of Pk-Resistant Red Blood Cells. Trop Med Infect Dis 2023; 8:478. [PMID: 37888606 PMCID: PMC10610852 DOI: 10.3390/tropicalmed8100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Plasmodium knowlesi (Pk) causes zoonotic malaria and is known as the "fifth human malaria parasite". Pk malaria is an emerging threat because infections are increasing and can be fatal. While most infections are in Southeast Asia (SEA), especially Malaysia, travelers frequently visit this region and can present with Pk malaria around the world. So, clinicians need to know (1) patients who present with fever after recent travel to SEA might be infected with Pk and (2) Pk is often misdiagnosed as P. malariae (which typically causes less severe malaria). Here we review the history, pathophysiology, clinical features, diagnosis, and treatment of Pk malaria. Severe disease is most common in adults. Signs and symptoms can include fever, abdominal pain, jaundice, acute kidney injury, acute respiratory distress syndrome, hyponatremia, hyperparasitemia, and thrombocytopenia. Dengue is one of the diseases to be considered in the differential. Regarding pathophysiologic mechanisms, when Pk parasites invade mature red blood cells (RBCs, i.e., normocytes) and reticulocytes, changes in the red blood cell (RBC) surface can result in life-threatening cytoadherence, sequestration, and reduced RBC deformability. Since molecular mechanisms involving the erythrocytic stage are responsible for onset of severe disease and lethal outcomes, it is biologically plausible that manual exchange transfusion (ET) or automated RBC exchange (RBCX) could be highly beneficial by replacing "sticky" parasitized RBCs with uninfected, deformable, healthy donor RBCs. Here we suggest use of special Pk-resistant donor RBCs to optimize adjunctive manual ET/RBCX for malaria. "Therapeutically-rational exchange transfusion" (T-REX) is proposed in which Pk-resistant RBCs are transfused (instead of disease-promoting RBCs). Because expression of the Duffy antigen on the surface of human RBCs is essential for parasite invasion, T-REX of Duffy-negative RBCs-also known as Fy(a-b-) RBCs-could replace the majority of the patient's circulating normocytes with Pk invasion-resistant RBCs (in a single procedure lasting about 2 h). When sequestered or non-sequestered iRBCs rupture-in a 24 h Pk asexual life cycle-the released merozoites cannot invade Fy(a-b-) RBCs. When Fy(a-b-) RBC units are scarce (e.g., in Malaysia), clinicians can consider the risks and benefits of transfusing plausibly Pk-resistant RBCs, such as glucose-6-phosphate dehydrogenase deficient (G6PDd) RBCs and Southeast Asian ovalocytes (SAO). Patients typically require a very short recovery time (<1 h) after the procedure. Fy(a-b-) RBCs should have a normal lifespan, while SAO and G6PDd RBCs may have mildly reduced half-lives. Because SAO and G6PDd RBCs come from screened blood donors who are healthy and not anemic, these RBCs have a low-risk for hemolysis and do not need to be removed after the patient recovers from malaria. T-REX could be especially useful if (1) antimalarial medications are not readily available, (2) patients are likely to progress to severe disease, or (3) drug-resistant strains emerge. In conclusion, T-REX is a proposed optimization of manual ET/RBCX that has not yet been utilized but can be considered by physicians to treat Pk malaria patients.
Collapse
Affiliation(s)
- Ryan Philip Jajosky
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; (S.-C.W.)
- Biconcavity Inc., Lilburn, GA 30047, USA
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; (S.-C.W.)
| | | | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; (S.-C.W.)
| |
Collapse
|
4
|
Yanmanee S, Seethamchai S, Kuamsab N, Karaphan S, Suwonkerd W, Jongwutiwes S, Putaporntip C. Natural vectors of Plasmodium knowlesi and other primate, avian and ungulate malaria parasites in Narathiwat Province, Southern Thailand. Sci Rep 2023; 13:8875. [PMID: 37264067 DOI: 10.1038/s41598-023-36017-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/27/2023] [Indexed: 06/03/2023] Open
Abstract
To date, four species of simian malaria parasites including Plasmodium knowlesi, P. cynomolgi, P. inui and P. fieldi have been incriminated in human infections in Thailand. Although the prevalence of malaria in macaque natural hosts has been investigated, their vectors remain unknown in this country. Herein, we performed a survey of Anopheles mosquitoes during rainy and dry seasons in Narathiwat Province, Southern Thailand. Altogether 367 Anopheles mosquitoes were captured for 40 nights during 18:00 to 06:00 h by using human-landing catches. Based on morphological and molecular identification, species composition comprised An. maculatus (37.06%), An. barbirostris s.l. (31.34%), An. latens (17.71%), An. introlatus (10.08%) and others (3.81%) including An. umbrosus s.l., An. minimus, An. hyrcanus s.l., An. aconitus, An. macarthuri and An. kochi. Analyses of individual mosquitoes by PCR, sequencing and phylogenetic inference of the mitochondrial cytochrome genes of both malaria parasites and mosquitoes have revealed that the salivary gland samples of An. latens harbored P. knowlesi (n = 1), P. inui (n = 2), P. fieldi (n = 1), P. coatneyi (n = 1), P. hylobati (n = 1) and an unnamed Plasmodium species known to infect both long-tailed and pig-tailed macaques (n = 2). The salivary glands of An. introlatus possessed P. cynomolgi (n = 1), P. inui (n = 1), P. hylobati (n = 1) and coexistence of P. knowlesi and P. inui (n = 1). An avian malaria parasite P. juxtanucleare has been identified in the salivary gland sample of An. latens. Three other distinct lineages of Plasmodium with phylogenetic affinity to avian malaria species were detected in An. latens, An. introlatus and An. macarthuri. Interestingly, the salivary gland sample of An. maculatus contained P. caprae, an ungulate malaria parasite known to infect domestic goats. Most infected mosquitoes harbored multiclonal Plasmodium infections. All Plasmodium-infected mosquitoes were captured during the first quarter of the night and predominantly occurred during rainy season. Since simian malaria in humans has a wide geographic distribution in Thailand, further studies in other endemic areas of the country are mandatory for understanding transmission and prevention of zoonotic malaria.
Collapse
Affiliation(s)
- Surasuk Yanmanee
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Biology, Faculty of Science, Naresuan University, Pitsanulok, Thailand
| | - Sunee Seethamchai
- Department of Biology, Faculty of Science, Naresuan University, Pitsanulok, Thailand.
| | - Napaporn Kuamsab
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Community Public Health Program, Faculty of Health Science and Technology, Southern College of Technology, Nakhon Si Thammarat, Thailand
| | - Sunate Karaphan
- Department of National Parks, Wildlife and Plant Conservation, Ministry of National Resources and Environment, Bangkok, Thailand
| | - Wannapa Suwonkerd
- Division of Vector Borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Somchai Jongwutiwes
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chaturong Putaporntip
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
5
|
Naserrudin NA, Yong PPL, Monroe A, Culleton R, Baumann SE, Sato S, Hod R, Jeffree MS, Ahmed K, Hassan MR. Seeing malaria through the eyes of affected communities: using photovoice to document local knowledge on zoonotic malaria causation and prevention practices among rural communities exposed to Plasmodium knowlesi malaria in Northern Borneo Island. Malar J 2023; 22:166. [PMID: 37237418 DOI: 10.1186/s12936-023-04603-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/22/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Many rural communities in Malaysian Borneo and Southeast Asia are at risk of Plasmodium knowlesi malaria. Multiple factors contribute to infection, however, a deep understanding of illness causation and prevention practices among at-risk communities remains limited. This study aims to document local knowledge on malaria causation and preventive practices of rural communities in Sabah, Malaysia, using photovoice-a participatory research method. METHODS From January to June 2022, a photovoice study was conducted with rural communities in Matunggong subdistrict, Malaysia, to explore their experiences with and local knowledge of non-human primate malaria and prevention practices. The study included (1) an introductory phase in which participants were introduced to the photovoice method; (2) a documentation phase in which participants captured and narrated photos from their communities; (3) a discussion phase in which participants discussed photos and relevant topics through a series of three focus group discussions (FGDs) per village; and (4) a dissemination phase where selected photos were shared with key stakeholders through a photo exhibition. A purposively selected sample of 26 participants (adults > 18 years old, male, and female) from four villages participated in all phases of the study. The study activities were conducted in Sabah Malay dialect. Participants and the research team contributed to data review and analyses. RESULTS Rural communities in Sabah, Malaysia possess local knowledge that attributes non-human primate malaria to natural factors related to the presence of mosquitoes that bite humans and which carry "kuman-malaria" or malaria parasite. Participants revealed various preventive practises ranging from traditional practises, including burning dried leaves and using plants that produce foul odours, to non-traditional approaches such as aerosols and mosquito repellents. By engaging with researchers and policymakers, the participants or termed as co-researchers in this study, showcased their ability to learn and appreciate new knowledge and perspectives and valued the opportunity to share their voices with policymakers. The study successfully fostered a balance of power dynamics between the co-researchers, research team members and policymakers. CONCLUSION There were no misconceptions about malaria causation among study participants. The insights from study participants are relevant because of their living experience with the non-human malaria. It is critical to incorporate rural community perspectives in designing locally effective and feasible malaria interventions in rural Sabah, Malaysia. Future research can consider adapting the photovoice methodology for further research with the community toward building locally tailored-malaria strategies.
Collapse
Affiliation(s)
- Nurul Athirah Naserrudin
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia, Sabah, 88400, Kota Kinabalu, Malaysia
- Sabah State Health Department, Ministry of Health, 88590, Kota Kinabalu, Malaysia
| | - Pauline Pau Lin Yong
- Faculty of Social Sciences and Humanities, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Malaysia
| | - April Monroe
- Johns Hopkins Center for Communication Programs, Baltimore, MD, USA
| | - Richard Culleton
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime, 791-0295, Japan
| | - Sara Elizabeth Baumann
- Department of Behavioral and Community Health Sciences, University of Pittsburgh School of Public Health, Pittsburgh, PA, 15261, USA
| | - Shigeharu Sato
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia, Sabah, 88400, Kota Kinabalu, Malaysia
- Department of Public Health Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Malaysia
- Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Malaysia
| | - Rozita Hod
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Mohammad Saffree Jeffree
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia, Sabah, 88400, Kota Kinabalu, Malaysia
- Department of Public Health Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Malaysia
| | - Kamruddin Ahmed
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia, Sabah, 88400, Kota Kinabalu, Malaysia
- Department of Public Health Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Malaysia
- Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Malaysia
| | - Mohd Rohaizat Hassan
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia.
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia, Sabah, 88400, Kota Kinabalu, Malaysia.
| |
Collapse
|
6
|
Naserrudin NA, Hassan MR, Jeffree MS, Culleton R, Hod R, Ahmed K. A systematic review of asymptomatic Plasmodium knowlesi infection: an emerging challenge involving an emerging infectious disease. Malar J 2022; 21:373. [PMID: 36474243 PMCID: PMC9724390 DOI: 10.1186/s12936-022-04339-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/18/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In the last decade Plasmodium knowlesi has been detected in humans throughout South East Asia. The highest risk groups for this infection are males, adults and those performing forest-related work. Furthermore, asymptomatic cases of P. knowlesi malaria have been reported including among women and children. METHODS Pubmed, Scopus and the Web of Science databases for literature describing asymptomatic P. knowlesi malaria published between 2010 and 2020 were searched. A systematic literature review was conducted to identify studies reporting the prevalence and incidence of laboratory confirmed asymptomatic P. knowlesi cases in humans, their clinical and demographic characteristics, and methods used to diagnose these cases. RESULTS By analysing over 102 papers, thirteen were eligible for this review. Asymptomatic P. knowlesi infections have been detected in 0.03%-4.0% of the population depending on region, and infections have been described in children as young as 2 years old. Various different diagnostic methods were used to detect P. knowlesi cases and there were differing definitions of asymptomatic cases in these studies. The literature indicates that regionally-differing immune-related mechanisms may play a part on the prevalence of asymptomatic P. knowlesi. CONCLUSION Differing epidemiological characteristics of asymptomatic P. knowlesi malaria in different regions reinforces the need to further investigate disease transmission mechanics. Effective public health responses to changes in P. knowlesi epidemiology require proactive intervention and multisectoral collaboration.
Collapse
Affiliation(s)
- Nurul Athirah Naserrudin
- grid.412113.40000 0004 1937 1557Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia ,grid.265727.30000 0001 0417 0814Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia, Sabah, Kota Kinabalu, Malaysia ,grid.415759.b0000 0001 0690 5255Sabah State Health Department, Ministry of Health, Kota Kinabalu, Malaysia
| | - Mohd Rohaizat Hassan
- grid.412113.40000 0004 1937 1557Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia ,grid.265727.30000 0001 0417 0814Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia, Sabah, Kota Kinabalu, Malaysia
| | - Mohammad Saffree Jeffree
- grid.265727.30000 0001 0417 0814Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia, Sabah, Kota Kinabalu, Malaysia ,grid.265727.30000 0001 0417 0814Department of Community and Family Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Richard Culleton
- grid.255464.40000 0001 1011 3808Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Rozita Hod
- grid.412113.40000 0004 1937 1557Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kamruddin Ahmed
- grid.265727.30000 0001 0417 0814Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia, Sabah, Kota Kinabalu, Malaysia ,grid.265727.30000 0001 0417 0814Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| |
Collapse
|
7
|
Genetic Diversity, Haplotype Relationships, and kdr Mutation of Malaria Anopheles Vectors in the Most Plasmodium knowlesi-Endemic Area of Thailand. Trop Med Infect Dis 2022; 7:tropicalmed7120412. [PMID: 36548667 PMCID: PMC9786164 DOI: 10.3390/tropicalmed7120412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022] Open
Abstract
Plasmodium knowlesi, a malaria parasite that occurs naturally in long-tailed macaques, pig-tailed macaques, and banded leaf monkeys, is currently regarded as the fifth of the human malaria parasites. We aimed to investigate genetic diversity based on the cytochrome c oxidase subunit I (COI) gene, detect Plasmodium parasites, and screen for the voltage-gated sodium channel (VGSC)-mutation-mediated knockdown resistance (kdr) of Anopheles mosquitoes in Ranong province, which is the most P. knowlesi-endemic area in Thailand. One hundred and fourteen Anopheles females belonging to eight species, including An. baimaii (21.05%), An. minimus s.s. (20.17%), An. epiroticus (19.30%), An. jamesii (19.30%), An. maculatus s.s. (13.16%), An. barbirostris A3 (5.26%), An. sawadwongporni (0.88%), and An. aconitus (0.88%), were caught in three geographical regions of Ranong province. None of the Anopheles mosquitoes sampled in this study were infected with Plasmodium parasites. Based on the sequence analysis of COI sequences, An. epiroticus had the highest level of nucleotide diversity (0.012), followed by An. minimus (0.011). In contrast, An. maculatus (0.002) had the lowest level of nucleotide diversity. The Fu's Fs and Tajima's D values of the Anopheles species in Ranong were all negative, except the Tajima's D values of An. minimus (0.077). Screening of VGSC sequences showed no presence of the kdr mutation of Anopheles mosquitoes. Our results could be used to further select effective techniques for controlling Anopheles populations in Thailand's most P. knowlesi-endemic area.
Collapse
|
8
|
Naserrudin NA, Hod R, Jeffree MS, Ahmed K, Hassan MR. The Emerging Threat of Plasmodium knowlesi Malaria Infection: A Concept Paper on the Vulnerable Factors in Human. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074419. [PMID: 35410098 PMCID: PMC8998343 DOI: 10.3390/ijerph19074419] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/28/2022] [Accepted: 04/03/2022] [Indexed: 02/01/2023]
Abstract
In South-East Asia (SEA), there has been an increase in the trend of detected and reported cases of Plasmodium knowlesi malaria in the last few decades. This higher transmission rate within SEA countries is attributed to the distribution of the Macaque, banded leaf monkeys, and Anopheles mosquito in this region. This study aims to propose a concept that highlights the integration of vulnerability factors to P. knowlesi malaria infection. The relevant literature on the vulnerability factors of P. knowlesi was reviewed. Any theories and models that could be integrated to support the factors were also explored throughout this study. Exposure to P. knowlesi malaria was found to be influenced by sociodemographic, socioeconomic, environmental, social context, belief, and human behaviour factors. However, these factors were commonly discussed separately in existing studies. For better disease prevention and control, all these factors should be explored collectively, to facilitate research aimed at generating a deeper understanding of the vulnerability factors to P. knowlesi malaria from various perspectives, including the genetic, sociodemographic, socioeconomic, environmental, sociocultural beliefs, and human behaviour of the population.
Collapse
Affiliation(s)
- Nurul Athirah Naserrudin
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.A.N.); (R.H.)
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia; (M.S.J.); (K.A.)
- Sabah State Health Department, Ministry of Health, Putrajaya 62590, Malaysia
| | - Rozita Hod
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.A.N.); (R.H.)
| | - Mohammad Saffree Jeffree
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia; (M.S.J.); (K.A.)
- Department of Public Health, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Kamruddin Ahmed
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia; (M.S.J.); (K.A.)
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Mohd Rohaizat Hassan
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.A.N.); (R.H.)
- Correspondence:
| |
Collapse
|
9
|
The Role of Human Behavior in Plasmodium knowlesi Malaria Infection: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063675. [PMID: 35329359 PMCID: PMC8953169 DOI: 10.3390/ijerph19063675] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/22/2022]
Abstract
Objectives: Plasmodium knowlesi is a non-human parasite that causes zoonotic disease in humans. This systematic review aims to highlight and summarize studies describing human behaviors and activities that expose humans to mosquito bites. Design: English entries in PubMed, Web of Science, and Science Direct from 2010 to 2020 were systematically perused, and the results were synthesized. Methodological quality was assessed using the Joanna Briggs Institute quality appraisal checklists. Setting: Studies that described malaria preventive measures were included. Laboratory, in vivo, in vitro, and animal studies were excluded. Primary and secondary outcome measures: The main outcome of the review was findings from studies describing the behavior that exposed a person or a group to P. knowlesi infection. Results: Twelve eligible studies were of good or medium quality. Attitude, disease misconceptions, perceived threat of disease, lack of motivation, and supernatural or traditional beliefs causing individuals to seek treatment from traditional healers influenced the exposure of individuals or communities to P. knowlesi malaria. Other factors were forestry activities (2.48, 1.45–4.23,95% CI, p = 0.0010) and sleeping outdoors (3.611, 1.48–8.85, 95% CI, p = 0.0049). Conclusions: Future studies must consider the importance of human behavior and community perspective on the infection to provide novel information to improve the current zoonotic malaria programs. Policymakers should concentrate on understanding human behavior and activities that expose individuals or communities to mosquito bites, in order to better design socially feasible interventions.
Collapse
|
10
|
Herrick T. Health Care of the International Traveler. Fam Med 2022. [DOI: 10.1007/978-3-030-54441-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Abstract
Plasmodium knowlesi, a simian malaria parasite, has been in the limelight since a large focus of human P. knowlesi infection was reported from Sarawak (Malaysian Borneo) in 2004. Although this infection is transmitted across Southeast Asia, the largest number of cases has been reported from Malaysia. The increasing number of knowlesi malaria cases has been attributed to the use of molecular tools for detection, but environmental changes including deforestation likely play a major role by increasing human exposure to vector mosquitoes, which coexist with the macaque host. In addition, with the reduction in human malaria transmission in Southeast Asia, it is possible that human populations are at a greater risk of P. knowlesi infection due to diminishing cross-species immunity. Furthermore, the possibility of increasing exposure of humans to other simian Plasmodium parasites such as Plasmodium cynomolgi and Plasmodium inui should not be ignored. We here review the current status of these parasites in humans, macaques, and mosquitoes to support necessary reorientation of malaria control and elimination in the affected areas.
Collapse
|
12
|
Amir A, Shahari S, Liew JWK, de Silva JR, Khan MB, Lai MY, Snounou G, Abdullah ML, Gani M, Rovie-Ryan JJ, Lau YL. Natural Plasmodium infection in wild macaques of three states in peninsular Malaysia. Acta Trop 2020; 211:105596. [PMID: 32589995 DOI: 10.1016/j.actatropica.2020.105596] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 01/28/2023]
Abstract
Zoonotic cases of Plasmodium knowlesi account for most malaria cases in Malaysia, and humans infected with P. cynomolgi, another parasite of macaques have recently been reported in Sarawak. To date the epidemiology of malaria in its natural Macaca reservoir hosts remains little investigated. In this study we surveyed the prevalence of simian malaria in wild macaques of three states in Peninsular Malaysia, namely Pahang, Perak and Johor using blood samples from 103 wild macaques (collected by the Department of Wildlife and National Parks Peninsular Malaysia) subjected to microscopic examination and nested PCR targeting the Plasmodium small subunit ribosomal RNA gene. As expected, PCR analysis yielded significantly higher prevalence (64/103) as compared to microscopic examination (27/103). No relationship between the age and/or sex of the macaques with the parasitaemia and the Plasmodium species infecting the macaques could be identified. Wild macaques in Pahang had the highest prevalence of Plasmodium parasites (89.7%), followed by those of Perak (69.2%) and Johor (28.9%). Plasmodium inui and P. cynomolgi were the two most prevalent species infecting the macaques from all three states. Half of the macaques (33/64) harboured two or more Plasmodium species. These data provide a baseline survey, which should be extended by further longitudinal investigations that should be associated with studies on the bionomics of the anopheline vectors. This information will allow an accurate evaluation of the risk of zoonotic transmission to humans, and to elaborate effective strategies to control simian malaria.
Collapse
Affiliation(s)
- Amirah Amir
- Department of Parasitology Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Shahhaziq Shahari
- Department of Parasitology Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jonathan Wee Kent Liew
- Department of Parasitology Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jeremy Ryan de Silva
- Department of Parasitology Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mohammad Behram Khan
- Department of Parasitology Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Meng Yee Lai
- Department of Parasitology Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Georges Snounou
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA) IDMIT Department IBFJ DRF, Fontenay-aux-Roses, France
| | - Mohd Lutfi Abdullah
- National Wildlife Forensic Laboratory, Ex-situ Conservation Division Department of Wildlife and National Parks Peninsular Malaysia, 56100, Kuala Lumpur, Malaysia
| | - Millawati Gani
- National Wildlife Forensic Laboratory, Ex-situ Conservation Division Department of Wildlife and National Parks Peninsular Malaysia, 56100, Kuala Lumpur, Malaysia
| | - Jeffrine J Rovie-Ryan
- National Wildlife Forensic Laboratory, Ex-situ Conservation Division Department of Wildlife and National Parks Peninsular Malaysia, 56100, Kuala Lumpur, Malaysia
| | - Yee-Ling Lau
- Department of Parasitology Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
13
|
Fungfuang W, Udom C, Tongthainan D, Kadir KA, Singh B. Malaria parasites in macaques in Thailand: stump-tailed macaques (Macaca arctoides) are new natural hosts for Plasmodium knowlesi, Plasmodium inui, Plasmodium coatneyi and Plasmodium fieldi. Malar J 2020; 19:350. [PMID: 33004070 PMCID: PMC7528273 DOI: 10.1186/s12936-020-03424-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
Background Certain species of macaques are natural hosts of Plasmodium knowlesi and Plasmodium cynomolgi, which can both cause malaria in humans, and Plasmodium inui, which can be experimentally transmitted to humans. A significant number of zoonotic malaria cases have been reported in humans throughout Southeast Asia, including Thailand. There have been only two studies undertaken in Thailand to identify malaria parasites in non-human primates in 6 provinces. The objective of this study was to determine the prevalence of P. knowlesi, P. cynomolgi, P. inui, Plasmodium coatneyi and Plasmodium fieldi in non-human primates from 4 new locations in Thailand. Methods A total of 93 blood samples from Macaca fascicularis, Macaca leonina and Macaca arctoides were collected from four locations in Thailand: 32 were captive M. fascicularis from Chachoengsao Province (CHA), 4 were wild M. fascicularis from Ranong Province (RAN), 32 were wild M. arctoides from Prachuap Kiri Khan Province (PRA), and 25 were wild M. leonina from Nakornratchasima Province (NAK). DNA was extracted from these samples and analysed by nested PCR assays to detect Plasmodium, and subsequently to detect P. knowlesi, P. coatneyi, P. cynomolgi, P. inui and P. fieldi. Results Twenty-seven of the 93 (29%) samples were Plasmodium-positive by nested PCR assays. Among wild macaques, all 4 M. fascicularis at RAN were infected with malaria parasites followed by 50% of 32 M. arctoides at PRA and 20% of 25 M. leonina at NAK. Only 2 (6.3%) of the 32 captive M. fascicularis at CHA were malaria-positive. All 5 species of Plasmodium were detected and 16 (59.3%) of the 27 macaques had single infections, 9 had double and 2 had triple infections. The composition of Plasmodium species in macaques at each sampling site was different. Macaca arctoides from PRA were infected with P. knowlesi, P. coatneyi, P. cynomolgi, P. inui and P. fieldi. Conclusions The prevalence and species of Plasmodium varied among the wild and captive macaques, and between macaques at 4 sampling sites in Thailand. Macaca arctoides is a new natural host for P. knowlesi, P. inui, P. coatneyi and P. fieldi.
Collapse
Affiliation(s)
- Wirasak Fungfuang
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Chanya Udom
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Daraka Tongthainan
- Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Khamisah Abdul Kadir
- Malaria Research Centre, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Balbir Singh
- Malaria Research Centre, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia.
| |
Collapse
|
14
|
Parasitic Infections in African Humans and Non-Human Primates. Pathogens 2020; 9:pathogens9070561. [PMID: 32664573 PMCID: PMC7400533 DOI: 10.3390/pathogens9070561] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 01/04/2023] Open
Abstract
Different protozoa and metazoa have been detected in great apes, monkeys and humans with possible interspecies exchanges. Some are either nonpathogenic or their detrimental effects on the host are not yet known. Others lead to serious diseases that can even be fatal. Their survey remains of great importance for public health and animal conservation. Fecal samples from gorillas (Gorilla gorilla) and humans living in same area in the Republic of Congo, chimpanzees (Pan troglodytes) from Senegal and one other from the Republic of Congo, Guinea baboons (Papio papio) from Senegal, hamadryas baboons (Papio hamadryas) from Djibouti and Barbary macaques (Macaca sylvanus) from Algeria, were collected. DNA was extracted and screened using specific qPCR assays for the presence of a large number of helminths and protozoa. Positive samples were then amplified in standard PCRs and sequenced when possible. Overall, infection rate was 36.5% in all non-human primates (NHPs) and 31.6% in humans. Great apes were more often infected (63.6%) than monkeys (7.3%). At least twelve parasite species, including ten nematodes and two protozoa were discovered in NHPs and five species, including four nematodes and a protozoan in humans. The prevalences of Giarida lamblia, Necator americanus, Enterobius vermicularis, Strongyloides stercoralis were similar between gorillas and human community co-habiting the same forest ecosystem in the Republic of Congo. In addition, human specific Mansonella perstans (5.1%) and other Mansonella spp. (5.1%) detected in these gorillas suggest a possible cross-species exchange. Low prevalence (2%) of Ascaris lumbricoides, Enterobius vermicularis, Strongyloides stercoralis were observed in chimpanzees, as well as a high prevalence of Abbreviata caucasica (57.1%), which should be considered carefully as this parasite can affect other NHPs, animals and humans. The Barbary macaques were less infected (7.2%) and Oesophagostomum muntiacum was the main parasite detected (5.8%). Finally, we report the presence of Pelodera sp. and an environmental Nematoda DNAs in chimpanzee feces, Nematoda sp. and Bodo sp. in gorillas, as well as DNA of uncharacterized Nematoda in apes and humans, but with a relatively lower prevalence in humans. Prevalence of extraintestinal parasites remains underestimated since feces are not the suitable sampling methods. Using non-invasive sampling (feces) we provide important information on helminths and protozoa that can infect African NHPs and human communities living around them. Public health and animal conservation authorities need to be aware of these infections, as parasites detected in African NHPs could affect both human and other animals’ health.
Collapse
|
15
|
Health Care of the International Traveler. Fam Med 2020. [DOI: 10.1007/978-1-4939-0779-3_9-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Devaux CA, Mediannikov O, Medkour H, Raoult D. Infectious Disease Risk Across the Growing Human-Non Human Primate Interface: A Review of the Evidence. Front Public Health 2019; 7:305. [PMID: 31828053 PMCID: PMC6849485 DOI: 10.3389/fpubh.2019.00305] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/07/2019] [Indexed: 12/22/2022] Open
Abstract
Most of the human pandemics reported to date can be classified as zoonoses. Among these, there is a long history of infectious diseases that have spread from non-human primates (NHP) to humans. For millennia, indigenous groups that depend on wildlife for their survival were exposed to the risk of NHP pathogens' transmission through animal hunting and wild meat consumption. Usually, exposure is of no consequence or is limited to mild infections. In rare situations, it can be more severe or even become a real public health concern. Since the emergence of acquired immune deficiency syndrome (AIDS), nobody can ignore that an emerging infectious diseases (EID) might spread from NHP into the human population. In large parts of Central Africa and Asia, wildlife remains the primary source of meat and income for millions of people living in rural areas. However, in the past few decades the risk of exposure to an NHP pathogen has taken on a new dimension. Unprecedented breaking down of natural barriers between NHP and humans has increased exposure to health risks for a much larger population, including people living in urban areas. There are several reasons for this: (i) due to road development and massive destruction of ecosystems for agricultural needs, wildlife and humans come into contact more frequently; (ii) due to ecological awareness, many long distance travelers are in search of wildlife discovery, with a particular fascination for African great apes; (iii) due to the attraction for ancient temples and mystical practices, others travelers visit Asian places colonized by NHP. In each case, there is a risk of pathogen transmission through a bite or another route of infection. Beside the individual risk of contracting a pathogen, there is also the possibility of starting a new pandemic. This article reviews the known cases of NHP pathogens' transmission to humans whether they are hunters, travelers, ecotourists, veterinarians, or scientists working on NHP. Although pathogen transmission is supposed to be a rare outcome, Rabies virus, Herpes B virus, Monkeypox virus, Ebola virus, or Yellow fever virus infections are of greater concern and require quick countermeasures from public health professionals.
Collapse
Affiliation(s)
- Christian A. Devaux
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
- CNRS, Marseille, France
| | - Oleg Mediannikov
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Hacene Medkour
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
17
|
Epelboin L, Rapp C, Faucher JF, Méchaï F, Bottieau E, Matheron S, Malvy D, Caumes E. Management and treatment of uncomplicated imported malaria in adults. Update of the French malaria clinical guidelines. Med Mal Infect 2019; 50:194-212. [PMID: 31493957 DOI: 10.1016/j.medmal.2019.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 07/11/2019] [Indexed: 12/25/2022]
Affiliation(s)
- L Epelboin
- Unité des maladies infectieuses et tropicales, centre hospitalier Andrée Rosemon, avenue des Flamboyants, 97300 Cayenne, French Guiana.
| | - C Rapp
- Hôpital Américain de Paris, 63, boulevard Victor Hugo, 92200 Neuilly, France; Hôpital d'instruction des armées Bégin, 69, avenue de Paris, 94163 Saint-Mandé, France
| | - J F Faucher
- Service des maladies infectieuses et tropicales and UMR 1094, CHU Dupuytren 2, 87042 Limoges, France
| | - F Méchaï
- Service des maladies infectieuses et tropicales, hôpital Avicenne, 93000 Bobigny, France
| | - E Bottieau
- Institute of tropical medicine, Antwerp, Belgium
| | - S Matheron
- Service des maladies infectieuses et tropicales, CHU Bichat - Claude Bernard, 75018 Paris, France
| | - D Malvy
- Service des maladies infectieuses et tropicales, CHU Bordeaux, 33000 Bordeaux France
| | - E Caumes
- Hôpital Pitié-Salpêtrière, 43-87, boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|
18
|
Sato S, Tojo B, Hoshi T, Minsong LIF, Kugan OK, Giloi N, Ahmed K, Jeffree SM, Moji K, Kita K. Recent Incidence of Human Malaria Caused by Plasmodium knowlesi in the Villages in Kudat Peninsula, Sabah, Malaysia: Mapping of The Infection Risk Using Remote Sensing Data. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16162954. [PMID: 31426380 PMCID: PMC6720544 DOI: 10.3390/ijerph16162954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/05/2019] [Indexed: 11/27/2022]
Abstract
Plasmodium knowlesi (Pk) is a malaria parasite that naturally infects macaque monkeys in Southeast Asia. Pk malaria, the zoonosis transmitted from the infected monkeys to the humans by Anopheles mosquito vectors, is now a serious health problem in Malaysian Borneo. To create a strategic plan to control Pk malaria, it is important to estimate the occurrence of the disease correctly. The rise of Pk malaria has been explained as being due to ecological changes, especially deforestation. In this research, we analysed the time-series satellite images of MODIS (MODerate-resolution Imaging Spectroradiometer) of the Kudat Peninsula in Sabah and created the “Pk risk map” on which the Land-Use and Land-Cover (LULC) information was visualised. The case number of Pk malaria of a village appeared to have a correlation with the quantity of two specific LULC classes, the mosaic landscape of oil palm groves and the nearby land-use patches of dense forest, surrounding the village. Applying a Poisson multivariate regression with a generalised linear mixture model (GLMM), the occurrence of Pk malaria cases was estimated from the population and the quantified LULC distribution on the map. The obtained estimations explained the real case numbers well, when the contribution of another risk factor, possibly the occupation of the villagers, is considered. This implies that the occurrence of the Pk malaria cases of a village can be predictable from the population of the village and the LULC distribution shown around it on the map. The Pk risk map will help to assess the Pk malaria risk distributions quantitatively and to discover the hidden key factors behind the spread of this zoonosis.
Collapse
Affiliation(s)
- Shigeharu Sato
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia.
- Nagasaki University School of Tropical Medicine and Global Health, Nagasaki 852-8523, Japan.
| | - Bumpei Tojo
- Nagasaki University School of Tropical Medicine and Global Health, Nagasaki 852-8523, Japan
| | - Tomonori Hoshi
- Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Lis Izni Fanirah Minsong
- Kudat Health Office, Ministry of Health Malaysia, Beg Berkunci No. 6, Kudat 89059, Sabah, Malaysia
| | - Omar Kwang Kugan
- Kudat Health Office, Ministry of Health Malaysia, Beg Berkunci No. 6, Kudat 89059, Sabah, Malaysia
| | - Nelbon Giloi
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Kamruddin Ahmed
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Saffree Mohammad Jeffree
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Kazuhiko Moji
- Nagasaki University School of Tropical Medicine and Global Health, Nagasaki 852-8523, Japan
| | - Kiyoshi Kita
- Nagasaki University School of Tropical Medicine and Global Health, Nagasaki 852-8523, Japan
| |
Collapse
|
19
|
Beiter KJ, Wentlent ZJ, Hamouda AR, Thomas BN. Nonconventional opponents: a review of malaria and leishmaniasis among United States Armed Forces. PeerJ 2019; 7:e6313. [PMID: 30701136 PMCID: PMC6348955 DOI: 10.7717/peerj.6313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/19/2018] [Indexed: 01/10/2023] Open
Abstract
As the United States military engage with different countries and cultures throughout the world, personnel become exposed to new biospheres as well. There are many infectious pathogens that are not endemic to the US, but two of particular importance are Plasmodium and Leishmania, which respectively cause malaria and leishmaniasis. These parasites are both known to cause significant disease burden in their endemic locales, and thus pose a threat to military travelers. This review introduces readers to basic life cycle and disease mechanisms for each. Local and military epidemiology are described, as are the specific actions taken by the US military for prevention and treatment purposes. Complications of such measures with regard to human health are also discussed, including possible chemical toxicities. Additionally, poor recognition of these diseases upon an individual's return leading to complications and treatment delays in the United States are examined. Information about canine leishmaniasis, poorly studied relative to its human manifestation, but of importance due to the utilization of dogs in military endeavors is presented. Future implications for the American healthcare system regarding malaria and leishmaniasis are also presented.
Collapse
Affiliation(s)
- Kaylin J Beiter
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Zachariah J Wentlent
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Adrian R Hamouda
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Bolaji N Thomas
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, United States of America
| |
Collapse
|
20
|
Zhou Y, Xiao B, Jiang N, Sang X, Yang N, Feng Y, Jiang L, Chen Q. Expression and functional analysis of the TatD-like DNase of Plasmodium knowlesi. Parasit Vectors 2018; 11:629. [PMID: 30541605 PMCID: PMC6291984 DOI: 10.1186/s13071-018-3251-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/03/2018] [Indexed: 01/21/2023] Open
Abstract
Background In recent years, human infection by the simian malaria parasite Plasmodium knowlesi has increased in Southeast Asia, leading to growing concerns regarding the cross-species spread of the parasite. Consequently, a deeper understanding of the biology of P. knowlesi is necessary in order to develop tools for control of the emerging disease. TatD-like DNase expressed at the surface of P. falciparum has recently been shown to counteract host innate immunity and is thus a potential malaria vaccine candidate. Methods The expression of the TatD DNase of P. knowlesi (PkTatD) was confirmed by both Western-blot and immunofluorescent assay. The DNA catalytic function of the PkTatD was confirmed by digestion of DNA with the recombinant PkTatD protein in the presence of various irons. Results In the present study, we investigated the expression of the homologous DNase in P. knowlesi. The expression of TatD-like DNase in P. knowslesi (PkTatD) was verified by Western blot and indirect immunofluorescence assays. Like that of the P. falciparum parasite, PkTatD was also found to be located on the surface of erythrocytes infected by the parasites. Biochemical analysis indicated that PkTatD can hydrolyze DNA and this activity is magnesium-dependent. Conclusions We identified that PkTatD expressed on the surface of P. knowlesi-infected RBCs is a Mg2+-dependent DNase and exhibits a stronger hydrolytic capacity than TatD from P. falciparum. The data support our previous findings that TatD-like DNase is a unanimously expressed virulence factor of Plasmodium parasites.
Collapse
Affiliation(s)
- Yapan Zhou
- Key Laboratory of Zoonosis, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, China
| | - Bo Xiao
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Pasteur Institute of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Jiang
- Key Laboratory of Zoonosis, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, China
| | - Xiaoyu Sang
- Key Laboratory of Zoonosis, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, China
| | - Na Yang
- Key Laboratory of Zoonosis, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, China
| | - Ying Feng
- Key Laboratory of Zoonosis, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, China
| | - Lubin Jiang
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Pasteur Institute of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qijun Chen
- Key Laboratory of Zoonosis, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, China.
| |
Collapse
|
21
|
Koh GJ, Ismail PK, Koh D. Occupationally Acquired Plasmodium knowlesi Malaria in Brunei Darussalam. Saf Health Work 2018; 10:122-124. [PMID: 30949391 PMCID: PMC6429035 DOI: 10.1016/j.shaw.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/28/2018] [Indexed: 12/31/2022] Open
Abstract
Simian malaria is a zoonotic disease caused by Plasmodium knowlesi infection. The common natural reservoir of the parasite is the macaque monkey and the vector is the Anopheles mosquito. Human cases of P. knowlesi infection has been reported in all South East Asian countries in the last decade, and it is currently the most common type of malaria seen in Malaysia and Brunei. Between 2007–2017, 73 cases of P. knowlesi infection were notified and confirmed to the Ministry of Health in Brunei. Of these, 15 cases (21%) were documented as work-related, and 28 other cases (38%) were classified as probably related to work (due to incomplete history). The occupations of those with probable and confirmed work related infections were border patrol officers, Armed Forces and security personnel, Department of Forestry officers, boatmen and researchers. The remaining cases classified as most likely not related to work were possibly acquired via peri-domestic transmission. The risk of this zoonotic infection extends to tourists and overseas visitors who have to travel to the jungle in the course of their work. It can be minimised with the recommended use of prophylaxis for those going on duty into the jungles, application of mosquito/insect repellants, and use of repellant impregnated uniforms and bed nets in jungle camp sites.
Collapse
Affiliation(s)
- Gregory Jn Koh
- Faculty of Health and the Medical Sciences, The University of Adelaide, Australia
| | - Pg K Ismail
- Ministry of Health, Brunei Darussalam.,PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Brunei Darussalam
| | - David Koh
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Brunei Darussalam.,SSH School of Public Health and YLL School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
22
|
Froeschl G, Beissner M, Huber K, Bretzel G, Hoelscher M, Rothe C. Plasmodium knowlesi infection in a returning German traveller from Thailand: a case report on an emerging malaria pathogen in a popular low-risk travel destination. BMC Infect Dis 2018; 18:148. [PMID: 29606107 PMCID: PMC5879747 DOI: 10.1186/s12879-018-3059-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/22/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Thailand is a major destination for German travellers with more than 760,000 arrivals in 2015. At the same time, malaria is a concern in travel recommendations with regard to this destination. The World Malaria Report of 2016 mentions only P. falciparum and P. vivax as prevalent species for Thailand, however, P. knowlesi infections have been occasionally reported in Thailand. In German travellers, only five cases of P. knowlesi infections have been reported to date. CASE PRESENTATION A 45-year-old German male tourist travelled to Thailand from 25 December 2016 to 13 January 2017. On 14 January he developed fever with no other symptoms, and presented on 17 January at the Division for Tropical Medicine and Infectious Diseases in Munich, Germany. Malaria was diagnosed, primarily based on a single parasite in the thin smear microscopy, while commercial rapid diagnostic testing remained negative. Only the result of a differential PCR assay revealed P. knowlesi infection. CONCLUSIONS P. knowlesi has to be considered in travellers returning from Thailand. Cases may present with an extremely low parasitaemia. This is in contrast to the assumption that P. knowlesi was likely to cause high parasitaemia due to its short replication cycle.
Collapse
Affiliation(s)
- Guenter Froeschl
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Leopoldstr. 5, 80802, Munich, Germany. .,German Center for Infection Research (DZIF), Munich, Germany.
| | - Marcus Beissner
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Leopoldstr. 5, 80802, Munich, Germany
| | - Kristina Huber
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Leopoldstr. 5, 80802, Munich, Germany
| | - Gisela Bretzel
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Leopoldstr. 5, 80802, Munich, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Leopoldstr. 5, 80802, Munich, Germany.,German Center for Infection Research (DZIF), Munich, Germany
| | - Camilla Rothe
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Leopoldstr. 5, 80802, Munich, Germany
| |
Collapse
|
23
|
Chopra R, Chibale K, Singh K. Pyrimidine-chloroquinoline hybrids: Synthesis and antiplasmodial activity. Eur J Med Chem 2018; 148:39-53. [DOI: 10.1016/j.ejmech.2018.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/27/2018] [Accepted: 02/06/2018] [Indexed: 10/18/2022]
|
24
|
Vygen-Bonnet S, Stark K. Changes in malaria epidemiology in Germany, 2001-2016: a time series analysis. Malar J 2018; 17:28. [PMID: 29334944 PMCID: PMC5769339 DOI: 10.1186/s12936-018-2175-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/08/2018] [Indexed: 11/15/2022] Open
Abstract
Background German surveillance data showed a sharp rise of malaria cases in 2014 and 2015 due to the increased arrival of refugees from malaria endemic countries. A time series analysis of data from 2001 to 2016 was performed in order to describe the epidemiology of imported malaria in Germany in general and of the recent increase in particular. Results In total, 11,678 malaria cases were notified between 2001 and 2016 (range 526–1063 cases/year). Newly arriving refugees averaged 10 cases/year (1.5%) in 2001–13 and 292.5 cases/year (28.3%) in 2014–15. Plasmodium (P.) falciparum was the most frequently reported species (range 57.2–85.8%), followed by P. vivax (range during 2001–2013: 7.6–18.1%; during 2014–2015, mean 31.3%). In 2014–15, 22.3% of all P. vivax cases were refugees from Eritrea and 3.3% from other countries of the Horn of Africa; in 2015 and 2016, 19.5% were refugees from Afghanistan and Pakistan. Five P. knowlesi malaria infections were reportedly acquired in Thailand between 2012 and 2016. Total numbers of malaria notifications among native Germans and residents with migration background showed an increasing trend since 2007. Chemoprophylaxis use was reported for 24.3% (1695/6984) of cases and showed a declining trend. Native German cases took significantly more frequently chemoprophylaxis than cases with migration background (32.6% vs. 17.9%; p < 0.001). Discussion/conclusions The steep rise in vivax malaria notifications in 2014 and 2015 was mainly due to newly arriving refugees from Eritrea but also from other countries of the Horn of Africa and South Asia. Clinicians should include malaria in their differential diagnosis in case of a febrile illness in the respective population and consider vivax malaria even if arrival to Germany dates back several months. Over the past 10 years, malaria notifications among native Germans and residents with migration background showed an increasing trend. Use of chemoprophylaxis was insufficient in both groups and deteriorating. New strategies need to be found to increase compliance to chemoprophylaxis recommendations. The surveillance provides valuable data for epidemiological assessment of imported malaria in Germany.
Collapse
Affiliation(s)
- Sabine Vygen-Bonnet
- Unit of Gastrointestinal Infections, Zoonoses and Tropical Infections, Department of Infectious Disease Epidemiology, Robert Koch-Institute, Seestr. 10, 13353, Berlin, Germany.
| | - Klaus Stark
- Unit of Gastrointestinal Infections, Zoonoses and Tropical Infections, Department of Infectious Disease Epidemiology, Robert Koch-Institute, Seestr. 10, 13353, Berlin, Germany
| |
Collapse
|
25
|
Abstract
In the mosquito-human life cycle, the six species of malaria parasites infecting humans (Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale wallickeri, Plasmodium ovale curtisi, Plasmodium malariae, and Plasmodium knowlesi) undergo 10 or more morphological states, replicate from single to 10,000+ cells, and vary in total population from one to many more than 106 organisms. In the human host, only a small number of these morphological stages lead to clinical disease and the vast majority of all malaria-infected patients in the world produce few (if any) symptoms in the human. Human clinical disease (e.g., fever, anemia, coma) is the result of the parasite preprogrammed biology in concert with the human pathophysiological response. Caveats and corollaries that add variation to this host-parasite interaction include parasite genetic diversity of key proteins, coinfections, comorbidities, delays in treatment, human polymorphisms, and environmental determinants.
Collapse
Affiliation(s)
- Danny A Milner
- Harvard T.H. Chan School of Public Health, American Society for Clinical Pathology, Center for Global Health, Chicago, Illinois 60603
| |
Collapse
|
26
|
Lapp SA, Geraldo JA, Chien JT, Ay F, Pakala SB, Batugedara G, Humphrey J, DeBARRY JD, Le Roch KG, Galinski MR, Kissinger JC. PacBio assembly of a Plasmodium knowlesi genome sequence with Hi-C correction and manual annotation of the SICAvar gene family. Parasitology 2018; 145:71-84. [PMID: 28720171 PMCID: PMC5798397 DOI: 10.1017/s0031182017001329] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/09/2017] [Accepted: 06/20/2017] [Indexed: 12/20/2022]
Abstract
Plasmodium knowlesi has risen in importance as a zoonotic parasite that has been causing regular episodes of malaria throughout South East Asia. The P. knowlesi genome sequence generated in 2008 highlighted and confirmed many similarities and differences in Plasmodium species, including a global view of several multigene families, such as the large SICAvar multigene family encoding the variant antigens known as the schizont-infected cell agglutination proteins. However, repetitive DNA sequences are the bane of any genome project, and this and other Plasmodium genome projects have not been immune to the gaps, rearrangements and other pitfalls created by these genomic features. Today, long-read PacBio and chromatin conformation technologies are overcoming such obstacles. Here, based on the use of these technologies, we present a highly refined de novo P. knowlesi genome sequence of the Pk1(A+) clone. This sequence and annotation, referred to as the 'MaHPIC Pk genome sequence', includes manual annotation of the SICAvar gene family with 136 full-length members categorized as type I or II. This sequence provides a framework that will permit a better understanding of the SICAvar repertoire, selective pressures acting on this gene family and mechanisms of antigenic variation in this species and other pathogens.
Collapse
Affiliation(s)
- S A Lapp
- Emory Vaccine Center,Yerkes National Primate Research Center,Emory University,Atlanta, GA,USA
| | - J A Geraldo
- Federal University of Minas Gerais,Belo Horizonte, MG,Brazil
| | - J-T Chien
- Emory Vaccine Center,Yerkes National Primate Research Center,Emory University,Atlanta, GA,USA
| | - F Ay
- La Jolla Institute for Allergy and Immunology,La Jolla, CA 92037,USA
| | - S B Pakala
- Institute of Bioinformatics, University of Georgia,Athens, GA 30602,USA
| | - G Batugedara
- Center for Disease and Vector Research,Institute for Integrative Genome Biology,Department of Cell Biology & Neuroscience,University of California Riverside,CA 92521,USA
| | - J Humphrey
- Institute of Bioinformatics, University of Georgia,Athens, GA 30602,USA
| | - J D DeBARRY
- Institute of Bioinformatics, University of Georgia,Athens, GA 30602,USA
| | - K G Le Roch
- Center for Disease and Vector Research,Institute for Integrative Genome Biology,Department of Cell Biology & Neuroscience,University of California Riverside,CA 92521,USA
| | - M R Galinski
- Emory Vaccine Center,Yerkes National Primate Research Center,Emory University,Atlanta, GA,USA
| | - J C Kissinger
- Institute of Bioinformatics, University of Georgia,Athens, GA 30602,USA
| |
Collapse
|
27
|
Diez Benavente E, Florez de Sessions P, Moon RW, Holder AA, Blackman MJ, Roper C, Drakeley CJ, Pain A, Sutherland CJ, Hibberd ML, Campino S, Clark TG. Analysis of nuclear and organellar genomes of Plasmodium knowlesi in humans reveals ancient population structure and recent recombination among host-specific subpopulations. PLoS Genet 2017; 13:e1007008. [PMID: 28922357 PMCID: PMC5619863 DOI: 10.1371/journal.pgen.1007008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/28/2017] [Accepted: 09/07/2017] [Indexed: 12/28/2022] Open
Abstract
The macaque parasite Plasmodium knowlesi is a significant concern in Malaysia where cases of human infection are increasing. Parasites infecting humans originate from genetically distinct subpopulations associated with the long-tailed (Macaca fascicularis (Mf)) or pig-tailed macaques (Macaca nemestrina (Mn)). We used a new high-quality reference genome to re-evaluate previously described subpopulations among human and macaque isolates from Malaysian-Borneo and Peninsular-Malaysia. Nuclear genomes were dimorphic, as expected, but new evidence of chromosomal-segment exchanges between subpopulations was found. A large segment on chromosome 8 originating from the Mn subpopulation and containing genes encoding proteins expressed in mosquito-borne parasite stages, was found in Mf genotypes. By contrast, non-recombining organelle genomes partitioned into 3 deeply branched lineages, unlinked with nuclear genomic dimorphism. Subpopulations which diverged in isolation have re-connected, possibly due to deforestation and disruption of wild macaque habitats. The resulting genomic mosaics reveal traits selected by host-vector-parasite interactions in a setting of ecological transition.
Collapse
Affiliation(s)
- Ernest Diez Benavente
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Robert W. Moon
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Michael J. Blackman
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Cally Roper
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Christopher J. Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Arnab Pain
- King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Colin J. Sutherland
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Martin L. Hibberd
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Genome Institute of Singapore, Biopolis, Singapore
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
28
|
Miguel-Oteo M, Jiram AI, Ta-Tang TH, Lanza M, Hisam S, Rubio JM. Nested multiplex PCR for identification and detection of human Plasmodium species including Plasmodium knowlesi. ASIAN PAC J TROP MED 2017; 10:299-304. [DOI: 10.1016/j.apjtm.2017.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/12/2016] [Accepted: 01/05/2017] [Indexed: 10/20/2022] Open
|
29
|
|
30
|
Tseng A, Herrick T. Health Care of the International Traveler. Fam Med 2017. [DOI: 10.1007/978-3-319-04414-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Moyes CL, Shearer FM, Huang Z, Wiebe A, Gibson HS, Nijman V, Mohd-Azlan J, Brodie JF, Malaivijitnond S, Linkie M, Samejima H, O'Brien TG, Trainor CR, Hamada Y, Giordano AJ, Kinnaird MF, Elyazar IRF, Sinka ME, Vythilingam I, Bangs MJ, Pigott DM, Weiss DJ, Golding N, Hay SI. Predicting the geographical distributions of the macaque hosts and mosquito vectors of Plasmodium knowlesi malaria in forested and non-forested areas. Parasit Vectors 2016; 9:242. [PMID: 27125995 PMCID: PMC4850754 DOI: 10.1186/s13071-016-1527-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/21/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Plasmodium knowlesi is a zoonotic pathogen, transmitted among macaques and to humans by anopheline mosquitoes. Information on P. knowlesi malaria is lacking in most regions so the first step to understand the geographical distribution of disease risk is to define the distributions of the reservoir and vector species. METHODS We used macaque and mosquito species presence data, background data that captured sampling bias in the presence data, a boosted regression tree model and environmental datasets, including annual data for land classes, to predict the distributions of each vector and host species. We then compared the predicted distribution of each species with cover of each land class. RESULTS Fine-scale distribution maps were generated for three macaque host species (Macaca fascicularis, M. nemestrina and M. leonina) and two mosquito vector complexes (the Dirus Complex and the Leucosphyrus Complex). The Leucosphyrus Complex was predicted to occur in areas with disturbed, but not intact, forest cover (> 60% tree cover) whereas the Dirus Complex was predicted to occur in areas with 10-100% tree cover as well as vegetation mosaics and cropland. Of the macaque species, M. nemestrina was mainly predicted to occur in forested areas whereas M. fascicularis was predicted to occur in vegetation mosaics, cropland, wetland and urban areas in addition to forested areas. CONCLUSIONS The predicted M. fascicularis distribution encompassed a wide range of habitats where humans are found. This is of most significance in the northern part of its range where members of the Dirus Complex are the main P. knowlesi vectors because these mosquitoes were also predicted to occur in a wider range of habitats. Our results support the hypothesis that conversion of intact forest into disturbed forest (for example plantations or timber concessions), or the creation of vegetation mosaics, will increase the probability that members of the Leucosphyrus Complex occur at these locations, as well as bringing humans into these areas. An explicit analysis of disease risk itself using infection data is required to explore this further. The species distributions generated here can now be included in future analyses of P. knowlesi infection risk.
Collapse
Affiliation(s)
- Catherine L Moyes
- Spatial Ecology & Epidemiology Group, The Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7BN, UK.
| | - Freya M Shearer
- Spatial Ecology & Epidemiology Group, The Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7BN, UK
| | - Zhi Huang
- Spatial Ecology & Epidemiology Group, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Antoinette Wiebe
- Spatial Ecology & Epidemiology Group, The Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7BN, UK
| | - Harry S Gibson
- Spatial Ecology & Epidemiology Group, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Vincent Nijman
- Department of Social Sciences, Oxford Brookes University, Oxford, OX1 0BP, UK
| | - Jayasilan Mohd-Azlan
- Department of Zoology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Jedediah F Brodie
- Departments of Zoology and Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Suchinda Malaivijitnond
- Primate Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Matthew Linkie
- Fauna & Flora International, Singapore, 247672, Singapore
| | - Hiromitsu Samejima
- Institute for Global Environmental Strategies, Kamiyamaguchi 2108-11, Hayama-cho, 240-0115, Kanagawa, Japan
| | - Timothy G O'Brien
- Wildlife Conservation Society, Mpala Research Center, Nanyuki, 10400, Kenya
| | - Colin R Trainor
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Northern Territory, 0909, Australia
- Faculty of Science and Technology, Federation University Australia, Mt Helen, Victoria, 3350, Australia
| | - Yuzuru Hamada
- Evolutionary Morphology Section, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Anthony J Giordano
- Field Conservation Program, S.P.E.C.I.E.S., Ventura, CA, USA
- Conservation Science Program, Tiger Creek Wildlife Refuge, Tyler, TX, USA
| | | | | | - Marianne E Sinka
- Spatial Ecology & Epidemiology Group, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Michael J Bangs
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
- Public Health and Malaria Control Department, International SOS, Jalan Kertajasa, Kuala Kencana, Papua, 99920, Indonesia
| | - David M Pigott
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, 98121, USA
| | - Daniel J Weiss
- Spatial Ecology & Epidemiology Group, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Nick Golding
- Spatial Ecology & Epidemiology Group, The Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7BN, UK
| | - Simon I Hay
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, 98121, USA
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| |
Collapse
|
32
|
Ahmed MA, Fong MY, Lau YL, Yusof R. Clustering and genetic differentiation of the normocyte binding protein (nbpxa) of Plasmodium knowlesi clinical isolates from Peninsular Malaysia and Malaysia Borneo. Malar J 2016; 15:241. [PMID: 27118390 PMCID: PMC4845393 DOI: 10.1186/s12936-016-1294-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/14/2016] [Indexed: 01/24/2023] Open
Abstract
Background The zoonotic malaria parasite Plasmodium knowlesi has become an emerging threat to South East Asian countries particular in Malaysia. A recent study from Sarawak (Malaysian Borneo) discovered two distinct normocyte binding protein xa (Pknbpxa) types of P. knowlesi. In the present study, the Pknbpxa of clinical isolates from Peninsular Malaysia and Sabah (Malaysian Borneo) were investigated for the presence of Pknbpxa types and natural selection force acting on the gene. Method Blood samples were collected from 47 clinical samples from Peninsular Malaysia (n = 35) and Sabah (Malaysian Borneo, n = 12) were used in the study. The Pknbpxa gene was successfully amplified and directly sequenced from 38 of the samples (n = 31, Peninsular Malaysia and n = 7, Sabah, Malaysian Borneo). The Pknbpxa sequences of P. knowlesi isolates from Sarawak (Malaysian Borneo) were retrieved from GenBank and included in the analysis. Polymorphism, genetic diversity and natural selection of Pknbpxa sequences were analysed using DNAsp v 5.10, MEGA5. Phylogentics of Pknbpxa sequences was analysed using MrBayes v3.2 and Splits Tree v4.13.1. The pairwise FST indices were used to determine the genetic differentiation between the Pknbpxa types and was calculated using Arlequin 3.5.1.3. Results Analyses of the sequences revealed Pknbpxa dimorphism throughout Malaysia indicating co-existence of the two types (Type-1 and Type-2) of Pknbpxa. More importantly, a third type (Type 3) closely related to Type 2 Pknbpxa was also detected. This third type was found only in the isolates originating from Peninsular Malaysia. Negative natural selection was observed, suggesting functional constrains within the Pknbpxa types. Conclusions This study revealed the existence of three Pknbpxa types in Malaysia. Types 1 and 2 were found not only in Malaysian Borneo (Sarawak and Sabah) but also in Peninsular Malaysia. A third type which was specific only to samples originating from Peninsular Malaysia was discovered. Further genetic studies with a larger sample size will be necessary to determine whether natural selection is driving this genetic differentiation and geographical separation.
Collapse
Affiliation(s)
- Md Atique Ahmed
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mun Yik Fong
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.,Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ruhani Yusof
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
33
|
Mackroth MS, Tappe D, Tannich E, Addo M, Rothe C. Rapid-Antigen Test Negative Malaria in a Traveler Returning From Thailand, Molecularly Diagnosed as Plasmodium knowlesi. Open Forum Infect Dis 2016; 3:ofw039. [PMID: 27006963 PMCID: PMC4800993 DOI: 10.1093/ofid/ofw039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/11/2016] [Indexed: 11/30/2022] Open
Abstract
Plasmodium knowlesi has been identified in the last decade as a fifth species causing malaria in areas of South East Asia. Due to its short erythrocytic cycle, rapid development of high parasitemia and severe manifestations are frequently observed. Therefore, prompt diagnosis of infection is essential to prevent complications, but the low sensitivity of rapid diagnostic tests for P knowlesi pose a diagnostic challenge in acute settings. In this study, we report the case of a German traveler to Thailand, who was treated for P knowlesi malaria after returning to Germany. Rapid antigen test for malaria was negative on presentation. Diagnosis of a nonfalciparum malaria was made based on microscopy, and species definition was determined using polymerase chain reaction technique.
Collapse
Affiliation(s)
- Maria S Mackroth
- Ist Department of Medicine, Section of Tropical Medicine , University Medical Centre Eppendorf
| | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine , Hamburg , Germany
| | - Egbert Tannich
- Bernhard Nocht Institute for Tropical Medicine , Hamburg , Germany
| | - Marylyn Addo
- Ist Department of Medicine, Section of Tropical Medicine , University Medical Centre Eppendorf
| | - Camilla Rothe
- Ist Department of Medicine, Section of Tropical Medicine , University Medical Centre Eppendorf
| |
Collapse
|
34
|
Favuzza P, Blaser S, Dreyer AM, Riccio G, Tamborrini M, Thoma R, Matile H, Pluschke G. Generation of Plasmodium falciparum parasite-inhibitory antibodies by immunization with recombinantly-expressed CyRPA. Malar J 2016; 15:161. [PMID: 26979066 PMCID: PMC4791974 DOI: 10.1186/s12936-016-1213-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/05/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The pathogenesis of malaria is primarily associated with blood-stage infection and there is strong evidence that antibodies specific for parasite blood-stage antigens can control parasitaemia. This provides a strong rationale for incorporation of asexual blood-stage antigen components into an effective multivalent malaria subunit vaccine. On the basis of available genome-wide transcriptomic and proteomic data, previously uncharacterized Plasmodium falciparum open reading frames were screened for new blood stage vaccine candidates. This has led to the identification of the cysteine-rich protective antigen (PfCyRPA), which forms together with PfRH5 and PfRipr a multiprotein complex that is crucial for erythrocyte invasion. METHODS Glycosylated and non-glycosylated variants of recombinant PfCyRPA were expressed and produced as secreted protein in mammalian cells. Adjuvanted formulations of purified PfCyRPA were tested to assess whether they can effectively elicit parasite inhibitory antibodies, and to investigate whether or not the glycosylation status affects antibody binding. For this purpose, two sets of PfCyRPA-specific mouse monoclonal antibodies (mAbs) have been raised and evaluated for functional activity. RESULTS Generated PfCyRPA-specific mAbs, irrespective of the immunogen's glycosylation status, showed substantial parasite in vitro growth-inhibitory activity due to inhibition of erythrocyte invasion by merozoites. Furthermore, passive immunization experiments in P. falciparum infected NOD-scid IL2Rγ (null) mice engrafted with human erythrocytes demonstrated potent in vivo growth-inhibitory activity of generated mAbs. CONCLUSIONS Recombinantly expressed PfCyRPA tested as adjuvanted vaccine formulations in mice elicited antibodies that significantly inhibit P. falciparum asexual blood stage parasite growth both in vitro and in vivo. These findings render PfCyRPA a promising blood-stage candidate antigen for inclusion into a multicomponent malaria subunit vaccine.
Collapse
Affiliation(s)
- Paola Favuzza
- Medical Parasitology and Infection Biology Department, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Simon Blaser
- Medical Parasitology and Infection Biology Department, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Anita M Dreyer
- Medical Parasitology and Infection Biology Department, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Guy Riccio
- Medical Parasitology and Infection Biology Department, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Marco Tamborrini
- Medical Parasitology and Infection Biology Department, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Ralf Thoma
- Roche Pharmaceutical Research & Early Development, Small Molecule Research, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Hugues Matile
- Roche Pharmaceutical Research & Early Development, Small Molecule Research, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Gerd Pluschke
- Medical Parasitology and Infection Biology Department, Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Limitations of blood smear microscopy contributed to failure of the 1950-1960s WHO Global Programme to Eliminate Malaria. All diagnostic methods encounter limits of detection (LOD) beyond which it will not be possible to identify infected individuals. When this occurs, it becomes difficult to continue evaluating progress of malaria elimination. The purpose of this review is to compare available diagnostic technologies, factors that underlie their LOD, and their potential roles related to the goal of elimination. RECENT FINDINGS Parasite-containing cells, parasite proteins, hemozoin, nucleic acids, and parasite-specific human antibodies are targets of diagnosis. Many studies report advantages of technologies to detect these diagnostic targets. Nucleic acid amplification tests and strategies for enriching capture of malaria diagnostic targets have consistently identified a parasite reservoir not detected by methods focused on the other biological targets. Exploiting magnetic properties of hemozoin may open new strategies for noninvasive malaria diagnosis. SUMMARY Microscopy and rapid diagnostic tests provide effective surveillance for malaria control. Strategies that detect a reservoir of submicroscopic infection must be developed and standardized to guide malaria elimination.
Collapse
|
36
|
Population genomic structure and adaptation in the zoonotic malaria parasite Plasmodium knowlesi. Proc Natl Acad Sci U S A 2015; 112:13027-32. [PMID: 26438871 DOI: 10.1073/pnas.1509534112] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Malaria cases caused by the zoonotic parasite Plasmodium knowlesi are being increasingly reported throughout Southeast Asia and in travelers returning from the region. To test for evidence of signatures of selection or unusual population structure in this parasite, we surveyed genome sequence diversity in 48 clinical isolates recently sampled from Malaysian Borneo and in five lines maintained in laboratory rhesus macaques after isolation in the 1960s from Peninsular Malaysia and the Philippines. Overall genomewide nucleotide diversity (π = 6.03 × 10(-3)) was much higher than has been seen in worldwide samples of either of the major endemic malaria parasite species Plasmodium falciparum and Plasmodium vivax. A remarkable substructure is revealed within P. knowlesi, consisting of two major sympatric clusters of the clinical isolates and a third cluster comprising the laboratory isolates. There was deep differentiation between the two clusters of clinical isolates [mean genomewide fixation index (FST) = 0.21, with 9,293 SNPs having fixed differences of FST = 1.0]. This differentiation showed marked heterogeneity across the genome, with mean FST values of different chromosomes ranging from 0.08 to 0.34 and with further significant variation across regions within several chromosomes. Analysis of the largest cluster (cluster 1, 38 isolates) indicated long-term population growth, with negatively skewed allele frequency distributions (genomewide average Tajima's D = -1.35). Against this background there was evidence of balancing selection on particular genes, including the circumsporozoite protein (csp) gene, which had the top Tajima's D value (1.57), and scans of haplotype homozygosity implicate several genomic regions as being under recent positive selection.
Collapse
|
37
|
Chung SJ, Low JGH, Wijaya L. Malaria in a tertiary hospital in Singapore--clinical presentation, treatment and outcome: an eleven year retrospective review. Travel Med Infect Dis 2015; 12:738-44. [PMID: 25467088 DOI: 10.1016/j.tmaid.2014.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/14/2014] [Accepted: 10/21/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Malaria remains a global health threat and poses significant health risks even in non-endemic regions like Singapore. METHODS A retrospective analysis of 214 patients with smear-positive malaria treated at Singapore General Hospital (SGH) between year 2000 and 2010. RESULTS One hundred and sixty-seven (78%) patients were male; median age was 35 y (range, 25–52 y). Sixty-four (41%) patients had past history of treated malaria. Seven (4.9%) patients did not travel out of Singapore. One hundred and twenty-seven (76.5%) cases of malaria were acquired in Southeast Asia (SEA) and the Indian subcontinent. There were 127 (59.3%) Plasmodium vivax, 83 (38.8%) Plasmodium falciparum, 1 (0.3%) Plasmodium malariae and 3 (1.4%) mixed infections. Fever was the most common symptom and thrombocytopaenia was the most common laboratory finding. There were 43 severe and 171 uncomplicated cases of malaria, including 8 severe P. vivax cases. Those with severe malaria were older, stayed longer in hospital, had a higher percentage parasitaemia and took longer to clear the parasite. The diagnosis of malaria was suspected at the first contact with healthcare provider in 194 (91.9%) cases. Sixty-one (85.9%) patients with P. falciparum infection received combination anti-malarial therapy and 109 (98.2%) of patients with P. vivax received primaquine for hypnozoite clearance in combination with schizontocidal agent. All the patients survived. CONCLUSION In this study, P. vivax was the most common cause of malaria. Severe P. vivax was not uncommon. Cryptic transmission of malaria exists, highlighting the importance of continued vigilance, malaria surveillance and vector control. Early recognition of malaria improved the overall outcome.
Collapse
|
38
|
Abstract
Mechanisms of cell death in unicellular parasites have been subjects of debate for the last decade, with studies demonstrating evidence of apoptosis or non-apoptosis like mechanisms, including necrosis, and autophagy. Recent clarifications on the definition of regulated or accidental cell death by The Nomenclature Committee on Cell Death provides an opportunity to reanalyze some data, re-evaluate conclusions in the light of parasite diversity, and to propose alternative arguments in the context of malaria drug resistance, considering lack of really new drugs in the pipeline. Deciphering the mechanisms of death may help in detection of new drug targets and the design of innovative drugs. However, classifications have been evolving rapidly since initial description of "programmed cell death", leading to some uncertainty as to whether Plasmodium cell death is accidental or regulated.
Collapse
Affiliation(s)
- Fatimata Sow
- University Claude Bernard Lyon 1, Malaria Research Unit, SMITh, ICBMS, UMR 5246 CNRS-INSA-CPE-UCBL1, 8 avenue Rockefeller, 69373 Lyon cedex 08, France
| | - Mary Nyonda
- University Claude Bernard Lyon 1, Malaria Research Unit, SMITh, ICBMS, UMR 5246 CNRS-INSA-CPE-UCBL1, 8 avenue Rockefeller, 69373 Lyon cedex 08, France
| | - Anne-Lise Bienvenu
- University Claude Bernard Lyon 1, Malaria Research Unit, SMITh, ICBMS, UMR 5246 CNRS-INSA-CPE-UCBL1, 8 avenue Rockefeller, 69373 Lyon cedex 08, France. ; Hospices Civils de Lyon, Institut de Parasitologie et de Mycologie Médicale (IP2M), Hôpital de la Croix-Rousse, 103 grande rue de la Croix-Rousse, 69317 Lyon cedex 04, France
| | - Stephane Picot
- University Claude Bernard Lyon 1, Malaria Research Unit, SMITh, ICBMS, UMR 5246 CNRS-INSA-CPE-UCBL1, 8 avenue Rockefeller, 69373 Lyon cedex 08, France. ; Hospices Civils de Lyon, Institut de Parasitologie et de Mycologie Médicale (IP2M), Hôpital de la Croix-Rousse, 103 grande rue de la Croix-Rousse, 69317 Lyon cedex 04, France
| |
Collapse
|
39
|
Human infections with Plasmodium knowlesi--zoonotic malaria. Clin Microbiol Infect 2015; 21:640-8. [PMID: 25843504 DOI: 10.1016/j.cmi.2015.03.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 03/09/2015] [Accepted: 03/19/2015] [Indexed: 11/21/2022]
Abstract
In 2004 a large focus of Plasmodium knowlesi malaria was reported in the human population in Sarawak, Malaysian Borneo. Plasmodium knowlesi, a parasite of the South-East Asian macaques (Macaca fascicularis and Macaca nemestrina), had entered the human population. Plasmodium knowlesi is transmitted by the leucosphyrus group of Anopheline mosquitoes and transmission is largely zoonotic and restricted to the jungle setting. Humans entering jungle transmission sites are at risk. Since 2004, human cases of P. knowlesi have been continuously reported in local communities and in travellers returning from South East Asia. Plasmodium knowlesi is the most common type of indigenous malaria reported in Malaysia. Infections are most often uncomplicated but at least 10% of patients report with severe malaria and 1-2% of cases have a fatal outcome. Parasitaemia is positively associated with the clinical and laboratory markers of severe malaria. The current literature on P. knowlesi, including epidemiology, natural hosts and vectors, pathogenesis, clinical descriptions, treatment and diagnosis, is reviewed. There are many gaps in our understanding of this disease that are highlighted here with suggestions for further research to inform pre-emptive control measures that would be required to prevent a full emergence of this parasite into the human population.
Collapse
|
40
|
Visser BJ, Wieten RW, Kroon D, Nagel IM, Bélard S, van Vugt M, Grobusch MP. Efficacy and safety of artemisinin combination therapy (ACT) for non-falciparum malaria: a systematic review. Malar J 2014; 13:463. [PMID: 25428624 PMCID: PMC4258384 DOI: 10.1186/1475-2875-13-463] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/18/2014] [Indexed: 01/18/2023] Open
Abstract
Background Artemisinin combination therapy (ACT) is recommended as first-line treatment for uncomplicated Plasmodium falciparum malaria, whereas chloroquine is still commonly used for the treatment of non-falciparum species (Plasmodium vivax, Plasmodium ovale and Plasmodium malariae). A more simplified, more uniform treatment approach across all malaria species is worthwhile to be considered both in endemic areas and for malaria as an imported condition alike. Methods A PROSPERO-registered systematic review to determine the efficacy and safety of ACT for the treatment of non-falciparum malaria was conducted, following PRISMA guidelines. Without language restrictions, Medline/PubMed, Embase, Cochrane Central Register of Controlled Trials, Web of Science, LILACS, Biosis Previews and the African Index Medicus were searched for studies published up to November 2014. Results The literature search identified 986 reports; 40 publications were found eligible for inclusion, all of them on non-falciparum malaria in endemic areas. Most evidence was available for P. vivax (n = 35). Five clinical trials in total were identified evaluating ACT for P. ovale, P. malariae and Plasmodium knowlesi. Most ACT presentations have high efficacy against P. vivax parasites; artemisinin-based combinations have shorter parasite and fever clearance times compared to chloroquine. ACT is as effective as chloroquine in preventing recurrent parasitaemia before day 28. Artemisinin-based combinations with long half-lives show significantly fewer recurrent parasitaemia up to day 63. The limited evidence available supports both the use of chloroquine and an ACT for P. ovale and P. malariae. ACT seems to be preferable for optimal treatment of P. knowlesi. Conclusion ACT is at least equivalent to chloroquine in effectively treating non-falciparum malaria. These findings may facilitate development of simplified protocols for treating all forms of malaria with ACT, including returning travellers. Obtaining comprehensive efficacy and safety data on ACT use for non-falciparum species particularly for P. ovale, P. malariae and P. knowlesi should be a research priority. Trial registration CRD42014009103 Electronic supplementary material The online version of this article (doi:10.1186/1475-2875-13-463) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Martin P Grobusch
- Department of Infectious Diseases, Division of Internal Medicine, Center of Tropical Medicine and Travel Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, PO Box 22700, 1100 DE Amsterdam, The Netherlands.
| |
Collapse
|
41
|
de Pina-Costa A, Brasil P, Santi SMD, de Araujo MP, Suárez-Mutis MC, Santelli ACFES, Oliveira-Ferreira J, Lourenço-de-Oliveira R, Daniel-Ribeiro CT. Malaria in Brazil: what happens outside the Amazonian endemic region. Mem Inst Oswaldo Cruz 2014; 109:618-33. [PMID: 25185003 PMCID: PMC4156455 DOI: 10.1590/0074-0276140228] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 07/30/2014] [Indexed: 12/16/2022] Open
Abstract
Brazil, a country of continental proportions, presents three profiles of malaria transmission. The first and most important numerically, occurs inside the Amazon. The Amazon accounts for approximately 60% of the nation's territory and approximately 13% of the Brazilian population. This region hosts 99.5% of the nation's malaria cases, which are predominantly caused by Plasmodium vivax (i.e., 82% of cases in 2013). The second involves imported malaria, which corresponds to malaria cases acquired outside the region where the individuals live or the diagnosis was made. These cases are imported from endemic regions of Brazil (i.e., the Amazon) or from other countries in South and Central America, Africa and Asia. Imported malaria comprised 89% of the cases found outside the area of active transmission in Brazil in 2013. These cases highlight an important question with respect to both therapeutic and epidemiological issues because patients, especially those with falciparum malaria, arriving in a region where the health professionals may not have experience with the clinical manifestations of malaria and its diagnosis could suffer dramatic consequences associated with a potential delay in treatment. Additionally, because the Anopheles vectors exist in most of the country, even a single case of malaria, if not diagnosed and treated immediately, may result in introduced cases, causing outbreaks and even introducing or reintroducing the disease to a non-endemic, receptive region. Cases introduced outside the Amazon usually occur in areas in which malaria was formerly endemic and are transmitted by competent vectors belonging to the subgenus Nyssorhynchus (i.e., Anopheles darlingi, Anopheles aquasalis and species of the Albitarsis complex). The third type of transmission accounts for only 0.05% of all cases and is caused by autochthonous malaria in the Atlantic Forest, located primarily along the southeastern Atlantic Coast. They are caused by parasites that seem to be (or to be very close to) P. vivax and, in a less extent, by Plasmodium malariae and it is transmitted by the bromeliad mosquito Anopheles (Kerteszia) cruzii. This paper deals mainly with the two profiles of malaria found outside the Amazon: the imported and ensuing introduced cases and the autochthonous cases. We also provide an update regarding the situation in Brazil and the Brazilian endemic Amazon.
Collapse
Affiliation(s)
- Anielle de Pina-Costa
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Reference
Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of
Health
- Laboratório de Pesquisa Clínica em Doenças Febris Agudas, Instituto
Nacional de Infectologia Evandro Chagas
| | - Patrícia Brasil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Reference
Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of
Health
- Laboratório de Pesquisa Clínica em Doenças Febris Agudas, Instituto
Nacional de Infectologia Evandro Chagas
| | - Sílvia Maria Di Santi
- Núcleo de Estudos em Malária, Superintendência de Controle de Endemias,
Secretaria de Saúde do Estado de São Paulo, São Paulo, SP, Brasil
- Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP,
Brasil
| | - Mariana Pereira de Araujo
- Programa Nacional de Controle da Malária, Secretaria de Vigilância em
Saúde, Ministério da Saúde, Brasilia, DF, Brasil
| | | | | | | | - Ricardo Lourenço-de-Oliveira
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Reference
Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of
Health
- Laboratório de Transmissores de Hematozoários
| | - Cláudio Tadeu Daniel-Ribeiro
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Reference
Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of
Health
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz-Fiocruz, Rio
de Janeiro, RJ, Brasil
| |
Collapse
|
42
|
Imai N, White MT, Ghani AC, Drakeley CJ. Transmission and control of Plasmodium knowlesi: a mathematical modelling study. PLoS Negl Trop Dis 2014; 8:e2978. [PMID: 25058400 PMCID: PMC4109903 DOI: 10.1371/journal.pntd.0002978] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/12/2014] [Indexed: 12/21/2022] Open
Abstract
Introduction Plasmodium knowlesi is now recognised as a leading cause of malaria in Malaysia. As humans come into increasing contact with the reservoir host (long-tailed macaques) as a consequence of deforestation, assessing the potential for a shift from zoonotic to sustained P. knowlesi transmission between humans is critical. Methods A multi-host, multi-site transmission model was developed, taking into account the three areas (forest, farm, and village) where transmission is thought to occur. Latin hypercube sampling of model parameters was used to identify parameter sets consistent with possible prevalence in macaques and humans inferred from observed data. We then explore the consequences of increasing human-macaque contact in the farm, the likely impact of rapid treatment, and the use of long-lasting insecticide-treated nets (LLINs) in preventing wider spread of this emerging infection. Results Identified model parameters were consistent with transmission being sustained by the macaques with spill over infections into the human population and with high overall basic reproduction numbers (up to 2267). The extent to which macaques forage in the farms had a non-linear relationship with human infection prevalence, the highest prevalence occurring when macaques forage in the farms but return frequently to the forest where they experience higher contact with vectors and hence sustain transmission. Only one of 1,046 parameter sets was consistent with sustained human-to-human transmission in the absence of macaques, although with a low human reproduction number (R0H = 1.04). Simulations showed LLINs and rapid treatment provide personal protection to humans with maximal estimated reductions in human prevalence of 42% and 95%, respectively. Conclusion This model simulates conditions where P. knowlesi transmission may occur and the potential impact of control measures. Predictions suggest that conventional control measures are sufficient at reducing the risk of infection in humans, but they must be actively implemented if P. knowlesi is to be controlled. Plasmodium knowlesi is a malaria of macaques which is now recognised as a leading cause of human malaria in Malaysia. Although current human infections are a result of human-macaque contact, there is a potential for P. knowlesi to be transmitted solely among humans. The authors developed a multi-host, multi-site transmission model to assess the likelihood of this happening due to increased human-macaque contact as a consequence of deforestation, population growth, and land-use change. How effective currently available malaria control measures were against P. knowlesi was also an important issue that was explored using the model. Although the model predicts that conventional control measures will be sufficient against P. knowlesi, with the push to eliminate malaria by the end of 2015, it is crucial to be aware of zoonotic malarias which may undermine such efforts.
Collapse
Affiliation(s)
- Natsuko Imai
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- * E-mail:
| | - Michael T. White
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Azra C. Ghani
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Chris J. Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
43
|
Tseng A, Herrick T. Health Care of the International Traveler. Fam Med 2014. [DOI: 10.1007/978-1-4939-0779-3_9-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|